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1. Introduction

The systematic development of operator theory began in the late 19" century. An important
aspect of approximation in operator theory is to find simple, computationally tractable approximations
that capture the essential properties of more complex functions. These approximations can be used
for analysis, simulation, or computation in various applications such as quantum mechanics, signal
processing, and control theory. It provides powerful tools for solving problems and analyzing systems
involving operators. In the last decade, there has been continued research and development in
approximation theory in operator theory, with a focus on more advanced techniques, with applications
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in data science and machine learning. In approximation theory, Weierstrass (1885) [1] formulated a
sophisticated result known as the Weierstrass approximation theorem. Proving this theorem in a more
straightforward and comprehensible manner has been the focus of several prominent mathematicians.

Bernstein (1912) [2] developed polynomials referred to as the Bernstein sequence of polynomials
in order to give a concise demonstration of the Weierstrass approximation theorem with the aid of
binomial distribution as:

By(& 1) = Zg(%)( ‘ )u"(l —uf, uelo,1], (1.1)
v=0

where g is a continuous and bounded function on [0, 1]. The sequences of operators in (1.1) restrict
the approximation for continuous functions on the bounded interval [0,1]. In order to discuss
approximation properties on the unbounded interval [0, o), Szasz [3] provided the modifications to
the operators in (1.1), which has a significant role to the evolution of operator theory as follows:

v (ku)” ~(v

Su(@u) = e 3 —), k€N, (1.2)
v! K

where the real-valued function g € C[0, o) and u > 0. As given in (1.2), the linear positive operators
are solely limited to continuous functional space. Many integral variants of these sequences of
operators are obtained in order to approximate the longer space of functions, i.e., the space of Lebesgue
measurable functions, e.g., Szasz-Durremeyer and Szdsz-Kantorovich type operators ( [4,5]). Many
mathematicians, e.g., Ozger et al. ([6,7]), Acu et al. ([8,9]), Braha et al. ([10,11]), Ayman Mursaleen
et al. [12], Khursheed et al. ([13, 14]), Mohiuddine et al. ([15, 16]), Mursaleen et al. ([17, 18]),
Khan et al. [19], Nasiruzzaman [20], Rao et al. ([21,22]), and Wafi et al. [23], provided a number
of generalizations for these kinds of sequences to investigate flexibility in approximation properties
across several functional spaces.

In 2013, Khan and Raza [24] also introduced the family of 2-variable general-Appell polynomials
A, ,(ku, h) defined by the generating function as

Ae"$(y.1) = Z Ap,v(u,y)%,

v=0

where A(f) can be expressed as A(f) = 3,2 A,t", A # 0, and @(y, 1) can be expressed as

¢y, 1) = VZ:(; ¢v()’)ﬁ, $o(y) # 0.

Recently, Raza et al. [25] provided a class of sequence of operators G, 4(.;.), k € N, given by the
formula

GK,A (g, l/t)

_ e — A, (ku, h) v .
) A(l)é(h,nz v! g( ) ue Ry, (1.3)

K
v=0

where A, , are the two variable degenerate Appell polynomials (see [25]).
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Appell polynomials constitute a class of special functions defined by a characteristic generating
function and notable for their closure under composition, forming an abelian group. They find
applications in diverse fields like approximation theory, theoretical physics, and related areas. The need
to study operators with more complex forms, including Appell polynomials, stems from their ability to
model and analyze complex phenomena, their connections to other important mathematical structures,
and their utility in solving problems in various scientific disciplines. Also, the beauty of these types of
polynomials is that they bridge two fields of research, i.e., special functions and operators theory.

The sequence presented by (1.3) are positive and linear. The basic information about positive linear
operators, including their modifications and applications, can be found in [26].

As the operators described in (1.3) are limited for continuous functions only, we present a sequence
of positive linear operators to provide approximations in the larger class of functions, i.e., (L?[0, 0)),
1 < p < oo (space of Lebesgue measurable function) endowed with the pth norm [|f]|, = ( f lf |1’)1l’,
which are termed as Szdsz-Integral operators in the context of general Appell Polynomials as

HAZu) = zzAamjgjlx@g@m% forueRg, k€N, (1.4)
v=0 0
where
—KU A " ,h v+A+1
AP(kut, ) = —— okt 1) and Q)(y) = — y e,

AMEMR, 1) V! Tv+A+1)

with the I' (Gamma) function, which is given as
I'(m) = fzm_le_tdt =m-DI'm—-1)=m-1).
0

Lemma 1.1. The sequence of operators introduced in (1.4) are linear.

Proof. In view of (1.4) and for 4;, 4, € R, we have

HAN 81 + Loz u) = ZAf(KM, h)fQZ(Y)(/llgl + A:82)(y)dy
v=0 0

[

:@Zgw@f@wmmy
0

v=0

w2 ) Al [ QR0
v=0 0
= /117’{5[@1; u) + ﬂzﬂ,fq(gﬁ u).
O
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Lemma 1.2. As discussed by Raza et al. in [25], we can have the following equalities:

O 2D Reryegn 1y

0

f#‘“m = |KuA(DEGR 1) + ADE (1) + & (DF, Do

OMSﬁ

i oo ’”(K” ") [(K2u2 + k) ADER, 1) + Cxu + DIAMDE (h, 1)
} + A (D&M, D]+ 2E (h, DA’ (1) + & (h, A1)
+ &(h, 1)[\”(1)]&”.
Lemma 1.3. Let 3,(y) = ?, 6 € {0, 1,2} be the test functions by (1.3). Then, we have
HALu) = 1
HAy;u) = u+ ;[/l+

fe) Ry )
&r D) R

A2y = g £ (h, 1)
HIGHw = i+ [K(2/1+4)u+(2Ku+2/1+4){§(h 5
¢ AW LEGRDED FGD KD )
A(D) E(h, DA(1) f(h ) A

for each u € Rj.

Proof. In the direction of (1.4), we have

HA@iw = ) Al ) [ Q000
v=0 0

Now, for 8 = 0,
HAG) =Y Al h) f 0/()dy
v=0
v+/l+1 P A
= ) Al(ku,h vl
Z (Ku)( /1+1) y e ™dy
= ZA‘D(KM B =1
v=0
For6 =1,

Hig = 3 A f 0Ly

v=0
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v+A+1

= ZA”(KM h) Toras 1) Yy e gy

= —ZVAP(KM h) +( )ZAP(KM h)

1 e Apy(ku,h)  (A+1 ek — A, (ku, h)
T K AER, 1)ZV vl ( p )]\(I)S(h,l); )

F(h h, AW 1]

&(h, 1) A1)
For 6 = 2,
HI G u) = ZA’V’(Ku,h) f Q)(y)y*dy
v=0 0
o v+A+1 P 2
_ p - V+A+ —Ky
= ;A"(Ku’h)r(v+/l+ DJ yrendy
= _Z V2 AP (ku, h) + (2/l+3)ZVA€(Ku,h)
v=0
/12 +31+2
+(T);A5(Ku,h)
.1 Ehy K
= P4 2[K(m+4)u+(2,<u+2ﬂt+4){§(h : A(l)}
§(h DA'(1) f (h, D A'(1) gy +3/l+2].
f(h DA(1) f(h Y A(1)
Hence, the proof of Lemma 1.3 is completed. O

Lemma 1.4. Lety%(y) = (y—u)?, 8 = 0, 1,2. Then, for the operators (1.4), we have the central moments
HIA a0, u) as:

HAY),u) = 1

n1) AQ
HAow.w = L[EED AW,

&(h, 1) A(l)
%[2MK + 24+ 4){

1+/l];

HA o), w)

£, K0y
&h, 1) A1)

é"(h DA'(1) f ‘(h, 1) A"(l)
§(h DA(1) f(h iy A(l)

0(;)2

+/12+3/1+2];

HIa (), w)

foreachu € Ry.
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Proof. With the aid of the Lemma 1.3 and the linearity property, we can easily complete the proof of
Lemma 1.4. o

In the following sections, we examine the convergence rate of operators and their approximation
order. Specifically, we discuss direct results both globally and locally in several spaces. In the final
section, we explore some results of the A-statistical approximation in various functional spaces.

2. Uniform rate of convergence and order of approximation
Definition 2.1. [26] The modulus of smoothness for g € Cg[0, ) is given by

w(g;6) = sup [g(ur) — g(ua)l, uy, uy € [0, 00).

|ty —us|<6

Theorem 2.1. Let H7'(.;.) be operators described in Eq (1.4). Then, on the compact sub interval of
[0, 00), H7(g;.) 3 &, for all g € Cp[0, o), where =3 denotes uniform convergence.

Proof. In the Korovkin-type theorem given in [27], which characterizes the uniform convergence for
the sequence of positive linear operators, it is enough to note that

lim HA g u) = u’, 6=0,1,2,
uniformly on subsets of [0, co). We can easily establish this result with the help of Lemma 1.3. O

Now, we show that the Voronovskaja-type asymptotic approximation theorem for the H7(.; ) given
in (1.4).

Theorem 2.2. Let § € Cp[0, 00) and g’, 8" exist at a fixed point u € [0, 00). Then, one has

éi(h’ D + /E O + 1+ A+ ug”(u).
&nn A

lim k(H (31 0) - 3(w)) = &' (u)
Proof. In accordance with Taylor’s formula for the function g, we get
80) =8+ (y—wg W + %(y —u)’g" (u) + 1(y, u)(y — uy’, 2.1)
where #(y, u) is the Peano remainder and
il_r}; t(y,u) = 0.
Applying operators on both the sides in (2.1), we yield

(H (3 u) — 3(u))

1
& @HN = wsw) + 58" H (v = w)s u)
H 1y, u)(y — u)’; u).

+
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In view of Lemma 1.4,

1) ANd
K(HA G 0) — 3w) = g'(”)[“i%(h 1>) +[\((1)) o
Zw1 E(h,1) A1)
T2 K[Z”K+(2’l+4){g(h,1) " i\(l)}+

25'(h,1)f\'(1) +$"(h,1) +f\”(1)
Eh, DA &h,1)  AQ)
+ kHAt, u)(y — u)*; u).

+/12+3/l+2]

Applying the limits on both the sides of the above expression, we get

g1 A
&h,1)  AQ)
+  lim kHA ey, w)(y — u)*; u).

lim k(H (G ) - 3w) = &(u)

+1+ /l] + ug"” (u)

Now, we need to show that
lim kHA(t(y, u)(y — u)*; u) = 0.

In view of the Cauchy-Schwarz inequality, we calculate last term of the above expression can be written
as

H 0 — 1)) € HAP (100 RH - 0 ) 2.2)
We see that (u, u) = 0 and £2(y, u) € C[0, o0). Thus, we have
lim HAE(y, u); u) = £*(u, u) = 0. (2.3)
From (2.2) and (2.3), it follows that
lim kH 1y, 1)(y = w)*s ) = 0.
Hence, the proof is completed. O

According to Shisha et al. [28], the order of convergence relative to the Ditzian-Totik modulus of
continuity can easily be proved.

Theorem 2.3. Consider g € C[0, 00), and for the operators H\(.; ) presented in Eq (1.4), we acquire

[H (5 1) — 3(u)| < 20(g; 6),

where § = \VHI((y — u)?; u).
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Proof. In accordance with Lemmas 1.3 and 1.4, and the Cauchy-Schwartz inequality, we have
(HA G w) - 3wl < HI(30) - Bl u)
fHZ‘((l + Q)w@, 8); u)

IA

IA

(1 ; %Wf‘(ly _ ol u))w(g, 5)

IA

(1 b2 A - u))w(g, 6).

By selecting 6 = \/7-(5‘(()1 — u)*; u), we obtained the desired proof. O
3. Locally approximation results

We recall a few functional spaces and functional relations in this part. As Cg[0, c0) denotes a
real-valued functional space which acquires bounded and continuous functions. Now, Peetre’s K-
functional [26] is defined as

Ko@0) = inf {1z = Flleyo + 01 0.0
heC2%[0,00)

where Cf;[O, 00) = {h € Cg[0,00) : I, " € Cgl0, 00)} is associated with norm ||| = sup Iiz(y)l and
0Sy<oo
second-order Ditzian-Totik modulus of smoothness is presented by

wy(g Vo) = sup  sup |8(y +2k) — 28(y + k) + E()L.
0<k< Vs Y€l0,0)

As described in ([26] by DeVore and Lorentz on page no. 177, Theorem 2.4), as
K»(2;6) < Cwa(g; Vo), 3.1)

where C is an absolute constant. To establish the next result, we consider the auxiliary operator defined
as:

TrA/~. N _ ayAr=. ~ = l é?(h, D ]\’(1)
HAG: u) = HA@ w) + 5) g(K[Ku+ TR +/l]), (3.2)
where g € Cp[0, 00), u > 0, and « > 1. From Eq (3.2), we have
HAL;u) = 1, HAGL);u) = 0 and [HA (@ w)l < 318]. (3.3)

Lemma 3.1. Ifu > 0, one has
HAZ: 1) — 3w)| < OW)IIZ",

where g € C2[0, 00) and O(u) = HA(y2(y); u) + (HA(y,(); w)*.
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Proof. For g € C2]0, o) and by Taylor expansion, we get
y
30) =800+ 6= 0F @ + [ 6= F O
Implementing the auxiliary operators ﬁf(.; .) introduced in Eq (3.2) to Eq (3.4), we get
y
HA@u) - 3w) = g @H 0w+ H( f v = VZ"W)dv; u).
Using the Egs (3.3) and (3.4), one yield
y
HA(Z: 1) — ) = H( f (v = VB (v)dv: u)

y
=H( f (v = VE"(v)dv; u)

EnD T A

_ 1 En ANy 1 Y.,
f ( [Ku+/l+ 1) + A + 1] v)g W)dv,

o ~ !
i[/<u+/l+f D A D “)+1]

u

(HA(Z: 1) — 3(w)] <

,
H( f (v = V" (vV)dv; )

! !
1 £ A1)
KI:KLl+ 2D + 0] +1+4

+
K &(h, 1)
Since,
y
f(y —WE'Wdv| < -uw’ 118" 1l
then

&nD A

1 1) A <1
' f (;[KM + E(h, D + f\(l) +1+ /l] - v)g w)dv

v !
}(I:Ku+f D AW 140

u

1 1 AN V.
f ( [Ku+ = +/~\(1)+1+/l] v)g W)dv|.

(3.4)

(3.5)

(3.6)
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11&m D A -
: (K[S(h,l) O 1 +’1]) g” . (3.7)

In accordance with (3.5)—(3.7), we acquire

S A (1ERD A )Z}
A @5 1) - 3| < {% P0)iu) + (K[ TR a] 12”1
= OWZ"]l

This proves the required result. O

Theorem 3.1. For g € Cg[0, ), there corresponds a non-negative constant C > 0 such that

- N | -
| H @5 0) = 3(w) |5 4Cwa(F: 5 VOW)) + (@ H (v, (3); w),
where O(u) is given by in Lemma 3.1.
Proof. Let g € Cp[0, o0) and he CIZ;[O, o0). Then, by the definition of ﬁf(.; .) given in (3.2), we get

(H(Z: 1) — 3w)| < |[HA@ — by w)] + (& = B)w)| + [ HA s ) — h(w)|

Fh A N
AT

According to Lemma 3.1 and the inequalities mentioned in Eq (3.3), we acquire

1
+ g(;[m + A+

[HA(Z: 1) — g(w)| <A g—Rll+HA (hs ) — h(w)|

1y KM )
Enl A ”]) 8w

< 411z = Bl + ORIl + w(& H(y - ) 0)).

+

1
g(—[/m + 4+
K

Using Eq (3.1), we established the required result. O

Further, we address the next result in the Lipschitz type space (see [29]):

. - . . - |t—u|?
Lip|®(n):={g € C[0, ) : [3(1)—g(w)| < M——————— : u,1€(0, )},
Py =g < G SO St ) }
where M > 0,0 <np < 1land {;, 4 > 0.
Theorem 3.2. Considering the sequence of linear positive operators in (1.4) and g € Lipj}’gz(n), one
obtains
(A \?
HA&;u) — 3w) < M| ——— | , 3.8
[H (& u) — () (&u " §2u2) (3.8)

where 0 <1 < 2, £1,45 € (0, 00) and A(u) = H (V2 (y); w).
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Proof. For 0 < n < 2, u > 0, and in accordance with Holder’s inequality by selecting p = %} and
g= ﬁ, we obtain

H G u) — 3w)| < (HB) - 3@l w)’
; ly — uf? ))

M .

(ﬂ ((y F G+ )

1
Since < , for all u € (0, 00), we get
y+Gu+our Lu+ Hu?

HAy — ul*; u)) ~( A(u) )z’

<M
Gu+ Hu? Gu+ Hu?

Thus, we have the desired result. O

IH (& u) — gw)| < M(

Further, we address the local approximation in terms of the r”-order modulus of smoothness,
followed by the Lipschitz-type function introduced by Lenze [30] as

5@ = sup BT8O 10 coyand re .1 (3.9)

yiuye(00) 1y — ul”

Theorem 3.3. Assume g € Cp[0, 00) and r € (0, 1]. Then, for every u € [0, 00), we have

HT (@3 u) - 3| < (& w)(Aw)’
where A(u) is the same as in the above Theorem 3.2.

Proof. It can be observed that
[H(Z: ) = Bl < HBO) - 2wl w).
Using Eq (3.9), one gets

[H (&5 1) — 3(w)| < @8; WHy — ul"; u).

Then, by employing Holder’s inequality with p = 2 and g = 5=, we obtain

(HA@: u) — 3] < @@ u)(H(y — ul’; u))?.

Thus, we conclude the proof. O
4. Global approximation properties

Consider v(#) = 1 + u?,0 < u < oo as the weight function. Then, B,[0, ) = {g(u) : |3(u)| <
M;(1 +u?), here the constant M; depends on g and C, [0, o) represents the continuous functional space

in B,[0, c0) along with the norm [|2]l, = sup %4 and C¥[0, 00) = (g € C,[0, c0) : lim 24 = k, where
u€l0,00)

the constant k depends on 3.

AIMS Mathematics Volume 10, Issue 6, 13836-13854.
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If g is a function defined on [0, b] where b > 0, then the modulus of continuity is given by

wy(g,6) = sup sup [g(y) — g(u)l. 4.1)
[y—u|<6 u,y€[0,b]

It is straightforward to observe that for g € C,[0, o), the modulus of continuity defined in Eq (4.1)
tends to zero.

Theorem 4.1. Let g € C, [0, 00) and wy,1(g; 0) denote the modulus of smoothness defined on [0,b+1] C
[0, o). Then, fory € [0, b], we obtain

IHA (& 1) — &llcios < 4Mz(1 + bH)ALD) + 2wy, 1(8; VALD)),
where Ay(b) = m[gug] 7—(3‘(75; u).
Proof. From [31], for any u € [0,b] and y € [0, o), we have

[y — ul

20) — 30| < 4M,(1 + b%) + (1 N )wb+1(g; 5).

Implementing the operator H.(.;.) on both the sides, we acquire

(HA @ u) — 3w)| < 4M(1 + BYH (2 u)

Ay — 1l
+(1+WK (Iy — ul; u)

N2,

Now, in accordance with Lemma 1.4 and x € [0, 5], one has

- . - VA(D) .
[HT (@ u) — Bw)| < 4M(1 + b*)A(b) + (l 5 Wp+1(830).
By selecting 6 = VA,(b), the desired result can easily be obtained. O

Remark 4.1. In this article, we employ the test function defined by g4(y) = y°, 6 € {0,1,2}.

Theorem 4.2. ([32, 33]) Assume that the sequence of linear positive operators (L)1 mapping from
C,[0, 00) to B,[0, 00) satisfies the conditions

lim ||L,(Z0;.) — 8oll, =0, where 6 =0,1,2,

and thus, for g € CE[O, ), we get
lim [IL,(; ) - &lly = 0.

Theorem 4.3. Let g € Cff[(), 00). Then, we obtain
lim [#7(2:.) - &l = 0.

AIMS Mathematics Volume 10, Issue 6, 13836-13854.
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Proof. To prove the result of Theorem 4.3, it is enough to verify that
lim |H(Zs; .) — &ll, = 0, for 6 =0, 1,2.

Considering the Lemma 1.3, one can see ||7—{f‘(go; ) — 1|, = 0, where k — oo, and also

ﬂ’ |
sup :
uel0,00) 1+ u?

Am . m _ 1 15’(}1,1) A1)
IH" (815 ) glllv—ues[lggo) o K[é(h,l) + A +1+

_1 [é’m, D, A1) .
kL&h, 1) AQ)

1+A4

For k — oo, we get [|H'(g1;.) — &ill, — 0.
Also,

£ (h1) N A1)
Eh 1) A1)
¢l A(l)}+{2§ (h, DA (1)

1
" (;[(21 " 4){ Zh,1)  AQ) ADEMh, 1)

+§~(h’1)+§(1)}+/lz+3/l+2]) sup 5.
Eh, 1) A yeloeo) 1+ 1

+ A+ 2]) su
ue[O,IZo) 1+ l/l2

2
IHA(32;.) — &all, < (—[
K

Which implies ||H(2,;.) — &ll, — 0 as k — co. Thus, we conclude the proof of the Theorem 4.3. O

Corollary 4.1. Let g € C¥[0, 00) and ¢ > 0. Then,

[H (G w) — W)l

li =0.
o ob T (1 + w2y
Proof. From the result of above Theorem 4.3,
: [H (8 u) - g(w)
lim sup 3 =0.
K—00 11e10),00) 1+u
Then, the inequality
o PG — g6
K—00 ue[OEO) (1 +u?)l+¢ ’
is immediate, for £ > 0. |

5. A-statistical approximation

We revisit some notation from [34]. Suppose that B = (b,,) is an infinite, non-negative summability
matrix. A sequence u := (u,) is A-statistically convergent to L, denoted as stz — lim u = L, if for each

€ >0,
lim > by =0.

p:luy—Ll>€

AIMS Mathematics Volume 10, Issue 6, 13836-13854.
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Let g = (g.) be a sequence such that the following assertions are true:
stg—limg, = 1 and st —limg, = b, 0 < b < 1. 5.1

In summability theory, a two-dimensional matrix transformation is said to be regular if it maps every
convergent sequence into a convergent sequence with the same limit.

Theorem 5.1. Consider B = (by,) be a non-negative regular summability matrix and the sequence
q = (q,) along with condition (5.1), q, € (0, 1), k € N. Then, for each g € CS[O, 00), stg—lim ||7{f‘(g; -

gll, = 0.

Proof. In accordance with Lemma 1.3, one has

Stp — 11’1('1'1 ||7-(Kﬂ(§o, )= gO”v =0,

and
1 |[1f&m, 1) A
@) - il = sup = [ S0 20
uel00) 1 +u” [KLER, 1) A1)
1€, 1) AQ
:—[éi(h’)+~()+1+/l] sup .
K é:(h, 1) A(l) uel0,00) 1+ u2
Now,

K := {K NHAE ) -2l > e},
KZ::{K: 1[§(h,1)+/§(1)
kL&, 1) A1)

which implies that K; C K>, this showing that 3 by < . by, Therefore, we get
uek, ueky

+1+/l]26},

Stp — liinllﬂkﬂ(él; 2 =&l =0. (5.2)

Now, by using Lemma 1.3, we have

&h, 1) ~/~\(1) )
(Lo affleb Ay 20 DY)
K &h, 1) A1) AR, 1)

éi (1) + A~ (1)} + 22431+ 2])'
&h,1) A

For a given & > 0, we have the following sets:

_ _ 1
IH (2:.) — &all, < sup
u€l0,00) V(I/t)

(%[gl(h’ D, A + A+ Z]M)
K

My = { NGy -2 2 }
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kL&, 1) A1)

M3I:

Eh, 1) AQ)
2 €
}+/1 +3/1+2]2 2}.

K2

M, : {K:z[é:(h’l)+A(1)+/l+2]2§},

! i ADEh, 1)
LemD AWM
§h, 1) A

It can be observed that M, C M, | J M3. Therefore, we acquire

Dby Y byt Y by

/JEMl MEMQ /IGM3

As k — oo, we have
sty = lim IH(82; u) - &2, = 0.

Thus, we concludes the proof of the Theorem 5.1.

K: l[(2/1 + 4){5'(h, D + K(l)} + {25'(h, DA'(1)

(5.3)

O

Next, we will examine the convergence rate of A-statistical approximation with respect to Peetre’s

K-functional for the operators H(g; u).
The Peetre’s K-functional of the function f € Cg[0, ) is defined by

K(f;0)=inf {If = glicyioe + Ollgllcz 000} »
8€C[0,00)

where ¢ > 0 and
C310,00) = {f € C5[0,0) : f', f" € Cp[0, )},

endowed with the norm

||f||c§[o,oo) = I fllcsr0,.00) + 1 Nlepio.00) + 17 Nl pi0,00-
Theorem 5.2. Let g € C3[0, o). Then,

stp — 1i’fn IH (@) = Zllcyo.00) = 0.

Proof. Considering Taylor’s result, we have

80) = 80 + W)~ ) + 580~ w?,
where y < n < u. Operating H7'(g; u), on both sides in above equation, one get

H (G u) = §w) = & WH (r,0)310) + %g"m)ﬂf“(wi@); ),

which yields that

A=, ~ ~ Ay~
NH(&; ) = Bllcyio.00) < N8 Nlesio.cllH (81—, lcyo.00)
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1 ~/! ~
+ 5”8 lesto.collHT (@1, ) llesio.00)
=W, +W,, say. 5.4)

Based on Eqs (5.2) and (5.3), it follows that

From Eq (5.4), we have

lim > by <lim ) by +lim > by

HENAIHI (3~ Ellc gro.coy2€ HEN:W|>§ HEN:Wr>§

Thus, stg — lim ||HA(Z; ) — &llcs0.00) — 0. as k — 0.

Hence, we arrive the proof. O
6. Conclusions

In this article, we introduce a sequence of positive linear operators using generalized Appell
polynomials in integral form. These operators are designed to approximate functions defined on
a Lebesgue measurable space and are known as Szasz-Integral type operators introduced in (1.4).
Moreover, we derive estimates crucial for establishing the rate of convergence and accuracy
of approximation. Further, we explore various aspects of approximation, including local and
global results, as well as A-statistical approximation, utilizing these operators to obtain enhanced
approximations across different functional spaces.
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