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Abstract: In this research, we present a novel discrete fractional-order model designed to simulate
computer virus propagation. We performed a thorough dynamical analysis, encompassing phase
portrait visualization, bifurcation diagram construction, maximal Lyapunov exponent computation,
and equilibrium point stability assessment using the basic reproduction number (R0). To characterize
system complexity and validate chaotic dynamics, we employed Approximate Entropy, C0 Complexity,
and Permutation Entropy. Furthermore, control and synchronization methodologies were developed to
mitigate chaotic behavior and achieve coordinated system dynamics. The findings proved the efficacy
of the proposed fractional model in accurately simulating viral spread and illustrated the considerable
implications of fractional-order parameters on system dynamics. In order to validate the results,
MATLAB simulations were run.
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1. Introduction

Computer viruses originated in the 1970s as malicious software programs designed to replicate
themselves and spread through inter-computer transmission, with potential for data compromise and
system instability and disrupting normal operations [1]. These viruses can infect files, alter system
settings, and compromise data integrity and confidentiality [2]. Computer viruses pose significant
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threats to cybersecurity, requiring vigilant measures such as antivirus software and regular updates to
protect against them. Understanding their behavior and how they spread is crucial for safeguarding
digital systems and sensitive information from potential harm [3].

The analogy between computer and biological viral propagation, particularly in terms of infectivity,
has led researchers to modify established epidemiological models for the purpose of simulating
computer virus propagation [4]. These models enable researchers to simulate and predict how
computer viruses spread over time across networks, similar to how biological viruses spread within
populations [5]. By applying these models, insights can be gained into viable tactics for mitigating and
restricting the dissemination of computer viruses [6].

Chaos theory is an interdisciplinary area of study, primarily in math and physics, that examines
the dynamics of systems exhibiting extreme sensitivity to initial states, meaning minute initial
perturbations may result in significantly divergent results [7–9]. This makes their behavior seem
random and hard to predict. It can be found in various fields like meteorology, biology, economics,
and engineering to help explain and predict complex and dynamic behaviors [10]. The successful
application of chaotic systems in secure communications, leveraging their complexity and sensitivity,
provides a strong precedent for exploring their role in other security domains. For example, chaotic
maps combined with neural networks enhance video encryption [11], while chaos theory and semi-
tensor product theory secure face recognition [12]. These advancements, alongside developments in
chaotic encryption, key distribution, and watermarking, underscore the potential of chaotic dynamics
for significant security enhancements across various applications, thus motivating its investigation in
the context of computer virus defense.

Fractional chaotic systems, which extend traditional chaotic systems by employing fractional
calculus, offer unique advantages over both discrete and continuous chaotic systems [13–15].
Fractional calculus enables the use of non-integer order derivatives and integrals [16–18], providing
greater flexibility and accuracy in modeling real-world phenomena [19–21]. This approach exhibits
the potential to model both the memory and hereditary traits of systems, making fractional
chaotic systems highly effective in fields such as control theory, digital signal manipulation, and
bioengineering [22–24]. Understanding the benefits of fractional chaotic systems can lead to more
precise and comprehensive models in complex systems [25–27]. In the context of computer virus
modeling, fractional-order systems are particularly beneficial due to their ability to capture the memory
effects inherent in network interactions. Unlike classical integer-order models, fractional-order models
incorporate memory and hereditary properties, making them more suitable for describing complex
systems such as computer virus propagation, which often exhibits delay and nonlocal behavior.
However, this added realism comes at a cost. The analysis of fractional-order systems is significantly
more challenging due to the lack of standard techniques for stability and control. Moreover, parameter
estimation and numerical simulations are more computationally intensive, and the interpretation of
fractional-order parameters in real applications remains an open question. Therefore, fractional-
order modeling in this context is not merely a formal extension but introduces new theoretical and
practical challenges that require careful mathematical treatment. In addition to their application
in virus propagation models, fractional and discrete chaotic dynamics have also been successfully
employed in secure communication systems. For example, chaotic maps have been used for image
encryption in recent studies [28, 29], demonstrating the interdisciplinary potential of these systems
in cybersecurity, where the inherent unpredictability and sensitivity to initial conditions provide
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significant advantages. Existing methods for modeling chaotic systems and virus propagation, such
as integer-order and discrete-time models, often overlook memory and hereditary effects. Fractional-
order models, however, address these limitations by incorporating these effects, offering more accurate
and flexible representations of real-world phenomena. This paper introduces a fractional-order
approach, which provides enhanced control over virus dynamics, making it more suitable for real-time
applications, especially in cybersecurity.

In the field of computer virus modeling, discrete-time approaches have been less explored compared
to continuous-time methods [30]. However, discrete systems offer several practical advantages,
particularly in the context of digital systems where time-stepping data is prevalent. These systems
reduce the parametric sensitivity challenges often seen in continuous models, making them more
stable and easier to implement. Furthermore, discrete models are well-suited for digital hardware
implementations, offering simplicity and efficiency, which makes them ideal for real-time applications
such as improving cybersecurity defenses against the rapidly evolving nature of computer viruses.

Here, we aim to present a thorough analysis of stability and dynamical properties of a novel model
employing commensurate fractional derivatives. Researchers have extensively studied the stability and
control of various computer virus models [31,32]. In this paper, we propose a novel discrete fractional-
order model tailored to simulate the spread of computer viruses and explore the emergence of chaotic
dynamics within such systems, a topic that has received limited attention in the discrete-time fractional
framework. Here is a summary of the objectives in our work:

1) We introduce a new discrete fractional model developed to simulate the spread of computer
viruses.

2) The long-term stability of the system is investigated by examining its equilibrium points.
3) A full examination of the dynamic attributes of the model by the agency of phase portraits,

bifurcation diagrams, and maximum Lyapunov exponent calculations, is performed.
4) Complexity measures, specifically Approximate Entropy, C0 Complexity, and Permutation

Entropy, are used to evaluate complexity and verify chaos in the hypothesized fractional discrete
model of computer viruses.

5) Additionally, control and synchronization strategies are implemented to stabilize the system and
achieve coordinated behavior between chaotic maps.

In conclusion, we outline the key findings emerge from our study.
Unlike primarily focus on continuous-time or integer-order models (e.g., [6, 30]), we provide new

insights into the behavior of commensurate fractional-order discrete-time systems, highlighting the
rich dynamics and potential for chaos. One of the major challenges in this study was handling the
intricate nature of fractional-order difference equations, especially in the context of chaos and control
design. Our model and methods extend the theoretical framework to discrete settings, which are crucial
for numerical implementation and digital systems. The results presented here therefore contribute both
theoretical and practical value to the modeling and control of digital epidemic systems.

2. Fundamental tools and model

We will clarify our work by first presenting a focused review of discrete fractional calculus.
Following this, we will unveil the mathematical description of the fractional discrete computer virus
model, which is built through the application of the Caputo difference operator.
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2.1. Fundamental tools

Let us dive into the scope of discrete fractional difference and summation from a different
perspective. In all of the definitions below, the function X is defined for Na, where Na = {a, a +
1, a + 2, . . .} for a ∈ R.

Definition 1. [33] The Caputo-like fractional difference operator c∆κa for a function X (t) : Na → R
is defined as:

c∆κaX (t) = ∆−(m−κ)
a ∆mX (t) =

1
Γ(m − κ)

t−(m−κ)∑
b=a

(t − b − 1)(m−κ−1)∆mX (b), t ∈ Na+m−κ,

where κ > 0 is the fractional order, m = ⌈κ⌉ + 1, Γ(·) denotes the Gamma function that generalizes the
factorial to real and complex numbers, and c∆−κa is the κ-th fractional sum, which is outlined in [34] by:

c∆−κa X (t) =
1
Γ(κ)

t−κ∑
b=a

(t − b − 1)κ−1X (b), t ∈ Na+κ,

the power term (t − b − 1)(κ−1) is defined via the Gamma function as:

(t − b − 1)(κ−1) =
Γ(t − b)

Γ(t − b + 1 − κ)
.

Theorem 1. [13] The solution of the fractional difference equation system:

c∆κaY (t) =X (t + κ − 1,Y (t + κ − 1)),
∆ιY (a) = Yι, ι = 0, ..., m − 1,

where m = ⌈κ⌉ + 1, is expressed by:

Y (t) = Y0(t) +
1
Γ(κ)

t−κ∑
b=a+m−κ

(t − b − 1)κ−1X (b + κ − 1,Y (b + κ − 1)),

with Y0(t) =
∑m−1
ι=0

(t−a)ι

Γ(ι+1)∆
ιY (a).

Theorem 2. [35] To analyze the stability of the zero equilibrium, consider the discrete commensurate
system:

c∆κag(t) = A g(t + κ − 1), t ∈ Na+1−κ, A ∈ Rm×m,

where g(t) = (g1(t), ..., gm(t))T is the state vector, 0 < κ ≤ 1. The zero solution is asymptotically
stable if all eigenvalues λj of the matrix A satisfy:

λj ∈

{
υ ∈ C : |υ| <

(
2 cos

| arg υ| − π
2 − κ

)κ
and | arg υ| >

κπ

2

}
, j = 1, 2, ..., m. (2.1)
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2.2. Fractional-order discrete computer virus model

To represent the spread of internet viruses, we develop a fractional discrete model, classifying
computers by their connection status: Internal (connected) or external (disconnected), assuming all are
initially connected. The first version of the SLB model was originally proposed by Yang et al. in [36]
as follows: 

Ṡ = σ − µS (L + B) + α1L + α2B − σS ,

L̇ = µS (L + B) − α1L − ηL − σL,

Ḃ = ηL − α2B − σB,

(2.2)

where S is the percentage of computers without the virus, L is the percentage of computers that have
the virus but it is hidden, and B is the percentage of computers actively spreading the virus. µ represents
the network connection rate for computers. η is the breakout rate for latent infections. α1 specifies the
recovery rate of inactively infected computers. α2 is the rate at which an infected computer restores its
normal operation. σ signifies the external internet connection rate. It is assumed that the parameters
are positive and S (t) + L(t) + B(t) ≡ 1.

Recognizing the computational benefits of discrete representations, we utilize difference equations
to simplify the model (2.2), providing a discrete version of the continuous system

S n+1 = S n + h[σ − µS n(Ln + Bn) + α1Ln + α2Bn − σS n],
Ln+1 = Ln + h[µS n(Ln + Bn) − α1Ln − ηLn − σLn],
Bn+1 = Bn + h[ηLn − α2Bn − σBn].

(2.3)

Using the first difference order form, the system (2.3) may be rewritten as:
∆S = h[σ − µS n(Ln + Bn) + α1Ln + α2Bn − σS n],
∆L = h[µS n(Ln + Bn) − α1Ln − ηLn − σLn],
∆B = h[ηLn − α2Bn − σBn].

(2.4)

Fractional-order calculus enables the modeling of systems with memory, where past states influence
the present dynamics. In this context, the fractional form of the model in Eq (2.4) is introduced to more
precisely capture these memory effects, which are essential for understanding the system’s behavior.
In the following analysis, we assume h = 1, which corresponds to a unit step size. This simplifies the
formulation without loss of generality and is commonly adopted in discrete-time modeling.

c∆κaS (t) = σ − µS (t + κ − 1)(L(t + κ − 1) + B(t + κ − 1)) + α1L(t + κ − 1)
+α2B(t + κ − 1) − σS (t + κ − 1),

c∆κaL(t) = µS (t + κ − 1)(L(t + κ − 1) + B(t + κ − 1)) − α1L(t + κ − 1)
−ηL(t + κ − 1) − σL(t + κ − 1),

c∆κaB(t) = ηL(t + κ − 1) − α2B(t + κ − 1) − σB(t + κ − 1),

(2.5)

where c∆κa is the fractional Caputo difference operator of order 0 < κ ≤ 1.
We apply discrete fractional calculus to model a computer virus, demonstrating its effectiveness in

capturing system dynamics. Notably, altering the fractional order enhances complexity and can induce
chaotic behavior.
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3. Stability analysis of the fixed points

Using the reproduction number, we probe the local asymptotic stability of the equilibrium points in
the fractional discrete computer virus model. To determine the fixed points of (2.5), we put: c∆κaS (t) =
0, c∆κaL(t) = 0 and c∆κaB(t) = 0, which implies:

σ − µS (L + B) + α1L + α2B − σS = 0,
µS (L + B) − α1L − ηL − σL = 0,
ηL − α2B − σB = 0.

(3.1)

For L = 0 and B = 0, the system possesses a fixed point without infection E0 = (1, 0, 0), if L , 0 and
B , 0, then the viral fixed point is E∗ = (S ∗, L∗, B∗) such that,

B∗ =
η

α2 + σ
L∗.

Substituting this into the second equation of (3.1), we get:

S ∗ =
(α1 + η + σ)(α2 + σ)
µ(α2 + η + σ)

.

Next, by replacing the expressions for B∗ and S ∗ in the first equation of (3.4), we obtain:

L∗ =
α2 + σ

α2 + η + σ

(
(α1 + η + σ)(α2 + σ)
µ(α2 + η + σ)

− 1
)
.

To ensure that L∗ remains positive, the following condition must be satisfied (α1+η+σ)(α2+σ)
µ(α2+η+σ) > 1.

The number of new computers, on average, that get infected from one infected computer over the
course of its life cycle is known as the basal reproductive rate of the virus propagation model. As
explained in [36], R0 is given by:

R0 =
µ

α1 + η + σ

(
1 +

η

α2 + σ

)
=

µ(α2 + η + σ)
(α1 + η + σ)(α2 + σ)

. (3.2)

3.1. The virus-free fixed point

Here, we examine the local asymptotic stability of the infection-free equilibrium. We introduce the
following variable transformation, putting ρ = t + κ − 1,

x11(ρ) = S (ρ) − S 0 = S (ρ) − 1,
x12(ρ) = L(ρ) − L0 = L(ρ),
x13(ρ) = B(ρ) − B0 = B(ρ).

(3.3)

A new map with zero fixed point (0, 0, 0) is obtained:

c∆κa(x11(t) + S 0) = σ − µ(x11(ρ) + 1)(x12(ρ) + x13(ρ))
+α1x12(ρ) + α2x13(ρ) − σ(x11(ρ) + 1),

c∆κa(x12(t) + L0) = µ(x11(ρ) + 1)(x12(ρ) + x13(ρ))
−α1x12(ρ) − ηx12(ρ) − σx12(ρ),

c∆κa(x13(t) + B0) = ηx12(ρ) − α2x13(ρ) − σx13(ρ).

(3.4)
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Proposition 1. The system (2.5) has a locally asymptotically stable virus-free equilibrium E0 if either
the condition in equation (3.5) or that in equation (3.6) is satisfied.

σ < 2κ, A2 ≥ 4B, R0 < 1, |
−A ±

√
A2 − 4B

2
| < 2κ, (3.5)

σ < 2κ, A2 < 4B, |λ2,3| <

(
2 cos

| arg λ2,3| − π

2 − κ

)κ
, | arg λ2,3| >

κπ

2
, (3.6)

where A = (α2+σ)(α1+η+σ)
α2+η+σ

(
η

α2+σ
+
α2+η+σ

α1+η+σ
+ 1 − R0

)
, B = (α2+σ)(α1+η+σ)(1−R0), and λ2,3 =

−A±
√

A2−4B
2 .

Proof. We construct the Jacobian matrix associated with the model as follows in order to see if the
virus-free fixed point stays steady.

J =


−µh(x12 + x13) − σh −µh(x11 + 1) + α1h −µh(x11 + 1) + α2h
µh(x12 + x13) µh(x11 + 1) − (α1 + η + σ)h µh(x11 + 1)

0 ηh −(α2 + σ)h

 .
By simple calculation we put h=1, we obtain the jacobian matrix of the free fixed point

J0 =


−σ −µ + α1 −µ + α2

0 µ − (α1 + η + σ) µ

0 η −(α2 + σ)

 , (3.7)

the correspending characteristic equation:

(−σ − λ)(λ2 + Aλ + B) = 0, (3.8)

where

A =
(α2 + σ)(α1 + η + σ)

α2 + η + σ

(
1 +

η

α2 + σ
+
α2 + η + σ

α1 + η + σ
− R0

)
,

B = (α2 + σ)(α1 + η + σ)(1 − R0).

The eigenvalues of J0 are λ1 = −σ, λ2,3 =
−A±

√
A2−4B
2 ,

hence,
| arg λ1| = π >

κπ

2
,

the condition |λ1| <
(
2 cos | arg λ1 |−π

2−κ

)κ
= 2κ is satisfied if σ < 2κ.

For λ2,3 if R0 < 1, we get A > 0 and B > 0, by the Routh-Hurwitz criterion, (a detailed treatment
of this criterion and its application in mathematical modeling can be found in [37]. We are able to
conclude that the roots of Eq (3.8) are in the left half plane, for A2 − 4B > 0, and the eigenvalues λ2,3

arguments are π, therefore,
| arg λ2,3| = π >

κπ

2
,

the condition |λ2,3| <
(
2 cos | arg λ2,3 |−π

2−κ

)κ
= 2κ is satisfied if |−A±

√
A2−4B
2 | < 2κ.
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In the case where A2 − 4B = 0, the characteristic roots are given by

λ2,3 =
−A
2
,

since R0 < 1 implies A > 0, we have λ2,3 < 0. Therefore, | arg(λ2,3)| = π. As a result, the condition
| arg(λ2,3)| > κπ2 is automatically satisfied for all 0 < κ ≤ 1.

Now, when A2 < 4B, we find that the eigenvalues λ2,3 are complex, and the stability is verified if

|λ2,3| <

(
2 cos

| arg λ2,3| − π

2 − κ

)κ
and | arg λ2,3| >

κπ

2
. (3.9)

Therefore, since the condition in Theorem 2 is satisfied, the virus-free equilibrium E0 of system
(2.5) is locally asymptotically stable. □

3.2. The Viral fixed point

In this subsection, we investigate the local asymptotic stability of the viral equilibrium in the
framework of the proposed computer virus model. The viral fixed point is given by E∗ = (S ∗, L∗, B∗)
such as:

S ∗ =
1
R0
=

(α1 + η + σ)(α2 + σ)
µ(α2 + η + σ)

, (3.10)

L∗ =
(1 − 1

R0
)(α2 + σ)

α2 + η + σ
=

(R0 − 1)(α2 + σ)
R0(α2 + η + σ)

, (3.11)

B∗ =
η(1 − 1

R0
)

α2 + η + σ
=

η(R0 − 1)
R0(α2 + η + σ)

. (3.12)

Note that if R0 < 1, the system admits just a virus-free equilibrium point E0.
With the same manner and via a direct calculation, we find the jacobian matrix of the viral fixed

point.

J∗ =


−µ(L∗ + B∗) − σ −µS ∗ + α1 −µS ∗ + α2

µ(L∗ + B∗) µS ∗ − (α1 + η + σ) µS ∗

0 η −(α2 + σ)

 , (3.13)

the correspending characteristic equation:

λ3 + A1λ
2 + B1λ +C1 = 0, (3.14)

where 

A1 = µ
(
1 − 2

R0

)
+ 3σ + α1 + α2 + η,

B1 =
[
µ
(
1 − 1

R0

)
+ σ

] [
α1 + η + σ −

µ

R0

]
+ µ

(
1 − 1

R0

) (
µ

R0
− α2

)
+η

(
µ

R0
− α1

)
− (α2 + σ)

[
µ
(
1 − 1

R0

)
+ σ

]
− (α2 + σ)

(
µ

R0
− α1 − η − σ

)
,

C1 =
[
µ
(
1 − 1

R0

)
+ σ

] (
µ

R0
− α1 − η − σ

)
(α2 + σ)

−µ
(
1 − 1

R0

) (
−
µ

R0
+ α2

)
η + µ

(
1 − 1

R0

)
µ

R0
(α2 + σ) .

Accordingly, the stability characteristics of the viral fixed point within the fractional discrete computer
virus model are evaluated numerically, based on the formula (2.1).
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To validate the analytical results and explore the dynamical behavior of the fractional-order system,
we perform numerical simulations under different parameter settings. In each case, the values are
chosen to reflect meaningful scenarios in terms of infection spread, recovery, and system connectivity.
These simulations aim to illustrate the system’s behavior in three regimes: Virus-free stability, viral
equilibrium stability, and chaotic dynamics.
Example 1. Using parameters η = 0.6, µ = 0.3, σ = 0.1, α1 = 0.1, and α2 = 0.3, which imply
R0 = 0.9375, so R0 < 1. The time series of S , L, and B exhibited in Figure 1(a), demonstrates the
asymptotic stability of the virus-free fixed points.
Example 2. Using parameters η = 0.6, µ = 0.4, σ = 0.1, α1 = 0.1, and α2 = 0.3, which imply
R0 = 1.25, we get R0 > 1. The time series of S , L, and B exhibited in Figure 1(b), demonstrates the
asymptotic stability of the viral equilibrium.
Example 3. Using parameters η = 2, µ = 2, σ = 0.1, α1 = 0.1, and α2 = 0.3, the time series of S , L,
and B exhibited in Figure 1(c), demonstrates the instability of the fixed points. Therefore, the fractional
model (2.5) meets the necessary conditions for the occurrence of chaos.
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Figure 1. The trajectories of change of S , L, and B with κ = 0.98: (a) for η = 0.6, µ =
0.3, σ = 0.1, α1 = 0.1, and α2 = 0.3; (b) for η = 0.6, µ = 0.4, σ = 0.1, α1 = 0.1, and
α2 = 0.3; (c) for η = 2, µ = 2, σ = 0.1, α1 = 0.1, and α2 = 0.3.

In general, as the fractional-order parameter κ decreases, the system experiences stronger memory
effects, which slow down the virus spread, resulting in a lower R0. Conversely, as κ approaches 1, the
memory effects diminish, causing the system to behave more like a traditional model, which leads to
an increase in R0.

4. Nonlinear dynamics of the fractional-order discrete computer virus model

We explore how the fractional model in commensurate order behaves chaotically. This analysis
includes visualizing bifurcation and phase portraits, as well as calculating the maximum Lyapunov
exponent. To understand the model’s features, we also supply the numerical formulation, resulting
from Theorem 1, used for simulations
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

S (n) = S (0) + 1
Γ(κ)

∑n
j=1

Γ(n−j+κ)
Γ(n−j+1) [σ − µS (j − 1)(L(j − 1) + B(j − 1))

+α1L(j − 1) + α2B(j − 1) − σS (j − 1)],
L(n) = L(0) + 1

Γ(κ)

∑n
j=1

Γ(n−j+κ)
Γ(n−j+1) [µS (j − 1)(L(j − 1) + B(j − 1))

−α1L(j − 1) − ηL(j − 1) − σL(j − 1)],
B(n) = B(0) + 1

Γ(κ)

∑n
j=1

Γ(n−j+κ)
Γ(n−j+1) [ηL(j − 1) − α2B(j − 1) − σB(j − 1)],

(4.1)

where S (0), L(0), and B(0) are the initial conditions. Lyapunov exponents are closely tied to bifurcation
analysis and are crucial for identifying unpredictable behavior in fractional maps. In [38], a valuation
of the Lyapunov exponents for the fractional system was conducted by the authors via the Jacobian
matrix approach. This method effectively captures the chaotic dynamics that are characteristic of
fractional-order maps. A key component of this analysis is the tangent map, which integrates discrete
memory effects, and occurs because the system’s behavior depends not solely on its present condition
but also on its past states. The tangent map is expressed as follows:

Jn =


a1(n) a2(n) a3(n)
b1(n) b2(n) b3(n)
d1(n) d2(n) d3(n)

 , (4.2)

such that

aι(n) = aι(0) + 1
Γ(κ)

∑n
j=1
Γ(n− j+κ)
Γ(n− j+1) ((−σ − µ(L( j − 1) + B( j − 1)))aι( j − 1)

+(α1 − µS ( j − 1))bι( j − 1) + (α2 − µS ( j − 1))dι( j − 1)),
bι(n) = bι(0) + 1

Γ(κ)

∑n
j=1
Γ(n− j+κ)
Γ(n− j+1) (µ(L( j − 1) + B( j − 1))aι( j − 1)

+(µS ( j − 1) − α1 − η − σ)bι( j − 1) + µS ( j − 1)dι( j − 1)),
dι(n) = dι(0) + 1

Γ(κ)

∑n
j=1
Γ(n− j+κ)
Γ(n− j+1) (ηbι( j − 1) − (α2 + σ)dι( j − 1)),

(4.3)

using the identity matrix as initial conditions
a1(0) a2(0) a3(0)
b1(0) b2(0) b3(0)
d1(0) d2(0) d3(0)

 =

1 0 0
0 1 0
0 0 1

 . (4.4)

Then, the Lyapunov exponents are defined by:

LEℓ = lim
n→∞

1
n

ln |λ(n)
ℓ |, f or ℓ = 1, 2, 3, (4.5)

where λℓ (ℓ = 1, 2, 3) are the eigenvalues of Jn.
For a detailed look at the characteristics and behavior of (2.5), see Figure 2, which shows bifurcation

diagrams of (2.5) as a dependence on the parameter η with variations in κ, illustrating the system’s
dynamical behavior starting from (0.4, 0.4, 0.2). In subfigures (a) and (b), where µ = 2.2, σ =
0.06, α1 = 0.05, α2 = 1, and κ = 0.98 and κ = 0.95, the diagrams reveal a widespread scattering
of points, indicating persistent chaotic dynamics. The dense and seemingly random distribution of
points suggests that even small changes in η significantly alter the system’s trajectory. The extensive
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presence of chaos across a broad range of η values highlights the system’s high instability. In
subfigures (c) and (d), which also correspond to κ = 0.98 and κ = 0.95 but with different parameters
µ = 2.1, σ = 0.1, α1 = 0.1, and α2 = 0.3, a structured transition from periodic to chaotic behavior is
observed. Initially, periodic orbits are visible, but as η increases, period-doubling bifurcations drive the
system into chaotic states. Periodic windows within chaotic regions indicate intermittent stabilization,
showcasing the system’s complex dynamics. Figure 3 depicts the variation of the Maximum Lyapunov
Exponent (MLE) with respect to η, providing a quantitative measure of the system’s stability. In
subfigures (a) and (b), where κ = 0.98, and κ = 0.95, the MLE remains consistently positive,
confirming chaotic behavior. A positive MLE signifies exponential divergence of nearby trajectories,
reflecting strong instability. In subfigures (c) and (d), which correlate with different parameters but
the same κ values, the MLE demonstrates a sign-changing fluctuation. This fluctuation indicates shifts
between periodic and chaotic states, with negative MLE values corresponding to periodic stability and
positive values confirming chaotic behavior. These results further emphasize the system’s susceptibility
to parameter variations.
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Figure 2. Bifurcation diagram of (2.5) versus η for differing κ values with IC=(0.4, 0.4, 0.2):
(a), (b) for µ = 2.2, σ = 0.06, α1 = 0.05, and α2 = 1; (c), (d) for µ = 2.1, σ = 0.1, α1 = 0.1,
and α2 = 0.3.
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Figure 3. MLE of (2.5) versus η for differing κ values with IC=(0.4, 0.4, 0.2): (a), (b) for
µ = 2.2, σ = 0.06, α1 = 0.05, and α2 = 1; (c), (d) for µ = 2.1, σ = 0.1, α1 = 0.1, and
α2 = 0.3.

The influence of α2 relating to the system’s time-dependent behavior is visualized in Figure 4
using bifurcation diagrams. Setting the initial conditions to (0.4, 0.4, 0.2), subfigures 4(a) and 4(b),
where κ = 0.98 and κ = 0.95, the diagrams show a passage from periodic to chaotic attractors as
α2 increases. Period-doubling cascades signify a gradual shift toward chaos, with periodic windows
indicating temporary stabilization. In Figures 4(c) and 4(d), with distinct parameter settings, but
identical κ values, the system retains periodicity over a wider range of α2 before transitioning to chaos.
This transition, being less abrupt than in 4(a) and 4(b), indicates a longer duration of stability and
reinforces the system’s reliance on α2. To quantify the system’s stability through MLE analysis as a
function of α2, Figure 5 is shown. In 5 (a) and 5(b), the MLE increases with α2, confirming a transition
from periodic to chaotic behavior. Positive MLE values at higher α2 indicate persistent chaos. In
subfigures 5(c) and 5(d), under different parameterizations, while maintaining the same values κ, the
MLE alternates between positive and negative values. This alternation reflects periodic and chaotic
states, with periodic behavior dominating at lower α2 and chaos prevailing at higher values. These
findings further illustrate the system’s complex and sensitive nature. This analysis reveals several
key observations. Increasing η drives the system toward chaos, as evidenced by bifurcation diagrams
and MLE plots. Similarly, increasing α2 induces period-doubling bifurcations, producing chaotic
states with intermittent periodic domains. The system also demonstrates strong sensitivity to κ, with
both values (0.98 and 0.95) contributing to chaotic dynamics. These results underscore the system’s
complexity and its pronounced sensitivity to parameter variations, highlighting the intricate interplay
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between periodic and chaotic regimes.
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Figure 4. Bifurcation diagram versus α2 of (2.5) for differing κ values with IC=(0.4, 0.4, 0.2);
(a), (b) for η = 1.9, µ = 2.2, σ = 0.06, and α1 = 0.05; (c), (d) for η = 2, µ = 2, σ = 0.1, and
α1 = 0.1.
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Figure 5. MLE versus α2 of (2.5) for differing κ values with IC=(0.4, 0.4, 0.2); (a), (b) for
η = 1.9, µ = 2.2, σ = 0.06, and α1 = 0.05; (c), (d) for η = 2, µ = 2, σ = 0.1, and α1 = 0.1.

Now, we focus on the effect caused by the fractional-order parameter κ regarding the evolutionary
patterns of the discrete fractional computer virus system. The bifurcation diagrams and the related
MLE plots are illustrated in Figure 6. The left column, including (a), (c), and (e), displays the
bifurcation diagrams, while the right column, which displays (b), (d), and (f), presents the MLE
variations. In subfigure (a), corresponding to η = 1.9, µ = 2.1, σ = 0.1, α1 = 0.1, and α2 = 0.3, the
bifurcation diagram exhibits significant chaotic behavior, with a wide spread of trajectories over the κ
range. The corresponding MLE in (b) confirms this, as it remains predominantly positive, indicating
strong chaos. Subfigures (c) and (d), for η = 2, µ = 2, σ = 0.1, α1 = 0.1, and α2 = 0.3, demonstrate
a gradual transition from chaos to periodicity as κ increases, with the MLE plot showing a decline
toward negative values. In subfigure (e), where η = 1.9, µ = 1.98, σ = 0.1, α1 = 0.1, and α2 = 0.3, a
mixed dynamic behavior is observed with intermittent chaos and periodic windows, as indicated by the
fluctuating MLE in (f). Overall, the results suggest that the system’s dynamics are highly sensitive to κ.
While larger values of κ can sustain chaotic dynamics in some cases, in others, increasing κ may lead
to a transition toward periodicity. The fractional order κ significantly affects the system’s dynamics.
Lower values of κ enhance memory effects, often leading to chaos, while increasing κ tends to stabilize
the system, resulting in periodic or steady behavior. This transition highlights the key role of κ in
controlling the system’s evolution and the nuanced significance of the fractional exponent in governing
the model’s complexity and stability.
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Figure 6. Bifurcation diagrams and the corresponding MLE of (2.5) versus the fractional-
order κ with IC=(0.4, 0.4, 0.2); (a), (b) for η = 1.9, µ = 2.1, σ = 0.1, α1 = 0.1, and α2 = 0.3;
(c), (d) for η = 2, µ = 2, σ = 0.1, α1 = 0.1, and α2 = 0.3; (e), (f) for η = 1.9, µ = 1.98, σ =
0.1, α1 = 0.1, and α2 = 0.3.

Moreover, Figure 7 shows case phase portraits changing the fractional parameter κ, specifically
for κ = 0.855, 0.856, 0.858, 0.859, 0.86, 0.88, 0.89, and 0.9. These phase portraits visually represent
the system’s attractors under different fractional orders. Upon analysis of these portraits, we can
identify the diverse dynamical feature manifests in the fractional discrete computer virus model. As κ
increases, the system undergoes significant transitions in its dynamical behavior. At lower values of κ,
the trajectories appear scattered and weakly structured, suggesting transient chaotic or irregular motion.
As κ increases, more distinct attractors begin to form, signaling a shift toward stable periodic or chaotic
motion. This evolution underscores the model’s sensitivity to the alterations of the fractional-order
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parameter, producing a broad array of dynamic behaviors. Virus propagation in real-world networks
can exhibit chaotic behavior due to nonlinear feedback, randomness, and adaptive malware. This leads
to unpredictable outbreaks and irregular infection patterns. Modeling such dynamics with chaos theory
helps develop more adaptive and responsive defense strategies that react effectively to small changes
in the threat environment.
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Figure 7. Trajectory plots of (2.5) with IC=(0.4, 0.4, 0.2) and η = 1.9, µ = 2.1, σ = 0.1, α1 =

0.1, and α2 = 0.3, for differing κ values.

Figure 8 presents a bifurcation diagram and the corresponding MLE for the system of fractional
order (2.5) as a parametric function of κ, using specific parameter values: η = 1.2, µ = 2.1,
σ = 0.1, α1 = 0.1, and α2 = 0.6. Figures 8(a), (b), and (c) show the bifurcation diagrams for
S , L, and B, respectively. These diagrams reveal a transition from chaotic behavior at lower values of
κ (approximately 0.4656 to 0.62) to a more stable, periodic, or fixed-point behavior at higher values of
κ (approximately 0.9 to 1). This is evident from the scattered points at lower κ values, indicating
complex and unpredictable dynamics, and the convergence to distinct lines or points at higher κ
values, suggesting simpler, more regular behavior. Subfigure 8(d) shows the MLE as a function
of κ. Consistent with the bifurcation diagrams, the MLE is positive at lower κ values, confirming
the presence of chaotic behavior. As κ increases, the MLE decreases and becomes negative around
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κ ≈ 0.63, indicating a transition to a stable regime. This alignment between the bifurcation diagrams
and the MLE plot reinforces the observation that the system transitions from chaos to stability as κ
increases. Compared to the previous case, this parameter set exhibits a wider chaotic range. Also,
we have generated the phase portrait, which is depicted in Figure 9. At low fractional order κ,
trajectories show dense, chaotic behavior. As κ increases, the system transitions, with the attractor
breaking into clusters, suggesting a shift towards periodicity or stability. Beyond κ = 0.61, the
system becomes more scattered, indicating reduced chaos. In summary, these analyses reveal that the
fractional discrete computer virus model exhibits multiple dynamical regimes, encompassing chaotic
dynamics, periodic oscillations, and stable states, contingent on the value of κ. These insights enhance
our grasp of fractional-order discrete systems and their intricate dynamics. We compare our fractional-
order virus propagation model with existing integer-order SIR models and continuous-time fractional-
order models. Unlike integer-order models, which lack memory effects, our model captures long-term
memory and nonlinearity, providing a more accurate representation of virus dynamics. Additionally,
our discrete-time approach offers greater flexibility for systems with discrete data, making it better
suited for real-time simulations and virus tracking. This distinction is essential for modeling chaotic
behavior and synchronization, which continuous-time models may not fully capture, thus enhancing
the accuracy and applicability of our approach in cybersecurity.
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Figure 8. Bifurcation diagrams and the corresponding MLE of (2.5) versus κ, with
IC=(0.4, 0.4, 0.2) and η = 1.2, µ = 2.1, σ = 0.1, α1 = 0.1, and α2 = 0.6.
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Figure 9. Trajectory plots of (2.5) with IC=(0.4, 0.4, 0.2) and η = 1.2, µ = 2.1, σ = 0.1,
α1 = 0.1, and α2 = 0.6 for differing κ values.

The fractional-order κ captures memory effects, influencing how past infections affect current
dynamics. While not directly equivalent to propagation or recovery rates, κ modulates their impact
over time. Mapping κ to real-world values would require data fitting or parameter estimation in future
studies.

5. Approximate entropy, C0 complexity, and permutation entropy

In this section, we employ complexity analysis to evaluate the unpredictability and irregularity
of dynamical systems, focusing on the generated keystreams. Specifically, we utilize Approximate
Entropy (ApEn) [39], the C0 complexity algorithm [40], and Permutation Entropy (PE) [41], to assess
their randomness and structural richness. ApEn quantifies pattern regularity and unpredictability, PE
examines the temporal ordering of values, and C0 analyzes local fluctuations, thereby collectively
offering a comprehensive characterization of the system’s complexity.

The ApEn of (2.5) was analyzed for σ = 0.1, α1 = 0.1, and α2 = 0.3, with the results presented
in Figure 10. The analysis reveals that the complexity of the model varies with changes in κ, with the
utmost ApEn observed when the system exhibits chaotic behavior. This observation aligns well with
the maximum Lyapunov exponent results. Therefore, careful selection of κ values in system (2.5) is
crucial to achieving a relatively high structural complexity.
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Figure 10. ApEn of (2.5) versus κ with IC=(0.4, 0.4, 0.2): for (a) η = 1.9, µ = 2.1; (b)
η = 2, µ = 2; (c) η = 1.9, and µ = 1.98.

Additionally, Figure 11 visually represents the C0 Complexity analysis of the discrete fractional-
order computer virus model (2.5), demonstrating its dynamics under varied parameter conditions σ =
0.1, α1 = 0.1, and α2 = 0.3. Figure 11(a) shows the configuration with η = 1.9, µ = 2.1, and κ ∈
[0.85, 1]. Figure 11(b), on the other hand, illustrates the behavior when η = 2, µ = 2, and κ ∈ [0.88, 1]
while Figure 11(c) corresponds to η = 1.9, µ = 1.98, and κ ∈ [0.82, 0.98].
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Figure 11. C0 complexity of (2.5) versus κ with IC=(0.4, 0.4, 0.2): for (a) η = 1.9, µ = 2.1;
(b) η = 2, µ = 2; (c) η = 1.9, and µ = 1.98.

For comparative analysis, Figure 12 also provides the Permutation Entropy (PE) results for the
discrete fractional-order computer virus model (2.5), with consistent parameter ranges σ = 0.1, α1 =

0.1, and α2 = 0.3. Figure 12(a) details the findings when η = 1.9, µ = 2.1. Figure 12(b) corresponds to
the scenario where η = 2, µ = 2, contrasting with Figure 12(c) which depicts the case for η = 1.9, µ =
1.98. These PE results demonstrate the model’s high sensitivity to parameter adjustments, with entropy
levels indicating chaotic or stable states, which corroborates findings from Lyapunov Exponent studies.
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Figure 12. Permutation Entropy of (2.5) versus κ with IC=(0.4, 0.4, 0.2): for (a) η = 1.9, µ =
2.1; (b) η = 2, µ = 2; (c) η = 1.9, and µ = 1.98.

Table 1 reports the numerical complexity analysis for the proposed, discrete, fractional-order
computer virus model. The values of ApEn, PE, and C0 confirm that the system exhibits significant
complexity and unpredictable behavior, which are desirable properties in the context of secure
modeling and chaos-based systems.

Table 1. C0, and PE of the fractional discrete system (2.5) for σ = 0.1, α1 = 0.1, and
α2 = 0.3.

Control parameters ApEn C0 PE
(η, µ, κ) = (1.9, 2.1, 0.862) 0.42304 0.45551 0.61046
(η, µ, κ) = (2, 2, 0.8821) 0.3429 0.42724 0.56363
(η, µ, κ) = (1.9, 1.98, 0.823) 0.32958 0.43613 0.55241
(η, µ, κ) = (1.2, 2.1, 0.499) 0.67287 0.48425 0.70189

6. Chaos control methods

In this section, we cover the control and synchronization scheme of the fractional discrete
system (2.5). Control mechanisms play a crucial role in stabilizing chaotic systems and ensuring
predictable behavior, especially in real-world applications where instability can lead to undesirable
outcomes. By introducing control parameters, we can influence the system’s dynamics, regulating
bifurcations and steering it toward desired states. This is especially significant for synchronization,
where multiple systems must remain coordinated, such as in secure communications. Effective control
strategies help mitigate chaos, making the system more reliable and functional. In this section,
nonlinear controllers are introduced to achieve stability and synchronization in the fractional discrete
computer virus model.

6.1. Stabilization of fractional discrete computer virus model

Chaos control techniques like Sliding Mode Control (SMC) and Adaptive Control are widely used.
SMC is robust but suffers from chattering, while Adaptive Control, used in this study, adjusts in real-
time to system dynamics, offering flexibility in uncertain environments. Although computationally
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intensive, Adaptive Control provides a more accurate representation of chaotic behavior, making it
ideal for real-time applications like cybersecurity, where quick adjustments are vital to address evolving
threats. A stabilizing control mechanism is introduced to regulate the behavior of the proposed
fractional chaotic model (2.5). The primary goal is to develop an adaptive control mechanism that
ensures every state the system has, converge to a fixed point over time. This is achieved by applying
the stability theorem for fractional maps 2. The controlled form of (2.5) is expressed by:

c∆κaS (t) = σ − µS (ρ)(L(ρ) + B(ρ)) + α1L(ρ) + α2B(ρ) − σS (ρ) +C1(ρ),
c∆κaL(t) = µS (ρ)(L(ρ) + B(ρ)) − α1L(ρ) − ηL(ρ) − σL(ρ) +C2(ρ),
c∆κaB(t) = ηL(ρ) − α2B(ρ) − σB(ρ) +C3(ρ).

(6.1)

Where Here, C = (C1,C2,C3)T represents the adaptive controller. The theorem stated hereafter presents
control laws designed to stabilize the newly offered fractional computer virus model.

Theorem 3. If appropriate control laws are formulated hereinafter


C1(ρ) = µS (ρ)(L(ρ) + B(ρ)) − α1L(ρ) − α2B(ρ) + c1(S 0 − S (ρ)),
C2(ρ) = −µS (ρ)(L(ρ) + B(ρ)) + c2(L0 − L(ρ)),
C3(ρ) = −ηL(ρ) + c3(B0 − B(ρ)),

(6.2)

where 0 ≤ c1 +σ ≤ 2κ, 0 ≤ c2 +α1 + η+σ ≤ 2κ, 0 ≤ c3 +α2 +σ ≤ 2κ, and S 0 = 1, L0 = 0, B0 = 0, then
the fractional computer virus system can be successfully brought to stability at its equilibrium point.

Proof. By substituting C1,C2,C3, into (6.1), the following system is derived

c∆κaX(t) = KX(ρ), (6.3)

such that X(t) = (S , L, B)T , 
c∆κaS (t) = σ + c1 − (σ + c1)S (ρ),
c∆κaL(t) = −(c2 + α1 + η + σ)L(ρ),
c∆κaB(t) = −(c3 + α2 + σ)B(ρ),

(6.4)

and

K =


−(c1 + σ) 0 0

0 −(c2 + α1 + η + σ) 0
0 0 −(c3 + α2 + σ)

 , (6.5)

for the parameter values leading to chaos η = 1.2, µ = 2.1, σ = 0.1, α1 = 0.1, and α2 = 0.6, we
found that the proper values of K satisfy the stability requirement of Theorem 2 for 0 ≤ c1 + σ ≤ 2κ,
0 ≤ c2 + α1 + η + σ ≤ 2κ, and 0 ≤ c3 + α2 + σ ≤ 2κ. □

To confirm the validity of Theorem 3, running simulations were conducted such that c1 = 0.9, c2 =

−0.4, and c3 = 0.3. Figures 13 visualize the time-domain response of the controlled fractional discrete
computer virus model (6.1). The figures show that the system’s states converge to the virus-free
fixed point asymptotically, confirming the effectiveness of the stabilization method. In this study, our
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focus was on demonstrating the effectiveness of control and synchronization strategies via numerical
simulations. A complete theoretical design and stability analysis are beyond the current scope but are
planned as an important direction for future work.

n

0 10 20 30 40 50 60 70 80 90 100

S

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

n

0 10 20 30 40 50 60 70 80 90 100

L

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

n

0 10 20 30 40 50 60 70 80 90 100

B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(c)

1

0.8

S

0.6

0.40

0.1

L

0.2

0.3

0.05

0.1

0.15

0.2

0

0.4

B

(d)

Figure 13. Stabilized states of the controlled fractional discrete computer virus model (6.1)
with κ = 0.6.

6.2. Synchronization scheme

Several synchronization methods exist for chaotic systems, such as Pecora-Carroll and projection
synchronization, each suited to different system structures. Compared to these, the nonlinear control-
based approach used here offers greater flexibility for handling fractional discrete dynamics and enables
tailored controller design. Future comparisons may help optimize synchronization in cybersecurity
applications. The subsequent discussion focuses on the development of nonlinear controllers for the
synchronization of the fractional discrete computer virus model (2.5). The synchronization procedure
tries to eliminate the discrepancy between a master map, represented by Equation (2.5), and a slave
map, thus achieving convergence to zero error. The slave map is formally defined as:

c∆κaS s(t) = σ − µS s(ρ)(Ls(ρ) + Bs(ρ)) + α1Ls(ρ) + α2Bs(ρ) − σS s(ρ) + T1(ρ),
c∆κaLs(t) = µS s(ρ)(Ls(ρ) + Bs(ρ)) − α1Ls(ρ) − ηLs(ρ) − σLs(ρ) + T2(ρ),
c∆κaBs(t) = ηLs(ρ) − α2Bs(ρ) − σBs(ρ) + T3(ρ).

(6.6)
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T1,T2,T3 denote the controllers for synchronization. The fractional error system is formulated as
detailed below:

c∆κae1(t) = −µS s(ρ)(Ls(ρ) + Bs(ρ)) + µS (ρ)(L(ρ) + B(ρ)) + α1e2(ρ) + α2e3(ρ)
−σe1(ρ) + T1(ρ),

c∆κae2(t) = −µS s(ρ)(Ls(ρ) + Bs(ρ)) + µS (ρ)(L(ρ) + B(ρ)) − (α1 + η + σ)e2(ρ) + T2(ρ),
c∆κae3(t) = ηe2(ρ) − (α2 + σ)e3(ρ) + T3(ρ).

(6.7)

The synchronization scheme’s control rule is detailed in the following theorem

Theorem 4. Subject to
T1(ρ) = µS s(ρ)(Ls(ρ) + Bs(ρ)) − µS (ρ)(L(ρ) + B(ρ)) − α1e2(ρ) − α2e3(ρ) + t1e1(ρ),
T2(ρ) = −µS s(ρ)(Ls(ρ) + Bs(ρ)) + µS (ρ)(L(ρ) + B(ρ)) + t2e2(ρ),
T3(ρ) = −ηe2(ρ) + t3e3(ρ),

(6.8)

then, the master and slave computer virus models, represented by (2.5) and (6.6), achieve
synchronization, where σ − 2κ ≤ t1 ≤ σ, α1 + η + σ − 2κ ≤ t2 ≤ α1 + η + σ, α2 + σ − 2κ ≤ t3 ≤ α2 + σ.

Proof. Substituting control law (6.8) into error map (6.7) results

c∆κa(e1(t), e2(t), e3(t))T = N(e1(ρ), e2(ρ), e3(ρ))T , (6.9)

where

N =


t1 − σ 0 0

0 t2 − α1 − η − σ 0
0 0 t3 − α2 − σ

 . (6.10)

The eigenvalues of matrixN are given by λ1 = t1−σ, λ2 = t2−α1−η−σ, and λ3 = t3−α2−σ, these
eigenvalues fulfill the stability criteria defined in Theorem 2 when σ − 2κ ≤ t1 ≤ σ, α1 + η + σ − 2κ ≤
t2 ≤ α1+η+σ, α2+σ−2κ ≤ t3 ≤ α2+σ. This confirms that the fractional error map (6.7) demonstrates
asymptotic stability at the origin. Consequently, synchronization is attained between the driving model
(2.5) and the driven model (6.6). □

Numerical simulations in MATLAB were executed to confirm the authenticity of the derived
synchronization result. With parameters set to η = 1.2, µ = 2.1, σ = 0.1, α1 = 0.1, α2 = 0.6, t1 =

−0.9, t2 = 0.4, t3 = −0.3, and κ = 0.6, and initial error values (e1(0), e2(0), e3(0)) = (0.1,−0.2,−0.1),
the progression of the fractional error system (6.7) is illustrated in Figure 14. As is apparent from
the figure, the error states diminish to zero, thus validating the previously described synchronization
process.

The control approach proposed in this study relies on full-state feedback, meaning all system states
must be measurable. Although this is commonly used in theoretical work, in practical scenarios, it may
not always be feasible. In future work, we plan to explore observer-based or output-feedback control
strategies to overcome this limitation and make the model more applicable to real-world systems.
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Figure 14. Error synchronization states.

7. Conclusions

In this study, we developed and analyzed a discrete fractional-order computer virus model to
investigate its dynamical properties, stability conditions, and chaotic behavior. Using the basic
reproduction number R0, we established stability thresholds and identified conditions for chaos,
confirmed by bifurcation analysis and Lyapunov exponents. Complexity metrics (Approximate
Entropy, C0 Complexity, and Permutation Entropy), further quantified the system’s unpredictability,
revealing how fractional-order parameters drive transitions between equilibrium, periodic oscillations,
and chaos. These results underscore the importance of fractional calculus in modeling virus
propagation, where memory effects and non-local dynamics influence infection spread and persistence.
However, while the fractional order parameter κ critically governs the system’s memory effects and
dynamic behavior, we do not address methods to estimate κ from real-world data. Parameter estimation
for fractional-order models remains a complex challenge due to the models’ nonlocal and memory-
dependent nature. Future research should focus on developing robust identification techniques, such as
optimization-based fitting or machine learning approaches, to infer κ from empirical data. Such efforts
will enhance the practical applicability and validation of fractional-order models in cybersecurity
contexts.

The chaotic behavior observed in the virus propagation model offers novel insights for
cybersecurity. By leveraging the inherent unpredictability of chaotic systems, adaptive defense
strategies could dynamically counteract evolving threats. For example, chaotic signatures might
inform algorithms designed to detect irregular propagation dynamics, enhancing anomaly detection in
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Intrusion Detection Systems (IDS) or adaptive firewalls. Furthermore, our successful implementation
of control and synchronization techniques demonstrates that chaotic systems can be stabilized or
coordinated under tailored control laws. This capability is critical for real-time threat mitigation,
enabling synchronized defenses across networked systems.

The integration of fractional-order control with hardware (e.g., microcontrollers, FPGAs)
could enable real-time cybersecurity applications, such as adaptive intrusion detection or secure
communication systems. Recent advancements in chaotic systems such as 3D memristive maps
for image encryption or chaotic neuron-based models like the 2D Logistic-Rulkov Neuron Map
demonstrate the versatility of chaos in cybersecurity. Similarly, the chaotic dynamics of our fractional-
order virus model could inspire secure data transmission protocols or adaptive defense strategies in
networked environments. Future work should prioritize practical deployment, leveraging hardware-
software synergies to enhance threat mitigation in real-world systems.

Overall, we establish a foundation for fractional-order modeling in cybersecurity. In future
investigations, researchers could explore the influence of additional fractional parameters, optimize
control strategies, and extend the model to real-world scenarios. Further research should prioritize data-
driven estimation of the fractional order to bridge theoretical models with empirical threat patterns,
ensuring robust validation in operational cybersecurity frameworks. By merging fractional calculus
with chaotic systems, this work paves the way for resilient, adaptive cybersecurity frameworks capable
of countering sophisticated threats.
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