
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(6): 13476–13497.
DOI: 10.3934/math.2025605
Received: 07 March 2025
Revised: 02 June 2025
Accepted: 04 June 2025
Published: 12 June 2025

Research article

The HSS splitting hierarchical identification algorithms for solving the
Sylvester matrix equation

Huiling Wang1,*, Zhaolu Tian1 and Yufeng Nie2

1 College of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006,
China

2 School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China

* Correspondence: Email: wanghuiling@sxufe.edu.cn.

Abstract: By combining the hierarchical identification principle with HSS splitting, we presented
the HSS splitting hierarchical identification algorithm for solving the Sylvester matrix equation in this
paper. To enhance the convergence rate of the algorithm, the momentum item was introduced in the
iteration. We conducted an in-depth analysis of the sufficient conditions that ensured the convergence
properties of the proposed algorithms. Additionally, the optimal parameters involved in the algorithms
were computed exactly in each iteration by the minimum residual technique for specific cases. Thus,
the adaptive forms of the corresponding algorithms were obtained. Finally, several numerical examples
were implemented to demonstrate the superiority and effectiveness of the designed algorithms in this
paper.

Keywords: hierarchical identification principle; Hermitian and skew-Hermitian splitting; the
minimum residual technique; momentum; optimal parameters
Mathematics Subject Classification: 15A24, 65F30

1. Introduction

In this paper, we mainly consider the iteration solutions of the following Sylvester matrix equation:

AX + XB = C, (1.1)

where A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n are constant matrices, and X ∈ Cm×n is the unknown
matrix to be solved. Eq (1.1) has wide applications in image processing [5], stability and analysis
of linear systems [10], and power systems [9]. Extensive research has been conducted on solving
of the equation, especially regarding iterative methods. For example, the Smith method [14], the

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025605

13477

alternating direction implicit method [7], the gradient-based algorithm [6, 13], the adaptive gradient-
based momentum iteration (AGMI) algorithm [19], the Hermitian and skew-Hermitian splitting (HSS)
iteration method [2], the IO iteration algorithm [16, 17], and the multiplicative splitting iterative
method [22]. Additionally, numerous other iterative methods are available for solving Eq (1.1) and
the associated matrix equations [12, 15].

The HSS iteration method [1] was first employed for solving the linear system Ax = b. It was later
generalized to obtain the solution of Eq (1.1) in [2]. Subsequently, Wang et al. [18] proposed a positive
definite and skew-Hermitian splitting iteration method for the matrix euqation. The preconditioned
positive definite and skew-Hermitian splitting iteration algorithm was further presented in [23]. Zheng
and Ma [24] advanced the normal and skew-Hermitian splitting iteration methods based on the new
splitting of the matrices A and B. Additionally, Li et al. [11] introduced a preconditioned HSS iteration
method along with its non-alternating variant for the equation.

Inspired by the ideas presented in [2,6] and combing the hierarchical identification principle with the
HSS splitting of the matrices A and B, we develop a HSS splitting hierarchical identification (HSSHI)
iteration algorithm for solving Eq (1.1). Owing to the advantages of the heavy-ball momentum method
which is well-known for accelerating the convergence of the gradient method [4], the momentum
term is incorporated into the HSSHI iteration process, resulting in the momentum-based HSS splitting
hierarchical identification (MHSSHI) algorithm. For these algorithms, we analyze the 2-norm of the
error matrices and derive the conditions that the parameters need to satisfy to ensure convergence.
Additionally, selecting optimal parameters is vital for the effectiveness of the algorithms. Most
literature gives only the quasi-optimal parameters. In this paper, we explicitly provide the optimal
parameters through the minimum residual technique [21], when the preconditioning matrices are
H(A) = 1

2 (A + AH) and H(B) = 1
2 (B + BH). Since the parameters change with each iteration, the

adaptive forms of the corresponding algorithms are provided.
The remainder of this paper is organized as follows: In Section 2, we propose the HSSHI

algorithm, give its convergence property in detail, and obtain the optimal parameters using the iterative
information. In Section 3, we present the MHSSHI algorithm, analyze its convergence, and give the
adaptive MHSSHI algorithm. In Section 4, several numerical examples are employed to exhibit the
robustness and efficiencies of the proposed algorithms. Finally, some conclusions are drawn in the last
section.

2. The HSSHI iteration algorithm

By utilizing the hierarchical identification principle [6], Eq (1.1) can be reformulated into two
subsystems as follows:

AX = b1, XB = b2,

where

b1 := C − XB, b2 := C − AX. (2.1)

Do the Hermitian and skew-Hermitian splitting on the matrices A and B

A = H(A) + S (A), B = H(B) + S (B),

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13478

with 
H(A) =

1
2

(A + AH), S (A) =
1
2

(A − AH),

H(B) =
1
2

(B + BH), S (B) =
1
2

(B − BH).

We apply the non-alternating preconditioned HSS (NPHSS) iteration method [20] to solve each above-
mentioned subsystem as follows:

(αP + H(A))X(k+1)
1 = (αP − S (A))X(k)

1 + b1, (2.2)

X(k+1)
2 (βQ + H(B)) = X(k)

2 (βQ − S (B)) + b2, (2.3)

where P and Q are given Hermitian positive definite matrices. Substituting (2.1) into two Eqs (2.2) and
(2.3), we get

(αP + H(A))X(k+1)
1 = (αP − S (A))X(k)

1 +C − XB,

X(k+1)
2 (βQ + H(B)) = X(k)

2 (βQ − S (B)) +C − AX.

The unknown variable X is approximated by its estimated value at the k-th step. Hence, we have

(αP + H(A))X(k+1)
1 = (αP − S (A))X(k)

1 +C − X(k)
1 B,

X(k+1)
2 (βQ + H(B)) = X(k)

2 (βQ − S (B)) +C − AX(k)
2 .

Replacing X(k)
1 and X(k)

2 by the average X(k) =
X(k)

1 +X(k)
2

2 , we obtain

(αP + H(A))X(k+1)
1 = (αP − S (A))X(k) +C − X(k)B, (2.4)

X(k+1)
2 (βQ + H(B)) = X(k)(βQ − S (B)) +C − AX(k). (2.5)

Further simplifying the above two Eqs (2.4) and (2.5) leads to the HSS splitting hierarchical
identification iteration algorithm, which is presented as follows:

Algorithm 1 The HSSHI algorithm
Input: Given an initial solution X(1), the preconditioners P and Q, as well as the parameters α and β
Output: X(k+1)

1: For k = 1, 2, · · · , until it converges, solve
2: (αP + H(A))X(k+1)

1 = (αP + H(A))X(k) +C − AX(k) − X(k)B,
3: X(k+1)

2 (βQ + H(B)) = X(k)(βQ + H(B)) +C − AX(k) − X(k)B,

4: X(k+1) =
X(k+1)

1 +X(k+1)
2

2 .
5: End

Remark 1. We consider the following three cases for the preconditioners P and Q:

1. P = Im and Q = In, where Is is an identity matrix of size s.
2. P = H(A) and Q = H(B).
3. P = tridiag(H(A)) and Q = tridiag(H(B)), where tridiag(H(A)) and tridiag(H(B)) are the

tridiagonal matrices of H(A) and H(B), respectively.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13479

2.1. Convergence analysis

In this section, we mainly investigate the convergence property of the HSSHI algorithm and give
the corresponding convergence result.

Theroem 1. Let H̃(A) = P−
1
2 H(A)P−

1
2 , S̃ (A) = P−

1
2 S (A)P−

1
2 , H̃(B) = Q−

1
2 H(B)Q−

1
2 , and S̃ (B) =

Q−
1
2 S (B)Q−

1
2 . Assume X∗ is the solution of Eq (1.1). The iterative solution X(k) generated by Algorithm

1 converges to X∗ for any initial value if and only if the parameters α and β satisfy the condition√
λmax(P)λmin(P)(α2 + σ2

max(S̃ (A))) + σmax(B)

λmin(P)(α + λmin(H̃(A)))

+

√
λmax(Q)λmin(Q)(β2 + σ2

max(S̃ (B))) + σmax(A)

λmin(Q)(β + λmin(H̃(B)))
< 2, (2.6)

where σmax(E), λmax(E), and λmin(E) are the maximum singular value and the maximum and minimum
eigenvalues of the matrix E, respectively.

Proof: From Algorithm 1, it is easy to obtain

X(k+1)
1 = X(k) + (αP + H(A))−1[C − AX(k) − X(k)B],

X(k+1)
2 = X(k) + [C − AX(k) − X(k)B](βQ + H(B))−1.

The (k + 1)-th iteration can be rewritten as

X(k+1) =X(k) +
1
2

(αP + H(A))−1[C − AX(k) − X(k)B]

+
1
2

[C − AX(k) − X(k)B](βQ + H(B))−1. (2.7)

Define the error matrices
X̃(k+1) = X(k+1) − X∗, X̃(k) = X(k) − X∗.

The error of the (k + 1)-th iteration is

X̃(k+1) =X̃(k) −
1
2

(αP + H(A))−1[AX̃(k) + X̃(k)B] −
1
2

[AX̃(k) + X̃(k)B](βQ + H(B))−1

=
1
2

[
2X̃(k) − (αP + H(A))−1AX̃(k) − (αP + H(A))−1X̃(k)B

− AX̃(k)(βQ + H(B))−1 − X̃(k)B(βQ + H(B))−1
]
.

Taking the ∥ · ∥2 norm on both sides of the above equation, we have

∥X̃(k+1)∥2 ≤
1
2

(
∥Im − (αP + H(A))−1A∥2 + ∥(αP + H(A))−1∥2∥B∥2

+ ∥A∥2∥(βQ + H(B))−1∥2 + ∥In − B(βQ + H(B))−1∥2

)
∥X̃(k)∥2.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13480

Since A = (αP + H(A)) − (αP − S (A)),

∥Im − (αP + H(A))−1A∥2
=∥(αP + H(A))−1(αP + H(A)) − (αP + H(A))−1A∥2
=∥(αP + H(A))−1(αP + H(A) − A)∥2 (2.8)
=∥(αP + H(A))−1(αP − S (A))∥2.

By performing an identity transformation on (2.8), we obtain

∥(αP + H(A))−1(αP − S (A))∥2

=∥P−
1
2 P

1
2 (αP + H(A))−1P

1
2 P−

1
2 (αP − S (A))P−

1
2 P

1
2 ∥2 (2.9)

=∥P−
1
2 (P−

1
2 (αP + H(A))P−

1
2)−1P−

1
2 (αP − S (A))P−

1
2 P

1
2 ∥2

=|P−
1
2 (αIm + P−

1
2 H(A)P−

1
2)−1(αIm − P−

1
2 S (A)P−

1
2)P

1
2 ∥2

=|P−
1
2 (αIm + H̃(A))−1(αIm − S̃ (A))P

1
2 ∥2.

Similarly, we can deduce

∥(αP + H(A))−1∥2 = ∥P−
1
2 (αIm + H̃(A))−1P−

1
2 ∥2. (2.10)

∥(βQ + H(B))−1∥2 = ∥Q−
1
2 (βIn + H̃(B))−1Q−

1
2 ∥2. (2.11)

∥In − B(βQ + H(B))−1∥2 =∥(βQ − S (B))(βQ + H(B))−1∥2 (2.12)

=∥Q
1
2 (βIn − S̃ (B))(βIn + H̃(B))−1Q−

1
2 ∥2.

Following from (2.8)–(2.12), we obtain

∥Im − (αP + H(A))−1A∥2 + ∥(αP + H(A))−1∥2∥B∥2 + ∥In − B(βQ + H(B))−1∥2

+ ∥A∥2∥(βQ + H(B))−1∥2

=∥P−
1
2 (αIm + H̃(A))−1(αIm − S̃ (A))P

1
2 ∥2 + ∥Q

1
2 (βIn − S̃ (B))(βIn + H̃(B))−1Q−

1
2 ∥2

+ ∥P−
1
2 (αIm + H̃(A))−1P−

1
2 ∥2∥B∥2 + ∥A∥2∥Q−

1
2 (βIn + H̃(B))−1Q−

1
2 ∥2

≤∥(αIm + H̃(A))−1∥2

(
∥P

1
2 ∥2∥P−

1
2 ∥2∥αIm − S̃ (A)∥2 + ∥P−

1
2 ∥22∥B∥2

)
+ ∥(βIn + H̃(B))−1∥2

(
∥Q

1
2 ∥2∥Q−

1
2 ∥2∥βIn − S̃ (B)∥2 + ∥A∥2∥Q−

1
2 ∥22

)
(2.13)

≤

√
λmax(P)λmin(P)(α2 + σ2

max(S̃ (A))) + σmax(B)

λmin(P)(α + λmin(H̃(A)))

+

√
λmax(Q)λmin(Q)(β2 + σ2

max(S̃ (B))) + σmax(A)

λmin(Q)(β + λmin(H̃(B)))
.

If α and β satisfy (2.6), it is evident that

∥X̃(k+1)∥2 < ∥X̃(k)∥2 < · · · < ∥X̃(1)∥2,

i.e., X̃(k) → 0 as k → ∞. The proof is complete. □

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13481

Remark 2. When P = Im and Q = In, (2.6) turns to√
α2 + σ2

max(S (A)) + σmax(B)
α + λmin(H(A))

+

√
β2 + σ2

max(S (B)) + σmax(A)
β + λmin(H(B))

< 2.

Remark 3. When P = H(A) and Q = H(B), (2.6) turns to√
λmax(P)λmin(P)(α2 + σ2

max(S̃ (A))) + σmax(B)

λmin(P)(α + 1)

+

√
λmax(Q)λmin(Q)(β2 + σ2

max(S̃ (B))) + σmax(A)

λmin(Q)(β + 1)
< 2,

where S̃ (A) = H(A)−
1
2 S (A)H(A)−

1
2 , and S̃ (B) = H(B)−

1
2 S (B)H(B)−

1
2 .

2.2. The adaptive HSSHI algorithm

For the case of P = H(A) and Q = H(B) in Algorithm 1, the varied parameters αk+1 and βk+1 are
adopted in each iteration, and we obtain the adaptive HSSHI (AHSSHI) algorithm as follows.

Algorithm 2 The AHSSHI algorithm
Input: Given an initial solution X(1), two preconditioners P and Q, as well as the parameters α2 and

β2

Output: X(k+1)

1: For k = 1, 2, · · · , until it converges, solve
2: (αk+1P + H(A))X(k+1)

1 = (αk+1P + H(A))X(k) +C − AX(k) − X(k)B,
3: X(k+1)

2 (βk+1Q + H(B)) = X(k)(βk+1Q + H(B)) +C − AX(k) − X(k)B,

4: X(k+1) =
X(k+1)

1 +X(k+1)
2

2 .
5: End

In the following, we investigate how to obtain the parameters by the minimum residual technique.
Denote the k-th residual as R(k) = C − AX(k) − X(k)B. According to Algorithm 2, it follows that

X(k+1) = X(k) +
1
2

mk+1H(A)−1R(k) +
1
2

nk+1R(k)H(B)−1,

where mk+1 =
1

αk+1+1 and nk+1 =
1

βk+1+1 .
The (k + 1)-th residual can be further expressed as

R(k+1) = R(k) − mk+1M(k) − nk+1N(k) (2.14)

with 
M(k) =

1
2

(AH(A)−1R(k) + H(A)−1R(k)B),

N(k) =
1
2

(AR(k)H(B)−1 + R(k)H(B)−1B).

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13482

Taking the F-norm on both sides of (2.14), we have

∥R(k+1)∥2F = tr[(R(k) − mk+1M(k) − nk+1N(k))T (R(k) − mk+1M(k) − nk+1N(k))]
= ∥R(k)∥2F − 2mk+1tr((M(k))T R(k)) − 2nk+1tr((N(k))T R(k))
+2mk+1nk+1tr((M(k))T N(k)) + m2

k+1∥M
(k)∥2F + n2

k+1∥N
(k)∥2F .

Let ϕ(mk+1, nk+1) = ∥R(k+1)∥2F . Find the unique stationary point of the function ϕ(mk+1, nk+1), i.e.,

mk+1 =
akek − ckbk

dkek − b2
k

, nk+1 =
ckdk − akbk

dkek − b2
k

,

where ak = tr((M(k))T R(k)), bk = tr((M(k))T N(k)), ck = tr((N(k))T R(k)), dk = ∥M(k)∥2F , ek = ∥N(k)∥2F . It is
easy to obtain that 

αk+1 =
dkek − b2

k

akek − ckbk
− 1,

βk+1 =
dkek − b2

k

ckdk − akbk
− 1.

(2.15)

Remark 4. Parameters αk+1 and βk+1 need to be updated at each step using the trace. It indeed
takes time to compute these parameters, but they effectively minimize the residual at each step, thereby
significantly enhancing the computational efficiency of the algorithms.

Remark 5. On the one hand, we can directly utilize the formulas (2.15) to give the optimal parameters
αk+1 and βk+1 for the AHSSHI algorithm (see Example 3 in Section 4).

On the other hand, we can refer to the values of αk+1 and βk+1 obtained by (2.15) to find the
quasi-optimal fixed parameters for the HSSHI algorithm. Specifically, we can first observe the varied
parameters by (2.15) for the small-scale cases of the problem. If the values do not change significantly
at each step, we can determine the quasi-optimal parameters that are fixed at each step based on these
values (see Example 4 in Section 4).

3. The HSSHI algorithm with momentum acceleration

In order to improve the efficiency of the HSSHI algorithm, we introduce a momentum term into the
iterative process, thereby establishing the MHSSHI algorithm as follows:

Algorithm 3 The MHSSHI algorithm
Input: Given two initial solution vectors X(0) and X(1), two preconditioners P and Q, as well as the

parameters α̃, β̃ and γ
Output: X(k+1)

1: For k = 1, 2, · · · , until it converges, solve
2: (α̃P + H(A))X(k+1)

1 = (α̃P + H(A))X(k) +C − AX(k) − X(k)B,
3: X(k+1)

2 (β̃Q + H(B)) = X(k)(β̃Q + H(B)) +C − AX(k) − X(k)B,

4: X(k+1) =
X(k+1)

1 +X(k+1)
2

2 + γ(X(k) − X(k−1)).
5: End

Remark 6. When γ is chosen to be 0, the algorithm degenerates into the HSSHI algorithm.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13483

3.1. Convergence analysis

In this section, we mainly discuss the convergence property of Algorithm 3. For the sake of
convenience in the proof, we first present a lemma as follows:

Lemma 1. [8] Both roots of the real quadratic equation x2 − bx + c = 0 are less than one in modulus
if and only if |c| < 1 and |b| < 1 + c.

Based on the lemma, the convergence result of Algorithm 3 is given in the following theorem.

Theroem 2. Let H̃(A) = P−
1
2 H(A)P−

1
2 , S̃ (A) = P−

1
2 S (A)P−

1
2 , H̃(B) = Q−

1
2 H(B)Q−

1
2 , and S̃ (B) =

Q−
1
2 S (B)Q−

1
2 . Assume X∗ be the solution of Eq (1.1). The iterative solution X(k) generated by Algorithm

3 converges to X∗ for any initial value if and only if the parameters α̃, β̃ and γ satisfy

0 < γ <
1
2
,√

λmax(P)λmin(P)(α̃2 + σ2
max(S̃ (A))) + σmax(B)

λmin(P)(α̃ + λmin(H̃(A)))

+

√
λmax(Q)λmin(Q)(β̃2 + σ2

max(S̃ (B))) + σmax(A)

λmin(Q)(β̃ + λmin(H̃(B)))
< 2 − 4γ,

(3.1)

where σmax(E), λmax(E), and λmin(E) are the maximum singular value and the maximum and minimum
eigenvalues of the matrix E, respectively.

Proof: From Algorithm 3, it turns out that (k + 1)-th iteration can be rewritten as

X(k+1) =X(k) +
1
2

(α̃P + H(A))−1[C − AX(k) − X(k)B] (3.2)

+
1
2

[C − AX(k) − X(k)B](β̃Q + H(B))−1 + γ(X(k) − X(k−1)).

Define the error matrices
X̃(k+1) = X(k+1) − X∗, X̃(k) = X(k) − X∗.

From (3.2) it follows that

X̃(k+1) =X̃(k) −
1
2

(α̃P + H(A))−1[AX̃(k) + X̃(k)B]

−
1
2

[AX̃(k) + X̃(k)B](β̃Q + H(B))−1 + γ(X̃(k) − X̃(k−1)).

Taking the ∥ · ∥2 norm on both sides of the above equation, we have

∥X̃(k+1)∥2 =∥X̃(k) −
1
2

(α̃P + H(A))−1[AX̃(k) + X̃(k)B]

−
1
2

[AX̃(k) + X̃(k)B](β̃Q + H(B))−1 + γ(X̃(k) − X̃(k−1))∥2

=
1
2
∥(Im − (α̃P + H(A))−1A)X̃(k) + 2γX̃(k) − (α̃P + H(A))−1X̃(k)B (3.3)

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13484

− AX̃(k)(β̃Q + H(B))−1 + X̃(k)(In − B(β̃Q + H(B))−1) − 2γX̃(k−1)∥2

≤
1
2

(
∥Im − (α̃P + H(A))−1A∥2 + 2γ + ∥(α̃P + H(A))−1∥2∥B∥2

+ ∥A∥2∥(β̃Q + H(B))−1∥2 + ∥In − B(β̃Q + H(B))−1∥2

)
∥X̃(k)∥2

+ γ∥X̃(k−1)∥2.

Let

H =
[

q1 + γ + q2 + q3 + q4 γ

1 0

]
,

where q1 =
1
2∥Im − (α̃P + H(A))−1A∥2, q2 =

1
2∥(α̃P + H(A))−1∥2∥B∥2, q3 =

1
2∥In − B(β̃Q + H(B))−1∥2,

q4 =
1
2∥A∥2∥(β̃Q + H(B))−1∥2. Then from (3.3) it is clear that

[
∥X̃(k+1)∥2

∥X̃(k)∥2

]
≤ H
[
∥X̃(k)∥2

∥X̃(k−1)∥2

]
≤ Hk

[
∥X̃(1)∥2

∥X̃(0)∥2

]
.

If ρ(H) < 1, then ∥X̃(k)∥2 → 0 as k → ∞.
In the following discussion, we concentrate on determining α̃, β̃, and γ to ensure that ρ(H) < 1,

thereby guaranteeing the convergence of the algorithm. The characteristic equation for H is

λ2 − λ(q1 + q2 + q3 + q4 + γ) − γ = 0,

where λ is an eigenvalue of matrix H. It then follows from Lemma 1 that |λ| < 1 if and only if|γ| < 1,
|q1 + q2 + q3 + q4 + γ| < 1 − γ,

i.e., 
0 < γ <

1
2
,

∥Im − (α̃P + H(A))−1A∥2 + ∥(α̃P + H(A))−1∥2∥B∥2
+ ∥In − B(β̃Q + H(B))−1∥2 + ∥A∥2∥(β̃Q + H(B))−1∥2 < 2 − 4γ.

(3.4)

Together with (2.13) and (3.4), (3.1) is obtained. Thus, the proof is complete. □

Remark 7. When P = Im and Q = In, (3.1) becomes
0 < γ <

1
2
,√

α̃2 + σ2
max(S (A)) + σmax(B)

α̃ + λmin(H(A))
+

√
β̃2 + σ2

max(S (B)) + σmax(A)

β̃ + λmin(H(B))
< 2 − 4γ.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13485

Remark 8. When P = H(A) and Q = H(B), (3.1) leads to

0 < γ <
1
2
,√

λmax(P)λmin(P)(α̃2 + σ2
max(S̃ (A))) + σmax(B)

λmin(P)(α̃ + 1)

+

√
λmax(Q)λmin(Q)(β̃2 + σ2

max(S̃ (B))) + σmax(A)

λmin(Q)(β̃ + 1)
< 2 − 4γ,

where S̃ (A) = H(A)−
1
2 S (A)H(A)−

1
2 , and S̃ (B) = H(B)−

1
2 S (B)H(B)−

1
2 .

3.2. The adaptive MHSSHI (AMHSSHI) algorithm

When P = H(A) and Q = H(B) in Algorithm 3, the adaptive MHSSHI algorithm can be similarly
formulated as Algorithm 2 with the varied parameters α̃k+1, β̃k+1 and γk+1. The algorithm is detailed
below:

Algorithm 4 The AMHSSHI algorithm
Input: Given two initial solution vectors X(0) and X(1), two preconditioners P and Q, as well as the

parameters α̃2, β̃2 and γ2

Output: X(k+1)

1: For k = 1, 2, · · · , until it converges, solve
2: (α̃k+1P + H(A))X(k+1)

1 = (α̃k+1P + H(A))X(k) +C − AX(k) − X(k)B,
3: X(k+1)

2 (β̃k+1Q + H(B)) = X(k)(β̃k+1Q + H(B)) +C − AX(k) − X(k)B,

4: X(k+1) =
X(k+1)

1 +X(k+1)
2

2 + γk+1(X(k) − X(k−1)).
5: End

Below, we mainly provide the specific expressions for the optimal parameters through the minimal
residual technique. Denote the k-th residual by R(k) = C − AX(k) − X(k)B. From Algorithm 4, we have

X(k+1) = X(k) +
1
2

m̃k+1H(A)−1R(k) +
1
2

ñk+1R(k)H(B)−1 + γk+1(X(k) − X(k−1)),

where m̃k+1 =
1

α̃k+1+1 and ñk+1 =
1

β̃k+1+1 .
The (k + 1)-th residual can be represented as

R(k+1) = R(k) − m̃k+1M̃(k) − ñk+1Ñ(k) − γk+1H̃(k) (3.5)

with 
M̃(k) =

1
2

(AH(A)−1R(k) + H(A)−1R(k)B),

Ñ(k) =
1
2

(AR(k)H(B)−1 + R(k)H(B)−1B),

H̃(k) = R(k−1) − R(k).

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13486

Let ψ(m̃k+1, ñk+1, γk+1) = ∥R(k+1)∥2F . Taking the F-norm on both sides of (3.5), we have

ψ(m̃k+1, ñk+1, γk+1)
= tr[(R(k) − m̃k+1M̃(k) − ñk+1Ñ(k) − γk+1H̃(k))T (R(k) − m̃k+1M̃(k) − ñk+1Ñ(k) − γk+1H̃(k))]
= (γk+1 + 1)2∥R(k)∥2F − 2m̃k+1(γk+1 + 1)tr((M̃(k))T R(k)) − 2ñk+1(γk+1 + 1)tr((Ñ(k))T R(k))
+2γk+1m̃k+1tr((M̃(k))T R(k−1)) + 2γk+1ñk+1tr((Ñ(k))T R(k−1))
−2(γk+1 + 1)γk+1tr((R(k))T R(k−1)) + γ2

k+1∥R
(k−1)∥2F + 2m̃k+1ñk+1tr((M̃(k))T Ñ(k))

+m̃2
k+1∥M̃

(k)∥2F + ñ2
k+1∥Ñ

(k)∥2F .

Assume that 

c(1)
k := ∥M̃(k)∥2F , c(2)

k := tr((M̃(k))T Ñ(k)),

c(3)
k := tr((M̃(k))T R(k−1)) − tr((M̃(k))T R(k)),

c(4)
k := tr((M̃(k))T R(k)), c(5)

k := (tr((Ñ(k))T R(k)),

c(6)
k := tr((Ñ(k))T R(k−1)) − tr((Ñ(k))T R(k)),

c(7)
k := ∥Ñ(k)∥2F , c(8)

k := (tr((R(k))T R(k−1) − ∥R(k)∥2F ,

c(9)
k := ∥R(k−1)∥2F − 2tr((R(k))T R(k−1))) + ∥R(k)∥2F ,

and 

d(1)
k := c(6)

k ∗ c(3)
k − c(9)

k ∗ c(2)
k , d(2)

k := c(2)
k ∗ c(6)

k − c(7)
k ∗ c(3)

k ,

d(3)
k := c(1)

k ∗ c(6)
k − c(2)

k ∗ c(3)
k , d(4)

k := c(7)
k ∗ c(9)

k −
(
c(6)

k

)2
,

d(5)
k := c(5)

k ∗ c(9)
k − c(8)

k ∗ c(6)
k , d(6)

k := c(4)
k ∗ c(6)

k − c(5)
k ∗ c(3)

k ,

d(7)
k :=

(
c(2)

k

)2
− c(1)

k ∗ c(7)
k , d(8)

k := c(4)
k ∗ c(2)

k − c(1)
k ∗ c(5)

k ,

d(9)
k := c(5)

k ∗ c(3)
k − c(8)

k ∗ c(2)
k .

Then, the unique stationary point of the function ψ(m̃k+1, ñk+1, γk+1) is

m̃k+1 =
d(6)

k d(4)
k − d(5)

k d(2)
k

d(1)
k d(2)

k + d(3)
k d(4)

k

,

ñk+1 =
d(8)

k d(1)
k + d(9)

k d(3)
k

d(7)
k d(1)

k − d(2)
k d(3)

k

,

γk+1 =
d(8)

k d(2)
k + d(9)

k d(7)
k

d(1)
k d(7)

k − d(3)
k d(2)

k

.

Therefore, it is easy to obtain that 

α̃k+1 =
d(1)

k d(2)
k + d(3)

k d(4)
k

d(6)
k d(4)

k − d(5)
k d(2)

k

− 1,

β̃k+1 =
d(7)

k d(1)
k − d(2)

k d(3)
k

d(8)
k d(1)

k + d(9)
k d(3)

k

− 1,

γk+1 =
d(8)

k d(2)
k + d(9)

k d(7)
k

d(1)
k d(7)

k − d(3)
k d(2)

k

.

(3.6)

Remark 9. Similar explanations can be obtained by referring to Remarks 4 and 5.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13487

4. Numerical examples

In this section, several numerical examples are given to examine the effectiveness of the proposed
algorithms compared to the HSS [2], NPHSS [11], AGMI [19], and B-S [3] algorithms. All test
problems are performed under Matlab on a personal computer with a 1.61 GHz central processing unit
(Intel(R) Core(TM) i7-10710), 16GB memory, and Windows 10 operating system. The initial matrices
are set to be zero matrices, and the iterations are terminated if the relative residual norm in the current
step satisfies

RRN :=
∥C − AX(k) − X(k)B∥
∥C − AX(0) − X(0)B∥

≤ 10−6.

The number of iterations (denoted as IT), the computing time in seconds (denoted as CPU) and RRN
are used to test the efficiency of these algorithms.

Example 1. The matrices A and B in Eq (1.1) are given as

A = diag(1, 2, · · · , n) + rLT ,

B = 2−tIn + diag(1, 2, · · · , n) + rLT + 2−tL,

where L is the strictly lower triangular matrix having ones in the lower triangle part, r = 2 and t = 1
2 .

The right-hand side is given by the equation C = AX + XB, where X is defined as X(i, j) = 1 for all
1 ≤ i, j ≤ n.

Table 2 lists the numerical results for the six algorithms, and the experimentally optimal parameters
employed in these algorithms are detailed in Table 1. We set P = Q = In in both HSSHI and
MHSSHI algorithms. In terms of the CPU time, the B-S, HSSHI, and MHSSHI algorithms significantly
outperform the HSS, NPHSS, and AGMI algorithms. Moreover, the HSSHI and MHSSHI algorithms
need remarkbly fewer iterations than the AGMI, HSS, and NPHSS algorithms. In addition, as
illustrated in Figure 1, the RRN for the MHSSHI algorithm decreases the fastest, followed by the
HSSHI algorithm, while the HSS algorithm shows a very slow decrease.

Table 1. The experimentally optimal parameters for Example 1.

Algorithms 100 200 300 400
HSS µ1 7.64 10.57 12.79 14.65

µ2 7.64 10.57 12.79 14.65
NPHSS α̂ 39.15 78.33 118.01 156.72
HSSHI α 1881.00 3560.00 5571.00 7090.00

β 39.00 77.00 116.00 155.00
MHSSHI α̃ 3321.00 6011.00 8811.00 11025.00

β̃ 38.00 75.00 113.00 152.00
γ 0.01 0.01 0.01 0.01

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13488

Table 2. Numerical results of six algorithms for Example 1.

Algorithms 100 200 300 400
HSS IT 71 102 126 146

CPU 1.255 11.108 36.173 80.599
RRN 9.138e-07 8.654e-07 8.590e-07 9.373e-07

NPHSS IT 27 27 27 27
CPU 0.154 0.665 1.902 4.169
RRN 8.878e-07 8.474e-07 8.339e-07 8.267e-07

AGMI IT 94 93 92 91
CPU 0.162 0.622 2.135 5.891
RRN 9.785E-07 9.744E-07 9.753E-07 9.948E-07

B-S CPU 0.012 0.068 0.152 0.306
HSSHI IT 10 10 10 10

CPU 0.071 0.036 0.066 0.164
RRN 6.785e-07 6.005e-07 5.973e-07 5.920e-07

MHSSHI IT 10 10 10 10
CPU 0.016 0.029 0.068 0.162
RRN 4.920e-07 3.603e-07 3.427e-07 3.486e-07

0 5 10 15 20 25

iteration number

10-10

10-8

10-6

10-4

10-2

100

R
R

N

HSS
AGMI
MHSSHI
NPHSS
HSSHI

Figure 1. The convergence curves of five algorithms for Example 1.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13489

Example 2. The matrices A and B in Eq (1.1) are given as

A =



10 1 1 · · · 1 1
2 10 1 · · · 1 1
1 2 10 · · · 1 1
...

...
. . . 1 1

1 1 1 · · · 2 10


, B =



8 1 1 · · · 1 1
3 8 1 · · · 1 1
1 3 8 · · · 1 1
...

...
. . . 1 1

1 1 1 · · · 3 8


.

Let C = AX + XB.

Table 4 reports the numerical results for the six algorithms, and the experimentally optimal
parameters used in these algorithms are detailed in Table 3. We take P = tridiag(H(A)) and
Q = tridiag(H(B)) in both HSSHI and MHSSHI algorithms. Compared to the HSS algorithm, the
other five algorithms show marked superiority in terms of the iteration number and computational
time. In particular, the HSSHI, MHSSHI, and AGMI algorithms take considerably less CPU time than
the HSS, B-S, and NPHSS algorithms, demonstrating a clear and notable advantage. Furthermore, as
shown in Figure 2, the RRNs for the HSSHI and MHSSHI algorithms decrease sharply and quickly
below 10−6 in comparison to the HSS algorithm.

Table 3. The experimentally optimal parameters for Example 2.

Algorithms 128 256 512 1024
HSS µ1 29.90 41.50 58.20 81.90

µ2 29.90 41.50 58.20 81.90
NPHSS α̂ 0.01 0.01 0.01 0.01
HSSHI α 7.10 15.10 33.00 62.10

β 13.70 28.20 59.00 120.10
MHSSHI α̃ 7.10 13.10 28.10 65.10

β̃ 12.00 28.10 60.10 130.10
γ 0.09 0.06 0.03 0.01

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13490

Table 4. Numerical results of six algorithms for Example 2.

Algorithms 128 256 512 1024
HSS IT 32 44 62 87

CPU 1.482 11.210 112.578 1092.848
RRN 7.204e-07 9.336e-07 9.171e-07 9.873e-07

NPHSS IT 3 3 3 3
CPU 0.035 0.213 1.474 14.441
RRN 9.698e-07 9.702e-07 9.705e-07 9.706e-07

AGMI IT 3 3 3 3
CPU 0.029 0.064 0.247 1.961
RRN 1.228E-07 1.204E-08 4.862E-09 1.592E-09

B-S CPU 0.242 0.735 3.231 17.570
HSSHI IT 13 11 8 8

CPU 0.010 0.051 0.204 1.225
RRN 8.998e-07 9.406e-07 6.770e-07 4.743e-07

MHSSHI IT 11 9 9 8
CPU 0.009 0.035 0.221 1.256
RRN 9.503e-07 9.869e-07 4.502e-07 4.721e-07

0 5 10 15 20 25

iteration number

10-8

10-6

10-4

10-2

100

R
R

N

HSS
MHSSHI
HSSHI

Figure 2. Convergence curves of three algorithms for Example 2.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13491

Example 3. The matrices in Eq (1.1) are described by


A(i, i) = 6 + r, (1 ≤ i ≤ m),
A(i, i + 1) = −1, A(i + 1, i) = −1 + r, (1 ≤ i ≤ m − 1),
A(i, i + 2) = A(i + 2, i) = −1, (1 ≤ i ≤ m − 2),

with a real number r and B = A − 0.4Im. Let C = AX + XB.

For the cases of r = 1 and r = 0.5, the numerical results of the six algorithms are reported in Tables
6 and 8, respectively. Let P = H(A) and Q = H(B) in both AHSSHI and AMHSSHI algorithms. The
experimentally optimal parameters for the HSS and NPHSS algorithms are presented in Tables 5 and
7, while the parameters applied in the AHSSHI and AMHSSHI algorithms are derived from (2.15) and
(3.6). In comparison to the HSS and NPHSS algorithms, the B-S, AGMI, AHSSHI, and AMHSSHI
algorithms require remarkably less time to achieve the desired precision in both cases. Furthermore,
the AMHSSHI algorithm also shows superiority in the number of iterations. Additionally, Figures 3
and 4 illustrate that the AMHSSHI algorithm has the fastest decrease in RRN among the algorithms
considered. The AHSSHI algorithm follows closely behind.

0 5 10 15

iteration number

10-20

10-15

10-10

10-5

100

R
R

N

HSS
AGMI
AMHSSHI
AHSSHI

Figure 3. The convergence curves of four algorithms with r = 1 for Example 3.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13492

0 5 10 15

iteration number

10-20

10-15

10-10

10-5

100

R
R

N

HSS
AGMI
AMHSSHI
AHSSHI

Figure 4. The convergence curves of four algorithms with r = 0.5 for Example 3.

Table 5. The experimentally optimal parameters with r = 1 for Example 3.

Algorithms 128 256 512 1024
HSS µ1 5.80 5.80 5.80 5.80

µ2 5.80 5.80 5.80 5.80
NPHSS α̂ 0.11 0.11 0.11 0.11

Table 6. Numerical results of six algorithms with r = 1 for Example 3.

Algorithms 256 512 1024 2048
HSS IT 9 9 9 9

CPU 2.452 13.640 122.652 1931.391
RRN 7.171e-07 7.322e-07 7.399e-07 7.439e-07

NPHSS IT 6 6 6 6
CPU 0.372 2.191 27.032 546.929
RRN 9.791e-07 9.633e-07 9.552e-07 5.676e-07

AGMI IT 13 13 12 12
CPU 0.195 1.425 10.756 116.369
RRN 7.922e-07 4.955e-07 8.154e-07 5.231e-07

B-S CPU 0.389 1.722 9.320 130.746
AHSSHI IT 7 7 7 7

CPU 0.142 0.739 8.093 108.156
RRN 6.992e-08 4.968e-08 3.522e-08 2.493e-08

AMHSSHI IT 5 5 5 5
CPU 0.134 0.680 6.796 105.495
RRN 7.899e-07 5.598e-07 3.963e-07 2.804e-07

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13493

Table 7. The optimal experimental parameters with r = 0.5 for Example 3.

Algorithms 128 256 512 1024
HSS µ1 4.86 4.86 4.86 4.86

µ2 4.86 4.86 4.86 4.86
NPHSS α̂ 0.10 0.10 0.10 0.10

Table 8. Numerical results of six algorithms with r = 0.5 for Example 3.

Algorithms 256 512 1024 2048
HSS IT 11 11 11 11

CPU 2.743 27.806 190.080 2385.919
RRN 5.086e-07 5.216e-07 5.283e-07 5.317e-07

NPHSS IT 6 6 6 6
CPU 0.376 3.826 37.350 556.357
RRN 5.762e-07 5.704e-07 5.674e-07 5.659e-07

AGMI IT 18 17 17 16
CPU 0.263 1.644 13.690 110.987
RRN 7.048e-07 8.562e-07 5.523e-07 7.102e-07

B-S CPU 0.225 1.461 10.318 115.147
AHSSHI IT 8 8 8 7

CPU 0.131 0.919 8.587 93.782
RRN 2.606e-08 1.902e-08 1.368e-08 1.104e-07

AMHSSHI IT 6 6 5 5
CPU 0.148 1.289 7.265 83.453
RRN 1.884e-07 1.342e-07 8.929e-07 6.326e-07

Example 4. The matrices in Eq (1.1) are described as

A = B = M + 2N +
100

(n + 1)2 I,

where M = tridiag(−1, 2.6,−1) and N = tridiag(0.5, 0,−0.5). Let C = AX + XB.

The numerical results for the five algorithms are presented in Table 10, while the experimentally
optimal parameters involved in these algorithms are outlined in Table 9. We take P = H(A) and
Q = H(B) in both HSSHI and MHSSHI algorithms. The parameters in the HSSHI and MHSSHI
algorithms are obtained by referring to (2.15) and (3.6). Compared with the HSS, NPHSS, and AGMI
algorithms, the HSSHI and MHSSHI algorithms achieve the required precision in significantly less
time, demonstrating their effectiveness. Moreover, as shown in Figure 5, in contrast to the AGMI
algorithm, the RRNs of the HSSHI and MHSSHI algorithms quickly drop to 10−10.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13494

0 10 20 30 40 50

iteration number

10-10

10-8

10-6

10-4

10-2

100

R
R

N

AGMI
HSSHI
MHSSHI

Figure 5. The convergence curves of three algorithms for Example 4.

Table 9. The experimentally optimal parameters for Example 4.

Algorithms 500 1000 1500 2000
HSS µ1 1.66 1.66 1.66 1.66

µ2 1.66 1.66 1.66 1.66
NPHSS α̂ 0.85 0.79 0.70 0.65
HSSHI α 3.50 3.50 3.50 3.50

β 3.50 3.50 3.50 3.50
MHSSHI α̃ 3.10 3.10 3.10 3.10

β̃ 3.10 3.10 3.10 3.10
γ 0.01 0.01 0.01 0.01

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13495

Table 10. Numerical results of five algorithms for Example 4.

Algorithms 500 1000 1500 2000
HSS IT 19 19 19 19

CPU 31.075 231.264 961.546 3030.129
RRN 5.365e-07 5.552e-07 5.613e-07 5.643e-07

NPHSS IT 22 21 20 20
CPU 7.107 94.384 436.489 1241.259
RRN 8.954e-07 7.514e-07 8.453e-07 7.222e-07

AGMI IT 49 47 46 46
CPU 5.842 38.390 132.914 256.424
RRN 7.913e-07 9.162e-07 9.542e-07 8.044e-07

HSSHI IT 27 26 25 25
CPU 0.681 7.677 38.232 92.712
RRN 4.782e-07 4.282e-07 5.658e-07 5.200e-07

MHSSHI IT 26 24 23 23
CPU 0.748 7.363 37.804 80.520
RRN 9.178e-07 9.281e-07 9.520e-07 7.681e-07

5. Conclusions

In this paper, we provide two new algorithms for solving Eq (1.1), namely the HSSHI algorithm and
the MHSSHI algorithm. The convergence properties of the proposed algorithms are presented as the
parameters in the algorithms satisfy certain conditions. Moreover, the adaptive HSSHI and MHSSHI
algorithms are also established when P = H(A) and Q = H(B). The adaptive parameters are exactly
determined by minimizing the residual norms of the current step. Numerical experiments illustrate the
excellent performances of our proposed algorithms. In our future work, we will explore the application
of these algorithms to solving other types of Sylvester matrix equations and the absolute value equation.
Additionally, when P = Im and Q = In, or when P = tridiag(H(A)) and Q = tridiag(H(B)), we have
not yet provided a specific formula for determining the optimal parameters contained in the algorithms.
Therefore, further research will be conducted to find effective methods for identifying the optimal
parameters in these two cases.

Author contributions

Huiling Wang: Methodology, software, writing - original draft preparation; Zhaolu Tian and Yufeng
Nie: Supervision. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

We would like to express our deep gratitude for the insightful comments and valuable suggestions
provided by the reviewers.

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

13496

Conflict of interest

The authors declare no conflicts of interest.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

References

1. Z. Z. Bai, G. H. Golub, M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-
Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603–626.
http://dx.doi.org/10.1137/S0895479801395458

2. Z. Z. Bai, On hermitian and skew-hermitian splitting iteration methods for continuous sylvester
equations, J. Comput. Math., 29 (2011), 185–198. http://dx.doi.org/10.4208/jcm. 1009-m3152

3. R. H. Bartels, G. W. Stewart, Solution of the matrix equation AX + XB = C, Comm. ACM., 15
(1972), 820–826. http://dx.doi.org/10.1145/361573.361582

4. A. Bhaya, E. Kaszkurewicz, Steepest descent with momentum for quadratic functions
is a version of the conjugate gradient method, Neural Networks, 17 (2004), 65–71.
http://dx.doi.org/10.1016/S0893-6080(03)00170-9

5. D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images,
SIAM J. Matrix Anal. Appl., 17 (1996), 165–186. http://dx.doi.org/10.1137/S0895479894273687

6. F. Ding, T. W. Chen, Gradient based iterative algorithms for solving a class of matrix equations,
IEEE T. Automat. Contr., 50 (2005), 1216–1221. http://dx.doi.org/10.1109/TAC.2005.852558

7. G. M. Flagg, S. Gugercin, On the ADI method for the Sylvester equation and the optimal H2 points,
Appl. Numer. Math., 64 (2013), 50–58. http://dx.doi.org/10.1016/j.apnum.2012.10.001

8. B. H. Huang, W. Li, A modified SOR-like method for absolute value equations
associated with second order cones, J. Comput. Appl. Math., 400 (2022), 113745.
http://dx.doi.org/10.1016/j.cam.2021.113745

9. M. D. Ilic, New approaches to voltage monitoring and control, IEEE Control. Syst. Mag., 9 (1989),
5–11. http://dx.doi.org/10.1109/37.16743

10. F. L. Lewis, V. G. Mertzios, G. Vachtsevanos, M. A. Christodoulou, Analysis of bilinear
systems using Walsh functions, IEEE Trans. Automat. Control., 35 (1990), 119–123.
http://dx.doi.org/10.1109/9.45160

11. X. Li, H. F. Huo, A. L. Yang, Preconditioned HSS iteration method and its non-alternating
variant for continuous Sylvester equations, Comput. Math. Appl., 75 (2018), 1095–1106.
http://dx.doi.org/10.1016/j.camwa.2017.10.028

12. J. Meng, X. M. Gu, W. H. Luo, L. Fang, A flexible global GCRO-DR method for shifted
linear systems and general coupled matrix equations, J. Math., 2021 (2021), 5589582.
http://dx.doi.org/10.1155/2021/5589582

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

https://dx.doi.org/http://dx.doi.org/10.1137/S0895479801395458
https://dx.doi.org/http://dx.doi.org/10.4208/jcm. 1009-m3152
https://dx.doi.org/http://dx.doi.org/10.1145/361573.361582
https://dx.doi.org/http://dx.doi.org/10.1016/S0893-6080(03)00170-9
https://dx.doi.org/http://dx.doi.org/10.1137/S0895479894273687
https://dx.doi.org/http://dx.doi.org/10.1109/TAC.2005.852558
https://dx.doi.org/http://dx.doi.org/10.1016/j.apnum.2012.10.001
https://dx.doi.org/http://dx.doi.org/10.1016/j.cam.2021.113745
https://dx.doi.org/http://dx.doi.org/10.1109/37.16743
https://dx.doi.org/http://dx.doi.org/10.1109/9.45160
https://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2017.10.028
https://dx.doi.org/http://dx.doi.org/10.1155/2021/5589582

13497

13. Q. Niu, X. Wang, L. Z. Lu, A relaxed gradient based algorithm for solving Sylvester equations,
Asian J. Control., 13 (2011), 461–464. http://dx.doi.org/10.1002/asjc.328

14. R. A. Smith, Matrix equation XA + BX = C∗, SIAM J. Appl. Math., 16 (1968), 198–201.
http://dx.doi.org/10.1137/0116017

15. A. Tajaddini, F. Saberi-Movahed, X. M. Gu, M. Heyouni, On applying deflation and flexible
preconditioning to the adaptive Simpler GMRES method for Sylvester tensor equations, J. Franklin
Inst., 361 (2024), 107268. http://dx.doi.org/10.1016/j.jfranklin.2024.107268

16. Z. L. Tian, T. Y. Xu, An SOR-type algorithm based on IO iteration for solving
coupled discrete Markovian jump Lyapunov equations, Filomat., 35 (2021), 3781–3799.
http://dx.doi.org/10.2298/FIL2111781T

17. Z. L. Tian, Y. D. Wang, Y. H. Dong, X. F. Duan, The shifted inner-outer iteration
methods for solving Sylvester matrix equations, J. Frankl. Inst., 361 (2024), 106674.
http://dx.doi.org/10.1016/j.jfranklin.2024.106674

18. X. Wang, W. W. Li, L. Z. Mao, On positive-definite and skew-Hermitian splitting iteration methods
for continuous Sylvester equation AX + XB = C, Comput. Math. Appl., 66 (2013), 2352–2361.
http://dx.doi.org/10.1016/j.camwa.2013.09.011

19. H. L. Wang, N. C. Wu, Y. F. Nie, Two accelerated gradient-based iteration methods for
solving the Sylvester matrix equation AX + XB = C, AIMS Math., 9 (2024), 34734–34752.
http://dx.doi.org/10.3934/math.20241654

20. Y. J. Wu, X. Li, J. Y. Yuan, A non-alternating preconditioned HSS iteration method for
non-Hermitian positive definite linear systems, Comp. Appl. Math., 36 (2017), 367–381.
http://dx.doi.org/10.1007/s40314-015-0231-6

21. A. L. Yang, Y. Cao, Y. J. Wu, Minimum residual Hermitian and skew-Hermitian splitting
iteration method for non Hermitian positive definite linear systems, BIT., 27 (2019), 372–376.
http://dx.doi.org/10.1007/s10543-018-0729-6

22. M. K. Zak, A. A. Shahri, A robust Hermitian and Skew-Hermitian based multiplicative
splitting iterative method for the continuous Sylvester equation, Mathematics, 13 (2025), 318.
http://dx.doi.org/10.3390/math13020318

23. R. Zhou, X. Wang, X. B. Tang, Preconditioned positive definite and skew-Hermitian splitting
iteration methods for continuous sylvester equations AX + XB = C, E. Asian J. Appl. Math., 7
(2017), 55–69. http://dx.doi.org/10.4208/eajam.190716.051116a

24. Q. Q. Zheng, C. F. Ma, On normal and skew-Hermitian splitting iteration methods for
large sparse continuous Sylvester equations, J. Comput. Appl. Math., 268 (2014), 145–154.
http://dx.doi.org/10.1016/j.cam.2014.02.025

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 6, 13476–13497.

https://dx.doi.org/http://dx.doi.org/10.1002/asjc.328
https://dx.doi.org/http://dx.doi.org/10.1137/0116017
https://dx.doi.org/http://dx.doi.org/10.1016/j.jfranklin.2024.107268
https://dx.doi.org/http://dx.doi.org/10.2298/FIL2111781T
https://dx.doi.org/http://dx.doi.org/10.1016/j.jfranklin.2024.106674
https://dx.doi.org/http://dx.doi.org/10.1016/j.camwa.2013.09.011
https://dx.doi.org/http://dx.doi.org/10.3934/math.20241654
https://dx.doi.org/http://dx.doi.org/10.1007/s40314-015-0231-6
https://dx.doi.org/http://dx.doi.org/10.1007/s10543-018-0729-6
https://dx.doi.org/http://dx.doi.org/10.3390/math13020318
https://dx.doi.org/http://dx.doi.org/10.4208/eajam.190716.051116a
https://dx.doi.org/http://dx.doi.org/10.1016/j.cam.2014.02.025
https://creativecommons.org/licenses/by/4.0

	Introduction
	The HSSHI iteration algorithm
	Convergence analysis
	The adaptive HSSHI algorithm

	 The HSSHI algorithm with momentum acceleration
	Convergence analysis
	The adaptive MHSSHI (AMHSSHI) algorithm

	Numerical examples
	Conclusions

