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1. Introduction

In this paper, we mainly consider the iteration solutions of the following Sylvester matrix equation:
AX + XB =C, (1.1)

where A € C™" B e C™" C € C™" are constant matrices, and X € C™" is the unknown
matrix to be solved. Eq (1.1) has wide applications in image processing [5], stability and analysis
of linear systems [10], and power systems [9]. Extensive research has been conducted on solving
of the equation, especially regarding iterative methods. For example, the Smith method [14], the
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alternating direction implicit method [7], the gradient-based algorithm [6, 13], the adaptive gradient-
based momentum iteration (AGMI) algorithm [19], the Hermitian and skew-Hermitian splitting (HSS)
iteration method [2], the IO iteration algorithm [16, 17], and the multiplicative splitting iterative
method [22]. Additionally, numerous other iterative methods are available for solving Eq (1.1) and
the associated matrix equations [12,15].

The HSS iteration method [1] was first employed for solving the linear system Ax = b. It was later
generalized to obtain the solution of Eq (1.1) in [2]. Subsequently, Wang et al. [ 18] proposed a positive
definite and skew-Hermitian splitting iteration method for the matrix euqation. The preconditioned
positive definite and skew-Hermitian splitting iteration algorithm was further presented in [23]. Zheng
and Ma [24] advanced the normal and skew-Hermitian splitting iteration methods based on the new
splitting of the matrices A and B. Additionally, Li et al. [11] introduced a preconditioned HSS iteration
method along with its non-alternating variant for the equation.

Inspired by the ideas presented in [2,6] and combing the hierarchical identification principle with the
HSS splitting of the matrices A and B, we develop a HSS splitting hierarchical identification (HSSHI)
iteration algorithm for solving Eq (1.1). Owing to the advantages of the heavy-ball momentum method
which is well-known for accelerating the convergence of the gradient method [4], the momentum
term is incorporated into the HSSHI iteration process, resulting in the momentum-based HSS splitting
hierarchical identification (MHSSHI) algorithm. For these algorithms, we analyze the 2-norm of the
error matrices and derive the conditions that the parameters need to satisfy to ensure convergence.
Additionally, selecting optimal parameters is vital for the effectiveness of the algorithms. Most
literature gives only the quasi-optimal parameters. In this paper, we explicitly provide the optimal
parameters through the minimum residual technique [21], when the preconditioning matrices are
HA) = %(A + A") and H(B) = %(B + Bf). Since the parameters change with each iteration, the
adaptive forms of the corresponding algorithms are provided.

The remainder of this paper is organized as follows: In Section 2, we propose the HSSHI
algorithm, give its convergence property in detail, and obtain the optimal parameters using the iterative
information. In Section 3, we present the MHSSHI algorithm, analyze its convergence, and give the
adaptive MHSSHI algorithm. In Section 4, several numerical examples are employed to exhibit the
robustness and efficiencies of the proposed algorithms. Finally, some conclusions are drawn in the last
section.

2. The HSSHI iteration algorithm

By utilizing the hierarchical identification principle [6], Eq (1.1) can be reformulated into two
subsystems as follows:

AX: l’)], XB: bz,

where
by :=C—-XB, b, :=C-AX. 2.1
Do the Hermitian and skew-Hermitian splitting on the matrices A and B
A=HA)+S(A), B=H(B)+S(B),
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with | .
H(A) = E(A +A"),8(A) = E(A — A",

H(B) = %(B + B"),S(B) = %(B - B").
We apply the non-alternating preconditioned HSS (NPHSS) iteration method [20] to solve each above-
mentioned subsystem as follows:
(@P + HANX"D = (P - S(ANXP + by, (2.2)
XSO + H(B) = X)) (BO ~ S (B)) + b, (2.3)
where P and Q are given Hermitian positive definite matrices. Substituting (2.1) into two Eqs (2.2) and

(2.3), we get
(aP + HA)X Y = (aP - S(A)X" + C - XB,

xEVBo + HB) = XPBO - S(B) + C - AX.

The unknown variable X is approximated by its estimated value at the k-th step. Hence, we have
(@P + HANX = (@P - S(ANXP + C - X¥B,
xVBo + HB) = XPBo - SB) + C - AXP,

®) | x &)

Replacing X\¥ and X\" by the average X® = X‘TZ, we obtain

(@P + HA)X = (aP - S(A))X*® + C - x¥B, (2.4)
xEVBo + HB) = XPBO - S(B) + C - AXW, (2.5)

Further simplifying the above two Eqs (2.4) and (2.5) leads to the HSS splitting hierarchical
identification iteration algorithm, which is presented as follows:

Algorithm 1 The HSSHI algorithm

Input: Given an initial solution XV, the preconditioners P and Q, as well as the parameters « and 3
Output: X**D
1: Fork=1,2,---, until it converges, solve

2 (@P+HANXEY = (aP + HA))NX® + € - AX® — XD,

3 XI(BQ + H(B)) = XP(BQ + H(B)) + C — AX® — X®B,
kD) |y kD)

4 X(k+1) — 2 > 2

5: End

Remark 1. We consider the following three cases for the preconditioners P and Q:

1. P=1,and Q = I,, where I is an identity matrix of size s.

2. P=H(A) and Q = H(B).

3. P = tridiag(H(A)) and Q = tridiag(H(B)), where tridiag(H(A)) and tridiag(H(B)) are the
tridiagonal matrices of H(A) and H(B), respectively.
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2.1. Convergence analysis

In this section, we mainly investigate the convergence property of the HSSHI algorithm and give
the corresponding convergence result.

Theroem 1. Let H(A) = P 2H(A)P~2, S(A) = P :S(A)P~2, HB) = Q:H(B)Q™2, and S(B) =
Q‘%S (B)Q‘%. Assume X* is the solution of Eq (1.1). The iterative solution X generated by Algorithm
1 converges to X* for any initial value if and only if the parameters a and 3 satisfy the condition

Vs Pl anin(PY@? + 02 (S(A)) + s B)
Anin(P)(@ + Amin(H(A)))
VA @ Ain( QB + 02 (S (BY) + T A)
' Aoin( QB + Aia H(B))

where 0 nax (E), Anax(E), and Aynin(E) are the maximum singular value and the maximum and minimum
eigenvalues of the matrix E, respectively.

<2, (2.6)

Proof: From Algorithm 1, it is easy to obtain
XD = x® 4 (@P + HA)'[C - AXP - XD B,
XY = x® 4 (€ - AX® - X9 B1BO + H(B) ™.
The (k + 1)-th iteration can be rewritten as
XD =x® %(QP + H(A)'[C - AX® — X B]

+-[C -AX® - XPB\(BO + HB))™". 2.7)

| =

Define the error matrices
XDyl _ oy Tk — ) _ xr

The error of the (k + 1)-th iteration is
— — 1 — — 1 - —
XD =x® — S(@P+ HA)'AXY + XPB] - E[AX(") + XPB1(BO + H(B))™!

I, —~ —
:5[2X("> — (aP + H(A))'AX® — (aP + HA))'X®B

—AX®@BO + HB)™' - XPBBO + H(B))_l]-

Taking the || - || norm on both sides of the above equation, we have

= 1
XDl SE(”Im — (@P + H(A)) ' Ally + ll(@P + H(A)) ' L11Bl,

+ 1Al IBQ + HB) |l + I, = B(BQ + H(B))‘1||2)||§(k)||2.
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Since A = (aP + H(A)) — (P — S(A)),
1L, — (@P + H(A) ™ All,
=|l(@P + H(A))"'(aP + H(A)) — (aP + H(A))'All,
=[l(@P + H(A))"'(aP + H(A) — A)|l>
=ll(@P + H(A) (@P - S (A))l>.
By performing an identity transformation on (2.8), we obtain
(P + H(A)) ™ (aP - S (W)l
=||P~2P2(aP + H(A)) ' P2 P2 (aP — S (A)P2 P,
=|IP~2(P™2(@P + HA)P)' P72 (@P = S(ADP P2,
=P~ (al, + P2 H(A)P™2) (al, — PIS (AP )P
=P 2 (al,, + H(A) \(al,, — S (A)P?|].
Similarly, we can deduce

I@P + HA) ', = |P~2(al,, + HA) ' P73 l,.

1BQ + HB) ™|l = Q™2 (BL, + H(B) "' Q™.

1L, — BBQ + H(B) |1, =lI(BQ ~ S (B)(BQ + H(B)) Il

=103 (B, - S(B)(BI, + H(B))"' 0 %|L,.

Following from (2.8)—(2.12), we obtain

1Ly = (@P + H(A) ™' All, + l(@P + H(A) " [lIBll, + II1, = BBQ + H(B)'|l»

+11AlNBC + HB) ™ Ilx

—IP*(al,, + H(A) \(al,, — S(A)P|, + 0% (BL, — S (B)(BI, + H(B)) "' 0|,

+IP72 (e, + H(A) ' P2 |LlIBl + AILIQ2 (8L, + H(B))™' Q21
<l + HA) i (1P 1LllP~2 llalled, — S (A + 1P B1BIL)
+ 181, + HB) 2 (1071110 1L, - S (Bl + 14ILI1Q™211)
Vs Pl ain(PY@? + 02 (S(A)) + T B)
- Amin(P)(@ + Ain(H(A)))
. V(@ Ao QB + 0 S(BY) + TanA)

Anin(Q)(B + Anin(H(B)))
If @ and B satisfy (2.6), it is evident that

XD, < [1XP), < - < [IXD)l,,

i.e., X® — 0 as k — oo. The proof is complete.

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

O
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Remark 2. When P = 1,, and Q = I,, (2.6) turns to

V2 + 02, (S(A) + 0max(B) B2 + 02 (S(B)) + 0max(A)
o+ dmn(H(A) T B+ Aan(H(B))

< 2.

Remark 3. When P = H(A) and Q = H(B), (2.6) turns to

VA (PAin(P@? + 02, (S (4) + T(B)
/lmin(P)(a' + 1)

VA Qi QB + 02 (S(B)) + i A)
’ il Q)B+ 1)

where S(A) = H(A)":S (A)H(A)"2, and S(B) = H(B)":S (B)H(B)"".

<2,

2.2. The adaptive HSSHI algorithm

For the case of P = H(A) and Q = H(B) in Algorithm 1, the varied parameters @y, and S, are
adopted in each iteration, and we obtain the adaptive HSSHI (AHSSHI) algorithm as follows.

Algorithm 2 The AHSSHI algorithm
Input: Given an initial solution XV, two preconditioners P and Q, as well as the parameters «, and

B2
Output: X*+D
1: For k =1,2,---, until it converges, solve
2 (e P+ HANXD = (@4 P+ HANX® + C — AXD — XD B,
5 XS (BQ + H(B) = XP(Bi Q + H(B) + C — AXY - XVB,
X(k+1)+x(k+l)
4: X(k+1) — 2 2
5. End

In the following, we investigate how to obtain the parameters by the minimum residual technique.
Denote the k-th residual as R® = C — AX® — X® B, According to Algorithm 2, it follows that

1 1
xk+D) — x4 EmkHH(A)—lR(k) + 5nkJrlR(k)[—](B)*l,

where Mpy1 = ﬁ and Ni+1 = ﬁhﬁ
The (k + 1)-th residual can be further expressed as

R(k+1) — R(k) _ mk+1M(k) _ nk+1N(k> (214)

with :
M® = E(AH(A)‘lR(") + HA)'RPB),

1
N® = E(AR(")H(B)“ +R®H(B)™'B).
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Taking the F-norm on both sides of (2.14), we have

IRV = tr{(RY = g MO = gy NOY RO = s MO = gy NO)]
= ||R(k)||12c = 2y tr(M®)"R®) = 20,1 tr(N®)TRD)
+2mp 1 tr(M®O) NP + ml IMPNE + ng, [IN®.

Let ¢(my1, nge1) = [IR®*V|2. Find the unique stationary point of the function ¢(my1, ng.1), i.e.,

- agey — crby - cdy — arby
k+1 — s Mk+1 — ’
dkek — bi dkek — bi

where a; = tr(M©)'R®), by = tr(M©)'NW), ¢, = tr(N®)'R®), dy = IMPIIZ, ex = INPIIZ. Ttis
easy to obtain that

dkek — b,%
Q1 = —— — L,
aiey — Ckbk (215)
_ dkek — bi 1
ﬁk+1 - dek _ akbk

Remark 4. Parameters a1 and By need to be updated at each step using the trace. It indeed
takes time to compute these parameters, but they effectively minimize the residual at each step, thereby
significantly enhancing the computational efficiency of the algorithms.

Remark 5. On the one hand, we can directly utilize the formulas (2.15) to give the optimal parameters
Qi+1 and Biyy for the AHSSHI algorithm (see Example 3 in Section 4).

On the other hand, we can refer to the values of a1 and By, obtained by (2.15) to find the
quasi-optimal fixed parameters for the HSSHI algorithm. Specifically, we can first observe the varied
parameters by (2.15) for the small-scale cases of the problem. If the values do not change significantly
at each step, we can determine the quasi-optimal parameters that are fixed at each step based on these
values (see Example 4 in Section 4).

3. The HSSHI algorithm with momentum acceleration

In order to improve the efficiency of the HSSHI algorithm, we introduce a momentum term into the
iterative process, thereby establishing the MHSSHI algorithm as follows:

Algorithm 3 The MHSSHI algorithm

Input: Given two initial solution vectors X and X", two preconditioners P and Q, as well as the
parameters &, 5 and y
Output: X**D
1: Fork=1,2,---, until it converges, solve
2 (@P+HAYXEY = @P + HANX® + C - AX® - XV B,
3 XIV@BQ + H(B) = XP(BQ + H(B)) + C — AX® — X®B,

(k+1) |y (k+1)
g XD = XU ey,
5. End

2

Remark 6. When vy is chosen to be 0, the algorithm degenerates into the HSSHI algorithm.
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3.1. Convergence analysis

In this section, we mainly discuss the convergence property of Algorithm 3. For the sake of
convenience in the proof, we first present a lemma as follows:

Lemma 1. [8] Both roots of the real quadratic equation x* — bx + ¢ = 0 are less than one in modulus
if and only if|c| < 1 and |b| < 1 + c.

Based on the lemma, the convergence result of Algorithm 3 is given in the following theorem.

Theroem 2. Let H(A) = P2H(A)P~2, S(A) = P :S(A)P~:, HB) = Q" *H(B)Q 2, and S(B) =
Q‘%S (B)Q‘%. Assume X* be the solution of Eq (1.1). The iterative solution X generated by Algorithm
3 converges to X* for any initial value if and only if the parameters &, B and 7y satisfy

1
0 Z
<y<2,

Vs PYAain( PX@ + 72 (SA) + T B)
Aumin(P)(@ + Amin(H(A)))
V@ Ao QB + 72 (S (BY) + Tan(A)
’ Anin(Q)(B + Amin(H(B)))

where 0 (E), Amax(E), and Anin(E) are the maximum singular value and the maximum and minimum
eigenvalues of the matrix E, respectively.

3.1

<2 -4y,

Proof: From Algorithm 3, it turns out that (k + 1)-th iteration can be rewritten as
1
XD =x® 4 S(@P+ H(A)'[C - AXY — X B] (3.2)

+ =[C - AXY - XPBI(BO + H(B)) ™" + y(X© — X*).

| =

Define the error matrices
s('(k+l) — X(k+1) _ X* s('(k) — X(k) _ X*

From (3.2) it follows that
XD —x® _ %(&P + H(A) '[AX®D + XPB)
— %[A)?(") + XPBIBO + HB) ' +y(X® — X&),
Taking the || - ||, norm on both sides of the above equation, we have
IRl =IO~ (@ + HAY ' AXY + X9 B
~ JIAXY + KOBIBO + HB) ' +y(X - XD,

:%ll(lm — (@P + H(A) ' AHX® + 2yX® — (@P + H(A))'X“B (3.3)
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— AXOBQ + HB)™" + X1, - BBQ + H(B))™") - 2yX* |,
1

<5 (I = @P + H(A) ™ All, + 2y + [(@P + H(A) |21l
+ IAILIBQ + HB)Y Il + I, — BBQ + H(B) ™ [12)IIX ¥,

+ YIX D,

Let

H = 1 0

QY+ R+t 7]

where g; = %~||Im — (@P + H(A))'All, g2 = 3lI(@P + H(A) 'lIBll2, g5 = 5IlI, — BBQO + H(B)) ™|z,
qq = %||A||2||(,8Q + H(B))™'|,. Then from (3.3) it is clear that

[||Sij<+1>||2 ] § H[ X1, ]< Hk[ ||§<“||z]
IXOl |7 Ix 0 7 [ IX O,

If p(H) < 1, then ||X®||, — 0 as k — oo.
In the following discussion, we concentrate on determining &, B and vy to ensure that p(H) < 1,
thereby guaranteeing the convergence of the algorithm. The characteristic equation for H is

P-Uq+q+qs+q+7y)—y=0,

where A is an eigenvalue of matrix H. It then follows from Lemma 1 that |4] < 1 if and only if

Iyl <1,
g1 + @2+ g3 +qs+yl<1-v,

i.e.,
1
0< -,
T 2 34
1,y — (@P + H(A) ' All, + [I(@P + H(A) ™ |l2|IBll> 3.4
+ I, = BBQ + HB))' |, + lAILIBQ + H(B)) [l < 2 - 4y.
Together with (2.13) and (3.4), (3.1) is obtained. Thus, the proof is complete. O

Remark 7. When P = 1,, and Q = I, (3.1) becomes

1
O<y< 7
V&% + 02, (S(A) + Tanax(B) VB + (S (B + Ts(A) .
& + Amin(H(A)) * B+ Amn(H(B)) A
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Remark 8. When P = H(A) and Q = H(B), (3.1) leads to

O<y< %,
Vs PMain( PX@ + 02 (S (A) + T B)
Aon(P)@ + 1)
\/Amax<Q>Amm<Q><ﬁ2 + 02, (S(B)) + Tman(A)
(@B + )

where S(A) = H(A)":S (A)H(A)"2, and S(B) = H(B)":S (B)H(B)"".

<2-4y,

3.2. The adaptive MHSSHI (AMHSSHI) algorithm

When P = H(A) and Q = H(B) in Algorithm 3, the adaptive MHSSHI algorithm can be similarly
formulated as Algorithm 2 with the varied parameters &y, Bk+1 and ;.. The algorithm is detailed
below:

Algorithm 4 The AMHSSHI algorithm

Input: Given two initial solution vectors X and XV, two preconditioners P and Q, as well as the
parameters &», 3, and y,
Output: X**+D
1: Fork =1,2,---, until it converges, solve
2 (@ P+ H(A))X"‘*“ (@1 P + HANX® + C — AX® — XD B,
3 Xy"VBaQ+ HB) = XP (B Q + HB)) + C - AXD - XD B,

X(k+1) X(k+|)
4 XD =0 70 4 (x® - XKDy,
5: End

Below, we mainly provide the specific expressions for the optimal parameters through the minimal
residual technique. Denote the k-th residual by R® = C — AX® — X® B, From Algorithm 4, we have

1 1
XED = XO 4 S HA)RY + S ROHB)™ + yiea (XY = X0,

=1 |
where 7y, = o 71 gnd gl = 5=
The (k + 1)-th residual can be represented as

RED = RO _ iy 1% — i [Ny H® (3.5)

with .
M® = E(AH(A)*R(“ + HA)'RPB),

1
N® = (AR(")H(B)‘ +RPH(B)™'B),
H(k) R(k 1) R(k).
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Let ¢(Atgsr, figets Yier) = [IREV||2. Taking the F-norm on both sides of (3.5), we have

Y(Myes 15 s 15 Vies1)

= tr[(R® — iyt M® — 7y y N® =yt HO) (RO — gy MY = Tyt N = ) HO))
= (Vi1 + DHIRPNE = 21 (yier + Dir((MP) RO = it (Y + Dir((NO)TR®)
+ 2kt it tr(M®©) RED) + 2y gy tr(N®)T RED)

=2(¥is1 + DY tr(RO)TRED) + 2 [IREDI2 + 2igesi Ty tr((MEP)T N®)

i, MO + g, INO.

Assume that 0 o ) ~ T Sk
o= WO, o = (@) AY),

¢ = (MO RED) — (D) RW),

A= tr(MP)R®), ¢ = (tr(N©)TRD),
¢l = tr(N®)'R*D) — tr(NO)'RW),

¢ = INOIE, ¢ = (RO RS - IRV,
¢ = IR IE = 2er(R®)'RED)) + IRV,

and

(1) ._ (6) 3 _ .09 (2) 2) ._ (2 © (D (3)
d - =c xc —c xc”, d7 = xc, —c xc,

3) ._ (D (6) (2) 3) 4) . @) ©) O
d’=c xc. —c xc’, d; ¢, * —(ck ) ,

d,(f) = cl(f) * c,(?) - c,(cs) * cﬁf), d,(f) = c,(:‘) * c,(f) - c,(f) * c,(f),

2
d? = (Cf)) - cl(cl) sk C](:), d,(cg) = c,(j') * cf) - c](cl) * c,(f),

9 ._ (5 3) (3) 2)
dk =l e = kel

Then, the unique stationary point of the function ¥ (/s 1, figs1, Vis1) 18
d}({G) d](:t) B dz(cs) d](cz)
d"d? +dPd®’
d,ﬁg)d,(cl) + d,(f)d,(f)
dVd - d?Pd>’
d,ﬁg)df) + d,(f)d,g)
d]((l)dl(j) _ d](<3)d](<2)

Myy1 =

Niy1 =

Yi+1 =

Therefore, it is easy to obtain that
(1) 4(2) (3) (4)
B dk dk +dk dk _
T 46) 44 (5) 4(2)
dk dk _dk dk
B d}(j) d]((l) _ d}({Z) d}({3)
k+1 — -
(8) 4(1) 9 ;3)
dk dk +a’k dk
(8) 4(2) %) 4(7)
dk dk +a’k dk
(1) 4(7) (3) 42)°
dk dk _dk dk

Remark 9. Similar explanations can be obtained by referring to Remarks 4 and 5.

b

Qg1

L, (3.6)

Yi+1 =

AIMS Mathematics Volume 10, Issue 6, 13476-13497.



13487

4. Numerical examples

In this section, several numerical examples are given to examine the effectiveness of the proposed
algorithms compared to the HSS [2], NPHSS [11], AGMI [19], and B-S [3] algorithms. All test
problems are performed under Matlab on a personal computer with a 1.61 GHz central processing unit
(Intel(R) Core(TM) 17-10710), 16GB memory, and Windows 10 operating system. The initial matrices
are set to be zero matrices, and the iterations are terminated if the relative residual norm in the current
step satisfies

IC — AX® — X®p| »
RRN = <107
IC = AX© — XOp||

The number of iterations (denoted as IT), the computing time in seconds (denoted as CPU) and RRN
are used to test the efficiency of these algorithms.

Example 1. The matrices A and B in Eq (1.1) are given as

A = diag(1,2,--- ,n) + rLT,
B =271, + diag(1,2,--- ,n) + rL" +27'L,

where L is the strictly lower triangular matrix having ones in the lower triangle part, r =2 and t = %

The right-hand side is given by the equation C = AX + XB, where X is defined as X(i, j) = 1 for all
1<i,j<n

Table 2 lists the numerical results for the six algorithms, and the experimentally optimal parameters
employed in these algorithms are detailed in Table 1. We set P = Q = [, in both HSSHI and
MHSSHI algorithms. In terms of the CPU time, the B-S, HSSHI, and MHSSHI algorithms significantly
outperform the HSS, NPHSS, and AGMI algorithms. Moreover, the HSSHI and MHSSHI algorithms
need remarkbly fewer iterations than the AGMI, HSS, and NPHSS algorithms. In addition, as
illustrated in Figure 1, the RRN for the MHSSHI algorithm decreases the fastest, followed by the
HSSHI algorithm, while the HSS algorithm shows a very slow decrease.

Table 1. The experimentally optimal parameters for Example 1.
Algorithms 100 200 300 400

HSS w 7.64 10.57 12.79 14.65
M 7.64 10.57 12.79 14.65
NPHSS a 39.15 78.33 118.01  156.72
HSSHI a 1881.00 3560.00 5571.00 7090.00
B 39.00 77.00 116.00  155.00
MHSSHI & 3321.00 6011.00 8811.00 11025.00
B 38.00 75.00 113.00 152.00
vy 001 0.01 0.01 0.01
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Table 2. Numerical results of six algorithms for Example 1.

Algorithms 100 200 300 400
HSS IT 71 102 126 146
CPU 1.255 11.108 36.173 80.599
RRN 9.138e-07 8.654e-07 8.590e-07 9.373e-07
NPHSS IT 27 27 27 27
CPU 0.154 0.665 1.902 4.169
RRN 8.878e-07 8.474e-07 8.339e-07 8.267e-07
AGMI IT 94 93 92 91
CPU 0.162 0.622 2.135 5.891
RRN 9.785E-07 9.744E-07 9.753E-07 9.948E-07
B-S CPU 0.012 0.068 0.152 0.306
HSSHI IT 10 10 10 10
CPU 0.071 0.036 0.066 0.164
RRN 6.785e-07 6.005e-07 5.973e-07 5.920e-07
MHSSHI IT 10 10 10 10
CPU 0.016 0.029 0.068 0.162
RRN 4.920e-07 3.603e-07 3.427e-07 3.486e-07
10°
m\\
é\\ -
102 T
= \\\\\\\
10} ’
@ 7 T
10-6 i =i
HSS o
AGMI o0
10| + MHSSHI Tr%00,
-~ - NPHSS Trrfoog )
o HSSHI T
10710 ‘ ‘ ‘ ‘
0 5 10 15 20 25

iteration number

Figure 1. The convergence curves of five algorithms for Example 1.

AIMS Mathematics

Volume 10, Issue 6, 13476-13497.



13489

Example 2. The matrices A and B in Eq (1.1) are given as

10 1 1 11 8

2 10 1 11 3

A=|1 2 10 - 1 1| p=|1
: 11

11 2 10 11

Let C = AX + XB.

W = —
o0 = p—

Table 4 reports the numerical results for the six algorithms, and the experimentally optimal
parameters used in these algorithms are detailed in Table 3. We take P = tridiag(H(A)) and
Q = tridiag(H(B)) in both HSSHI and MHSSHI algorithms. Compared to the HSS algorithm, the
other five algorithms show marked superiority in terms of the iteration number and computational
time. In particular, the HSSHI, MHSSHI, and AGMI algorithms take considerably less CPU time than
the HSS, B-S, and NPHSS algorithms, demonstrating a clear and notable advantage. Furthermore, as
shown in Figure 2, the RRNs for the HSSHI and MHSSHI algorithms decrease sharply and quickly

below 10~° in comparison to the HSS algorithm.

Table 3. The experimentally optimal parameters for Example 2.

Algorithms 128 256 512 1024

HSS m 2990 41.50 58.20 81.90
M 2990 41.50 58.20 81.90

NPHSS a 001 001 0.01 0.01

HSSHI a 7.10 15.10 33.00 62.10
p 13770 2820 59.00 120.10

MHSSHI & 7.10 13.10 28.10 65.10
B 12.00 28.10 60.10 130.10
y 009 0.06 003 001

AIMS Mathematics
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Table 4. Numerical results of six algorithms for Example 2.

AIMS Mathematics

Algorithms 128 256 512 1024
HSS IT 32 44 62 87
CPU 1.482 11210 112.578  1092.848
RRN 7.204e-07 9.336e-07 9.171e-07 9.873e-07
NPHSS IT 3 3 3 3
CPU  0.035 0.213 1.474 14.441
RRN 9.698¢-07 9.702e-07 9.705e-07  9.706e-07
AGMI IT 3 3 3 3
CPU  0.029 0.064 0.247 1.961
RRN 1228E-07 1204E-08 4.862E-09 1.592E-09
B-S CPU 0.242 0.735 3.231 17.570
HSSHI IT 13 11 8 8
CPU  0.010 0.051 0.204 1.225
RRN 8998e-07 9.406e-07 6.770e-07 4.743e-07
MHSSHI  IT 11 9 9 8
CPU  0.009 0.035 0.221 1.256
RRN 9.503e-07 9.869e-07 4.502e-07 4.721e-07
10° w w w w
HSS +
—— MHSSHI
+ HSSHI
108 * * * *
0 5 10 15 20 25

iteration number
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Figure 2. Convergence curves of three algorithms for Example 2.
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Example 3. The matrices in Eq (1.1) are described by

AGi)=6+7(1 <i<m),
AG i+ 1) =-1LAG+1,)=-1+r(1<i<m-1),
AGi+2)=AG+2,)=-1,(1<i<m-2),

with a real number r and B=A —0.41,,. Let C = AX + XB.

For the cases of r = 1 and r = 0.5, the numerical results of the six algorithms are reported in Tables
6 and 8, respectively. Let P = H(A) and Q = H(B) in both AHSSHI and AMHSSHI algorithms. The
experimentally optimal parameters for the HSS and NPHSS algorithms are presented in Tables 5 and
7, while the parameters applied in the AHSSHI and AMHSSHI algorithms are derived from (2.15) and
(3.6). In comparison to the HSS and NPHSS algorithms, the B-S, AGMI, AHSSHI, and AMHSSHI
algorithms require remarkably less time to achieve the desired precision in both cases. Furthermore,
the AMHSSHI algorithm also shows superiority in the number of iterations. Additionally, Figures 3
and 4 illustrate that the AMHSSHI algorithm has the fastest decrease in RRN among the algorithms
considered. The AHSSHI algorithm follows closely behind.

100 %
S
+ e
+ o e
10+ + O e
+ | Tl -
+ o o
+ O
pZd + O
o 10-10 i + o
o + m]
+ m]
+ m]
+ ]
101} « Hss t
**** AGMI
+ AMHSSHI
20 o AHSSHI
10- 1 1
0 5 10 15

iteration number
Figure 3. The convergence curves of four algorithms with r = 1 for Example 3.
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10° -
—_—
+ O e
+ 0Box L T e
5 O - el
10 L : -4
+
+ 5]
a
10 L + =
+ a
[m]
+ in}
+
101° HSS
-~ AGMI
+ AMHSSHI
o AHSSHI
10—20 | !
0 5 10

Figure 4. The convergence curves of four algorithms with r = 0.5 for Example 3.

iteration number

15

Table S. The experimentally optimal parameters with » = 1 for Example 3.

Algorithms 128 256 512 1024
HSS m 580 5.80 5.80 5.80

m 5.80 5.80 5.80 5.80
NPHSS a 0.11 0.11 0.11 0.11

Table 6. Numerical results of six algorithms with » = 1 for Example 3.

Algorithms 256 512 1024 2048
HSS IT 9 9 9 9

CPU 2452 13.640 122.652 1931.391

RRN 7.171e-07 7.322e-07 7.399e-07 7.439e-07
NPHSS IT 6 6 6 6

CPU 0.372 2.191 27.032 546.929

RRN 9.791e-07 9.633e-07 9.552e-07 5.676e-07
AGMI IT 13 13 12 12

CPU 0.195 1.425 10.756 116.369

RRN 7.922e-07 4.955e-07 8.154e-07 5.231e-07
B-S CPU 0.389 1.722 9.320 130.746
AHSSHI IT 7 7 7 7

CPU 0.142 0.739 8.093 108.156

RRN 6.992e-08 4.968e-08 3.522e-08 2.493e-08
AMHSSHI IT 5 5 5 5

CPU 0.134 0.680 6.796 105.495

RRN 7.899e-07 5.598e-07 3.963e-07 2.804e-07

AIMS Mathematics
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Table 7. The optimal experimental parameters with » = 0.5 for Example 3.

Algorithms 128 256 512 1024
HSS m 486 486 4.86 4.86

H 486 486 4.86 4.86
NPHSS a 0.10 0.10 0.10 0.10

Table 8. Numerical results of six algorithms with r = 0.5 for Example 3.

Algorithms 256 512 1024 2048
HSS IT 11 11 11 11
CPU 2.743 27.806 190.080  2385.919
RRN 5.086e-07 5.216e-07 5.283e-07 5.317e-07
NPHSS IT 6 6 6 6
CPU 0.376 3.826 37.350 556.357
RRN 5.762e-07 5.704e-07 5.674e-07 5.659e-07
AGMI IT 18 17 17 16
CPU 0.263 1.644 13.690 110.987
RRN 7.048e-07 8.562e-07 5.523e-07 7.102e-07
B-S CPU 0.225 1.461 10.318 115.147
AHSSHI IT 8 8 8 7
CPU 0.131 0.919 8.587 93.782
RRN 2.606e-08 1.902e-08 1.368e-08 1.104e-07
AMHSSHI IT 6 6 5 5
CPU 0.148 1.289 7.265 83.453
RRN 1.884e-07 1.342e-07 8.929e-07 6.326e-07

Example 4. The matrices in Eq (1.1) are described as

100
A=B=M+2N+ ——1,
(n+1)>2

where M = tridiag(—1,2.6,—1) and N = tridiag(0.5, 0, —-0.5). Let C = AX + XB.

The numerical results for the five algorithms are presented in Table 10, while the experimentally
optimal parameters involved in these algorithms are outlined in Table 9. We take P = H(A) and
Q = H(B) in both HSSHI and MHSSHI algorithms. The parameters in the HSSHI and MHSSHI
algorithms are obtained by referring to (2.15) and (3.6). Compared with the HSS, NPHSS, and AGMI
algorithms, the HSSHI and MHSSHI algorithms achieve the required precision in significantly less
time, demonstrating their effectiveness. Moreover, as shown in Figure 5, in contrast to the AGMI
algorithm, the RRNs of the HSSHI and MHSSHI algorithms quickly drop to 1071,

AIMS Mathematics Volume 10, Issue 6, 13476-13497.
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Figure 5. The convergence curves of three algorithms for Example 4.
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Table 9. The experimentally optimal parameters for Example 4.

Algorithms 500 1000 1500 2000
HSS w166 1.66 1.66 1.66
W 166 1.66 1.66 1.66
NPHSS a 085 079 0.70 0.65
HSSHI a 350 350 350 350
p 350 350 350 3.50
MHSSHI & 3.10 3.10 3.10 3.10
B 310 3.10 3.10 3.10
vy 0.01 0.01 0.01 0.01
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Table 10. Numerical results of five algorithms for Example 4.

Algorithms 500 1000 1500 2000
HSS IT 19 19 19 19
CPU 31.075 231.264 961.546 3030.129
RRN 5.365e-07 5.552e-07 5.613e-07 5.643e-07

NPHSS IT 22 21 20 20

CPU 7.107 94.384 436.489 1241.259

RRN 8.954e-07 7.514e-07 8.453e-07 7.222e-07
AGMI IT 49 47 46 46

CPU 5.842 38.390 132914  256.424

RRN 7.913e-07 9.162e-07 9.542e-07 8.044e-07
HSSHI IT 27 26 25 25

CPU 0.681 7.677 38.232 92.712

RRN 4.782e-07 4.282e-07 5.658e-07 5.200e-07
MHSSHI  IT 26 24 23 23

CPU 0.748 7.363 37.804 80.520

RRN 9.178e-07 9.281e-07 9.520e-07 7.681e-07

5. Conclusions

In this paper, we provide two new algorithms for solving Eq (1.1), namely the HSSHI algorithm and
the MHSSHI algorithm. The convergence properties of the proposed algorithms are presented as the
parameters in the algorithms satisfy certain conditions. Moreover, the adaptive HSSHI and MHSSHI
algorithms are also established when P = H(A) and Q = H(B). The adaptive parameters are exactly
determined by minimizing the residual norms of the current step. Numerical experiments illustrate the
excellent performances of our proposed algorithms. In our future work, we will explore the application
of these algorithms to solving other types of Sylvester matrix equations and the absolute value equation.
Additionally, when P = I, and Q = I, or when P = tridiag(H(A)) and Q = tridiag(H(B)), we have
not yet provided a specific formula for determining the optimal parameters contained in the algorithms.
Therefore, further research will be conducted to find effective methods for identifying the optimal
parameters in these two cases.
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