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1. Introduction

Let dA denote the Lebesgue area measure on the open unit disk D in the complex plane C,
normalized so that the measure ofD is 1. L2(D) denotes the space of the Lebesgue measurable functions
f on D with the following norm:

‖ f ‖2 =

( ∫
D

| f (z)|2dA(z)
) 1

2

< ∞.

The Bergman space L2
a consists of all analytic functions f in L2(D), which is a closed subspace of

L2(D). Moreover, L2
a is a reproducing kernel Hilbert space and the orthonormal basis is given by

{en}
+∞
n=0, where en(z) =

√
n + 1zn. The collection of essentially bounded (with respect to the measure

dA) functions is denoted by L∞(D).
Let P be the orthogonal projection from L2(D) onto L2

a. For ϕ ∈ L∞(D), the multiplication operator
Mϕ and the Toeplitz operator Tϕ on the Bergman space are defined by

Mϕ f = ϕ f , Tϕ f = PMϕ f ,
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respectively, where f ∈ L2
a. Let J : L2

a → L2
a be the operator defined by J(en) = en+1, where L2

a denotes
the complex conjugate of L2

a. For ϕ ∈ L∞(D), the Hankel operator Hϕ with symbol ϕ is defined by

Hϕ( f ) = P(ϕJ( f )), f ∈ L2
a.

The harmonic Bergman space L2
h is the closed subspace of L2(D) consisting of the harmonic

functions on D. The operator K : L2
a → L2

h is defined by

K(e2n(z)) = en(z) =
√

n + 1zn,

and
K(e2n+1(z)) = en+1(z) =

√
n + 2zn+1,

for all n > 0 and z ∈ D. It can be observed that K is bounded on L2
a with ‖K‖ = 1. For ϕ ∈ L∞(D), the

H-Toeplitz operator Bϕ : L2
a → L2

a is defined by

Bϕ( f ) = PMϕK( f ),

for f ∈ L2
a.

Note that H-Toeplitz operators are closely related to Toeplitz and Hankel operators. In fact, for each
nonnegative integer n, we have

Bϕ(e2n) = PMϕK(e2n) = PMϕ(en) = Tϕ(en),

and
Bϕ(e2n+1) = PMϕK(e2n+1) = PMϕJ(en) = Hϕ(en).

Toeplitz operators and Hankel operators on the Bergman space have been widely studied. The
boundedness, compactness, and Schatten ideal properties of Toeplitz and Hankel operators on the
Bergman space have attracted a lot of attention (see [2, 18, 19]). For the commutativity and the
hyponormality of Toeplitz operators on the Bergman space, one can consult [1, 11, 12]. In [5, 15, 16]
the authors investigated the invertibility of Toeplitz operators on the Bergman space. The spectrum of
Toeplitz operators on the Bergman space was also studied; see [6,13,17] for detailed discussions about
this topic.

Besides Toeplitz and Hankel operators, researchers have also investigated other operators on various
function spaces. In 2021, Gupta and Singh [7] introduced and studied the notion of H-Toeplitz
operators on the Bergman space. They obtained a necessary and sufficient condition for an H-Toeplitz
operator to be a co-isometry or a partial isometry, explored their invariant subspaces and kernels, and
discussed the compactness, Fredholmness, and commutativity. The H-Toeplitz operator is neither a
class of Toeplitz operators nor a class of Hankel operators, yet it exhibits specific associations with both
Toeplitz and Hankel operators. In addition, an n-order H-Toeplitz matrix has 2n−1 degrees of freedom
instead of n2, meaning that solving systems of linear equations with such matrices as coefficient
matrices becomes comparatively easy for large n. In 2022, Liang et al. investigated the commutativity
of H-Toeplitz operators with quasi-homogeneous symbols on the Bergman space [10]. Later, Kim and
Lee studied the contractive and expansive H-Toeplitz operators with analytic, coanalytic, and harmonic
symbols on the Bergman space [9]. In the case that one H-Toeplitz operator a bounded symbol and the
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other a quasi-homogeneous symbol, Ding and Chen recently characterized when their product is equal
to another H-Toeplitz operator see [4]. They also obtained equivalent characterizations for the product
of an H-Toeplitz operator and a Toeplitz operator equal to another H-Toeplitz operator with a harmonic
symbol. In [3], Ding studied the commutativity of Toeplitz and H-Toeplitz operators on the Bergman
space. In the recent paper [8], Kim et al. established necessary and sufficient conditions for H-Toeplitz
operators to be contractive and expansive on weighted Bergman spaces. However, the other algebraic
properties and spectral structures of H-Toeplitz operators on the Bergman space remain unknown at
present.

Motivated by the above works, we will study the zero-product problem, the commuting problem,
and spectral properties of H-Toeplitz operators on the Bergman space. In Section 2, we discuss
the zero-product problem of H-Toeplitz operators on the Bergman space see Theorems 2.1–2.3,
respectively. Section 3 is devoted to solving the problem of when the H-Toeplitz operator Bϕ commutes
with the Hankel operator Hψ see Proposition 3.1 and Theorem 3.1. Furthermore, characterizations for
the product of an H-Toeplitz and a Hankel operator equal to another H-Toeplitz (Hankel) operator on
the Bergman space are also obtained see Theorem 3.2 and Proposition 3.3. In the final section, we
investigate the point spectrum of the H-Toeplitz operators BzN and BzN on the Bergman space L2

a and
the main result is contained in Propositions 4.1 and 4.2.

2. The zero product problem for H-Toeplitz operators

In this section, we focus on the zero-product problem for H-Toeplitz operators on the Bergman
space. The first main theorem of this section shows that BψBϕ = 0 holds in the trivial case, where
ϕ ∈ H∞ and ψ is a polynomial.

Theorem 2.1. Suppose that ϕ ∈ H∞ with the Taylor series ϕ(z) =
∞∑

n=0
anzn and ψ(z) =

N∑
n=0

bnzn, where N

is a non-negative integer. Then BψBϕ = 0, if and only if, ϕ = 0 or ψ = 0.

Proof. We only need to prove the necessity. Suppose that BψBϕ = 0. If ψ = 0, the conclusion holds
trivially. Otherwise, there exists n ∈ {0, 1, · · · ,N} such that bn , 0. Without loss of generality, we can
assume that bN , 0.

Since BψBϕ = 0, we have

BψBϕz2m = 0,

for any non-negative integer m. Direct calculations give us that

0 = BψBϕz2m = BψBϕ

e2m(z)
√

2m + 1
=

√
m + 1
√

2m + 1
Bψ

( ∞∑
k=0

ak
√

k + m + 1
ek+m(z)

)
=

√
m + 1
√

2m + 1
Bψ

[ ∞∑
k=0

a2k
√

2k + m + 1
e2k+m(z) +

∞∑
k=0

a2k+1
√

2k + m + 2
e2k+m+1(z)

]
.

(2.1)

In particular,
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0 = BψBϕz4N+2 =

√
2N + 2
√

4N + 3
Bψ

[ ∞∑
k=0

a2k
√

2k + 2N + 2
e2k+2N+1(z) +

∞∑
k=0

a2k+1
√

2k + 2N + 3
e2k+2N+2(z)

]
=

√
2N+2
√

4N+3

[ ∞∑
k=0

a2k
√

2k+2N+2
P(ψek+N+1)(z)+

∞∑
k=0

a2k+1
√

2k+2N+3
ψ(z)ek+N+1(z)

]
=

√
2N + 2
√

4N + 3

∞∑
k=0

N∑
n=0

bna2k+1
√

k + N + 2
√

2k + 2N + 3
zn+k+N+1,

(2.2)

where the last equality is due to

P(znzm) =

0, if n < m,

n−m+1
n+1 zn−m, if n > m.

Considering the coefficients of zn+k+N+1 in Eq (2.2), we can derive the following system of linear
equations:



√
N+2

√
2N+3

a1b0 = 0,
√

N+3
√

2N+5
a3b0 +

√
N+2

√
2N+3

a1b1 = 0,
√

N+4
√

2N+7
a5b0 +

√
N+3

√
2N+5

a3b1 +
√

N+2
√

2N+3
a1b2 = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
√

2N+2
√

4N+3
a2N+1b0 +

√
2N+1
√

4N+1
a2N−1b1 + · · · +

√
N+2

√
2N+3

a1bN = 0,
√

2N+3
√

4N+5
a2N+3b0 +

√
2N+2
√

4N+3
a2N+1b1 + · · · +

√
N+3

√
2N+5

a3bN = 0,
√

2N+4
√

4N+7
a2N+5b0 +

√
2N+3
√

4N+5
a2N+3b1 + · · · +

√
N+4

√
2N+7

a5bN = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .

(2.3)

From the relationship between the rank of the coefficient matrix of a homogeneous linear system and
the existence of non-trivial solutions, we know that if a1 , 0, then

b0 = b1 = · · · = bN = 0.

Based on the previous assumption that bN , 0, we can conclude that a1 = 0. Inserting this result
into system (2.3) and applying the same method yields a3 = 0. Continuing this process, we ultimately
derive that a2k+1 = 0 for k = 0, 1, · · · ,N.

On the other hand, letting m = 2N in (2.1) gives
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0 = BψBϕz4N =

√
2N + 1
√

4N + 1
Bψ

[ ∞∑
k=0

a2k
√

2k + 2N + 1
e2k+2N(z) +

∞∑
k=0

a2k+1
√

2k + 2N + 2
e2k+2N+1(z)

]
=

√
2N + 1
√

4N + 1

[ ∞∑
k=0

a2k
√

2k + 2N + 1
ψ(z)ek+N(z) +

∞∑
k=0

a2k+1
√

2k + 2N + 2
P(ψek+N+1)(z)

]
=

√
2N + 1
√

4N + 1

∞∑
k=0

N∑
n=0

bna2k
√

k + N + 1
√

2k + 2N + 1
zn+k+N .

(2.4)

Considering the coefficient of zn+k+N in Eq (2.4) also leads to the following system of linear equations:

√
N+1

√
2N+1

a0b0 = 0,
√

N+2
√

2N+3
a2b0 +

√
N+1

√
2N+1

a0b1 = 0,
√

N+3
√

2N+5
a4b0 +

√
N+2

√
2N+3

a2b1 +
√

N+1
√

2N+1
a0b2 = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
√

2N+1
√

4N+1
a2Nb0 +

√
2N

√
4N−1

a2N−2b1 + · · · +
√

N+1
√

2N+1
a0bN = 0,

√
2N+2
√

4N+3
a2N+2b0 +

√
2N+1
√

4N+1
a2Nb1 + · · · +

√
N+2

√
2N+3

a2bN = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .

Using the same method as previously discussed, we can conclude that a2k = 0 for k > 0. Therefore, if
BψBϕ = 0 then we have ϕ = 0 or ψ = 0. �

Let ϕ and ψ be bounded co-analytic functions. In the next result, we discuss when the product BϕBψ

equals zero on the Bergman space.

Theorem 2.2. Suppose that ϕ, ψ ∈ H∞ with the Taylor series ϕ(z) =
∞∑

n=0
anzn and ψ(z) =

∞∑
n=0

bnzn. Then

BϕBψ = 0, if and only if, ϕ = 0 or ψ = 0.

Proof. We only need to show the necessity. Suppose that BϕBψ = 0. If ϕ = 0, the result follows
immediately. Otherwise, there exists M > 0 such that aM , 0. It follows from BϕBψ = 0 that

0 = BϕBψz4m = BϕBψ

e4m(z)
√

4m + 1
=

1
√

(4m + 1)(2m + 1)
Bϕ

( 2m∑
k=0

b2m−k

√
k + 1ek(z)

)
=

1
√

(4m + 1)(2m + 1)

[
Bϕ

( m∑
k=0

b2m−2k

√
2k + 1e2k(z)

)
+ Bϕ

( m−1∑
k=0

b2m−2k−1

√
2k + 2e2k+1(z)

)]
=

1
√

(4m+1)(2m+1)

[ m∑
k=0

b2m−2k

√
2k+1

√
k+1P

( ∞∑
n=0

anznzk
)
+

m−1∑
k=0

b2m−2k−1

√
2k+2P(ϕek+1)(z)

]
=

1
√

(4m + 1)(2m + 1)

m∑
k=0

k∑
n=0

√
2k + 1(n + 1)
√

k + 1
b2m−2kak−nzn,

(2.5)
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for any nonnegative integer m. Considering the constant term in (2.5), it can be observed that

m∑
k=0

√
2k + 1
√

k + 1
b2m−2kak = 0.

Then we obtain the following system of linear equations:

b0a0 = 0, (m=0),
b2a0 +

√
3
√

2
b0a1 = 0, (m=1),

b4a0 +
√

3
√

2
b2a1 +

√
5
√

3
b0a2 = 0, (m=2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

b2Ma0 +
√

3
√

2
b2M−2a1 + · · · +

√
2M−1
√

M
b2aM−1 +

√
2M+1
√

M+1
b0aM = 0, (m= M),

b2M+2a0+
√

3
√

2
b2Ma1+· · ·+

√
2M−1
√

M
b4aM−1

√
2M+1
√

M+1
b2aM +

√
2M+3
√

M+2
b0aM+1 =0, (m= M+1),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .

(2.6)

Since aM , 0, it follows from system (2.6) that b0 = 0. Substituting b0 = 0 back into (2.6) and using
aM , 0, we obtain b2 = 0. Continuing this process, we finally conclude that b2k = 0 for k > 0.

Furthermore,

0 = BϕBψz4m+2 =
1

√
(4m + 3)(2m + 2)

Bϕ

( 2m+1∑
k=0

b2m+1−k

√
k + 1ek(z)

)
=

1
√

(4m + 3)(2m + 2)
Bϕ

[ m∑
k=0

b2m+1−2k

√
2k + 1e2k(z) +

m∑
k=0

b2m−2k

√
2k + 2e2k+1(z)

]
=

1
√

(4m + 3)(2m + 2)

m∑
k=0

k∑
n=0

√
2k + 1(n + 1)
√

k + 1
b2m+1−2kak−nzn.

Then using the same method as the one used in solving Eq (2.5), we get that b2k+1 = 0 for k > 0.
Therefore, if aM , 0 then we have ϕ = 0. This finishes the proof. �

From Theorem 2.2, we get the following corollary.

Corollary 2.1. Suppose that ϕ(z) = f1(z) + f 2(z) is a bounded harmonic function and the analytic

functions f1 and f2 with the Taylor series f1(z) =
∞∑

n=0
anzn and f2(z) =

∞∑
n=1

bnzn and ψ(z) =
N∑

n=0
cnzn, where

N is a non-negative integer. Then BϕBψ = 0, if and only if, ϕ = 0 or ψ = 0.

Proof. It suffices to show the necessity. Suppose that BϕBψ = 0. If ψ = 0, the conclusion holds trivially.
Otherwise, there exists n ∈ {0, 1, · · · ,N}, such that cn , 0. We may assume cN , 0. Since

0 = BϕBψz2N =
1

√
2N + 1

BϕBψe2N(z) =
1

√
2N + 1

BϕP(ψeN)(z)

=
cN

√
(2N + 1)(N + 1)

P(ϕe0)(z) =
cN

√
(2N + 1)(N + 1)

f1(z),

we have f1 = 0. This implies that ϕ = f 2 and hence B f 2
Bψ = 0. By Theorem 2.5, we have ϕ= f2=0. �
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We are now ready to prove the third main theorem of this section.

Theorem 2.3. Suppose that ϕ(z) = f1(z) + f 2(z) is a bounded harmonic function and the analytic

functions f1 and f2 with the Taylor series f1(z) =
∞∑

n=0
anzn and f2(z) =

∞∑
n=1

bnzn and ψ(z) =
N∑

n=0
cnzn, where

N is a non-negative integer. Then BϕBψ = 0, if and only if, ϕ = 0 or ψ = 0.

Proof. We only need to prove the necessity. Suppose that BψBϕ = 0. If ψ = 0, the conclusion holds
trivially. Otherwise, there exists n ∈ {0, 1, · · · ,N}, such that cn , 0. In this case, we may assume that
cN , 0 without loss of generality. Elementary computation yields that

Bψz2m =

√
m + 1
√

2m + 1
P(ψ(z)zm) =

√
m + 1
√

2m + 1

N∑
n=0

cnzn+m, (2.7)

and

Bψz2m+1 =
1

√
2m + 2

P(ψem+1)(z) =

√
m + 2
√

2m + 2
P
( N∑

n=0

cnznzm+1
)

=


0, if m > N,
√

m+2
√

2m+2

N−m−1∑
n=0

n+1
n+m+2cn+m+1zn, if m 6 N − 1,

(2.8)

for any non-negative integer m. By (2.8), it follows from

0 = BϕBψz2N−1 = Bϕ

cN

N + 1
=

cN

N + 1
f1(z),

that f1 = 0.
Furthermore,

0 = BϕBψz2N−5 = B f 2
Bψz2N−5 = B f 2

( 2∑
n=0

n + 1
n + N − 1

cn+N−2zn
)

= B f 2

[ cN−2

N − 1
e0(z) +

2cN−1

N
e1(z)
√

2
+

3cN

N + 1
e2(z)
√

3

]
=

√
6cN

N + 1
P( f 2(z)z) =

√
6cN

N + 1
P
( ∞∑

n=1

bnznz
)

=

√
6cN

2(N + 1)
b1.

This indicates that b1 = 0. Using the same method, further calculation yields

0 = B f 2
Bψz2N−9 = B f 2

4∑
n=0

n + 1
n + N − 3

cn+N−4zn

=

√
15cN

N + 1
P( f 2(z)z2) =

√
15cN

3(N + 1)
P
( ∞∑

n=2

bnznz2
)

=

√
15cN

3(N + 1)
b2,

and hence b2 = 0. Now we need to consider the following two cases:
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Case 1. If N is odd, then there exists a non-negative integer M such that N = 2M + 1. Continuing the
above process, after M steps, we obtain

0 = B f 2
Bψz = B f 2

2M∑
n=0

n + 1
n + 2

cn+1zn =

√
(M + 1)(2M + 1)c2M+1

2M + 2
P( f 2(z)zM)

=

√
(M + 1)(2M + 1)c2M+1

2M + 2
P
( ∞∑

n=M

bnznzM
)

=

√
(M + 1)(2M + 1)c2M+1

2(M + 1)2 bM.

Therefore, we get that b1 = b2 = · · · = bM = 0.
In addition, by (2.7), we have

0 = B f 2
Bψz4 j+2 = B f 2

( 2M+1∑
n=0

cnzn+2 j+1
)

= B f 2

( M∑
n=0

c2n
e2n+2 j+1(z)√
2n + 2 j + 1

)
+ B f 2

( M∑
n=0

c2n+1
e2n+2 j+2(z)√
2n + 2 j + 3

)
= P

( ∞∑
k=M+1

bkz
k

M∑
n=0

√
n + j + 2c2n+1√
2n + 2 j + 3

zn+ j+1
)
.

(2.9)

Let j = 0 in (2.9); then we have
c2M+1bM+1

√
M + 2

√
2M + 3

= 0.

This implies that bM+1 = 0. Similarly, let j = 1 in (2.9); we have that

0 = P
( ∞∑

k=M+2

bkz
k

M∑
n=0

√
n + 3c2n+1
√

2n + 5
zn+2

)
=

c2M+1bM+2
√

M + 3
√

2M + 5
,

to obtain bM+2 = 0. Repeating the discussion as above, we conclude that bM+k = 0 for k > 1.
Case 2. If N is even, then there exists a non-negative integer M such that N = 2M. Similarly to the
odd case, continuing the above process for M − 1 steps yields

0 = B f 2
Bψz3 = B f 2

2M−2∑
n=0

n + 1
n + 3

cn+2zn =

√
M(2M − 1)c2M

2M + 1
P( f 2(z)zM−1)

=

√
M(2M − 1)c2M

2M + 1
P
( ∞∑

n=M−1

bnznzM−1
)

=

√
2M − 1

√
M(2M + 1)

c2MbM−1.

Hence, we have b1 = b2 = · · · = bM−1 = 0.
Moreover, by (2.7), we have

0 = B f 2
Bψz4 j = B f 2

( 2M∑
n=0

cnzn+2 j
)

= B f 2

( M∑
n=0

c2n
e2n+2 j(z)√

2n + 2 j

)
+ B f 2

( M−1∑
n=0

c2n+1
e2n+2 j+1(z)√
2n + 2 j + 2

)
= P

( ∞∑
k=M

bkz
k

M∑
n=0

√
n + j + 1c2n√
2n + 2 j + 1

zn+ j
)
.
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Using the same method as in (2.9), we can similarly obtain bM−1+k = 0 for k > 1. By combining the
preceding two cases, we derive f2 = 0, and hence ϕ = 0. This completes the proof of Theorem 2.3. �

3. The product of H-Toeplitz and Hankel operators

In this section, we first study the commutativity of an H-Toeplitz operator and a Hankel operator
on the Bergman space L2

a. In addition, we discuss when the product of an H-Toeplitz operator and a
Hankel operator is equal to another H-Toeplitz operator or a Hankel operator.

The following proposition characterizes the commutativity problem for H-Toeplitz and Hankel
operators with analytic polynomial symbols.

Proposition 3.1. Suppose that ϕ(z) =
N∑

n=0
anzn and ψ(z) =

M∑
n=0

bnzn.

(1) If 2M > N and bM , 0, then HϕBψ = BψHϕ, if and only if, ϕ is constant;
(2) If N = M = 1, then HϕBψ = BψHϕ, if and only if, ϕ is constant or ψ is constant.

Proof. Since Ha0z
m = 0 for any non-negative integer m, we only need to prove the necessity.

To prove (1), if
HϕBψ = BψHϕ,

we have

HϕBψz2M−1 = BψHϕz2M−1. (3.1)

For 2M > N, noting that

BψHϕz2M−1 =
1
√

2M
BψP(ϕe2M)(z) =

√
2M + 1
√

2M
BψP

( N∑
n=0

anznz2M
)

= 0,

and

HϕBψz2M−1 = HϕBψ

e2M−1(z)
√

2M
=

1
√

2M
HϕP(ψeM)(z) =

bM
√

M
√

M + 1

N−1∑
n=0

(n + 1)an+1

n + 2
zn.

It follows from (3.1) and bM , 0 that ak = 0 for k ∈ {1, 2, · · · ,N}.
For 2M = N, we first observe that

BψHϕz2M−1 = BψHϕzN−1 =
1
√

N
BψP(ϕeN)(z) =

aN
√

N
√

N + 1
ψ(z),

and

HϕBψz2M−1 =
bM

√
M
√

M + 1

N−1∑
n=0

(n + 1)an+1

n + 2
zn.

If
HϕBψ = BψHϕ,
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then we have
HϕBψz2M−1 = BψHϕz2M−1.

This yields that

bM
√

M
√

M + 1

N−1∑
n=0

(n + 1)an+1

n + 2
zn =

aN
√

N
√

N + 1

M∑
n=0

bnzn. (3.2)

Since N = 2M > M, we obtain that bMaN = 0, which gives that aN = 0. It follows from (3.2) that ϕ is
constant.

The proof of (2) is similar to that of (1). In fact, using

Ha0+a1zBb0+b1zzm =


a1b0√

2
, if m = 0,

a1b1

2
√

2
, if m = 1,

0, if m > 2,

and

Bb0+b1zHa0+a1zzm =

 a1b0√
2

+ a1b1√
2

z, if m = 0,

0, if m > 1,

we obtain that Ha0+a1zBb0+b1z = Bb0+b1zHa0+a1z, if and only if, a1b1 = 0. �

For the case that ϕ is co-analytic and ψ is an analytic polynomial, we obtain the necessary and
sufficient condition for the commutativity of Bϕ and Hψ on the Bergman space.

Theorem 3.1. Suppose that ϕ ∈ H∞ with the Taylor series ϕ(z) =
∞∑

n=0
anzn and ψ(z) =

N∑
n=0

bnzn. Then

BϕHψ = HψBϕ,

if and only if, ϕ is constant or ψ is constant.

Proof. If
BϕHψ = HψBϕ,

then we have
BϕHψz2N+2m = HψBϕz2N+2m,

for any non-negative integer m. Since

BϕHψz2N+2m =

√
2N + 2m + 2

2N + 2m + 1
BϕP

( N∑
n=0

bnznz2N+2m+1
)

= 0,

and
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HψBϕz2N+2m =

√
N + m + 1

√
2N + 2m + 1

HψP
( ∞∑

k=0

akz
kzN+m

)
=

1
√

(N + m + 1)(2N + 2m + 1)
Hψ

( N+m∑
k=0

aN+m−k(k + 1)zk
)

=
1

√
(N + m + 1)(2N + 2m + 1)

P
( N∑

n=0

bnzn
N+m∑
k=0

aN+m−k

√
k + 1ek+1(z)

)
=

1
√

(N + m + 1)(2N + 2m + 1)

N−1∑
k=0

N−k−1∑
n=0

aN+m−kbn+k+1

√
(k + 1)(k + 2)(n + 1)

n + k + 2
zn,

we obtain
N−1∑
k=0

N−k−1∑
n=0

aN+m−kbn+k+1

√
(k + 1)(k + 2)(n + 1)

n + k + 2
zn = 0. (3.3)

Considering the coefficients of zn in equations in (3.3) yields that

√
2

2 aN+mb1 +
√

6
3 aN+m−1b2 + · · · +

√
N(N+1)
N+1 am+1bN = 0,

2
√

2
3 aN+mb2 + 2

√
6

4 aN+m−1b3 + · · · +
2
√

(N−1)N
N+1 am+2bN = 0,

3
√

2
4 aN+mb3 + 3

√
6

5 aN+m−1b4 + · · · +
3
√

(N−2)(N−1)
N+1 am+3bN = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
√

2(N−1)
N aN+mbN−1 +

√
6(N−1)
N+1 aN+m−1bN = 0,

√
2N

N+1 aN+mbN = 0.

If bN , 0 (N > 0), then am+1 = am+2 = · · · = aN+m = 0 for any non-negative integer m. This implies
that ak = 0 for k > 1. Thus we have ϕ = 0. �

In the following theorem, we establish necessary and sufficient conditions for the product of an
H-Toeplitz operator and a Hankel operator to equals another H-Toeplitz operator or a Hankel operator
on the Bergman space.

Theorem 3.2. Suppose that f , h ∈ H∞ with the Taylor series f (z) =
∞∑

n=0
anzn, h(z) =

∞∑
n=0

cnzn, g1(z) =

N∑
n=0

bnzn and g2(z) = zM, where N is a non-negative integer and M is a positive integer. Then we have

(1) H f Bg1 = Bh, if and only if, h = g1 = 0, or h = 0 and f is constant;
(2) B f Hg1 = Hh, if and only if, g1 and h are constants, or f = 0 and h is constant;
(3) Hg2 B f = Bh, if and only if, f = h = 0.

Proof. Let us prove (1) first. we first note that

H f Bg1z
2N+1 = H f Bg1

e2N+1(z)
√

2N+2
=

1
√

2N+2
H f P(g1eN+1)(z)=

√
N+2

√
2N+2

H f P
( N∑

n=0

bnznzN+1
)
= H f 0=0,
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and

Bhz2N+1 = Bh
e2N+1(z)
√

2N+2
=

1
√

2N+2
P(heN+1)(z)=

√
N+2

√
2N+2

P
( ∞∑

n=0

cnznzN+1
)
=

√
N+2

√
2N+2

∞∑
n=0

(n+1)cn+N+1

n+N+2
zn.

Using
H f Bg1z

2N+1 = Bhz2N+1,

we derive that cn+N+1 = 0 for any n > 0. This implies that h(z) =
N∑

n=0
cnzn.

For N = 0, we have

H f Bb0e2m = Bc0e2m, (3.4)

for any non-negative integer m. Letting m = 0 and m = 2 in (3.4) respectively, we obtain that

√
2b0

∞∑
n=0

(n + 1)an+1

n + 2
zn = c0,

and
√

3b0

∞∑
n=0

(n + 1)an+2

n + 3
zn =

√
2c0z.

Thus we have
√

2
2 b0a1 = c0,

√
3

2 b0a3 =
√

2c0 and ak = 0 for any k > 1. This gives that g1 = h = 0, or
h = 0 and f is constant.

Moreover, if N > 0 and bN , 0, then we have H f Bg1z
2N−1 = Bhz2N−1. Since H f Bg1z

2N−1 =

bN√
N
√

N+1

∞∑
n=0

(n+1)an+1
n+2 zn and Bhz2N−1 = cN√

2N
√

N+1
, we obtain that f = a0 + a1z and bNa1√

2
= cN . From

H f Bg1z
2N = H f Bg1

e2N(z)
√

2N + 1
= H f Tg1

eN(z)
√

2N + 1
=

√
N + 1

√
2N + 1

H f

N∑
n=0

bnzn+N

=

√
N + 1

√
2N + 1

H f

N∑
n=0

bn
en+N(z)
√

n + N + 1
=

√
N + 1

√
2N + 1

P
(

f (z)
N∑

n=0

bnen+N+1(z)
√

n + N + 1

)
=

√
N + 1

√
2N + 1

P
[
(a0 + a1z)

N∑
n=0

bn
√

n + N + 2
√

n + N + 1
zn+N+1

]
= 0,

and

Bhz2N =

√
N + 1

√
2N + 1

N∑
n=0

cnzn+N ,

we get that h = 0 and hence a1 = 0. Therefore, we have g1 = h = 0, or h = 0 and f is constant.
Now we turn to the proof of (2). Suppose that B f Hg1z

m = Hhzm for any m > N. Then we have

B f Hg1z
m = B f Hg1

em(z)
√

m + 1
=

1
√

m + 1
B f P(g1em+1)(z) =

√
m + 2
√

m + 1
B f P

( N∑
n=0

bnznzm+1
)

= 0,
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and

Hhzm = Hh
em(z)
√

m + 1
=

1
√

m + 1
P(hem+1)(z) =

√
m + 2
√

m + 1

∞∑
n=0

(n + 1)cn+m+1

m + n + 2
zn.

This implies that cn+m+1 = 0 for any n > 0 and m > N, which yields h(z) =
N∑

n=0
cnzn.

If N > 0 and bN , 0, then it follows from

B f Hg1z
N−1 = HhzN−1,

that bN f (z) = cN . Hence, f = a0 and bNa0 = cN . Similarly, using

B f Hg1z
N−2 = HhzN−2,

we have that
bN−1a0

N
=

cN−1

N
+

2cN

N + 1
z.

This shows that cN = 0 and hence a0 = cN−1 = 0. So we have

0 = B f Hg1z
N−3 = HhzN−3 =

cN−2

N − 1
+

2cN−1

N
z.

This gives that cN−2 = 0. Repeating the discussion as above, we conclude that f = a0 = 0 and ck = 0
for k ∈ {1, 2, · · · ,N}. This implies that g1 and h are constants, or f = 0 and h is constant.

To prove (3), for each non-negative integer m > N, elementary computations give us that

Hg2 B f z2m =

√
m + 1
√

2m + 1
Hg2

( ∞∑
n=0

anzn+m
)

=

√
m + 1
√

2m + 1
Hg2

( ∞∑
n=0

anen+m(z)
√

n + m + 1

)
=

√
m + 1
√

2m + 1
P
(
g2(z)

∞∑
n=0

anen+m+1(z)
√

n + m + 1

)
=

√
m + 1
√

2m + 1
P
(
zN

∞∑
n=0

an
√

n + m + 2
√

n + m + 1
zn+m+1

)
= 0,

and

Bhz2m =

√
m + 1
√

2m + 1

∞∑
n=0

cnzn+m.

Combining this with
Hg2 B f z2m = Bhz2m

yields that
ck = 0, k > 0,

to obtain that h = 0.
Moreover, for any integer m > 0, we have

Hg2 B f z2m−1 = Hg2 B f
e2m−1(z)
√

2m
=

1
√

2m
Hg2 P( f em)(z)
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=

√
m + 1
√

2m
Hg2

∞∑
n=0

(n + 1)an+m

n + m + 1
zn

=

√
m + 1
√

2m
P
(
g2(z)

∞∑
n=0

(n + 1)an+m

n + m + 1
en+1(z)
√

n + 1

)
=

√
m + 1
√

2m

N−1∑
n=0

an+m(N − n)
√

n + 1
√

n + 2
(N + 1)(n + m + 1)

zN−n−1.

This implies that an+m = 0 for any n ∈ {0, 1, · · · ,N − 1} and m > 0. Thus we have f = a0. It follows
from

Hg2 B f 1 = HzN Ba01 =

√
2a0N

N + 1
zN−1 = 0,

that f = a0 = 0. Therefore, we have f = h = 0. This finishes the proof of Theorem 3.2. �

Let ϕ(z) and ψ(z) be bounded harmonic functions, and g be an analytic polynomial. We end this
section with the following result, which characterizes when BϕHg = Bψ on the Bergman space.

Theorem 3.3. Suppose that ϕ(z) = f1(z)+ f 2(z) and ψ(z) = h1(z)+h2(z) are bounded harmonic functions

and the analytic functions f1, f2, h1, and h2 with the Taylor series f1(z) =
∞∑

n=0
anzn, f2(z) =

∞∑
n=1

bnzn,

h1(z) =
∞∑

n=0
dnzn, h2(z) =

∞∑
n=1

ξnzn, and g(z) =
N∑

n=0
cnzn, where N is a non-negative integer. Then

BϕHg = Bψ,

if and only if, one of the following holds:
(1) ψ = 0 and g is constant;

(2) ψ = 0 and ϕ(z) =
∞∑

n=M
bnzn when N = 2M for some positive integer M;

(3) ψ = 0 and ϕ(z) =
∞∑

n=M+1
bnzn when N = 2M + 1 for some positive integer M.

Proof. If BϕHg = Bψ, then

BϕHgz2m = Bψz2m, (3.5)

for any non-negative integer m. For m > N, we have

BϕHgz2m =
1

√
2m + 1

BϕP(ge2m+1)(z) = 0.

Moreover, the right-hand side of (3.5) can be expanded as

Bψz2m = Bψ

e2m(z)
√

2m + 1
=

√
m + 1
√

2m + 1
[P(h1(z)zm) + P(h2(z)zm)]

=

√
m + 1
√

2m + 1

( ∞∑
k=0

dkzk+m +

m−1∑
k=0

k + 1
m + 1

ξm−kzk
)
.
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It induces that
∞∑

k=0

dkzk+m +

m−1∑
k=0

k + 1
m + 1

ξm−kzk = 0, (3.6)

for any m > N. It follows from (3.6) that dk = 0 for any k > 0 and ξk = 0 for any k > 1. Thus, we
obtain ψ = 0. Combining this with BϕHg = Bψ yields that

0 = BϕHgzN−1 = BϕHg
eN−1(z)
√

N
=

1
√

N
BϕP(geN)(z)

=
cN

√
N
√

N + 1
P( f1 + f 2)(z) =

cN
√

N
√

N + 1
f1(z).

If cN , 0 (N > 0), then we have f1 = 0.

• If N = 2M for some positive integer M, then

0 = B f 2
Hgz = B f 2

( √3
√

2

2M−2∑
k=0

√
k + 1

k + 3
ck+2ek(z)

)
=

√
3
√

2
B f 2

( M−1∑
k=0

√
2k + 1

2k + 3
c2k+2e2k(z) +

M−2∑
k=0

√
2k + 2

2k + 4
c2k+3e2k+1(z)

)
=

√
3
√

2

M−1∑
k=1

k−1∑
n=0

√
2k + 1(n + 1)

(2k + 3)
√

k + 1
c2k+2bk−nzn

=

√
3
√

2

[( M−1∑
k=1

√
2k + 1

(2k + 3)
√

k + 1
c2k+2bk

)
+

( M−1∑
k=2

2
√

2k + 1

(2k + 3)
√

k + 1
c2k+2bk−1

)
z

+

( M−1∑
k=3

3
√

2k + 1

(2k + 3)
√

k + 1
c2k+2bk−2

)
z2 + · · · +

( (M − 2)
√

2M − 3

(2M − 1)
√

M − 1
c2M−2b1

+
(M − 2)

√
2M − 1

(2M + 1)
√

M
c2Mb2

)
zM−3 +

( (M − 1)
√

2M − 1

(2M + 1)
√

M
c2Mb1

)
zM−2

]
.

It follows from cN = c2M , 0 that bk = 0 for k ∈ {1, 2, · · · ,M − 1}.
• If N = 2M + 1 for some non-negative integer M, then

0 = B f 2
Hg1 = B f 2

(√
2

2M∑
k=0

√
k + 1

k + 2
ck+1ek(z)

)
=
√

2B f 2

( M∑
k=0

√
2k + 1

2k + 2
c2k+1e2k(z) +

M−1∑
k=0

√
2k + 2

2k + 3
c2k+2e2k+1(z)

)
=
√

2
M∑

k=1

k−1∑
n=0

√
2k + 1(n + 1)

(2k + 2)
√

k + 1
c2k+1bk−nzn

=
√

2
[( M∑

k=1

√
2k + 1

(2k + 2)
√

k + 1
c2k+1bk

)
+

( M∑
k=2

2
√

2k + 1

(2k + 2)
√

k + 1
c2k+1bk−1

)
z
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+

( M∑
k=3

3
√

2k + 1

(2k + 2)
√

k + 1
c2k+1bk−2

)
z2 + · · · +

( (M − 1)
√

2M − 1

2M
√

M
c2M−1b1

+
(M − 1)

√
2M + 1

(2M + 2)
√

M + 1
c2M+1b2

)
zM−2 +

( M
√

2M + 1

(2M + 2)
√

M + 1
c2M+1b1

)
zM−1

]
.

Combing with cN = c2M+1 , 0 gives that bk = 0 for k ∈ {1, 2, · · · ,M}.

Therefore, we have

ϕ(z) =


∞∑

n=M
bnzn, if N = 2M,

∞∑
n=M+1

bnzn, if N = 2M + 1.

Conversely, if N = 2M, ψ = 0, and ϕ(z) =
∞∑

n=M
bnzn, then for any non-negative integer m we derive

that

BϕHgzm =


0 = Bψzm, if m > N,
√

m+2
√

m+1
B f 2

( 2M−m−1∑
n=0

(n+1)cn+m+1
n+m+2 zn

)
= 0 = Bψzm, if m 6 N − 1.

Furthermore, if N = 2M + 1, ψ = 0, and ϕ(z) =
∞∑

n=M+1
bnzn, then for any non-negative integer m we

obtain that

BϕHgzm =


0 = Bψzm, if m > N,
√

m+2
√

m+1
B f 2

( 2M−m∑
n=0

(n+1)cn+m+1
n+m+2 zn

)
= 0 = Bψzm, if m 6 N − 1.

This completes the proof of Theorem 3.3. �

4. The point spectra of H-Toeplitz operators

In this short section, we study the property of the point spectrum of the H-Toeplitz operators BzN

and the spectrum of the H-Toeplitz operators BzN on the Bergman space.

Proposition 4.1. Suppose that ϕ(z) = zN , where N is a non-negative integer. Then the point spectrum
σp(Bϕ) is contained in the closed unit disk D.

Proof. Let f be a function in ker(λI − Bϕ), where I is the identity operator on L2
a. Suppose that

f (z) =
∞∑

k=0
akzk. Then direct computations give us that

0 = (λI − Bϕ) f (z) = λ

∞∑
k=0

akzk − Bϕ

∞∑
k=0

akzk

= λ

∞∑
k=0

akzk −

(
Bϕ

∞∑
k=0

a2kz2k + Bϕ

∞∑
k=1

a2k−1z2k−1
)
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= λ

∞∑
k=0

akzk −

[ ∞∑
k=0

a2k
√

k + 1
√

2k + 1
zk+N + P

(
ϕ(z)

∞∑
k=1

a2k−1ek(z)
√

2k

)]
= λ

∞∑
k=0

akzk −

( ∞∑
k=0

a2k
√

k + 1
√

2k + 1
zk+N +

N−1∑
k=0

a2N−2k−1
√

N − k + 1(k + 1)
√

2N − 2k(N + 1)
zk
)
.

This gives that λ is an eigenvalue of Bϕ, if and only if,

λa0 = a2N−1

√
N+1

√
2N(N+1)

,

λa1 = a2N−3

√
N2

√
2N−2(N+1)

,

· · · · · · · · · · · · · · · · · · · · ·

λaN−2 = a3

√
3(N−1)
√

4(N+1)
,

λaN−1 = a1
N

N+1 ,

and 

λaN = a0,

λaN+1 = a2

√
2
√

3
,

· · · · · · · · · · · · · · · · · · · · ·

λa2N−1 = a2N−2

√
N

√
2N−1

,

λa2N = a2N

√
N+1

√
2N+1

,

λa2N+1 = a2N+2

√
N+2

√
2N+3

,

· · · · · · · · · · · · · · · · · · · · · .

If |λ| > 1, then we have

a2N+k = a2N+2k

√
N + k + 1

λ
√

2N + 2k + 1
, k > 0.

It follows that

a2N+k =
1
λ

√
N + k + 1

√
2N + 2k + 1

a2N+2k =
1
λ2

√
N + k + 1

√
N + 2k + 1

√
2N + 2k + 1

√
2N + 4k + 1

a2N+4k =
1

λm−1 c(N, k)a2N+2mk,

for any non-negative integer m, where c(N, k) ∈ (0, 1) is a constant depending only on N and k. As
lim
n→∞

an = 0, a2N+k = 0 for any non-negative integer k.
Letting G = {a0, a1, · · · , a2N−1}, we define a bijection on G by

Φ(ak) =

a2N−1−2k

√
N+1−k(k+1)

λ
√

2N−2k(N+1)
, if 0 6 k 6 N − 1,

a2k−2N

√
k−N+1

λ(2k−2N+1) , if N 6 k 6 2N − 1.

Let

σ =

 0 1 · · · N − 1 N N + 1 · · · 2N − 1

2N − 1 2N − 3 · · · 1 0 2 · · · 2N − 2


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be a permutation. Recall that every nonidentity permutation in S n (the symmetric group of all
permutations on {1, 2, · · · , n}) is uniquely (up to the order of the factors) a product of disjoint cycles,
each of which has length at least 2. See [14, Theorem 6.3] if needed. It follows that

|ak| = ξ(k, λ)|ak|,

where k ∈ {0, 1, · · · , 2N − 1} and ξ(k, λ) is a constant depending only on k and λ and 0 < ξ(k, λ) < 1.
This implies that ak = 0 for any k ∈ {0, 1, · · · , 2N − 1}. Thus f = 0. This means that λ < σp(Bϕ) and
hence σp(Bϕ) ⊂ D, completing the proof. �

Proposition 4.2. Suppose that ϕ(z) = zN , where N is a non-negative integer. Then the spectrum σ(Bϕ)
is contained in the closed unit disk D.

Proof. Since Hz̄N = 0, Bz̄N = PMz̄N K = T z̄N PK. It follows that

sup{|λ| : λ ∈ σ(Bz̄N )} 6 ‖Bz̄N‖ = ‖T z̄N PK‖ 6 1,

and subsequently σ(Bz̄N ) ⊂ D. This finishes the proof. �
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