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1. Introduction

Let dA denote the Lebesgue area measure on the open unit disk D in the complex plane C,
normalized so that the measure of D is 1. L?(ID) denotes the space of the Lebesgue measurable functions
f on D with the following norm:

Itk = ( fD FOPdAQ) <.

The Bergman space L? consists of all analytic functions f in L?(D), which is a closed subspace of
L*(D). Moreover, L2 is a reproducing kernel Hilbert space and the orthonormal basis is given by
{en}; %), where e,(z) = Vn + 17". The collection of essentially bounded (with respect to the measure
dA) functions is denoted by L= (D).

Let P be the orthogonal projection from L*(D) onto L2. For ¢ € L¥(D), the multiplication operator

M, and the Toeplitz operator T, on the Bergman space are defined by

Mgof:()of’ T‘,of:PMcpf’
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respectively, where f € L2. Let J : L2 — L_g be the operator defined by J(e,) = e,, where L_ﬁ denotes
the complex conjugate of L2. For ¢ € L¥(D), the Hankel operator H, with symbol ¢ is defined by

H,(f) = P(pJ(f)), felLl

The harmonic Bergman space Lfl is the closed subspace of L?>(D) consisting of the harmonic
functions on D. The operator K : L2 — L7 is defined by

K(ex(2)) = ex(z) = Vn + 17",

and

K(e20:11(2)) = €ns1(z) = Y + 27",

for all n > 0 and z € D. It can be observed that K is bounded on Lﬁ with ||K|| = 1. For ¢ € L*(D), the
H-Toeplitz operator B, : L2 — L? is defined by

Bcp(f) = PMgoK(f)a

for f € L2
Note that H-Toeplitz operators are closely related to Toeplitz and Hankel operators. In fact, for each
nonnegative integer n, we have

Bt,o(eZn) = PMgoK(eZn) = PMgo(en) = Tgo(en)a

and
B¢(62n+1) = PM(,DK(€2n+1) = PanJ(en) = Hgo(en)-

Toeplitz operators and Hankel operators on the Bergman space have been widely studied. The
boundedness, compactness, and Schatten ideal properties of Toeplitz and Hankel operators on the
Bergman space have attracted a lot of attention (see [2, 18, 19]). For the commutativity and the
hyponormality of Toeplitz operators on the Bergman space, one can consult [1,11,12]. In [5, 15, 16]
the authors investigated the invertibility of Toeplitz operators on the Bergman space. The spectrum of
Toeplitz operators on the Bergman space was also studied; see [6,13,17] for detailed discussions about
this topic.

Besides Toeplitz and Hankel operators, researchers have also investigated other operators on various
function spaces. In 2021, Gupta and Singh [7] introduced and studied the notion of H-Toeplitz
operators on the Bergman space. They obtained a necessary and sufficient condition for an H-Toeplitz
operator to be a co-isometry or a partial isometry, explored their invariant subspaces and kernels, and
discussed the compactness, Fredholmness, and commutativity. The H-Toeplitz operator is neither a
class of Toeplitz operators nor a class of Hankel operators, yet it exhibits specific associations with both
Toeplitz and Hankel operators. In addition, an n-order H-Toeplitz matrix has 2n — 1 degrees of freedom
instead of n?, meaning that solving systems of linear equations with such matrices as coefficient
matrices becomes comparatively easy for large n. In 2022, Liang et al. investigated the commutativity
of H-Toeplitz operators with quasi-homogeneous symbols on the Bergman space [10]. Later, Kim and
Lee studied the contractive and expansive H-Toeplitz operators with analytic, coanalytic, and harmonic
symbols on the Bergman space [9]. In the case that one H-Toeplitz operator a bounded symbol and the
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other a quasi-homogeneous symbol, Ding and Chen recently characterized when their product is equal
to another H-Toeplitz operator see [4]. They also obtained equivalent characterizations for the product
of an H-Toeplitz operator and a Toeplitz operator equal to another H-Toeplitz operator with a harmonic
symbol. In [3], Ding studied the commutativity of Toeplitz and H-Toeplitz operators on the Bergman
space. In the recent paper [8], Kim et al. established necessary and sufficient conditions for H-Toeplitz
operators to be contractive and expansive on weighted Bergman spaces. However, the other algebraic
properties and spectral structures of H-Toeplitz operators on the Bergman space remain unknown at
present.

Motivated by the above works, we will study the zero-product problem, the commuting problem,
and spectral properties of H-Toeplitz operators on the Bergman space. In Section 2, we discuss
the zero-product problem of H-Toeplitz operators on the Bergman space see Theorems 2.1-2.3,
respectively. Section 3 is devoted to solving the problem of when the H-Toeplitz operator B, commutes
with the Hankel operator H,, see Proposition 3.1 and Theorem 3.1. Furthermore, characterizations for
the product of an H-Toeplitz and a Hankel operator equal to another H-Toeplitz (Hankel) operator on
the Bergman space are also obtained see Theorem 3.2 and Proposition 3.3. In the final section, we
investigate the point spectrum of the H-Toeplitz operators By and B-v on the Bergman space L2 and
the main result is contained in Propositions 4.1 and 4.2.

2. The zero product problem for H-Toeplitz operators

In this section, we focus on the zero-product problem for H-Toeplitz operators on the Bergman
space. The first main theorem of this section shows that B,B, = 0 holds in the trivial case, where
¢ € H” and ¢ is a polynomial.

Theorem 2.1. Suppose that ¢ € H* with the Taylor series ¢(z) = Z a,Z" and Y(z) = Z b,7", where N
n=0
is a non-negative integer. Then B,B, = 0, if and only if, ¢ = 0 or w 0.

Proof. We only need to prove the necessity. Suppose that B,B, = 0. If ¢y = 0, the conclusion holds
trivially. Otherwise, there exists n € {0, 1,--- , N} such that b, # 0. Without loss of generality, we can
assume that by # 0.

Since By B, = 0, we have

B,B,7" =0,
for any non-negative integer m. Direct calculations give us that

en(2)

\/2m+1 \/2m+1 (; Vk+m+1

Aofe+1
€2k+m(Z) + Z €2k+m+1(Z)]-

V2k+m+2

0 = B,B,7" = B,B,

- [kj

—2 @)
(2.1)
2m +1 2k +m+1

In particular,
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2N +2 Ao+ 1

0= B¢B¢Z4N+2 = 4N 3 [ZO 2k N T €2k+2N+1(Z) + Z:(; mezmzmz(@]
V2N+2 a

M[Z Norsresak
V2N +2 % Z Z buaresi Vk+ N +2 kN
VAN +3 1505 V2k+2N+3 ’

Yerin+1)(2)+ Z \/2:%7]1\/31# (2)er+n+1 (Z)] (2.2)

where the last equality is due to

0, if n<m,
P(Z'7") =

n—-m+1 _n-m

=, if n>m.

Considering the coefficients of z"**N*! in Eq (2.2), we can derive the following system of linear
equations:

\/%albo =0,
ﬁ%bo + \/%albl =0,
\/\/Z%a by + \/‘/zlyvia b, + \/‘/z%albz =0,

2.3
byt By byt T, =0, >
%Clwwbo + \/\/‘%ChNﬂbl e %aﬂm =0,

%02N+5b0 + %Clzmsbl st \/‘/z%asbzv =0,

From the relationship between the rank of the coefficient matrix of a homogeneous linear system and
the existence of non-trivial solutions, we know that if a; # 0, then

bo=b = =by=0.

Based on the previous assumption that by # 0, we can conclude that a; = 0. Inserting this result
into system (2.3) and applying the same method yields a; = 0. Continuing this process, we ultimately
derive that ay,,y = 0fork=0,1,--- , N.

On the other hand, letting m = 2N in (2.1) gives
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\/2N+lB [i
AN+

A2f+1

Y(Dewn(z) + Z k12N 12

V2N + 1 iibnaZk\/k+N+l AN
_ VN + 1 N

VAN + 1433 = V2k+2N +1

Considering the coefficient of z

n+k+N

\/2N+1aob0

VN+2 VN+1

\/2N+3a2b0 t v aob,

VN+3 VN VN+1

\/2N+5a4b0 t 3a2b1 + \/2N+1a0b

V2N+1 V2N VN+1
anraanbo + R aon-oby 4+ VZN+1 aob
V2N+2 V2N+1 VN+2
Vv denebo + prsaonby -+ pEsaby

fr1 ]

k=0 We2k+2N(Z) Z W 2k+2N+1(Z)
2P| 2.4)

in Eq (2.4) also leads to the following system of linear equations:

Using the same method as previously discussed, we can conclude that ay;, = 0 for k > 0. Therefore, if

B, B, = 0 then we have

p=0o0ry =0.

O

Let ¢ and ¢ be bounded co-analytic functions. In the next result, we discuss when the product B, By,
equals zero on the Bergman space.

Theorem 2.2. Suppose that g, € H® with the Taylor series (z) = Y, a,2" and y(z) = 3, b,z". Then
n=0 n=0
B,B, =0, if and only if, ¢ = 0 or yy = 0.

Proof. We only need to show the necessity. Suppose that B,B, = 0. If ¢ = 0, the result follows
immediately. Otherwise, there exists M > 0 such that a,, # 0. It follows from B,B, = 0 that

0= B,B,z"" = B,B,

1

ean(2) 1
= by VE+ 1
Vam+1l ~N@m+D@m+D (Z 2k VEF ek(Z))

V@dm+ 1)2m +
1

1) pry

V@m+D2m+1)

n=0

AIMS Mathematics

m k
2%+ (n+1)
bM* a*}’lzn’
\/(4m+l)(2m+1)22 Veel

k=0 n=0

[ ( Z by mer(Z)) + B(p( mzl bom-si-1 meZkH (Z))]

(2.5)

[Z b2k V2k+1 \/kTP( ianznzk)+mzl bom—sk—1 V2k+ P(90€k+1)(2)]
=0
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for any nonnegative integer m. Considering the constant term in (2.5), it can be observed that

Z V2k + 1 b 0
om-2kQk = V.
= Vk+1
Then we obtain the following system of linear equations:
bOaO = 0’ (m:O)a
N3 - _
byag + (boal =0, (m=1),
2
baao + Bbrar + Ebyar = 0, (m=2),
................................. (2.6)
boyag + %sz_zal + -+ %bzdﬁ/[_l + \/2& boay = 0, (m=M),
boysrao+ %bZMal +-eot %ZMCIMA %bzawﬂ' \/21‘% boay+1 =0, (m=M+1),

Since ay; # 0, it follows from system (2.6) that by = 0. Substituting by = 0 back into (2.6) and using
ay # 0, we obtain b, = 0. Continuing this process, we finally conclude that by, = 0 for k£ > 0.

Furthermore,
1 2m+1
0= BB = B 2, bt V¥ Tex(2)
] v \
= boys1-2k V2k + ley(2) + Dok V2k + 2e941(2)
V@dm +3)2m +2) Z ;
m k
2k + 1(n +1)
= bomi1-okQr_nZ".
\/(4m+3)(2m+2);; Verl e

Then using the same method as the one used in solving Eq (2.5), we get that by, = 0 for k > 0.
Therefore, if a); # 0 then we have ¢ = 0. This finishes the proof. O

From Theorem 2.2, we get the following corollary.

Corollary 2.1. Suppose that ¢(z) = fi(z) + ?z(z) is a bounded harmonic function and the analytic

functions fi and f, with the Taylor series f1(z) = Z a,7" and f>(z) = Z b, and y(z) = Z c,Z", where
N is a non-negative integer. Then B,By = 0, zfand only if, p = 0 or w 0.

Proof. Tt suffices to show the necessity. Suppose that B,B; = 0. If = 0, the conclusion holds trivially.

Otherwise, there exists n € {0, 1,--- , N}, such that ¢, # 0. We may assume cy # 0. Since
0= B,B;7*" = ;B Biean(2) = ;B P(fen)(2)
il VN1 SN T AN ¢
CN CN
= P(pep)(z) = 2),
N EDCER (pea)2) VN DIV + 1)f1()

we have f; = 0. This implies that ¢ = fz and hence B; By = 0. By Theorem 2.5, we have o=£,=0. O
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We are now ready to prove the third main theorem of this section.

Theorem 2.3. Suppose that ¢(z) = fi(z) + f,(z) is a bounded harmonic function and the analytic
0 o __ N
functions f, and f, with the Taylor series f1(z) = Z a,7" and f>(z) = 3, b,7" and y(z) = 3, c,7", where

n=1 n=0

N is a non-negative integer. Then B,B, = 0, if and only if, p = 0 ory = 0.

Proof. We only need to prove the necessity. Suppose that B,B, = 0. If 4 = 0, the conclusion holds

trivially. Otherwise, there exists n € {0, 1,--- , N}, such that ¢, # 0. In this case, we may assume that
cy # 0 without loss of generality. Elementary computation yields that
Vm + 1
B, 7" = ———P((2)7") = cnd"™ (2.7)
v V2m+ 1 V2m + 1 Z
and
1 Vm + 2 al
B Z2m+1 — P(l//em ])(Z) —P( CnZ Zm+1)
' am+2 Zm+ 2 Zg
0, it m> N, (2.8)

N-m—
Vm+2 n+l :
A Llar N E < —

a2 Ty 2 Cremn12",  ifm <N -1,

for any non-negative integer m. By (2.8), it follows from

0=B,B,"" = B,—~
s *N+1 N+1f](Z)
that fj =0
Furthermore,
0=B.RB 2N-5 BBQNS Bzzl n+ 1 n
= Dpbyl yZ 7 - n+ N — lcn+N—2Z
CN-2 2cy-1e1(z)  3en ex2)
=Brly o 10@ TN+ ]
V2 V3
Véey  — Voc = Voc
= SNP(Fo(@) = 2P ) b2 = 5
N+1 N+1 2N+1) !

This indicates that »; = 0. Using the same method, further calculation yields

4

_pp2No—p N _"rtlL .

0= BB, =By ) ———Cun-it
n=0

‘/_CN _ ‘/_CN -n_2\ _ \/BCN
an P(f,(2)7*) = %N—P(;bnz Z ) = mbz,

and hence b, = 0. Now we need to consider the following two cases:
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Case 1. If N is odd, then there exists a non-negative integer M such that N = 2M + 1. Continuing the
above process, after M steps, we obtain
oM

3 B n+1 n NWM+ DM + Deapger o~ M
0 = B; Byz = By, ; e L M2 P(f5(2)z")
VM + 1)2M + 1)capan ( > M VM + DM + D)oy
oM +2 2, b 2(M + 1) m
Therefore, we getthat by = b, = --- = by, = 0.
In addition, by (2.7), we have
2M+1
0 — B?ZB¢Z4J+2 — B?z( Z ann+2j+l)
n=0
u €n12j+1(2) ul €n12j+2(2)
- B ( Con n+2j+ )+ B- ( Con n+zj+ ) (29)
> Z; BN TS 2; " nt2 13

Let j = 01in (2.9); then we have
Coms1bps1

VM +2\V2M +3
This implies that by,,; = 0. Similarly, let j = 1 in (2.9); we have that

- Vi + 3cau1 2 Com+1bmio
0= P( bz s ) ,
Z Z V2n +5 VM +3V2M +5

k=M+2

to obtain by, = 0. Repeating the discussion as above, we conclude that by, = 0 for k > 1
Case 2. If N is even, then there exists a non-negative integer M such that N = 2M. Similarly to the
odd case, continuing the above process for M — 1 steps yields

En+l  , NMCM - Deay

0=B,B,3 = By, ), menad = —— g PR
n=0
3 \/M(2M—1)62M ( Z b'”Ml) 2M -1
= —F— MmO pm-1-
2M + 1 ) VMM + 1)
Hence, we have by = b, =--- = by_; = 0.

Moreover, by (2.7), we have

¥ €2,+2j(2) = €2n+2j+1(2)
= B ( o ) + B; ( Conel —— e )
s Z:(; Ny AT~ R s r ) )
~ P(ib Zki Jn+j+ 1cznz”+j)
= k —‘ .
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Using the same method as in (2.9), we can similarly obtain by,_;,x = O for k > 1. By combining the
preceding two cases, we derive f> = 0, and hence ¢ = 0. This completes the proof of Theorem 2.3. O

3. The product of H-Toeplitz and Hankel operators

In this section, we first study the commutativity of an H-Toeplitz operator and a Hankel operator
on the Bergman space L2. In addition, we discuss when the product of an H-Toeplitz operator and a
Hankel operator is equal to another H-Toeplitz operator or a Hankel operator.

The following proposition characterizes the commutativity problem for H-Toeplitz and Hankel
operators with analytic polynomial symbols.

Proposition 3.1. Suppose that ¢(z) = 2 a,7" and Y(z) = Z b,7".
() If2M > N and by # 0, then H Bw = B,pH , if and only lf @ is constant;
(2)IfN =M =1, then H,B, = B,H,, if and only if, ¢ is constant or { is constant.

Proof. Since H,,z" = 0 for any non-negative integer m, we only need to prove the necessity.
To prove (1), if

H,B, = B,H,,

we have
H,B,z7?"' = B,H, 7M. (3.1)
For 2M > N, noting that
2M-1 1 = N n=2M
B H, M = WBwP(gerM)(z) oy B¢,P( Z 152" )
and
H,B, 2" = Hganz\”/’;_A(j) =~ HeP W) = W% ZO (n ' i);fm ;
It follows from (3.1) and by, # O that g, =0 fork € {1,2,--- , N}.
For 2M = N, we first observe that
ByH,2M = B,H,2 = — B, P(ge)0) = —25_y(a),
VN VNN + 1
and
N-1
H,B, M = m% nzz(; (n ": j—);lrwlzn.

If

H,B, = B,H,,
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then we have
2M-1 _ 2M-1

This yields that

N-1
by Z (n+ Dan , (3.2)

VINM A1 & n2 \/_\/NTZ

Since N = 2M > M, we obtain that by,ay = 0, which gives that ay = 0. It follows from (3.2) that ¢ is
constant.
The proof of (2) is similar to that of (1). In fact, using

abo _
v if m=0,
m _ ) aib . _
Ha()+a]ZBb()+b1zZ - ﬁ%, lf m = 1,
0, if m>2,
and
ajby | aib; .
+ 227 if m=0,
Bb0+b|zHa()+a1sz = \r \r .
0, if m>1,
we obtain that Hy .4, Bpy+b,; = Bry+bzHag+arz> 1f and only if, a;b; = 0. O

For the case that ¢ is co-analytic and ¢ is an analytic polynomial, we obtain the necessary and
sufficient condition for the commutativity of B, and H, on the Bergman space.

00 N
Theorem 3.1. Suppose that ¢ € H* with the Taylor series p(z) = Y, a,z" and Yy(z) = ), b,z". Then
n=0 n=0
B(,OHlﬁ = HWBQG’

if and only if, ¢ is constant or  is constant.

Proof. If
B,H, = H,B,,
then we have
B,H, 2N+m H,B, 2N

for any non-negative integer m. Since

BH 2N+2m: BP
plut ON+2m+1 ¢

V2N +2m + 2 al
m (Z bnznzzmzmn) -0,

n=0

and
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VN +m+1 =
HwB¢Z2N+2m — m HlI/P( Z a ZkZN+m)
V2N +2m + 1 =
1 N+m
- H( Ao (k+1)z")
VN +m+ DN +2m+ 1) " ,Z; et
1 N
_ P02 Y anens Vit 12112)
VN+m+ DN £ 2m+ 1) Z; Z Nem= k1(2)
N—-1 N—k-1
Vk+ D(k+2)n+ 1)
= Z Z ansm—ibniks1
\/(N+m+1)(2N+2m+1)k0 ey n+k+2
we obtain
Nzi”il , NEEDE+ 20+ Dy 33)
a n—. n . .
L L N+m—kUn+k+1 n+k+2
Considering the coefficients of z" in equations in (3.3) yields that
%idmmbl + %éamm—lbz +oee+ A{éivfl)amﬂbzv =0,
Zfammbz + \FaN+m 1by + -+ zi\],v%amnbzv =0,
32(611v+mb3 + ‘faNer by + - + %amﬁbz\f =0,
M(1N+mbN—1 + \/i(,lzl_l)aNer—le =0,
;\,C]YdmmbN =0.
Ifby #0 (N > 0), then a1 = apyz = -+ = aym = 0 for any non-negative integer m. This implies
that a; = O for k > 1. Thus we have ¢ = 0. O

In the following theorem, we establish necessary and sufficient conditions for the product of an
H-Toeplitz operator and a Hankel operator to equals another H-Toeplitz operator or a Hankel operator
on the Bergman space.

Theorem 3.2. Suppose that f,h € H* with the Taylor series f(z) = ), a,Z", h(z) = ), ¢,7", g1(2) =
n=0 n=0

N
3 b,7" and g,(z) = M, where N is a non-negative integer and M is a positive integer. Then we have

n=0

(1) H¢By, = By, if and only if, h = g, = 0, or h = 0 and f is constant;

(2) BfHy, = Hy, if and only if, g, and h are constants, or f = 0 and h is constant;
(3) Hy,By = By, ifand only if, f = h = 0.

Proof. Let us prove (1) first. we first note that

en+1(2) 1 — VN +2 % _N+1
HB,\"'=H,B, - HP(g12ne1)(0)= ——t= H P( b7 +) H,0=0,
17 I AN+2 Van+z e Van+2 ! Z !
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and

eon+1(2) 1 _ = N VN+2 (n+ 1Dy
B,z =B, = P(hey:1)(2)= ( ) <
V2N+2  V2N+2 A V2N +2 Z(; Z n+N+2

Using
HfBg1Z2N+1 — BhZzN+l,

we derive that ¢, y;; = 0 for any n > 0. This implies that h(z) = Z cnZ".

n=0
For N = 0, we have
H By e, = Beeon, (3.4)

for any non-negative integer m. Letting m = 0 and m = 2 in (3.4) respectively, we obtain that

— (n+ Da,
ﬁbozwzn=cm

oy n+?2
and

 (n+ Da,
\/gb() Z %Zn = \/EC()Z.
n=0 n

Thus we have %ﬁboal = ¢y, §b0a3 = \/§c0 and a; = O for any k > 1. This gives that gy = h = 0, or
h = 0and f is constant.

Moreover if N > 0 and by # 0, then we have H;B,z*""' = Byz?"~'. Since H;B,z*""! =
W Z (vt 71 and By 22N = T = We obtain that f = ao + a;z and bfg = cx. From
HfB ZZN:HfB eZN—(Z):HfT en(z) = be n+N
81 81 N + 1 81 \/2N+1 \/2N+l -

_ €+n(2) _ VN + 1 bpenin+1(2)
} Z e e 1 Zo =)
Pliag + a12) Z b\/im —n+N+1] 0,

\/2N +1
\/_
\/7
and

N A R
n=0

we get that 4 = 0 and hence a; = 0. Therefore, we have g, = h =0, or A = 0 and f is constant.
Now we turn to the proof of (2). Suppose that ByH, 7" = H,z" for any m > N. Then we have

m em\Z 1 — Vm + 2 N =
ByH, 2" = BrH,, Vi (+)1 BV 1BfP(81€m+1)(Z) = \/meP(anz F4 “) =0,

AIMS Mathematics Volume 10, Issue 6, 13432—-13450.
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and

em(Z) 1 — (n + 1)Cn+m+1
Hth = Hh = P(hem 1)(Z) n'
Vm+1 Vm+1 ' Z m+n+2

N
This implies that ¢,;,,+1 = 0 for any n > 0 and m > N, which yields h(z) = 3 ¢,z".
n=0
If N > 0 and by # O, then it follows from

BnglZN—l = H,7V,
that by f(z) = cy. Hence, f = ay and byay = cy. Similarly, using
BnglZN_2 — HhZN—z’

we have that

by-1a9 _ CN—1 2cy
= + Z.
N N N+1
This shows that ¢y = 0 and hence ag = cy_; = 0. So we have

3 N-3 CN-2 2¢en-
0=B/H, 7" =H"7 = N 1T N
This gives that cy_, = 0. Repeating the discussion as above, we conclude that f = ay = 0 and ¢, = 0
for k € {1,2,---, N}. This implies that g, and 4 are constants, or f = 0 and 4 is constant.
To prove (3), for each non-negative integer m > N, elementary computations give us that

Vm + 1 - n€ntm
ngszzm — —+ng(2 anzn+m) — (Z a,é,+ (Z) )
V2m + 1 s 2m +1 Von+m+1

+ ( anen+m+1(z)
() )
V2m+1 Z Vn+m+1
N - a, Nn+m + —n+m+1)
= z P = O’
2 ( ,Z‘ Von+m+1

and

[ee)

B7*" = Z

V2m + 1

Combining this with
ng BfZZm — Bh Z2m

yields that
=0, k>0,

to obtain that 4 = 0.
Moreover, for any integer m > 0, we have

eam-1(2) 1

Ve Vom
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_ Vm+1 (n+ Dapim -
- gzZ -

\V2m n+m+1

— ~'m—i-lp(g (2) (n+1)an+m En+1(Z))
\2m ? A on+m+1l il

_Vm+11§ian+m(N mVn+1vn+2 Nt
C Vam A (N+D@r+m+1)

This implies that a,,,,, = 0 forany n € {0,1,--- ,N — 1} and m > 0. Thus we have f = ay. It follows
from

\/ECIQN _
ngBfl = HZNBaol = N1l ZN I _ ()’
that f = ay = 0. Therefore, we have f = h = 0. This finishes the proof of Theorem 3.2. O

Let ¢(z) and ¥(z) be bounded harmonic functions, and g be an analytic polynomial. We end this
section with the following result, which characterizes when B,H, = B,, on the Bergman space.

Theorem 3.3. Suppose that ¢(z) = fi (z)+?2(z) and y(z) = 1(z)+h2(z) are bounded harmonic functzons
and the analytic functions fi, f>, hi, and h, with the Taylor series fi(z) = Z a,7", fr(2) = Z ba7",
hi(z) = Z d,7", hy(z) = Z &7 and g(z) = Z c,Z", where N is a non-negative integer. Then
n=0 n=1 n=0
B,H, = By,

if and only if, one of the following holds:

(1) ¥ = 0 and g is constant;

Q) =0and o(z) = Y, b,7" when N = 2M for some positive integer M;

n=M

Q)Y =0and ¢(z) = Y, b,7" when N =2M + 1 for some positive integer M.
n=M+1

Proof. 1f B,H, = By, then
B,H,7" = B,z™", (3.5)

for any non-negative integer m. For m > N, we have

Bgangzm = BcpP(gEZmH)(Z) =0

1
V2m + 1
Moreover, the right-hand side of (3.5) can be expanded as

m m( ) m
Bz = By = \/‘Z”;H [P( (22" + P (2)2")]

m+1 (o S ok+1
— § d k+m+§ e )
2m+1( @ m+ f e

k=0 k=0
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It induces that

(59

m—1
k+1
§dk+’"+§ =0, 3.6
K k:0m+1§ +z (3.6)

k=0

for any m > N. It follows from (3.6) that d; = O for any £ > 0 and & = O for any £ > 1. Thus, we
obtain ¢ = 0. Combining this with B,H, = B, yields that

eN- 1(Z) 1
0= BngzN "= B,H,——— 7N \/_B +P(gen)(2)
————P(fi + )@ = ———fi(2).
S v O
Ifcy #0 (N > 0), then we have f; =
e If N = 2M for some positive integer M, then
3 Vi + 1
O:BHZ:B(— e crae@)
£ te £ \/z - k+3 k+2€k
M-1 )
V2k + 1 V2k +2
= — j ( C2k+2€2k(Z) + Czk+3€2k+1(Z))
\/Q 2\ 2k kzz;l 2k + 4
V3RS & V2k+ I+ D
= —nZ
V2SS ok eV T
S o) (8 o
VNS ok 4 3y VT 1 by Li k4 ka1 !
& 3V2k+1 (M - 2)\2M -
+ ( Cops2bi— 2) i ( C2M—2b1
= Qk+3)Vk+1 QM - 1) VM
M-2)NV2M -1 M-1)V2M -1
+ ( ) Cszz)ZM_3 + (( ) CZMbl)ZM_Z]-
QM + 1) VM QM + ) VM

It follows from cy = copy # Othat by = O0fork e {1,2,--- ,M — 1}.
o If N =2M + 1 for some non-negative integer M, then

Vk+1
0=B; H,l= sz( V2 Z Ck+lek(Z))
k_

~ k+2
M M-1
2k +1 V2k +2
= \/Esz( EO ) Corr1€2k(2) + ];:O —2k 3 C2k+2€2k+1(Z))

k=
V2k+1(n+1)
= V2 by
;;(2“2)«/“ Catrtbind”

) Mo Bk + 1 o 2V2k+1
_w[(;(zmz)\/m Cz"“b") (;(2k+2)\/k+ okt bic 1)

\®)

[\®)

AIMS Mathematics Volume 10, Issue 6, 13432—-13450.



13447

+(i 3V2k+ 1 ) )2+ +((M—1)\/2M—1 )
C 2 < Copm—
Zi 0k +2) Tl 2k+10k—2 MM 2M-101
M-1)V2M +1 M2 MN2M + 1 M1
+ 02M+1b2)2 +( CZM+lb1)Z ]
M +2)VM + 1 M +2)VM + 1

Combing with cy = coy4+1 # 0 gives that b, = 0 for k € {1,2,--- , M}.
Therefore, we have

S b7, if N=2M,

nM

Y b7, if N=2M+1.

n=M+1

o(z) =

Conversely, if N = 2M, ¢ = 0, and ¢(z) = Y, b,Z", then for any non-negative integer m we derive

n=M
that
0= B,z", if m> N,
B,H Zm = — 2M—-m—1
‘p g 2 1 n+m+ — .
\/ZLsz( Zo (n;+)51+2 lzn) 0=By7z", if m<N-1.
n=

Furthermore, if N = 2M + 1, ¢ = 0, and ¢(z) = ), b,Z", then for any non-negative integer m we

n=M+1
obtain that

0= Byz", if m>=N,
This completes the proof of Theorem 3.3. O

4. The point spectra of H-Toeplitz operators
In this short section, we study the property of the point spectrum of the H-Toeplitz operators B~
and the spectrum of the H-Toeplitz operators B.v on the Bergman space.

Proposition 4.1. Suppose that ¢(z) = 7", where N is a non-negative integer. Then the point spectrum
o ,(By) is contained in the closed unit disk D.

Proof. Let f be a function in ker(A/ — B,), where [ is the identity operator on L2. Suppose that

f() = Z a;Z*. Then direct computations give us that
k=0

0= -B,)f) =2 Z a - B, Z at

(%9

i wd - (B, ) a4 B Zazk )

= k=0
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=4

S

5 [zg oo 3 20
)

ayVk+1 ,, an-ok 1 VN —k+ 1(k+1)
: (Z & Z V2N = 2k(N + 1) )

(o)

=0 im0 V2k+1

This gives that A is an eigenvalue of B, if and only if,

Aay = apy- 1@\1{,%1)

Aa; = ay-3 \/W\—@(?VH)’
N-1

Aay-y = al%,

and

Aay = ay,

Aayyy = Clz%,

Adyn-1 = a2 VSICL_],

Aary = aan \/\/2%,

Adyny = Clzzv+2%,

If |2] > 1, then we have

VN +k+1
Arn+k = A2N+2k , k=>=0.
AV2N + 2k + 1

It follows that

1 VN+k+1 1 VN+k+1VN+2k+1
AON+k — T —F/—————WIN+2k — 5
A\2N +2k + 1

A \2N + 2k + 1 V2N + 4k + 1
for any non-negative integer m, where c(N, k) € (0, 1) is a constant depending only on N and k. As
lim a, = 0, ayy+x = 0 for any non-negative integer k.

n—oo

Letting G = {ay, ay,- - ,axy-1}, we define a bijection on G by

——c(N, k)asn 2,

AON+4k =

/lml

VN+1-k(k+1) . < < _
aZleﬂm(N+]) if 0<k<N 1,

O(ay) = pa— .
WU-2N T0k2N+T)° if N<k<2N-1
Let
0 1 - N-1 N N+1 --- 2N-1
“TlaN-1 aN=3 - 1 0 2 .. 2N-2
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13449

be a permutation. Recall that every nonidentity permutation in §, (the symmetric group of all
permutations on {1, 2,--- ,n}) is uniquely (up to the order of the factors) a product of disjoint cycles,
each of which has length at least 2. See [14, Theorem 6.3] if needed. It follows that

la| = &k, Dlal,

where k € {0,1,--- ,2N — 1} and &(k, 1) is a constant depending only on k and A and 0 < &(k, 1) < 1.
This implies that_ak =0 forany k € {0,1,--- ,2N — 1}. Thus f = 0. This means that A ¢ o ,(B,) and
hence o,(B,) C D, completing the proof. O

Proposition 4.2. Suppose that ¢(z) = 7", where N is a non-negative integer. Then the spectrum o(By)
is contained in the closed unit disk D.

Proof. Since H:v = 0, Bov = PMavK = T:nPK. 1t follows that
sup{|d] : 1 € o(B)} < ||Ba|| = ITvPK] < 1,
and subsequently o-(B.v) C D. This finishes the proof. O
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