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1. Introduction

In the sequel, the following notations and acronyms will be utilized:

• N : the set of natural numbers
• N0 : N ∪ {0}
• R : the set of real numbers
• R+ := (0,∞)
• R+0 := [0,∞)
• MS : metric space
• BVP: boundary value problem
• BCP : Banach contraction principle
• F(Q) : fixed-point set of function Q
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• C(S ) : the space of continuous functions on a set S
• C′(S ) : the space of continuously differentiable functions on a set S

Fixed-point theory is one of the foremost prominent topics in nonlinear analysis, and subsequently,
mathematics. Its findings can be extended to a wide range of integral equations, differential equations,
and matrix equations to demonstrate the existence and uniqueness of various types of nonlinear
problems. The classical BCP [1] is an extremely important conclusion of metric fixed point theory.
The concept of BCP is crucial across many mathematical disciplines. It is successfully attempted
to investigate solutions of Volterra as well as Fredholm integral equations, BVPs, nonlinear matrix
equations, and nonlinear integro-differential equations, and to illustrate the convergence of algorithms
in mathematical computing. Multiple variants of the BCP are accessible in the existing literature
of metric fixed point theory; e.g., Boyd and Wong [2], Alber and Guerre-Delabriere [3], Ćirić [4],
Kirk [5], Dutta and Choudhury [6], Jachymski [7] and related references. One of the noted classes of
generalizations of BCP involves the contraction-inequality of the following form:

ψ(σ(Qu,Qv)) ≤ φ(σ(u, v)). (1.1)

In recent years, various authors established fixed point theorems under contraction condition of
the form (1.1) employing different perspectives, e.g., Amini-Harandi and Petruşel [8], Berzig [9],
Proinov [10], Górnicki [11], Popescu [12], Olaru and Secelean [13], Roldán López de Hierro et al. [14],
Găvruţa and Manolescu [15], and similar others. In follow-up evaluation, Ω refers to the class of the
pair (ψ, φ) of the functions ψ, φ : R+ → R that verify:

(a) ψ is monotonic increasing;
(b) φ(t) < ψ(t), for every t > 0;
(c) Any one of the subsequent circumstances is valid:

(c1) lim sup
t→ϵ+

φ(t) < ψ(ϵ+), for every ϵ > 0;
or,

(c2) lim sup
t→ϵ

φ(t) < lim inf
t→ϵ+

ψ(t), for every ϵ > 0;
or,

(c3) lim sup
t→ϵ+

φ(t) < lim inf
t→ϵ

ψ(t), for every ϵ > 0.

The above family of functions is considered by Górnicki [11] in order to obtain the analogues of
some outcomes of Proinov [10] in the setup of preordered metric space.

In 2015, Alam and Imdad [16] presented an inventive adaptation of the BCP to arbitrary binary
relations. There are so many generalizations of this core results; however, we merely refer to the
recent works due to [17], Alam and Imdad [18], Arif et al. [19], Algehyne et al. [20], and Alamer
and Khan [21]. One of the most notable advantages of relational contractions is that no pair of
elements is essential; the contraction inequality is enough to remain valid for comparable elements.
Relational contractions remain somewhat weaker than their corresponding common contractions. Due
to this, such outcomes are implemented to solve certain kinds of integral equations, BVPs and matrix
equations, wherein the fixed point findings pertaining to ordinary MS are not laid down.

This paper is an attempt to address outcomes on fixed points of a contraction map of the form (1.1)
under the familyΩ involving a locally Q-transitive relation. A few examples are furnished for attesting
to the credibility of our findings. We entail the availability of a unique solution of a periodic BVP
solution by utilizing our findings.
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2. Preliminaries

This section covers some essential concepts and preliminary findings for the discussions to follow.
In upcoming descriptions, let U be a nonempty set, σ a metric on U, Q a function on U, and S a binary
relation on U, (i.e., S ⊆ U2). We say that

Definition 2.1. [16] The points u and v of U remain S-comparative if (u, v) ∈ S or (v, u) ∈ S. We write
it as [u, v] ∈ S.

Definition 2.2. [22] S−1 = {(u, v) ∈ U2 : (v, u) ∈ S} is the inverse of S.

Definition 2.3. [22] Ss := S ∪ S−1 is the symmetric closure of S.

Proposition 2.1. [16] (u, v) ∈ Ss ⇐⇒ [u, v] ∈ S.

Definition 2.4. [16] A sequence {un} ⊂ U is S-preserving if

(un, un+1) ∈ S, ∀ n ∈ N0.

Definition 2.5. [16] S is Q-closed if

(u, v) ∈ S⇒ (Qu,Qv) ∈ S.

Proposition 2.2. [17] If S is Q-closed, then Ss is also Q-closed.

Proposition 2.3. [18] If S is Q-closed, then for each n ∈ N0, S is also Qn-closed.

Definition 2.6. [17] (U, σ) is S-complete if each S-preserving Cauchy sequence in U is convergent.

Definition 2.7. [17] Q is S-continuous at a point u ∈ U if for any S-preserving sequence {un} verifying
un

σ
−→ u, we have Q(un)

σ
−→ Q(u). Moreover, Q is S-continuous if it is S-continuous at each point of

U.

Definition 2.8. [16] S is σ-self-closed if each S-preserving sequence {un} verifying un
σ
−→ u contains

a subsequence {unk} with [unk , u] ∈ S, ∀ k ∈ N0.

Definition 2.9. [23] Given a pair u, v ∈ U, a path of length l in S from u to v is a finite ordered set
{w0,w1,w2, ...,wl} ⊂ U that verifies:

(i) w0 = u and wl = v;
(ii) (wi,wi+1) ∈ S, for each i (0 ≤ i ≤ l − 1).

Definition 2.10. [17] A subset W of U is S-connected if any two elements of W enjoy a path.

Definition 2.11. [18] S is Q-transitive if for all u, v,w ∈ U,

(Qu,Qv), (Qv,Qw) ∈ S⇒ (Qu,Qw) ∈ S.

Definition 2.12. [18] S is locally transitive if for every S-preserving sequence {un} ⊂ U (with range
W = {un : n ∈ N}), the restriction S|W is transitive.
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Definition 2.13. [18] S is locally Q-transitive if for every S-preserving sequence {un} ⊂ Q(U) (with
range W = {un : n ∈ N}), the restriction S|W is transitive.

The following outcomes achieves the variation of ‘locally Q-transitivity’ over other concepts of
‘transitivity’:

Proposition 2.4. [18] We have

(i) S is Q-transitive⇔ S|Q(U) is transitive;
(ii) S is locally Q-transitive⇔ S|Q(U) is locally transitive;

(iii) S is transitive⇒ S is Q-transitive⇒ S is locally Q-transitive;
(iv) S is transitive⇒ S is locally transitive⇒ S is locally Q-transitive.

Definition 2.14. [24] A sequence {un} ⊂ P is semi-Cauchy if

lim
n→∞

σ(un, un+1) = 0, ∀ n ∈ N.

Obviously, each Cauchy sequence is semi-Cauchy, but the converse is not true, as demonstrated by
the following example.

Example 2.1. Consider P = R with metric σ(u, v) = |u − v|, for all u, v ∈ P. Then, the sequence

{un} ⊂ P defined by un =
n∑

k=1

1
k

is semi-Cauchy but not Cauchy.

Lemma 2.1. [12] Let {un} be a semi-Cauchy sequence in a MS (U, σ). If {un} is not Cauchy, then we
can determine a couple of subsequences {unk} and {umk} of {un} and a positive real number ϵ with

lim
k→∞

σ(unk+1, umk+1) = lim
k→∞

σ(unk , umk) = ϵ + . (2.1)

3. Main results

For a relation S and a function Q on a set U, the subsequent annotations will be utilized:

• SQ := {(u, v) ∈ S : Q(u) , Q(v)},
• U(Q,S) := {u ∈ U : (u,Qu) ∈ S}.

Obviously, (u, v) ∈ SQ =⇒ Q(u) , Q(v) =⇒ u , v.
Now, we shall prove the fixed point theorem via a locally Q-transitive relation employing the pair

of functions belonging to the family Ω.

Theorem 3.1. Assuming that (U, σ) is a MS endowed with a relation S and Q a function on U. Also,

(i) U(Q,S) , ∅,
(ii) S is Q-closed and locally Q-transitive,

(iii) (U, σ) is S-complete,
(iv) Q is S-continuous or S is σ-self-closed,
(v) ∃ (ψ, φ) ∈ Ω with

(u, v) ∈ SQ =⇒ ψ(σ(Qu,Qv)) ≤ φ(σ(u, v)),
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Then, U has a fixed point.

Proof. The proof distinguishes into several steps:
Step 1. By assumption (i), ∃ u0 ∈ U(Q,S). Define

un := Qn(u0), ∀ n ∈ N0. (3.1)

so that
un+1 = Q(un), ∀ n ∈ N0.

Thus, {un} is the Picard sequence based at the initial point u0.
Step 2. We assert that {un} is an S-preserving sequence. As (u0,Qu0) ∈ S, using Q-closedness of S and
Proposition 2.3, we get

(Qnu0,Qn+1u0) ∈ S,

so that
(un, un+1) ∈ S, ∀ n ∈ N0. (3.2)

Therefore, the sequence {un} is S-preserving.
Step 3. We consider the case: σ(un0 , un0+1) = 0 for some n0 ∈ N0. Then, employing (3.1), we get
un0 = un0+1 = Q(un0) = 0. This yields that un0 ∈ F(Q), and hence, our task is accomplished. In either
case (when σ(un, un+1) > 0, for all n ∈ N0), we’ll continue the succeeding steps.
Step 4. We prove that {un} is semi-Cauchy, i.e.,

lim
n→∞

σ(un, un+1) = 0. (3.3)

Denote σn := σ(un, un+1) > 0. Clearly, (un, un+1) ∈ SQ. Employing assumption (v), we attain, for all
n ∈ N0 that

ψ(σn+1) ≤ φ(σn),

which by using axiom (b) of Ω reduces to

ψ(σn+1) ≤ φ(σn) < ψ(σn). (3.4)

It follows from (3.4) and axiom (a) that σn+1 < σn for each n ∈ N0. Thus, the sequence {σn} ⊂ R
+

is monotonically decreasing which is also bounded below. Consequently, ∃ δ ≥ 0 with σn
R
−→ δ.

Let δ > 0. Next, we use property (c) of Ω. If (ψ, φ) satisfies axiom (c1), then, employing limit
superior in (3.4), we attain

ψ(δ+) = lim
n→∞

ψ(σn+1) ≤ lim sup
n→∞

φ(σn) ⩽ lim sup
t→δ+

ψ(t),

which contradicts axiom (c1). Thus, we conclude that lim
n→∞

σn = 0.
Second, assume that the pair (ψ, φ) satisfies axiom (c2). Letting the limit inferior in (3.4), we attain

lim inf
t→δ+

ψ(t) ⩽ lim inf
n→∞

ψ(σn+1) ⩽ lim sup
n→∞

φ(σn) ⩽ lim sup
t→δ

φ(t),

which contradicts axiom (c2). Hence, we conclude that lim
n→∞

σn = 0.
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Finally, assume that (ψ, φ) satisfy axiom (c3). Letting the limit inferior as n→ ∞ in (3.4), we attain

lim inf
t→δ

ψ(t) ⩽ lim inf
n→∞

ψ(σn+1) ⩽ lim sup
n→∞

φ(σn) ⩽ lim sup
t→δ+

φ(t),

which contradicts axiom (c3). Hence, we conclude that lim
n→∞

σn = 0. Thus, in each of the cases, (3.3) is
verified.
Step 5. We assert that {un} is Cauchy. If {un} is not Cauchy, then using Lemma 2.1, we can determine
two subsequences {unk} and {umk} of {un} and ϵ > 0 for which (2.1) holds. In view of (3.1), we
have {un} ⊂ Q(U). Using locally Q-transitivity of S, we get (unk , umk) ∈ S. From (2.1), we find
σ(unk+1, umk+1) > ϵ for all k ∈ N; consequently, we have (unk , umk) ∈ SQ. Applying condition (v) for
these points, we get

ψ(σ(unk+1, umk+1)) ≤ φ(σ(unk , umk)), ∀ k ∈ N. (3.5)

Using axiom (b), we obtain

ψ(σ(unk+1, umk+1)) ≤ φ(σ(unk , umk)) < ψ(σ(unk , umk)),

which, using monotonicity of ψ, gives rise

σ(unk+1, umk+1) < σ(unk , umk).

Now, we shall employ property (c) of Ω. First, assume that the pair (ψ, φ) satisfies axiom (c1).
Employing the limit superior in (3.5), we obtain

ψ(ϵ+) = lim
k→∞

ψ(σ(unk+1, umk+1)) ≤ lim sup
k→∞

φ(σ(unk , umk)) ≤ lim sup
t→ϵ+

φ(t),

which contradicts to axiom (c1).
Second, assume that ψ and φ satisfy axiom (c2). Employing the limit inferior in (3.5), we get

lim inf
t→ϵ

ψ(t) = lim inf
k→∞

ψ(σ(unk+1, umk+1)) ≤ lim sup
k→∞

φ(σ(unk , umk)) ≤ lim sup
t→ϵ+

φ(t),

which contradicts to axiom (c2).
Finally, assume that ψ and φ satisfy axiom (c3). Employing the limit inferior as k → ∞ in (3.5), we

attain
lim inf

t→ϵ
ψ(t) = lim inf

k→∞
ψ(σ(unk+1, umk+1)) ≤ lim sup

k→∞
φ(σ(unk , umk)) ≤ lim sup

t→ϵ+
φ(t),

which contradicts to axiom (c3). Therefore, in each of the cases, {un} is Cauchy, which is also S-
preserving. Employing S-completeness of (U, σ), ∃ u ∈ U with un

σ
−→ u.

Step 6. We verify that u is a fixed point of U employing the hypothesis (iv). Assume that Q is
S-continuous. As {un} is S-preserving with un

σ
−→ u, using S-continuity of Q, we obtain un+1 =

Q(un)
σ
−→ Q(u). Therefore, we conclude Q(u) = u, i.e., u is a fixed point of U. Alternatively, in case

S to be σ-self-closed, there is a subsequence {unk} of {un} with [unk , u] ∈ SQ, for all k ∈ N. Now two
cases arise:
Case (i): If for infinitely many values of k, [unk , u] < SQ, then we have σ(Qunk+1,Qu) = 0 yielding
thereby

σ(u,Qu) ≤ σ(u, unk+1) + σ(unk+1,Qu) = σ(u, unk+1)
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→ 0 as k → ∞,

so that U(u) = u and hence the proof is completed.
Case (ii): Assume that [unk , u] ∈ SQ for infinitely many values of k. In view of the symmetric property
of metric σ, the contraction condition (v) will be satisfied for all [u, v] ∈ SQ. Thus, we obtain

ψ(unk+1,Qu) = ψ(Qunk ,Qu) ≤ φ(unk , u) < ψ(unk , u),

so that
ψ(σ(unk+1,Qu)) < ψ(σ(unk , u)).

Using monotonicity of ψ above equality give rise to

σ(unk+1,Qu) < σ(unk , u)→ 0 as k → ∞,

so that Q(u) = u, and hence, u is a fixed point of Q. □

Theorem 3.2. In alliance with the predictions of Theorem 3.1, if

(u) Q(U) is Ss-connected,

then, Q owns a unique fixed point.

Proof. Due to Theorem 3.1, F(Q) , ∅. Choose u∗, v∗ ∈ F(Q), then for each n ∈ N0, we arrive at

Qn(u∗) = u∗ and Qn(v∗) = v∗.

Clearly u∗, v∗ ∈ Q(U). By Ss-connectedness of Q(U), we determine a path w0,w1,w2, ...,wl between
u∗ and v∗; so,

w0 = u∗,wl = v∗ and [wi,wi+1] ∈ S, ∀ i = 0, 1, ..., l − 1.

As S is Q-closed, we have

[Qnwi,Qnwi+1] ∈ S, ∀ n ∈ N0 and ∀ i = 0, 1, ..., l − 1.

Denote
δn

i := σ(Qnwi,Qnwi+1) ∀ n ∈ N0 and ∀ i = 0, 1, ..., l − 1.

We show that
lim
n→∞

δi
n = 0. (3.6)

For every fixed i, consider the two possible cases:
Case (i): Assume that

δi
n0
= σ(Qn0wi,Qn0wi+1) = 0, for some n0 ∈ N0,

thereby implying Qn0(wi) = Qn0(wi+1). By (3.1), we attain Un0+1(wi) = Qn0+1(wi+1); so, δi
n0+1 = 0.

Using induction, we get δi
n = 0 ∀ n ≥ n0 so that lim

n→∞
δi

n = 0.

Case (ii): If for every n ∈ N0, δi
n > 0, then we have (Qnwi,Qnwi+1) ∈ Ss

Q. From (v), we attain

ψ(δi
n+1) = ψ(σ(Qn+1wi,Qn+1wi+1))
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= ψ(σ(Q(Qnwi),Q(Qnwi+1)))
≤ φ(σ(Qnwi,Qnwi+1))
= φ(δi

n),

so that
ψ(δi

n+1) ≤ φ(δi
n). (3.7)

Using axiom (b) of Ω, (3.7) reduces to

ψ(δi
n+1) ≤ φ(δi

n) < ψ(δi
n), ∀ n ∈ N0,

which, in view of axiom (a), reduces to δi
n+1 < δi

n for all n ∈ N0. Hence, proceeding with the proof of

Theorem 3.1, we can determine δi ≥ 0 satisfying δi
n
R
−→ δi.

In view of property (c), let us assume that (ψ, φ) satisfies axiom (c1). Employing limit superior in
(3.7), we obtain

ψ(δi+) = lim
n→∞

ψ(δi
n+1) ≤ lim sup

n→∞
φ(δi

n) ⩽ lim sup
δi

n→δ
i+

ψ(δi
n),

which is a contradiction to axiom (c1). Hence, we conclude that lim
n→∞

δi
n = 0.

Second, assume that the pair (ψ, φ) satisfies axiom (c2). Letting the limit inferior in (3.7), we obtain

lim inf
t→δi+

ψ(t) ⩽ lim inf
n→∞

ψ(δi
n+1) ⩽ lim sup

n→∞
φ(δi

n) ⩽ lim sup
t→δi

φ(t),

which is a contradiction to axiom (c2). Hence, we conclude that lim
n→∞

δi
n = 0.

Finally, assume that (ψ, φ) satisfies axiom (c3). Letting the limit inferior in (3.7), we attain

lim inf
t→δi

ψ(t) ⩽ lim inf
n→∞

ψ(δi
n+1) ⩽ lim sup

n→∞
φ(δi

n) ⩽ lim sup
t→δi+

φ(t),

which is a contradiction to axiom (c3). Hence, we conclude that lim
n→∞

δi
n = 0.

Hence, (3.6) is proved. Using the triangle inequality, we find

σ(u∗, v∗) = σ(Qnw0,Qnwk)
≤ δ0

n + δ
1
n + · · · + δ

k−1
n

→ 0 as n→ ∞;

so, u∗ = v∗. Thus, Q admits a unique fixed point. □

4. Illustrative examples

In the following, we provide two instances to substantiate the relevance of Theorems 3.1 and 3.2.

Example 4.1. Let U = [2, 4] be a MS with usual metric σ. On U, consider the relation S =
{(2, 2), (2, 3), (3, 2), (3, 3), (0, 4)}. Then, (U, σ) is a complete MS. Define a function Q on U
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Q(u) =

2 if 2 ≤ u ≤ 3,
3 if 3 ≤ u ≤ 4.

Thus, S is Q-closed. Assuming that {un} ⊂ U is S-preserving sequence and un
σ
−→ u. Consequently,

we conclude (un, un+1) ∈ S, for every n ∈ N. Note that (un, un+1) < {(2, 4)}, implying thereby (un, un+1) ∈
{(2, 2), (2, 3), (3, 2), (3, 3)}, ∀ n ∈ N; so, {un} ⊂ {2, 3}. Closedness of {2, 3} yields that [un, u] ∈ S.
Hence, S is σ-self-closed. Define the functions ψ, φ : R+ → R by

ψ(t) = t2 and φ(t) =
t2

(t2 + 1)
.

Then, (ψ, φ) ∈ Ω and the contraction-inequality (v) of Theorem 3.1 is verified for (ψ, φ). Moreover, the
remaining hypotheses of Theorems 3.1 and 3.2 are also verified. This concludes that Q owns a unique
fixed point (namely: ū = 2).

Example 4.2. Take U = R+ with Euclidean metric σ. Construct a relation S on U by

S := {(u, v) ∈ U2 : u2 + 2u = v2 + 2v}.

Clearly, the MS (U, σ) forms an S-complete. Define a function Q on U by

Q(u) = ln(u2 + 2u + 1),∀u ∈ U.

Then, S is a locally finitely Q-transitive and Q-closed relation, while Q is S-continuous. Also,
U(Q,S) , ∅ as (0,Q0) ∈ S.

Take (u, v) ∈ S. Then, we have

Q(u) = ln(u2 + 2u + 1) = ln(v2 + 2v + 1) = Q(v)

yielding thereby
(Qu)2 + 2Qu = (Qv)2 + 2Qv.

This implies that (Qu,Qv) ∈ S, and hence, S is Q-closed. Define the pair (ψ, φ) ∈ Ω such that

ψ(t) =


ln(t + 1), if t ≤ 1,

3t
4
, if t > 1,

(4.1)

and φ(t) = 2t/3. Then, for all (u, v) ∈ S, we can easily verify the following condition:

ψ(σ(Qu,Qv)) ≤ φ(σ(u, v)).

Thus far, the requirements of Theorems 3.1 and 3.2 are all fulfilled. Thus, Q owns a unique fixed point
(namely: ū = 0).
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5. An application to BVP

Consider the following first-order periodic BVP:ω′(ξ) = ℏ(ξ, ω(ξ)), for each ξ ∈ [0, L],
ω(0) = ω(L),

(5.1)

where ℏ : [0, L] ×R −→ R is a continuous function.

Definition 5.1. [25] ω ∈ C(1)[0, L] is named as a lower solution of (5.1) if

ω′(ξ) ≤ ℏ(ξ, ω(ξ)), for each ξ ∈ [0, L],
ω(0) ≤ ω(L).

Definition 5.2. [25] ω ∈ C(1)[0, L] is named as an upper solution of (5.1) if

ω′(ξ) ≥ ℏ(ξ, ω(ξ)), for each ξ ∈ [0, L],
ω(0) ≥ ω(L).

We now present the outcome, insuring a solution to Problem (5.1).

Theorem 5.1. Along with the problem (5.1), if ∃ λ, α > 0 with

α ≤
(2λ(eλL − 1)

L(eλL + 1)

) 1
2

,

such that for l,m ∈ R with l ≥ m,

0 ≤ ℏ(ξ, l) + λl − [ℏ(ξ,m) + λm] ≤ α
√

ln[(l–m)2 + 1]. (5.2)

If (5.1) admits a lower solution, then it possesses a unique solution.

Proof. Rewrite Problem (5.1) asω′(ξ) + λω(ξ) = ℏ(ξ, ω(ξ)) + λω(ξ), for ξ ∈ [0, L],
ω(0) = ω(L),

(5.3)

Equation (5.3) is equivalent to the integral equation

ω(ξ) =
∫ L

0
𭟋(ξ, τ)[ℏ(τ, ω(τ)) + λω(τ)]dτ, (5.4)

where the Green function is

𭟋(ξ, τ) =


eλ(L+τ−ξ)

eλL − 1
, 0 ≤ τ < ξ ≤ L;

eλ(τ−ξ)

eλL − 1
, 0 ≤ ξ < τ ≤ L.
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Denote U := C[0, L]. Define a function Q : U −→ U by

(Qω(ξ) =
∫ L

0
𭟋(ξ, τ)[ℏ(τ, ω(τ)) + λω(τ)]dτ, (5.5)

Thus, θ ∈ U is a fixed point of Q if and only if, θ ∈ C1[0, L] forms a solution of (5.4), and hence, of
(5.1). On U, endow a relation

S = {(ω, ν) ∈ U × U : ω(ξ) ≤ ν(ξ), ∀ ξ ∈ [0, L]}; (5.6)

and a metric
σ(ω, ν) = sup

ξ∈[0,L]
|(ω(ξ) − ν(ξ)|, ∀ ω, ν ∈ U. (5.7)

Now, we check all the presumptions of Theorem 3.2.
(i) Assuming that ω(ξ) is a lower solution for (5.1). We conclude

ω′(ξ) + λω(ξ) ≤ ℏ(ξ, ω(ξ)) + λω(ξ), for ξ ∈ [0, L].

Taking the product with eλξ, we attain(
ω(ξ)eλξ

)′
≤
[
ℏ(ξ, ω(ξ)) + λω(ξ)

]
eλξ, for ξ ∈ [0, L],

or

ω(ξ)eλξ ≤ ω(0) +
∫ ξ

0

[
ℏ(τ, ω(τ)) + λω(τ)

]
eλτdτ, for ξ ∈ [0, L].

As ω(0) ≤ ω(L), the last inequality gives us

ω(0)eλξ ≤ ω(L)eλL ≤ ω(0) +
∫ L

0

[
ℏ(τ, ω(τ)) + λω(τ)

]
eλτdτ,

so that

ω(0) ≤
∫ L

0

eλτ

eλL − 1
[
ℏ(τ, ω(τ)) + λω(τ)

]
dτ,

which, using (5.6), gives rise

ω(ξ)eλξ ≤
∫ ξ

0

eλ(L+τ)

eλL − 1
[
ℏ(τ, ω(τ)) + λω(τ)

]
dτ +

∫ L

ξ

eλτ

eλL − 1
[
ℏ(τ, ω(τ)) + λω(τ)

]
dτ,

and consequently,

ω(ξ) ≤
∫ ξ

0

eλ(L+τ−ξ)

eλL − 1
dτ +

∫ ξ

0

eλ(τ−ξ)

eλL − 1
[
ℏ(τ, ω(τ)) + λω(τ)

]
dτ

=

∫ L

0
𭟋(ξ, τ)

[
ℏ(τ, ω(τ)) + λω(τ)

]
dτ

= (Qω)(ξ), for ξ ∈ [0, L].

AIMS Mathematics Volume 10, Issue 6, 13393–13408.



13404

(ii) Take (ω, ν) ∈ S. Then, for each τ ∈ [0, L], we have ω(τ) ≤ ν(τ). Consequently, using (5.2), we
obtain

ℏ(τ, ω(τ) + λω(τ) ≤ ℏ(τ, ν(τ)) + λν(τ),

which yields that

(Qω(ξ) =
∫ L

0
𭟋(ξ, τ)[ℏ(τ, ω(τ)) + λω(τ)]dτ

≤

∫ L

0
𭟋(ξ, τ)[ℏ(τ, ω(τ)) + λω(τ)]dτ

= (Qν(ξ).

It follows that (Qω,Qν) ∈ S so that S is Q-closed. Also, S being transitive is locally Q-transitive.
(iii) The MS (U, σ) being complete is S-complete.
(iv) Let {ωn} ⊂ U be S-preserving sequence converging to ω ∈ U. Hence, for every ξ ∈ [0, L], {ωn(ξ)}
is an increasing sequence in R converging to ω(ξ), and so, ∀ n ∈ N and τ ∈ [0, L], we conclude
ωn(ξ) ≤ ω(ξ). Again, due to (5.6), it follows that (ωn, ω) ∈ S, ∀ n ∈ N. Thus, S is σ-self-closed.
(v) Take (ω, ν) ∈ SQ. Then, for each τ ∈ [0, L], we attain ω(τ) ≤ ν(τ). Consequently, using (5.2), we
obtain

σ(ω,Qν) = sup
ξ∈[0,L]

|(Qω(ξ) − (Qν(ξ)|

= sup
ξ∈[0,L]

((Qν(ξ) − (Qω(ξ))

= sup
ξ∈[0,L]

∫ L

0
𭟋(ξ, τ)[ℏ(τ, ν(τ)) + λν(τ) − ℏ(τ, ω(τ)) − λω(τ)]dτ

≤ sup
ξ∈[0,L]

∫ L

0
𭟋(ξ, τ)α

√
ln[(ω(τ) − ν(τ))2 + 1]dτ.

Employing Cauchy-Schwarz inequality, we attain∫ L

o
𭟋(ξ, τ)α

√
ln[(ω(τ) − ν(τ))2 + 1]dτ ≤

( ∫ L

0
𭟋(ξ, τ)2dτ

) 1
2

( ∫ L

0
α2 ln[(ω(τ) − ν(τ))2 + 1]

) 1
2

.

The first integral reduces to∫ L

0
𭟋(ξ, τ)2dτ =

∫ ξ

0
𭟋(ξ, τ)2dτ +

∫ L

ξ

𭟋(ξ, τ)2dτ

=

∫ ξ

0

e2λ(L+τ−ξ)

(eλL − 1)2 dτ +
∫ L

ξ

e2λ(τ−ξ)

(eλL − 1)2 dτ

=
1

2λ(eλL − 1)2 e2λL−1
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=
eλL+1

2λ(eλL − 1)
.

The second integral can be estimated as∫ L

0
α2 ln[(ω(τ) − ν(τ))2] ≤ α2 ln[||ω − v||2 + 1] · L

= α2 ln[σ(ω, ν)2 + 1] · L.

Taking into account, we conclude

σ(Qω,Qν) ≤ sup
ξ∈[0,L]

( eλL + 1
2λ(eλL − 1)

) 1
2

· (α2 ln[σ(ω, ν)2 + 1] · L)
1
2

=

( eλL + 1
2λ(eλL − 1)

) 1
2

· α ·
√

L(ln[σ(ω, ν)2 + 1])
1
2 ,

and from the last inequality, we obtain

σ(Qω,Qν2
≤

( eλL + 1
2λ(eλL − 1)

)
· α2 · L · ln[σ(ω, ν)2 + 1],

or equivalently,
2λ(eλL − 1)σ(Qω,Qν2

≤ (eλL + 1) · α2 · L · ln[σ(ω, ν)2 + 1].

Using the hypothesis:

L ≤
(2λ(eλL − 1)

QeλL + 1

) 1
2

,

the last inequality reduces to

2λ(eλL − 1)σ(Qω,Qν2
≤ 2λ(eλL − 1) · ln[σ(ω, ν)2 + 1],

and hence,
σ(Qω,Qν2

≤ ln[σ(ω, ν)2 + 1].

Put ψ(ξ) = ξ2 and φ(ξ) = ln(ξ2 + 1). Then, we have (ψ, φ) ∈ Ω. Thus, (5.7) reduces to

ψ
(
d(Qω,Qν

)
≤ φ
(
σ(ω, ν)

)
, ∀ (ω, ν) ∈ SQ.

Let ω, ν ∈ U be arbitrary. Then, one has ϑ := max{Qω,Qν} ∈ U. As (Qω, ϑ) ∈ S and (Qν, ϑ) ∈ S,
{Qω, ϑ,Qν} is a path in Ss between Q(ω) and Q(ν). Thus, Q(U) is Ss-connected, and so by Theorem
3.2, Q owns a unique fixed point, which forms the unique solution of Problem (5.1).

Intending to illustrate Theorem 5.1, we consider the following numerical example.

Example 5.1. Let ℏ(ξ, ω(ξ)) = cos ξ for 0 ≤ ξ ≤ π; then ℏ is a continuous function. Note that ω = 0 is
a lower solution for ω′(ξ) = cos ξ. Therefore, Theorem 5.1 can be applied for the given problem, and
hence, ω(ξ) = sin ξ forms the unique solution.

□
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6. Conclusions

We investigated metrical fixed-point findings for a relational contraction map under generalized
contraction via a pair of test functions, which, under the preordered (reflexive and transitive) relation,
deduce the corresponding outcomes of Górnicki [11]. To demonstrate our outcomes, we furnished a
few examples. From an application point of view, we discussed an existence and uniqueness theorem
for certain BVP under the availability of a lower solution. Analogously, we can also study the existence
and uniqueness of the BVPs whenever an upper solution exists. As a future plane, we can improve our
outcomes to a couple of self-maps by establishing coincidence and common fixed point theorems.
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11. J. Górnicki, Fixed point theorems in preordered sets, J. Fixed Point Theory Appl., 23 (2021), 71.
https://doi.org/10.1007/s11784-021-00909-6

12. O. Popescu, Some remarks on the paper Fixed point theorems for generalized contractive mappings
in metric spaces, J. Fixed Point Theory Appl., 23 (2021), 72. https://doi.org/10.1007/s11784-021-
00908-7

13. I. M. Olaru, N. A. Secelean, A new approach of some contractive mappings on metric spaces,
Mathematics, 9 (2021), 1433. https://doi.org/10.3390/math9121433

14. A. F. R. L. de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov-type fixed-
point results in non-Archimedean fuzzy metric spaces, Mathematics, 9 (2021), 1594.
https://doi.org/10.3390/math9141594
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