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1. Introduction

In the sequel, the following notations and acronyms will be utilized:

e N : the set of natural numbers

Ny : NU {0}

R : the set of real numbers

R* := (0, )

Ry := [0, 00)

MS : metric space

BVP: boundary value problem
BCP : Banach contraction principle
F(Q) : fixed-point set of function Q
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e C(S) : the space of continuous functions on a set §
e C’(S) : the space of continuously differentiable functions on a set S

Fixed-point theory is one of the foremost prominent topics in nonlinear analysis, and subsequently,
mathematics. Its findings can be extended to a wide range of integral equations, differential equations,
and matrix equations to demonstrate the existence and uniqueness of various types of nonlinear
problems. The classical BCP [1] is an extremely important conclusion of metric fixed point theory.
The concept of BCP is crucial across many mathematical disciplines. It is successfully attempted
to investigate solutions of Volterra as well as Fredholm integral equations, BVPs, nonlinear matrix
equations, and nonlinear integro-differential equations, and to illustrate the convergence of algorithms
in mathematical computing. Multiple variants of the BCP are accessible in the existing literature
of metric fixed point theory; e.g., Boyd and Wong [2], Alber and Guerre-Delabriere [3], Ciri¢ [4],
Kirk [5], Dutta and Choudhury [6], Jachymski [7] and related references. One of the noted classes of
generalizations of BCP involves the contraction-inequality of the following form:

Y(0(Qu, Qv)) < p(or(u, V). (1.1)

In recent years, various authors established fixed point theorems under contraction condition of
the form (1.1) employing different perspectives, e.g., Amini-Harandi and Petrusel [8], Berzig [9],
Proinov [10], Gérnicki [11], Popescu [12], Olaru and Secelean [13], Roldan L6opez de Hierro et al. [14],
Gavruta and Manolescu [15], and similar others. In follow-up evaluation, € refers to the class of the
pair (¥, ) of the functions i, ¢ : R* — R that verify:

(a) ¢ 1s monotonic increasing;
(b) ¢(t) < y(2), for every t > 0;
(c) Any one of the subsequent circumstances is valid:
(c1) limsup ¢(t) < Y(e+), for every € > 0;
o Ig’—>e+
(c2) limsup ¢(7) < litm in Y(t), for every € > 0;
t—e —€

or,
(c3) limsup ¢(f) < liminf (¢), for every € > O.
1—e€

t—e+

The above family of functions is considered by Gornicki [11] in order to obtain the analogues of
some outcomes of Proinov [10] in the setup of preordered metric space.

In 2015, Alam and Imdad [16] presented an inventive adaptation of the BCP to arbitrary binary
relations. There are so many generalizations of this core results; however, we merely refer to the
recent works due to [17], Alam and Imdad [18], Arif et al. [19], Algehyne et al. [20], and Alamer
and Khan [21]. One of the most notable advantages of relational contractions is that no pair of
elements is essential; the contraction inequality is enough to remain valid for comparable elements.
Relational contractions remain somewhat weaker than their corresponding common contractions. Due
to this, such outcomes are implemented to solve certain kinds of integral equations, BVPs and matrix
equations, wherein the fixed point findings pertaining to ordinary MS are not laid down.

This paper is an attempt to address outcomes on fixed points of a contraction map of the form (1.1)
under the family Q involving a locally Q-transitive relation. A few examples are furnished for attesting
to the credibility of our findings. We entail the availability of a unique solution of a periodic BVP
solution by utilizing our findings.
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2. Preliminaries

This section covers some essential concepts and preliminary findings for the discussions to follow.
In upcoming descriptions, let U be a nonempty set, o~ a metric on U, Q a function on U, and S a binary
relation on U, (i.e., S C U2). We say that

Definition 2.1. [16] The points u and v of U remain S-comparative if (u, v) € S or (v, u) € S. We write
itas|u,v] € 8.

Definition 2.2. [22] S = {(u,v) € U* : (v, u) € S} is the inverse of S.
Definition 2.3. [22]S* := S U S~ is the symmetric closure of S.
Proposition 2.1. [16] (u,v) € §' < [u,v] € S.
Definition 2.4. [16] A sequence {u,} C U is S-preserving if
(U,, Uy1) €S, Y neN,.
Definition 2.5. [16] S is Q-closed if
(u,v) e S = (Qu,Qv) €8S.
Proposition 2.2. [17] If S is Q-closed, then S° is also Q-closed.
Proposition 2.3. [18] If S is Q-closed, then for each n € Ny, S is also Q"-closed.

Definition 2.6. [17] (U, o) is S-complete if each S-preserving Cauchy sequence in U is convergent.

Definition 2.7. [17] Q is S-continuous at a point u € U if for any S-preserving sequence {U,} verifying

o o . . . . . . .
u, — U, we have Q(u,) — Q(u). Moreover, Q is S-continuous if it is S-continuous at each point of
U.

Definition 2.8. [16] S is o-self-closed if each S-preserving sequence {u,} verifying u, 5 U contains
a subsequence {u,, } with [u,,u] €S, ¥V k € Nj.

Definition 2.9. [23] Given a pair u,v € U, a path of length L in S from U to V is a finite ordered set
{wo, Wi, Wa, ..., w;} C U that verifies:

(i) wo =uand w; = v;
(1) (w;,wipp) €S, foreachi (0<i<I[-1).

Definition 2.10. [17] A subset W of U is S-connected if any two elements of W enjoy a path.
Definition 2.11. [18] S is Q-transitive if for all u,v,w € U,

(Qu,QVv),(Qv,Ow) € S = (Qu,Qw) € S.

Definition 2.12. [I8] S is locally transitive if for every S-preserving sequence {u,} C U (with range
W ={u, : n € N}), the restriction S|w is transitive.
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Definition 2.13. [18] S is locally Q-transitive if for every S-preserving sequence {u,} C Q(U) (with
range W = {u, : n € N}), the restriction S|y is transitive.

The following outcomes achieves the variation of ‘locally Q-transitivity’ over other concepts of
‘transitivity’:

Proposition 2.4. [18] We have

(1) Sis Q-transitive & S| 1S transitive;
(i1) Sis locally Q-transitive < S|q) is locally transitive;
(ii1) S is transitive = S is Q-transitive = S is locally Q-transitive;
(iv) Sis transitive = S is locally transitive = S is locally Q-transitive.

Definition 2.14. [24] A sequence {u,} C P is semi-Cauchy if
lim o(U,, U,41) =0, Y n €N,

Obviously, each Cauchy sequence is semi-Cauchy, but the converse is not true, as demonstrated by
the following example.

Example 2.1. Consider P = R with metric o(u,Vv) = |u— V|, for all u,v € P. Then, the sequence

n

1
{u,} c P defined by u, = z is semi-Cauchy but not Cauchy.
k=1

Lemma 2.1. [12] Let {u,} be a semi-Cauchy sequence in a MS (U, o). If {u,} is not Cauchy, then we
can determine a couple of subsequences {u,, } and {u,, } of {u,} and a positive real number € with

]}Im O-(Unk+1’ Umk+1) = ]}lm O-(Unka Umk) =€t. (2‘1)
3. Main results

For a relation S and a function Q on a set U, the subsequent annotations will be utilized:

e Sq :={(u,v) €S: Q) # QW)},
e UWQ,S):={ueU:(u,Qu)eS}.

Obviously, (u,v) € So = Q(u) # Q(v) = u # V.
Now, we shall prove the fixed point theorem via a locally Q-transitive relation employing the pair
of functions belonging to the family Q.

Theorem 3.1. Assuming that (U, o) is a MS endowed with a relation S and Q a function on U. Also,

1) UQ,S) # 0,
(ii) S is Q-closed and locally Q-transitive,
(iii) (U, o) is S-complete,
(iv) Q is S-continuous or S is o-self-closed,
(v) A, @) € Q with
(U,v) € Sq = ¥(0(Qu, QV)) < p(o(u,Vv)),

AIMS Mathematics Volume 10, Issue 6, 13393-13408.
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Then, U has a fixed point.

Proof. The proof distinguishes into several steps:
Step 1. By assumption (i), d uy € U(Q, S). Define

u, := Q"(Up), ¥ n e Ny. 3.1

so that
Upt1 = Q(un), ¥ n € Ny.

Thus, {u,} is the Picard sequence based at the initial point uy.
Step 2. We assert that {u,} is an S-preserving sequence. As (Uy, Qug) € S, using Q-closedness of S and
Proposition 2.3, we get

(Q"Up, Q"'ug) €8,

so that
(Up,Upp1) €S, VneN,. 3.2)

Therefore, the sequence {u,} is S-preserving.

Step 3. We consider the case: o(Up,, U,+1) = O for some ny € Ny. Then, employing (3.1), we get
Uy = Uye+1 = Q(u,,) = 0. This yields that u,, € F(Q), and hence, our task is accomplished. In either
case (when o(u,, U,+1) > 0, for all n € Ny), we’ll continue the succeeding steps.

Step 4. We prove that {u,} is semi-Cauchyj, i.e.,

lim o(u,, U,1) = 0. 3.3)

Denote o, := o(Uy, U,y1) > 0. Clearly, (u,,U,+1) € Sg. Employing assumption (v), we attain, for all
n € Ny that

lﬁ(0'n+1) < QD(O-n)s

which by using axiom (b) of Q reduces to

lﬁ(0'n+1) < ‘,0(0',,) < l,//(O'n) (34)

It follows from (3.4) and axiom (a) that 0,,,; < o, for each n € Ny. Thus, the sequence {o,} ¢ R*

is monotonically decreasing which is also bounded below. Consequently, 4 6 > 0 with o, NP}
Let 6 > 0. Next, we use property (c) of Q. If (¥, ) satisfies axiom (c;), then, employing limit
superior in (3.4), we attain

Y(6+) = lim Y(07p41) < limsup (o7,) < lim sup (1),

n—oo t—0+

which contradicts axiom (c;). Thus, we conclude that lim o, = 0.

n—oo

Second, assume that the pair (i, ¢) satisfies axiom (c;). Letting the limit inferior in (3.4), we attain

lim (Sinf Y(t) < liminf (o ,41) < limsup ¢(o,) < lim sup ¢(?),
=0+ n—o0

n—oo t—0

which contradicts axiom (c¢,). Hence, we conclude that lim o, = 0.

n—oo
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Finally, assume that (i, ¢) satisfy axiom (c3). Letting the limit inferior as n — oo in (3.4), we attain

lim iénf Y(t) < liminf (0 ,41) < limsup ¢(o,) < lim sup ¢(?),
— n—oo

n—oo t—0+

which contradicts axiom (c¢3). Hence, we conclude that lim o, = 0. Thus, in each of the cases, (3.3) is

n—oo

verified.
Step 5. We assert that {u,} is Cauchy. If {u,} is not Cauchy, then using Lemma 2.1, we can determine
two subsequences {u,,} and {u,,} of {u,} and € > O for which (2.1) holds. In view of (3.1), we
have {u,} € Q(U). Using locally Q-transitivity of S, we get (U,,,U,,) € S. From (2.1), we find
0 (Uy+1, Up+1) > € for all £ € N; consequently, we have (u,,,U,,) € Sq. Applying condition (v) for
these points, we get

(O Unst, Ungan)) < @0 (Un Up)), ¥ Kk €N, (3.5)

Using axiom (b), we obtain

W(O-(un/ﬁl’ Umk+l)) < SD(O-(unk’ umk)) < lﬂ(O’(Unk, umk))’

which, using monotonicity of ¢, gives rise

O-(Unk+1, umk+1) < O-(Unka umk)'

Now, we shall employ property (c) of Q. First, assume that the pair (¢, ¢) satisfies axiom (cy).
Employing the limit superior in (3.5), we obtain

Ylet) = im Yo (Unr1, Uny+1)) < imsup (o (U, Uny)) < lim sup (),
—00 k— o0 t—e+
which contradicts to axiom (cy).
Second, assume that ¢ and ¢ satisfy axiom (c;). Employing the limit inferior in (3.5), we get

lim inf ¥(7) = liin inf (o (Uy41, Upy+1)) < limsup (o (Uy,, Uy, ) < lim sup ¢(2),
t—e€ —00 k—o00 —e+
which contradicts to axiom (c;).
Finally, assume that ¢ and ¢ satisfy axiom (c3). Employing the limit inferior as k — oo in (3.5), we
attain
lim inf (1) = liin inf Y(o(Uy 41, Upy+1)) < limsup (o (Up,, Uy, ) < lim sup ¢(2),
t—e€ —00

k—eo 1—e+
which contradicts to axiom (c3). Therefore, in each of the cases, {u,} is Cauchy, which is also S-
preserving. Employing S-completeness of (U, o), 3u € U with u, T}
Step 6. We verify that u is a fixed point of U employing the hypothesis (iv). Assume that Q is
S-continuous. As {u,} is S-preserving with u, N u, using S-continuity of Q, we obtain U,;; =
Q(u,) N Q(u). Therefore, we conclude Q(u) = U, i.e., U is a fixed point of U. Alternatively, in case
S to be o-self-closed, there is a subsequence {u,,} of {u,} with [u,,,U] € Sq, for all k € N. Now two
cases arise:
Case (i): If for infinitely many values of &, [u,,,u] ¢ Sq, then we have 0(Qu,, .1, Qu) = 0 yielding
thereby

O-(Ga QU) < O-(Ga unk+l) + O-(Unk+1a QG) = O-(H9 unk+l)
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— 0Oask — oo,

so that U(u) = u and hence the proof is completed.
Case (ii): Assume that [u,,, U] € Sq for infinitely many values of k. In view of the symmetric property
of metric o, the contraction condition (v) will be satisfied for all [u, v] € Sq. Thus, we obtain

w(unk+l’ QU) = l//(Qunk’ Qa) < Qo(ul’lwa) < l//(ul’lkaa)’

so that
(o (Un+1, QU)) < Y(o(Uy,, U)).

Using monotonicity of ¥ above equality give rise to
0 (Up+1, QU) < o (Up,,u) = 0 as k — oo,
so that Q(u) = u, and hence, U is a fixed point of Q. O
Theorem 3.2. In alliance with the predictions of Theorem 3.1, if
(u) Q(U) is S*-connected,
then, Q owns a unique fixed point.
Proof. Due to Theorem 3.1, F(Q) # 0. Choose u*,v* € F(Q), then for each n € N, we arrive at
Q'(u") =u"and Q" (V") = Vv".

Clearly u*,v* € Q(U). By S*-connectedness of Q(U), we determine a path wy, w;, W», ..., W; between
u* and v*; so,
Wo =u",w; =V and [w;,W;;;]1 €S, Vi=0,1,...[—1.

As S is Q-closed, we have
[Q'W;, Q"W 1]€S, VneNyand Yi=0,1,....] - 1.
Denote
0 =0(Q"'W;, Q"W ) VrneNyand Vi=0,1,...,[—1.

We show that
lim &' = 0. (3.6)

n—oo

For every fixed i, consider the two possible cases:
Case (i): Assume that

5;0 = o(Q"w;, Q™w;, ) = 0, for some ny € Ny,

thereby implying Q™(w;) = Q™(w,,;). By (3.1), we attain U™*!(w,) = Q" (w;,1); so, 6510“ = 0.
Using induction, we get &, = 0V n > ng so that lim &, = 0.

Case (ii): If for every n € Ny, 6! > 0, then we have (Q"w;, Q"w,,) € Sf). From (v), we attain
U(Sh,) = Y(o(Q"'w;, Q" 'wiy))

AIMS Mathematics Volume 10, Issue 6, 13393—-13408.
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Y(o(QQ"'W), Q(Q"'W;,1)))
e(o(Q"wW;, Q"W 1))
©(5,),

IA

so that
W(Sh,1) < (S0). (3.7)

Using axiom (b) of €, (3.7) reduces to

WS, ) < @(6h) < w(8h), V¥ ne N,

which, in view of axiom (a), reduces to 6; b < (5; for all n € Ny. Hence, proceeding with the proof of

Theorem 3.1, we can determine §' > 0 satisfying &° AN
In view of property (c), let us assume that (i, ¢) satisfies axiom (c;). Employing limit superior in
(3.7), we obtain

W(3'+) = lim (5}, < limsup p(6}) < lim sup y(3}),

n—00 Sl —0i+

which is a contradiction to axiom (c;). Hence, we conclude that lim &' = 0.

n—oo

Second, assume that the pair (i, ¢) satisfies axiom (c,). Letting the limit inferior in (3.7), we obtain

liminf y(r) < liminf (8’ , ) < lim sup ¢(6") < lim sup ¢(?),

1=+ nl i
n—oo t—0"

which is a contradiction to axiom (c,). Hence, we conclude that lim &' = 0.

n—oo

Finally, assume that (¢, ¢) satisfies axiom (c3). Letting the limit inferior in (3.7), we attain

liminf y(r) < liminf (6’ , ) < lim sup ¢(6") < lim sup ¢(?),

t—0" n—oo t—0i+

which is a contradiction to axiom (c3). Hence, we conclude that lim & = 0.

n—oo

Hence, (3.6) is proved. Using the triangle inequality, we find

o, v) = o(Q"wy, Q"'wy)
< 048445t

— 0Qasn — oo
so, U* = v*. Thus, Q admits a unique fixed point. O
4. Illustrative examples

In the following, we provide two instances to substantiate the relevance of Theorems 3.1 and 3.2.

Example 4.1. Let U = [2,4] be a MS with usual metric o. On U, consider the relation § =
{(2,2),(2,3),(3,2),(3,3),(0,4)}. Then, (U,0) is a complete MS. Define a function Q on U

AIMS Mathematics Volume 10, Issue 6, 13393-13408.
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2if 2<u <3,

Q(u):{3if3sus4.

Thus, S is Q-closed. Assuming that {u,} C U is S-preserving sequence and u,, AT Consequently,
we conclude (u,, U,4+1) € S, forevery n € IN. Note that (u,, U,+1) € {(2,4)}, implying thereby (U, U,+1) €
{(2,2),(2,3),(3,2),(3,3)}, ¥V n € N; so, {u,} C {2,3}. Closedness of {2,3} yields that [u,,u] € S.
Hence, S is o-self-closed. Define the functions ¥, ¢ : R* — R by

2

_ 2 _
Y(t) =t~ and ¢(t) = D

Then, (¥, ¢) € Q and the contraction-inequality (v) of Theorem 3.1 is verified for (i, ¢). Moreover, the
remaining hypotheses of Theorems 3.1 and 3.2 are also verified. This concludes that Q owns a unique
fixed point (namely: U = 2).

Example 4.2. Take U = R* with Euclidean metric o. Construct a relation S on U by

S :={(u,v) e U?: u> +2u = v* + 2v}.
Clearly, the MS (U, o) forms an S-complete. Define a function Q on U by

Q) =In(U®> +2u+ 1),Yu e U.

Then, S is a locally finitely Q-transitive and Q-closed relation, while Q is S-continuous. Also,
U(@Q,S) # 0 as (0,Q0) € S.
Take (u,Vv) € S. Then, we have

Q) =In(U*+2u+1) =In(V* +2v + 1) = Q(v)

yielding thereby
(Qu)” +2Qu = (Qv)* +2Quv.
This implies that (Qu, Qv) € S, and hence, S is Q-closed. Define the pair (¢, ¢) € Q such that

In(t+ 1), ift < 1,
W(t) = { 3t 4.1)

—, ifr>1,
4 1 >

and ¢(t) = 2t/3. Then, for all (u,v) € S, we can easily verify the following condition:

Y(o(Qu, Qv)) < ¢(o(u,V)).

Thus far, the requirements of Theorems 3.1 and 3.2 are all fulfilled. Thus, Q owns a unique fixed point
(namely: U = 0).

AIMS Mathematics Volume 10, Issue 6, 13393-13408.
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5. An application to BVP

Consider the following first-order periodic BVP:

W'(&) = I, w(€)), foreaché € [0,L],
w(0) = w(L),

where 7 : [0, L] X R — R is a continuous function.

Definition 5.1. [25] w € CV[0, L] is named as a lower solution of (5.1) if

W' (é) < ¢, w(€)), foreaché €0,L],
w(0) < w(L).

Definition 5.2. [25] w € C'V[0, L] is named as an upper solution of (5.1) if

W'(€) 2 ¢, w(é)), foreach¢ € [0, L],
w(0) > w(L).
We now present the outcome, insuring a solution to Problem (5.1).

Theorem 5.1. Along with the problem (5.1), if 1 A, > 0 with

(2/1(eM - 1))%
as<|\————1,
L(er + 1)
such that for [,m € R with [ > m,

0 <A D+ Al - [h(€,m) + Am] < a \In[(l-m)? + 1].

If (5.1) admits a lower solution, then it possesses a unique solution.

Proof. Rewrite Problem (5.1) as

W'(§) + Aw(&) = I, w(§)) + Aw(§), for & € [0, L],
w(0) = w(l),

Equation (5.3) is equivalent to the integral equation
L
w(€) = f F(&,t)[A(T, w(1)) + Aw(T)]dT,
0

where the Green function is
AL

,0<1<éLL;

e/lL
F(‘f’ T) = e/l(.,-_é:)

L_l’

1 0<é<t<L.
e

5.1

(5.2)

(5.3)

(5.4)

AIMS Mathematics Volume 10, Issue 6, 13393-13408.
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Denote U := C[0, L]. Define a function Q : U — U by

L
(Qu(é) = f F(&, DA, (1)) + Aw(7)]dT,
0

(5.5)

Thus, 6 € U is a fixed point of Q if and only if, 8 € C 110, L] forms a solution of (5.4), and hence, of

(5.1). On U, endow a relation
S ={(w,v) eUxU:w(§) <v(&), ¥E&e[0, L]}
and a metric

o(w,v) = sup |[(w(&€) —v(&)|, Y w,veU.
£el0,L]

Now, we check all the presumptions of Theorem 3.2.
(i) Assuming that w(¢) is a lower solution for (5.1). We conclude

W'(€) + Aw(€) < ¢, w(§)) + Aw(§), for & € [0, L].
Taking the product with ¢, we attain
(@(©)e™) < [ w@) + Aw(@)]e*, for & € [0, L,

or

w(@)e® < w(0) + f [7(t, w(T)) + Aw(T)]e"dr, for & € [0, L].
0

As w(0) < w(L), the last inequality gives us

L
w(0)e® < w(L)e'™ < w(0) + f [A(r, w(T)) + Adw(T)]eVdT,
0

so that

L AT
w(0) < f A, w()) + Aw(r)]dr,
0 e/lL — 1
which, using (5.6), gives rise

At

& LAL+T) L
were® < [ G o)+ Aol s [ e + Aol
0 - 3 -

and consequently,

w()

IA

: e/l(L+T—§ ) ¢ e/l(T—f )
/lL—dT + /IL—[h(T’ Q(T)) + /lQ(T)]dT

L
f F(&, Dl (1) + dw(®)]dr
0
(Qu)(©), for £ € [0, L].

(5.6)

(5.7)

AIMS Mathematics Volume 10, Issue 6, 13393-13408.
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(ii) Take (w,v) € S. Then, for each 7 € [0, L], we have w(1) < v(7). Consequently, using (5.2), we
obtain
(T, (1) + Aw(T) < (T, v(T)) + Av(T),

which yields that

(Qu(é)

L
f F(&, Dh(r, w(1)) + Adw(T)]dT
0

IA

L
f F(, o)A, w(1)) + Aw(T)]dT
0
(Qv(©).

It follows that (Qw, Qv) € S so that S is Q-closed. Also, S being transitive is locally Q-transitive.

(iii) The MS (U, o) being complete is S-complete.

(iv) Let {w,} c U be S-preserving sequence converging to w € U. Hence, for every & € [0, L], {w,(£)}
is an increasing sequence in R converging to w(¢), and so, YV n € N and 7 € [0, L], we conclude
W, (&) < w(é). Again, due to (5.6), it follows that (w,, w) € S, ¥ n € N. Thus, S is o-self-closed.

(v) Take (w,v) € Sq. Then, for each 7 € [0, L], we attain w(7) < v(7). Consequently, using (5.2), we
obtain

o(w,Qv) = gSE(l)pL] I(Qu(§) — (Qv(&)]
= sup ((Qv(é) — (Quw(£))
gel0.L]

L
= sup f F(&, D)[A(T, v(1)) + Av(T) — (T, w(1)) — Aw(T)]dT

£€[0,L] JO
L

< sup f F(& ) VIn[(w() — v(1))? + 1]dT.
&€[0,L] JO

Employing Cauchy-Schwarz inequality, we attain

L L 2
f F(,na \/ln[(a)(T) —v(0)? +1ldr < (f F(¢&, T)sz)
0

o

1

L 2
( f azln[(w(T)—v(T))2+1]) .
0

The first integral reduces to

L
f F(&,7)%dr
0

f F(¢ 1) dr + f ' F(¢ 1) dt
2/1(L+T—$) Ao
f (e“ - 1)2 f (et = 1)2
e2/1L 1
2/l(e/1L - 1)?
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e/lL+1

2(ett - 1)

The second integral can be estimated as

& nf|lw=v|*+1]- L

L
f o In[(w(7) — V(1))*]
0

IA

= o In[o(w,v)* +1]- L.

Taking into account, we conclude

AL
sup (&) (@ In[o(w,v)* + 1] - L)?

c(Qw,Qv) < ce02y \2A(et — 1)
AL 41 \3 1
- (2;(64—11)) -+ VL(In[o(w,v)* + 1])2,

and from the last inequality, we obtain

el +1

r(Qu. Q" < (u(eu N

)-a2 -L-In[o(w,v)* + 1],

or equivalently,
2™ - Do(Qw, Qv < (e' + 1) - @* - L - In[o(w,v)* + 1].

Using the hypothesis:

(2/l(e/“ _ 1))i
L< (228 — ),
Qe + 1

the last inequality reduces to
2(e™ - Dor(Qw, Qv < 2(e™ = 1) - In[o(w, v)* + 1],

and hence,
o(Qw, Q¥? < In[o(w, v)* + 11].

Put (¢) = & and (&) = In(&? + 1). Then, we have (i, ¢) € Q. Thus, (5.7) reduces to

Y(dQw,Qv) < ¢(o(w,v)), V¥ (w,v) € Sq.

Let w,v € U be arbitrary. Then, one has ¢ := max{Qw, Qv} € U. As (Quw,#) € S and (Qv, ) € S,
{Qw, ¥, Qv} is a path in S* between Q(w) and Q(v). Thus, Q(U) is S’-connected, and so by Theorem

3.2, Q owns a unique fixed point, which forms the unique solution of Problem (5.1).

Intending to illustrate Theorem 5.1, we consider the following numerical example.

Example 5.1. Let (¢, w(€)) = cos & for 0 < & < n; then T is a continuous function. Note that w = 0 is
a lower solution for «'(€) = cosé. Therefore, Theorem 5.1 can be applied for the given problem, and

hence, w(¢) = siné forms the unique solution.

O
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6. Conclusions

We investigated metrical fixed-point findings for a relational contraction map under generalized
contraction via a pair of test functions, which, under the preordered (reflexive and transitive) relation,
deduce the corresponding outcomes of Gornicki [11]. To demonstrate our outcomes, we furnished a
few examples. From an application point of view, we discussed an existence and uniqueness theorem
for certain BVP under the availability of a lower solution. Analogously, we can also study the existence
and uniqueness of the BVPs whenever an upper solution exists. As a future plane, we can improve our
outcomes to a couple of self-maps by establishing coincidence and common fixed point theorems.
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