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1. Introduction

Let (H,(:,-)) be a complex Hilbert space, and let B(H) denote the algebra of all bounded linear
operators acting on H. A self adjoint operator A is said to be positive if (Ax,x) > 0 for all x € H,
while it is said to be strictly positive if A is positive and invertible, denoted by A > 0 and A > 0,
respectively. In this paper, A — B > 0 means A > B. Moreover, we identify the matrix algebra M,(C) of
all n X n complex matrices with entries in the complex field C with the space of B(C"). Let A* denote
the conjugate transpose of A. By positive definite matrices, we mean the strictly positive operators
on B(C"), and we let M} (C) denote the cone of positive n X n complex matrices. The singular values
of A, that is, the eigenvalues of the positive semi-definite matrix |A| = (A*A)% , are denoted by s5;(A),
Jj =1,2,--- ,n, and arranged in a non-increasing order. Weyl’s monotonicity principle explains that
sj(A) > si(B) when A > B > 0.

In this paper, we define the v-weighted arithmetic-geometric-harmonic means (AM-GM-HM) by

aVyb = (1 =v)a+vb, afb=a""b" and alyb = ((1 -=v)a ' +vb™ ")
for a,b > 0 and v € [0, 1]. Meanwhile, the corresponding v-weighted operator AM-GM-HM is

AV,B=(1-v)A+vB, Af,B=A2(A"2BA2)'A% and A,B=((1-v)A™' +vB™)"
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for A, B> Oandv € [0, 1]. We denote these by AVB, AB, and A!B for brevity when v = %, respectively.
Moreover, we also define the v-weighted operator geometric mean

Ab,B = A2(A"2BA 1)'A? for v ¢ [0, 1].
A more generalized v-weighted AM-GM-HM is the weighted power mean defined by
M,(a,b,v) := afp,b = (1 = v)a” +vbP)?,

where a,b > 0, p # 0, and v € [0, 1]. The following proposition explains that the weighted power
mean is an increasing function.

Proposition 1.1. [5, p.26] Fora,b > 0,v € [0,1],and p # 0, let M, (a,b,v) = ((1 —v)a” + vb”)% and
Moy(a,b,v) = a'™’b’. Then,

Mg(a,b,v) < My,(a,b,v) for s < p. (1.1
Moreover, we define the weighted operator power mean as follows: If A, B > 0 and v € [0, 1], then
M(A,B,v) := A, B = A((1 - v)I + (AP BA"2 )7 A?
for p # 0, and
Aflo,B = Afl,B.

It is easy to see that Af}; ,B = AV, B and Af§_;,B = A!,B. Moreover, Aff,,B = Bf,_,A is consistent
with the properties of v-weighted operator arithmetic-geometric-harmonic means.
It is well-known that AM-GM-HM has the basic inequalities

Al B < Af},B < AV,B, (1.2)
where A, B € M (C) and v € [0, 1]. Furthermore, if A < B under the conditions in (1.2), then
A <A\.B, A4,B, AV,B < B. (1.3)

Due to the computation of Aff,B not being as easy as A!,B nor AV B, it is of great interest to find
better and sharper bounds of (1.2), we refer the readers to [2,4] and references therein for some related
investigation. Recently, some singular values inequalities were given to describe the what difference
between such matrices means. For example, it was shown in [3] that if A, B € M}(C) are such that
B < A, then

és J(A73(A - BY’)A™?) < s(AVB — A#B) < %s J(B3(A-B)B?), (1.4)

where j = 1,2, - -,n and s;(X) represents the j™ singular value of the matrix X. The authors [6,
Corollary 1] and [9, Corollary 2.4], show a generalization of (1.4) as follows: If A, B € M (C) are such
that B < A, then

v(l —v)

> si(B*(A— B)B™?) (1.5)

si(A73(A - B*A™?) < 5;(AV,B — Af,B) <

v(l —v)
2
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forv € [0, 1].
In 2022, Sababheh et al. [9] showed the following AM-HM singular values inequalities: If A, B €
M (C) are such that A < B, then

}sz(B-%(A ~ BB ) < s,(AVB—A!B) < }sz(A‘é(A — B’ A7), (1.6)

Furthermore, they [9] also obtained the following GM-HM singular values inequalities: If A,B €
M (C) are such that A < B, then

s (A#,B - AL,B) < V(IZ_ 2

si((A - B)(A#,B)"'(A - B)). (1.7)
The paper is organized in the following way: In Section 2, we shall give some AM-GM-HM singular
values inequalities, which generalize and complete (1.5) and (1.6). Moreover, we also show a further

refinement of (1.7). In Section 3, we will present some refinements and the reverse of weighted power
mean inequalities using a convex approach, our results generalizing some existing conclusions.

2. Some generalized singular values inequalities

We begin this section with an alternative proof of (1.5). First, we provide a lemma.

Lemma 2.1. Let v € [0, 1]. We have the following:
If x > 1, then

v(l —v)

5 (x=1D*>{-v)+vx—x" 2.1)

if0 < x <1, then

v(l —v)
2

Proof. Let f(x)=(1—-v)+vx—x"— @(x —1)%. Then,

(x—=1><1-v)+vx—x" (2.2)

Fx)=v—vx"=vI =v)(x=1) and f"(x) = v(l —v)(x"2 - 1).
— When x > 1, then f”(x) < 0, and so f'(x) < f'(1) = 0, that is, f(x) < f(1) = 0, which means
W= 12 > (1= v) +vx — x".
—When 0 < x < 1, then f”(x) > 0, and so f"(x) < f'(1) = 0, that is, f(x) > f(1) = 0, which means
@(x—l)zs(l—v)+vx—xv. O

Alternative proof of (1.5). By applying functional calculus for the operator B 2AB™7 in (2.1), we have

(1-v)[ +vBZAB™: — (B2 AB"?)"
< v(l=v)
2
Replacing v with 1 — v in (2.3), we get

(BAB* ~I)B*B'B:(B*AB* - I). (2.3)

(1 - V)B_%AB_% + vl — (B_%AB—%)l—v
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< v(l —v)

(B2AB™* - )B*B™'B*(B*AB™* - I, (2.4)

and then, multiplying B2 on both sides of inequality (2.4), we obtain

v(l —v)
2

AV,B - A#},B < (A- B)B'(A - B). (2.5)

Combining inequality (2.5) and Weyl’s monotonicity principle, we have

v(l —v)

s,(AV,B — Af},B) < s ,( (A-B)B'(A - B)).

Since s;(X*X) = 5;(XX*) for j = 1,2, - -, n, it can be seen that

v(l —v)
2

si(B"3(A - B}B?).

Sj

(v(l -V)

—1 _
—(A-B)B (A—B))_

We complete the proof of the second inequality in (1.5).
On the other hand, putting x = A"2BA™: in (2.2), and using the same technique as above, then we
can get the first inequality in (1.5). O
Next, we show a generalization of (1.6).

Theorem 2.2. Let A, B € M (C) be such that A < B. Then,
v(1 - v)sj(B"2(A - BB ?) < s;(AV,B — A!,B) < v(1 — v)s;(A™2(A — B)’A™7).
Proof. Noting the equality

B o _q _l_v(l—v)(l—)c)2
l—v+vx—-(Q—-v+vx') = T

we have
sj(AV,B — Al,B) = v(1 —)s,((A — B)(BV,A)"'(A - B)).
The condition A < B implies A < BV,A < B, thatis, A™' > (BV,A)"! > B!, So,
v(1 = v)s;(B2(A — BB %) = v(1 — v)s;((A - B)B™'(A — B))
<v(1 =v)s;((A - B)(BV,A)"(A - B))
<v(1 -v)s;((A- BA (A - B))
= (1 —v)s;(A3(A — B’A™7),
as desired. O
At the end of this section, we will show a further refinement of (1.7).
Lemma 2.3. Let x > 1 and v € [0, 1]. Then,

v(l —v)

X =(=-v+w < — (- D21 —v+vx)" (2.6)
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Proof. Let
Fo = — (= ey = XD 20—y,
Then,
N % v =) =2vx +vx’ +2x = 2)
)= ((1 —V)X+v)2 2(1 — v + vx)? ’
and

£ = w1 =9 =D+ 9) 00+ )

where fi(x) = 1 — x2((1 = v)x +v)’ and f(x) = (1 = v)x +v) " = (1 = v + vx)~>. So,
1) = 23 = v)x +v)*h(x) for h(x) = (P = Dx +2v — v
By computations, we have that #’(x) = v — 1 < 0 implies h(x) < h(1) =2v -1 < 0, so i <0=

f1(x) < fi(1) = 0. On the other hand, (1 —v)x+v > 1 — v + vx implies f>(x) < 0. Therefore, we have
f"(x) <0. That is,

)< f/(1)=0= f(x) < f(1) =0,
as desired. O

Theorem 2.4. Let A, B € M (C) be such that A < B. If v € [0, %], then

sj(A#,B - ALB) < 2s(A - B)(AV,B)(A - B)

< M5 ((A - B)(AH,B) (A - B)).

Proof. By applying functional calculus for the operator A"2BA™? in (2.6), we have

(ATZBAT2)" — (1 - ) + w(A™2BA™ )1y
< v(l —v)

(I-A2BA )((1 =) +vA 2 BA™2) "1 - A2BA™). 2.7)

Multiplying A? on both sides of (2.7), by the Weyl’s monotonicity principle, we can complete the proof.
O

3. Some generalized power mean inequalities
We begin this section with a convex argument that implies some refinements and the reverse of
the weighted power mean inequalities. We refer the reader to [10] for general treatment of convex

functions. First, we list a result obtained by Sababheh, Furuichi, Heydarbeygi, and Moradi.
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Proposition 3.1. /8] Let f be an increasing function on [0, o) with f(0) = O such that f(\/x) is
convex. If ro = min{v, 1 — v} and v € [0, 1]. Then,

f@+ fb) I @ + b

f( VA= n@ + 7 ) ; 2r0( - :

)) < (1 = v)f(a) + vf(b).

Next, we give a further refinement and reverse of Proposition 3.1 using the following lemma.

Lemma 3.2. [I,7] Let f be a convex function satisfying f : [0,00) — [0,00). Ifa,b > 0, ry =
min{v, 1 — v} forv € [0, 1], then,

f@+fb)
2

A%22) = (- wf@ + v,

F((1 = v)a +vb) + 2r0( .

Theorem 3.3. Let f be an increasing function on [0, 00) with f(0) = 0 such that f(+\/x) is convex. If
r = min{v, 1 —v}, R = max{v, 1 —v}, and ry = min{2r, 1 —2r} for v € [0, 1], then we obtain the following
conclusions:

(i) When 0 < v < %, we have

NI )2l [F )

2
. 2r0(f(a) " fﬁ@) ) f( \/@ ))

< (1 =v)f(a) +vf(b) (3.1)
<A {0 [T

) )

(ii) when % <v <1, we have

f( VA= 0@ + 00 ) ; 2r(M _ f(\/# ))

2
+2r0(f(b)+f£@) —f(@))
< (1 =v)f(a) +vf(b) (3.2)
e e

2 4

) zro(f“” ef(5E) )
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Proof. Let g(x) = f(+/x) for x € [0, 00). Then, g is an increasing convex function. If 0 < v < %, then
we have

(1= v)g(@®) +vg(b*) - Zr(g(az) +8(b%) B g(a2 + b? ))

2 2
2 2
= (1= 2)g(d) + 2vg(a +h )

2 a+b? 2, b2
> g((1 = 2v)a* + v(a® + b%)) + 2min{2v, 1 — 2v}(g(a : +2g( ) g(a +2 2 ))
= 2+ vb? i g(a) + g(“H) 3a* + b?
= g((1 = v)a® + vb?) + 2min{2v, 1 - zv}( . _ g( . ))

Here we complete the first inequality of (3.1). Next, we prove the second one of (3.1).

2 b2 24+ b2

a? + b? a* + b?
)—2g( 2 )

2R(

= (1= 2v)g() + 2vg(

b?) + a+b’ b2+M
Zg((l—2v)b2+v(a2+b2))+2min{2v,1—2v}(g( )+ 85 )_g( 5 2 )

2
-2 (a2 + bz)
2
bz + M 2 3b2
= g(va® + (1 = v)b’) + 2min{2v, 1 - 2v}(g( i 2g( ) _g(a J:L ))
a +b*
_9 ( )
& 2
that is,
2 2 2 9 , .
2R(g(a ) + g(b ) _ g((l +b )) _ g(VCl2 " (1 _ V)bz) + Zg(a +b )
2 2 5
b2 + a+b? 2 3b2
— 2min{2v, 1 - 2v}(g( ) +8(57) _g(a + ))
2 4
> (1 = v)g(a@®) +vg(b). 3
On the other hand,

g(va® + (1 =v)b?) + g((1 = v)a® + vb?)

_ l 2 _ 2 l _ 2 2
—2(2g(va +(1=0b) + 58((1 = + b ))

> Zg(%(va2 +(1 —v)b?) + %((1 —v)a* + vbz))

a2+b2)

> (3.4)

o
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Combining inequalities (3.3) and (3.4), we get

2 2 2 2
AL (@) L1 )

g(b) +2g(#> ) g(a2 - 30 )

ZR(

2 min{2v, 1 - 2v}(

> (1 -v)g(a®) + vg(b?).

Therefore, we complete the proof of (3.1).
Exchanging a and b and v and 1 — v, respectively, we can get (3.2) by (3.1). O

Let a = a%, b = b%, and f(x) = x” for p > 2 in Theorem 3.3. Then, we obtain the
following corollary.

Corollary 34. Leta,b >0, p > 2, r = min{v, 1 — v}, R = max{v, 1 — v}, and ro = min{2r, 1 — 2r} for
v € [0,1].

(i)IfOSvS 3, then

(0= ) 252~ (S5

[STps}

a5+b 2
+21’o(a+( 22 ) _(3‘”:[” )127)
< (1 =v)a+vb (3.5)
: b (ar +br\
((1—v)ap+vbp) +2R(a; —( : ))
b aP+bP E % % »
_2r0( +( 22 ) _(a Z3b )127);

(ii) if 1 <v <1, then

2

a+b [(ar +br\2
o] {15252
(( var +v ) + r( 7 >

2 2. P
o b+ (4 )2_(ai+3bp )
0 2 4

< -=v)a+vb 3.6)

P 2 Z.p
((1 —Var +vbv) + 2R(“ ; b_ (“" ;bp)z)

a127+b% g 2 2
a+( 2 ) 3ar +br\3
2 B ( 4 ) :
Remark 3.5. With the proof in Theorem 3.3, we can find that Corollary 3.4 provided some further

refinements and reverses of (1.1) when s = 2. Moreover, we will point out that Corollary 3.4 implies
the main results of [11] obtained by Zhao and Wu.

- 2}’0
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Corollary 3.6. Let a,b > 0, r = min{v, 1 —v}, R = max{v, 1 —v} and ry = min{2r, 1 —2r} forv € [0, 1].
() IfO <v <1 then

a' b+ r(Na- Vb )* + ro(Nab - \a )’

< -v)a+vb

<a'™b" + R(Na - Vb * - ro(Nab - Vb)*;

(ii) if 3 <v < 1, then

a™"b’ + r(Va - \/Z_J)z+r0(‘4/cE— Vb )?

< -via+vb

< a7 + R(\a - \/Z)z—ro(m— Va >

Proof. Direct calculus computations with the aid of L’Hopital’s rule, we have

p

: 2 22 1-vgv
hm((l—v)ap +vbp) =a'b.

p—ooo
Then, we can complete the proof with Corollary 3.4. O

At the end of this paper, we give some operator inequalities of Corollary 3.4.

Theorem 3.7. Let A,B >0, p > 2, r = min{v, 1 —v}, R = max{v, 1 — v}, and ry = min{2r, 1 — 2r} for
v €[0,1].
(i) If0 < v < 1, then

Ahg(AVV(Aﬁ%B)) +r(A+B- 2Ahg(AV(Aﬂ%B)))

+ro(A + Ay (AV(AY: B)) - 2Ahg(AV£(Aﬁ%B)))

< AV,B (3.7)

< Ahg(AVv(Aﬁ%B)) +R(A+B- 2Ahg(AV(Aﬁ%B)))

—ro(B+ Ay (AV(AE: B)) - 2Ahg(AV%(A1:t%B))).

(ii) If 3 < v < 1, then

Ahg(AVV(Aﬁ%B)) +r{A+B- 2Ah%(AV(Aﬁ%B)))

+ro(B+ Al (AV(A: B)) - 2Ahg(AV%(Aﬂ%B)))

< AV,B (3.8)
< Ahg(AVV(Aﬁ%B)) +R(A+B- 2Ah§(AV(Aﬁ%B)))

—ro(A+ Al (AV(A4: B) - 2Ahg(AV%(Aﬁ%B))).
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Proof. Applying functional calculus with a = I and b = A"ZBA™? in (3.5), and then multiplying Az
from both sides, we have

4 1 1.2 p
2\5 A+B T+ (A~2BA )74
A%((l—v)1+v(A—%BA—%)ﬁ)2A%+2r( . —A%( ( 22 ’) )2A%)

A+A%(+) Az L 3I+(A‘%BA‘%)% -
( _Az( ) ) Az)
- Ahg(AVv(Aﬁ%B)) +r(A+B- 2Ahg(AV(Aﬁ%B)))

+ ro(A + Ay (AV(A#: B)) - 2Ahg(AV%(Aﬁ%B)))

+ 21’0

<(1-v)A+vB
- AV,B
g A+B I+(ABA )G
SAi((l—v)1+v(A-%BA-%)v)2Az+2R( ; —A%( ( 22 ) )ZAZ)
(bt
11+(a72BA72)PN\5 1 1
B+ A}(TE—) A 3aiBA Y g
—2r, - A )’ A
2 4

= Ahg(AVV(Aﬁ%B)) +R(A+B- 2Ah§(AV(Aﬁ%B)))
- rO(B + Ay (AV(Af: B)) - 2Ah§(AV%(Aﬁ%B))).

Here, we complete the proof of (3.7).
Using the same method in (3.6), we can get (3.8). |

4. Conclusions

Among this paper, we mainly present some generalized singular values inequalities in Section 2,
which improve and extend some results from earlier publications in literature. In Section 3, we give
some further refinement and reversed inequalities of convex function, as an affiliated result, we present
some refinement and reverse of weighted power mean inequalities, and the obtained results generalized
some conclusion of Young’s inequalities.
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