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1. Introduction

Formation control plays a vital role in the coordinated management of multi-agent systems (MAS),
largely due to its extensive range of real-world applications [1-3]. MAS comprises multiple intelligent
agents that interact to create sophisticated group behaviors by sharing information within their local
networks. A key focus in formation control is developing robust control protocols that enable agents
to reach and maintain specified geometric configurations necessary for accomplishing specific tasks.

Among the diverse approaches to formation control in MAS, the leader-follower strategy [4, 5]
has emerged as a widely favored method. This approach is valued for its straightforward design,
dependable performance, and ease of scalability, making it a popular and effective choice for
researchers and practitioners. More recently, neighbor-based formation control [6, 7] methods have
gained traction. These approaches enhance efficiency by requiring each agent to communicate
with only a few nearby agents, reducing overall communication needs while maintaining effective
coordination. In recent years, considerable research has focused on identifying and addressing the
vulnerabilities of networked multi-agent systems in the presence of diverse cyber threats. These threats
include denial-of-service (DoS) attacks [8], which aim to overwhelm the system to hinder normal
operations, replay attacks, where attackers maliciously resend authentic messages, false-data injection
(FDI) attacks [9], designed to introduce deceptive information camouflage attacks [10], which mask
malicious actions as standard operational behavior and deception attacks [11]. Among these, Byzantine
attacks, stand out as a particularly subtle and dangerous type of threat.

Malicious Byzantine attacks and operating time delays pose significant obstacles to MAS [12, 13],
jeopardizing system dependability. Byzantine attacks are especially pernicious because they enable
adversaries to introduce hidden flaws, using agent cooperation and trust to manipulate the system’s
operation. The challenge is made worse by time delays [14], a problem in real-world MAS because
they prevent the timely sharing of information needed for coordinated control. Because second-order
formation control [15,16] has to handle the velocity and position variables, it is particularly susceptible
to delays and Byzantine errors.

Finite-time synchronization and energy optimization have been considered in multilayer fractional-
order networks [17, 18] to obtain some practical conclusions about synchronization time and control
energy consumption. The effect of stochastic disturbances such as Lévy noise and Markov switching
in delayed MASs has been analyzed for achieving robust exponential synchronization [19]. These
findings emphasize the significance of modeling uncertainties in MASs, which agrees with our
approach to designing attack resilient formation control mechanisms.

Agents exhibit behavior governed by nonlinear functions, which are either well-defined or satisty
a Lipschitz-type condition to ensure specific smoothness characteristics. Recently, there has been
significant progress in developing adaptive consensus methods for nonlinear systems, utilizing neural
networks (NN) [20,21] to harness their capacity for managing complex, uncertain interactions.

Neural networks have been efficiently used for robust control of nonlinear and multi-agent systems
against uncertainties, disturbances, and time delays. Recent studies have considered neural network-
based observers for output feedback control, hybrid models for precise parameter identification, and
adaptive fuzzy controllers for the multi-disturbance environment. These enhancements show the neural
networks in improving the system stability and performance [22-24].

These advanced approaches aim to help agents reach consensus or shared objectives, even amidst
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the challenges of nonlinear dynamics.

Researchers have increasingly focused on ensuring that multi-agent formations remain stable
despite adversarial challenges. [25] explored motion coordination in high-precision systems, while [26]
studied navigation methods for constrained environments, which are useful for maintaining formation
control under disruptions like Byzantine attacks. To improve reliability, [27] developed an adaptive
filtering approach for cooperative localization, addressing issues such as sensor failures and
unpredictable noise. While these studies offer important advancements, they do not fully address
the challenge of maintaining stable formations when facing Byzantine attacks and time delays. This
work seeks to close this gap by developing a robust adaptive control framework that ensures secure
and reliable coordination among agents. Taking Byzantine attacks and communication delays into
consideration, this study addresses these issues by proposing a robust adaptive formation control [28,
29] approach for nonlinear multi-agent systems having double-integral unknowing dynamics. Utilizing
neural networks’ (NNs) versatility, the approach successfully tackles the unidentified dynamics while
integrating a strong framework to manage time delays and lessen the impact of vicious attackers. A
numerical simulation demonstrates the suggested method’s capacity to sustain robust formation control
in the face of communication delays and Byzantine attacks [30].

To address the effects of Byzantine attacks, secure communication protocols [31] ensure that the
information shared between agents remains accurate and trustworthy, thereby preventing malicious
agents from introducing deceptive data into the system. Additionally, robust control techniques
are applied to create control laws capable of maintaining system stability despite the presence of
compromised agents. By incorporating these approaches into the adaptive formation control method,
the system becomes more resilient to Byzantine attacks, while sustaining its performance and stability.

The research [32] investigates a leader-follower multi-agent system subjected to communication
failures and Byzantine attacks. To address these challenges, a robust consensus protocol was
introduced [33, 34] incorporating an optimal H,, strategy. The stability and performance of multi-agent
systems are crucial to guarantee time-delay compensation. A Padé approximation-based repetitive
control strategy was proposed by [35] to enhance the tracking accuracy under delays. Despite having
made significant robust control, loopholes exist in addressing actuator faults, external disturbances,
and Byzantine attacks in multi-agent systems. While [36] aimed at predefined-time control of actuator
faults, [37] introduced adaptive event-triggered control for stability under uncertainties, and [38]
investigated the fixed-time consensus for state constraints. However, there is a need for further research
to integrate these strategies into a single framework for robust multi-agent formation control. The
proposed controller is designed to mitigate the effects of time delays and Byzantine attacks, enabling
the followers to effectively track the virtual leader’s behavior.

This study presents a novel adaptive formation control technique that combines targeted methods
with neural network-based approximation to handle temporal delays and Byzantine attacks. The
approach’s efficacy in accomplishing the intended formation objectives despite these obstacles is
demonstrated through numerical simulations. This study’s main contributions are as follows:

e A design of an adaptive leader-follower formation control strategy for nonlinear multi-agent
systems with unknown dynamics.

e The use of neural networks for modeling unknown system dynamics in real-time.

e A resilience mechanism to reduce the effects of Byzantine attacks on agent communication.

e A compensation technique for the time delay to maintain stability when performing formation
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control tasks.

e A rigorous Lyapunov-based stability analysis to validate the proposed approach.

e Numerous simulations have been performed to demonstrate the effectiveness of our method in the
worst adversarial conditions.

All procedural steps and the notation list in the proposed study are described in Figures 1 and 2,
respectively.

The content is structured as follows:
(1) Section 1 presents the research background and key challenges tackled in this work.
(2) Section 2 outlines fundamental concepts, covering neural networks, graph theory, and essential
lemmas.
(3) Section 3 describes the system model, the design of the control protocol, and supporting theoretical
proofs.
(4) Section 4 offers a simulation example to demonstrate the effectiveness of the proposed approach.
(5) Section 5 offers a concise overview of the key findings and proposes potential avenues for future
exploration.

Robust neural network-driven control for multi-agent
formation in the presence of Byzantine attacks and
time delays

Introduction Preliminaries Main Results Theorem Simulations Conclusion

Figure 1. Procedural steps and workflow diagram.
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2. Preliminaries

2.1. Neural network

A continuous Lyapunov function, utilized to evaluate the
stability of the system.

The position state vector of agent k

The velocity state vector of agent k

Control input of agent k subject to a time delay
Unknown dynamic nonlinear function of agent k

The state and control input of agent k are impacted by the
Byzantine attack factor.
State of reference position.

State of reference velocity.

Reference acceleration function with smooth bounds.
Error of position with respect to the leader.
Error of velocity with respect to the leader.

A constant vector that shows the desired relative location
between the reference leader and the agent.
Position-based formation error that takes into
consideration delays and neighborhood interactions.
Velocity-based formation error that takes into
consideration delays and neighborhood interactions.
Optimal weight matrix for neural networks.

Adaptive control weight matrix estimate.

Basis function vector is employed in the approximation of
neural networks.
Neural network model approximation error.

Weight update law design constant.
A matrix with a positive definite constant.

A diagonal matrix showing ways of communication
between the leader and the agents.

Adjacency matrix showing agent-to-agent interaction
linkages.

Figure 2. List of notations.

It has been shown that neural networks (NNs) can estimate universal functions. Provide a continuous
function ¢(y) : R x R?, the function over a compact set ® can be approximated by NN in the following

form:
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T
where the weight matrix with neuron number ¢ is V € R“" and Q(0) = [ql(e), e ,qC(Q)] , T 1s the

. . - " O-1p) T, .
vector of basis function g1, ..., 0= -5 ,and y; = [,ukl, cee, ,ukm] is the center of receptive

field T. The ideal neural weight V* € R for the continuous function ¢(y) is defined as

V* = arg min, {sup 16(6) - VTQ(H)II}, 2.2)
€ 0e®
in order to rewrite ¢(6) as
$(0) = VT 0(0) + €(0), (2.3)

where the approximation error is represented by €(6) € R"” and there exists a constant y that is positive
so that |le(9)]| < .

The optimal NN weight V* aims to guarantee the smallest possible difference between V7 Q(6) and
#(0). However, it is merely an “artificial” quantity for a survey, and it is not feasible to utilize it as
a basis for developing the control scheme directly. Instead, the actual control is generally formulated
using estimates obtained through adaptive tuning.

2.2. Graph theory

The interconnected graph considered in this research pertaining to the studied multi-agent
framework is an undirected connected graph Z = (O, N, ), where N = {1,2,...,m} is the label set
of all nodes, { € N x N is the edge set, and O = [0y] € R™ is the adjacency matrix, with an entry
o > 0 indicating the interaction weight shared between agents k and /. The neighbor of node & is
considered to be node [ if the edge N, holds 8;;, = (k,I) € { the adjacency element oy; = 1 and
Ak = {l | (k,]) € } indicates the neighbor label set. Assuming Ny, ¢ £, then o, = 0, and the graph
Z can be referred as an undirected graph whether matrix B adjacency elements meet the requirement
on = o, Kk, 1 = 1,...,m implying that N, € { <= N, € {. When there is an undirected path
(k,ky), ..., (ki 1), for any two distinguishable nodes k and /, the graph without a direction Z is regarded
as linked. The Laplacian matrix by which graph Z is connected is

m

£ = diag [Z PRI onl] 0. (2.4)

=1 =1

A = diag{o,...,0,} is the matrix that describes the communication weights across agents and the
leader. 6, = 1 if the agent & is able to link with the leader, and ¢, = 0 otherwise. While o, ...,d,, > 1,
the leader must be associated with at least one agent.

2.3. Auxiliary lemmas

Lemma 2.1. [39] The irreducibility of the Laplacian matrix of an undirected graph Z is an essential
and adequate requirement for its connectivity.

Lemma 2.2. [39] Consider an irreducible matrix £ = [{y] € R™"™, whereby €;; = € < 0 and
i +6; - Cim
bk = — 2oy Cu- Then, all of the eigenvalues of L = : : are positive, where

fml e fmm + 6m
01,...,0, are non-negative constants stipulating that 6; + --- + 6,, > 0
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Lemma 2.3. [39] When O,(6) = OIT(Q) and 0,(0) = Og (0), the matrix inequality

01(8) 0s(0)
LW)Q@}Q (2.5)

Applies to any of the two inequalities listed below, and at least one of the conditions must be met:
1) 0,(0) > 0, 0,(0) — 0% (6)0;'(6)0;(6) > 0.
2) 0,(0) > 0, 0,(0) — 05(6)0,'(6)05(6) > 0.

Lemma 2.4. [39] The initial condition of the continuous function H(m) > 0 is bounded. The following
inequalities can be preserved when this condition occurs H(m) < —oH(m) + d, whereas o and d are
two positive constants that are present.

d
H(m) < HOE™ + —(1 - E™™). (2.6)
o
3. Important results

3.1. Formulation of the problem

An overview of this double integral dynamic model of a nonlinear multi-agent system that includes
m agents is as follows

d
Eek(t) =w(t—1)

d
— V(1) = Cp(t — 1) + (O, vi) + by (1)

dt
k=1,...,m. (3.1)
T
The position state is described as 6,(¢) = [Hkl, “e- ,an] € R”, while the velocity state is vi(t) =
T
[vkl, - ,vkn] € R”", the control input with time delay is Cy(t — 7) € R”, the undefined nonlinear

dynamic function is ¢(-) € R”, and b, is the Byzantine attack of agent k.
The following dynamics, which are seen as independent leader agents, describe the required
reference signals as

%ﬂﬂ=ﬂm

d— —
270 = (o), (3-2)

where the reference position is denoted by 6 € R”, while the reference velocity is # € R”, and the
smooth bounded function is u(-) € R".

3.2. Impacts of Byzantine attacks

The actuator attack against the MAS can be depicted as

C(1) = Cr(t) + 4 C{(1), (3.3)
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where Cy(7), C{(¢), and C{(z) represent the nominal state, corrupted control input, and attack signals;
the attack occurs only if A,=1; otherwise, 4;,=0.
The actuator attack against the MAS can be depicted as

Vi(0) = vi(®) + v (@), (3.4

where vi (), vi(1), v{(t) shows the corrupted input, nominal state, and attack signal. Similarly, the attack
occurs only when p;=1; otherwise, p;=0.
By integrating the effects of both assaults, Eqs (3.3) and (3.4) can be written in the following way:

bi(t) = 4 C(0) + eV ) oulpvi(®) = v (0)] (3.5)

Definition 3.1. In the event that the system’s results (3.1) involving multiple agents are determined,
the second-order leader-follower formation is accomplished and fulfills the following conditions
lm,e ||0c(t = T) = 6k(t) — wil| = O, lim,olvi(t = T) = 9O = 0, k = 1,...,m. The desired location
of the agent k is demonstrated through the constant vector wy = [wkl, s wkn]T e R

Objective of control: The objective is to develop an adaptive control method to facilitate formation in
nonlinear multi-agent systems (3.1), ensuring that when the time-delayed and Byzantine attacks alter
the states of the agents, all deviation indicators maintain their ultimate boundedness, which is semi-
global and uniform. Inspired by the semi-global stabilization techniques for parabolic PDE-ODE
systems with input saturation proposed by [40], we aim to design a control strategy that ensures
robustness against such adversarial influences. Despite the interfering assaults, the system develops
second-order leader-follower relationships.

3.3. Designing the control scheme
Transformations of coordinates should be represented by:
Sa(t) = (1) = 6(0) — wy.,

S (2) = vi(2) — ¥(2),
k=1,...,m. (3.6)

Differentiate the above equation w.r.t time

d d d - d
Esek(t) = Eek(t) - EQ(I) -

=v(t—1)— V()
= Svk(t - T);

d d d
ZSu(t) = =) = =7
7 k(1) dth(t) le(t)

= Ci(t = 1) + (O + vi) + bi(t) — u(t);
k=1,...,m. (3.7)

Hence, the error dynamics that follow are generated by (3.1) and (3.2)

d
—So(t) =S (t—1),
7 ok (1) Wt —1)

AIMS Mathematics Volume 10, Issue 6, 12956-12979.



12964

d
Esvk(t) = Ci(t = 7) + (O + vi) + bi(1) — pu(2),
k=1,....m. (3.8)

The following rewriting of error dynamics (3.8) is necessary to simplify

Sy(t—1) }

= [C(t — 1)+ O(S) + b — () ® 1, -

. ) T T )

in which 8() = [SI(1),ST(r)| € R* when Sy(t) = [S},(1),-,8],(0] € R™ while 8,() =
T T r mn T T r mn T T T mn

S, .SI| e R™C = |C],---,CL] € R™, and ®(S) = |¢],---.0h] € R™ 1, =

T .
[1, e, 1] € R™, ® is the Kronecker product.
Define the formation discrepancies in terms of position and velocity as

Eg(t—1) = Z O (Ok(t = 7) — wi — O)(t = T) + wy) + O (Hk(l —-7)—0(1) - wk) ,

l€/lk
Ex(t=7) = ) 0 (wlt = 1) = vi(t = 1)) + 6 (it = 7) = 7(1)),
lE/lk
k=1,....,m. (3.10)

In this context, oy and J; denote elements of O and A matrices; the subsection II.B with A, represents
the neighbor labels for agent k.
Using Egs (3.6) and (3.10), we can re-express the formation error terms as

Eg(t=7) = > ou(Soult =) = Sau(t = 1) + 6iS gelt = 7),

ledk

Ey(t=7)= D 0u(Sy(t =) = Syt = 1) + St = 1),

ledk

k=1,...,m. (3.11)

For the unknown nonlinear function ¢;(6;, v¢) (3.9), consider a compact set ®; C R?" for [0,{ v,{]T €
Oy. To incorporate the Byzantine attack with a time delay, the expression of ¢;(6x, Vi) under attack
would be modified to include an adversarial impact. by (¢t — 7) represents the Byzantine attack applied
on the function with delay 7. The function can be approximated by an NN model, yielding

kO, vi) = ViT OOt — ), vi(t — 7)) + by(t) + ex(6k, i) (3.12)

Consider the ideal neural weight matrix V; € R%*" with neuron number ¢, and corresponding basis
function vector Qi (6, vi) € R with approximation error €,(6;, v;) bounded by ||€ (6, vi)ll < vx, where
vy 1s a predetermined constants.

In Eq (3.12), the optimal matrix of weight V; can be expressed as a constant that is not known,
making it challenging to implement in practical control designs. To overcome this limitation, we
replace the ideal neural network weight V' with the estimated weight V,(t). The formation control is
subsequently formulated using the following estimation

Ci(t = 7) = —BoEa(t — 7) = BE, (t — 7) = V (t = 7) X Ok (B, vi) + by(D),
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k=1,...,m. (3.13)

In which V; € R is the approximate value of V; and 8, > 0, and 8, > 0 serve as two design
constants. And b (f) represents a Byzantine attack with a delay of 7. By introducing an adversarial
disturbance in the delayed state, it affects the nonlinear dynamics. Even when adversarial interruptions
occur, control robustness is maintained by incorporating this change. In order to tune V;(f), the NN
updating law is as follows:

d . N
—Vilt = 1) = Ui (QuOr v Eat = 1) + Euit = D) = Vit = 7).
k=1,....,m, (3.14)

where the design constant is a; > 0 while the positive definite constant matrix is Y € R%*%,
Observation 1: In the control law described in (3.13), the terms related to the position and velocity
errors are formulated as specified in (3.10). These error terms are incorporated to ensure effective
compensation for deviations in both positional and velocity dynamics, facilitating the system’s
adherence to the desired formation trajectory. The error terms are expertly designed to enable the
agents within the network to successfully achieve their objectives. The neural network expression
VZ (t — 1) Ok (6, vi) plays a crucial role in compensating for unknown dynamics by dynamically tuning
the neural network weight with time delay V,(t — 7) according to the updating law (3.14). The
Byzantine attack factor b;(¢) affects control and system dynamics. This means that an adversary
can influence how the system operates. Adding time delays in the agents also makes it harder to
keep the formation stable. This unique control strategy addresses formation management in intricate
second-rank nonlinear structures. To better address adversarial issues and temporal delays, potential
improvements include using the latest strategies like learning via reinforcement or robustness control
H,.

Remark 3.2. In the design of the proposed robot resilient neural network-driven control the accuracy
versus computational cost is a critical issue. The neural network-based approximation enhances the
system’s adaptability and resistance to Byzantine attacks but implies real-time weight updates and
function approximations that increase computational complexity. The accuracy increases with the
network complexity and number of computations that are performed, which can increase the time for
processing and demand on hardware resources. To this end, we optimize the neural network structure
by restricting the number of hidden layers and adjusting adaptation rates, so that the robustness is
maintained at the expense of reasonable computational costs. Lightweight neural architectures or
distributed processing techniques can also be explored in future research to improve efficiency without
COMPromising accuracy.

3.4. Proof-based conjecture

Conjecture 1: The nonlinear dynamics of a second-order agent-based system described in (3.1)
operates under an undirected connected graph z and maintains bounded initial conditions. By
implementing the adaptive formation control law (3.13), the neural network weight updating rule
(3.14), and the design constants 3y and S, are chosen. Furthermore, incorporating a Byzantine attack
function with a time delay into the nonlinear dynamics introduces significant challenges in the delayed
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state. This approach enables a robust evaluation of control performance ensuring resilient system
operation. The control objectives are achieved for a sufficiently smooth movement trajectory.

1 1
Bo>1, B, >1-+ —,
22
1
Bo+ By > ——. (3.15)

Let ‘Pf;m denote the smallest matrix’s eigenvalue £. This will lead to the achievement of the intended
control goals.
(1) Each error will be semi-globally uniformly ultimately bounded, despite the influence of the
Byzantine attack factor with time delay b,(¢) affecting agents and control inputs.
(2) Even with temporal delays and Byzantine attacks, the multi-agent creation will be effectively
maintained with uniform reference trajectories.
Proof: We select the following Lyapunov function candidate

B +BILL {:] o ,m) KS(—T)+ % M1 V-0 T - ). (3u16)
k=1

H(t—T):%ST(t—T)( 7 7

It is definitely positive. The following outcome is achieved when the design parameters fulfill the
condition (3.15).

Where £ = £ + A by Lemma (2.2), positive definiteness of the symmetrical matrix £ is verified.
The following result is assured as long as the design parameters meet condition (3.15). (8y + ,B’V)[Zf -

£ > 0. Consequently, the matrix [ B +’8~V)‘£L £~ l is also positive definite, as indicated by

L L

Lemma 2.3. Therefore, the function H(7) can be regarded as a candidate for a Lyapunov function.
The time derivative of H(f) concerning the dynamics described in Eqs (3.9) and (3.14) is given by

(ﬁé) +ﬂ~v)-££ ‘4] Q Im) X Sv(t - T) :|

d Ty
EH(I) =57 T)( 7 I Ct—1)+¢(S)+b(t) —nt)® 1,

m (3.17)
+ 2 TV 0 Q1 vi) (Bt = 1) + Ent = ) = B Vi0))).
k=1

Given that Ey(t — 7) = LS¢(t — 7) and E,(t — 1) = LS,(t — 1), where Eot — 7) =
T T

|EL¢ -1, EL(t-D] € R™ E( -7 = |E[¢-7),--- EL(®| € R™ and b() =

[bl(t) by(t) - -- bm(t)]T represents the Byzantine attack vector applied to each agent so the Eq (3.17)

can be reformulated accordingly

d _ Too NP T, T, T, S,(t—1)
EH(I) - [(ﬂe tBIE (- DLAE (1=, B (1 -T)+ E, (¢ T)] [C(t -7+ ¢S) +bi(t) —n(t)® 1,

+ 2 T AV 0 Q61 vi) (Bar(t = 1) + Ent = ) = BiV(0))).
k=1

(3.18)
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After straightforward steps, the following expression can be derived from Eq (3.18)

m

%H(r) = (B0 + BIER( = DEu(t = 1) + EL(t = 1) X St ~ 7))

k=1

+ 3 (BBt = 1) + EN(t = 0) X (Cic + $i6h vi) + bi(®) = (1)) (3.19)

D= T

T VL (0) QB vi) (Ealt = 7) + Et = ) = BiVi(0))}

=~
1l
—_

By substituting the neural network approximation from (3.12) and the controller from (3.13) into
equation (3.19), we obtain the following result

%H(z Z (Bo + BOER(t = DEw(t = ) + Ef(t = 1) u(t = 7))

-
+Z (Ef -1+ EL(t-1))
(—,BeEek(f — 1) = BE, (t = 7) = VL) 0O vi) + VT Qu(6h, vi0) + £1(Bis vi) — 1(0) + Zbk(l))

+ D TV (0040, v0) X (Bt = 7) + Bt = )T = BV V().
k=1

(3.20)

Considering the equation V,(f) = Vi(t) — V*, the following is an alternative expression for Eq (3.20)

—H(z)— Z,BHE (- T>E9k(t—r>—2ﬁv><E ~ DEu(t - 7)

m

+ Z Ep(t =S w(t = 1) = Y (Ef(t = 1) + Ef(t = ) V[ (1) X Q6 vi)
k=1

(Efc =)+ LG = D) X 80 vi) = Y (Ef(t = 1) + EL(t = 1) X ((2) + 2bi(1))
k=1

+

+

M D= T

T AV 0000 vi) x (Ef(t = 7) + Et = D)} = > T, {aw x V[ (Vo).
k=1

>~
1l

1
(3.21)

Based on the properties of the trace operation, we have g’k = T,(gk”) = T,(kg") Vg, k € R, which
leads to the following conclusion:

(Ege(t —7) + Ey(t = 0)" VI ©) 016k, vi) = T, {VkT(l)Qk(@k, Vi) (Ege(t — 7) + Eg(f - T))T} . (3.22)
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By applying Eq (3.21), the following is a modification of Eq (3.20)
—H(r) = ZﬁeE (t = D) Eqlt = 7) = Zﬁv X Ef(t = DE(t = 7)

+ ZE (t =TS lt = 1) + Z (Eft = 1) + EL(t = 1)) &6 v0)
(3.23)
(ERG =) + EL( = 1) (1(0) + 2b(1))

s DV T

T, eV (Vi)

=~
1l

1
The following outcomes can be obtained via Young’s inequality and the Cauchy-Bunyakovsky-

Schwarz inequality

1 1
ESDS (1) < SEN( = DEx(t = 1)+ 28t = DS ult = 0. Bt = 1) + Elt = 1) &0 v0)
1
Eng(t TEa(t —7) + E — DEux(t — 1) + llex(Or vl
( n(t =) + EL(t - 1)) (n(t) +2by(1))

1 1
<3 Eg(t = D)Eg(t = 7) + 5 e Ep(t = DEy(t = 7) + |In(0) + 2, ()]
1 1
Egk(t ~DEa(t—1) + 5 % Ep(t = D)Eyu(t = 7) + 2lIn@)I* + 8l (). (3.24)

Each inequality has been adjusted to include the delayed error terms and the impact of the Byzantine
attack by (r). These changes maintain the structure required for stability analysis while incorporating
both time delays and adversarial disturbances, allowing the framework to reflect these influences on
system stability more accurately.

By inserting the inequalities from (3.24) into (3.23), the following results are obtained:

By — DLL 0

d T
EH(Z‘)S—S (Z‘—T)(| 0 (v—l%)[jl——

®Im)S(l—T)

m m (3.25)
= 3 T A« OV} + > lle@ vl + 2allnIP + Sallbe (o).
k=1 k=1
By applying the relation V(1) = Vi(r) — V., the resulting equation can be derived
T *T
T, e ¥/ (z)vk(z)} “T, {V/ (z)vk(r)} “T VI (Vi) - ?T Avi'vi). (3.26)

By substituting Eq (3.26) into Eq (3.25), we obtain the following result:

Bo— DLL 0

d T
E‘HU)S_S (l‘—T)([ 0 (Bv—lé)ff—

)S(t—‘r) > TAVE OV}
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+ V(1) + 8nllby(0)II*. (3.27)

Let V(#) be defined as V(1) = X, 4T, {V;TV;} + 2L, llew(Bh vi)lI? + nlin()]. Since all components
of V() are bounded, there exists a constant o such that ||V(?)|| < d;. Also, since the Byzantine attack is
also bounded, 8n||b,(?)|]*> < d.

Let W*  represent the smallest value of the matrix’s eigen spectrum

Bo— DWLL 0
0 ( v_l%)‘zz_%ln
(ﬁ@ + ﬁv)ZT£ £~
L L
‘I’,;l. From Eq (3.24), the following can be derived

max

}. Additionally, allow for WX to express the largest value in

the matrix’s eigen spectrum

-1
]. Additionally, let ‘I’zl’;x be the maximum eigenvalue of

m

1 i _
] ® Im) S(t-1)-> %T, (V{1 Vo) +dy + do.

d ‘Pomin T (ﬂé} +ﬁv)£T~Z: .Z:
TH®O < -pS (t—T)( ; -

max L L k=1 ‘Pm,;lx
(3.28)
Define g as the minimum eigenvalue of 0 = min {2%, r= ...,%}, so the inequality (3.28)

gl Yk

becomes J
d_tH(t) < —0H(t) +d, + d,. (3.29)
By applying Lemma (2.4) to Eq (3.29), the following inequality can be obtained
d+d
H(t) <E"HO)+ —=2(1-E™). (3.30)
0

Based on the inequality provided, the following can be demonstrated

First, the error S 4(7), S (?), Vi(f) and k = 1,...,n are characterized as semi-globally uniformly
ultimately bounded (SGUUB). This is true even in the presence of the Byzantine attack b;(¢) and the
time delay ¢ — 7, which impact both the system’s dynamics and the control law. Consequently, the
system exhibits stability despite adversarial disturbances and time delay effects.

Second, the tracking errors S ¢() and S ,,(?) can attain the desired accuracy through the appropriate
selection of sufficiently large design parameters. This implies that the multi-agent formation can still
be successfully realized in the context of the Byzantine attack and time delay, provided that the design
constants are suitably chosen to address these challenges.

Overall, the formation control protocol is resilient to Byzantine attacks and time delays while
ensuring the desired tracking performance is achieved. In Figure 3, the working of the proposed study
1s discussed.
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Initialize System Parameters

Y

Compute Position & Velocity Errors

LN

Neural Network Approximation

Compute Control Input Else (Loop Back)

A

Apply Control Inputs to Agents

Check Stability & Convergence

table & Converged

Figure 3. Working of proposed study.

3.5. Simulation

In this simulation, a system composed of four agents functions on a two-dimensional plane. An
instance is outlined below:

d
Egk(t) =w(t—1),

61 + 0r cO8*(Bk1vi1)

d
—v(t) = Ce(t — 1) + b (1) + ' ’
2V =Gt =) + (1) Vo + @ sin*(Gravin)

k=1,23,4. (3.31)
0.5
Where 6,(t) = [Hkl, sz], v() = [vkl,vkz], b, = 8 ,and 7 = 0.2. The values of g, for k = 1,2, 3,4 are

0
set to —0.25,0.3,-0.2, and 0.1, respectively, and the values of ¢ for k = 1,2,3,4 are 0.3,0.1, -0.8,
and —0.6, respectively.
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. .. T T T
The starting positions are as follows: ;-1 234(0) = [2.6, 2.7] , [2.2, —2.1] ,[—2.7,2.2] ,[—2.1, —2.7]

respectively.
The desired trajectory for the formation movement is defined by the following dynamic function,

with starting values 6(0) = [O, O]T
d -
—0(r) = v(v),
7 () = V(1)

%m) = [2 c0s(0.3),2 sin(0.3t)] . (3.32)

_Byzantine
Attack

Controller '

Figure 4. Communication topology.

The following are the reference signals and required relative locations for the agents w; =
1,2,3,4 = [1.5,1.5)7,[1.5,-1.5]7,[-1.5,1.5]",[-1.5,-1.5]7. According to Figure 4, the adjacency

0 13 0 1.1
. . . . 13 0 14 O .
matrix describes the connections between agents O given by O = 0 14 0 12/ while the
1.1 0 12 O

communication links between the agents and the leader are characterized by the diagonal matrix A,
defined as A = diag(0, 1,0,0). The formation control approach obtained from (3.13) establishes the
design parameters based on the control situations that (3.15) 8y = 30 and 8, = 20. With 12 neurons
in the neural network configuration, the centers are uniformly spaced from -3 and 3. In (3.14), the
design parameters are defined by the update rule 1y = 0.8K;, for k = 1,2,3,4 and a; = 0.25 for the
same indices, while the initial weights are set as Vk=1,2,3,4(0) = [0.4]12%2. The simulation results are
further detailed in Figures 5, 6, and 8, which visually depict the various outcomes observed, offering
a clear representation of the collected data. Figures 5 and 6 depict the performance metrics related to
velocity tracking, clearly showcasing the system’s ability to maintain precise velocity control. These
figures highlight the system’s reliability and efficiency across different operational scenarios. Figure
7 shows the Byzantine attack signal. Moreover, Figure 8 reflects consistent performance by showing
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that the neural network weights stay within the defined limits. The simulation results demonstrate that
the proposed formation control method is both reliable and effective in meeting the desired control

T

Reference

objectives.

1.5

L Iy ASEAeten Ot ARSI [
: : : : S
‘ DR LT W T
N /

-0.5 3 y

-1.5
2
Figure 5. Accurate tracking of velocity for the initial coordinate is essential for achieving

precise results.
Reference | |

Figure 6. Accurate velocity tracking for the second coordinate is essential for achieving

precise results.
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Figure 7. Byzantine attack signal.
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Figure 8. The dimension of the weights in the neural network.

Additionally, a comparison between our proposed method and existing methods is shown in the
Tables 1 and 2.

AIMS Mathematics Volume 10, Issue 6, 12956-12979.



12974

Table 1. Comparison of our proposed method with existing methods (topology & attack
type).

Method Topology type Attack type considered

Proposed method Leader-follower with Byzantine attack Byzantine attacks

Existing method in [39] Simple formation control No attacks

Existing method in [4] Consensus-based control Random attack model (stochastic disturbances learning-

based adaptation)
Existing method in [16] Robust control Static attack model (bounded dropouts disturbances)

Table 2. Comparison of our proposed method with existing methods (performance metrics).

Method Convergence speed Robustness to attacks Handling of time delays
Proposed method Fast High Adaptive delay compensation
Existing method in [39] Moderate Low No compensation

Existing method [4] Slow Moderate Limited compensation
Existing method [16] Moderate High Delay handling

Remark 3.3. In this study, we focus on fixed time delays T = 0.2 to evaluate the stability and
performance of our proposed control strategy. However, in practical scenarios, time delays can
vary due to factors like network congestion, changing communication conditions, or environmental
influences. Extending our approach to handle time-varying delays is an important direction for future
research. This could involve using adaptive delay compensation techniques or Lyapunov-Krasovskii
methods to maintain stability despite varying delays. We plan to explore these enhancements in future
works to improve the system’s robustness.

3.6. Discussion

Tables 1 and 2 show a comparison between our proposed method and existing methods. Previous
methods focused on simple formation control or stochastic disturbance adaptation, while our approach
explicitly solves Byzantine attacks in a leader-follower topology. In addition, in terms of performance,
the proposed method has faster convergence, and higher robustness against attack, and can perform
effective adaptive delay compensation; however, other methods offer limited or no attack resilience
and delay handling. Therefore, the results support the effectiveness of the proposed approach for
robust and adaptive multi-agent formation control under Byzantine attacks and time delays. While
the current study focuses on Byzantine attacks, the proposed neural network-based control framework
can be extended to handle more sophisticated adversarial scenarios. Specifically, adaptive mechanisms
can be incorporated to counteract dynamic attack intensities by continuously adjusting control gains
based on real-time threat assessments. Additionally, collaborative attack mitigation can be addressed
by integrating anomaly detection techniques to identify coordinated malicious behaviors among
compromised agents. Future work will explore these extensions to further enhance the system’s
robustness in adversarial environments.
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3.7. Advantages and disadvantages of the proposed neural network-based control framework

The advantages of the proposed neural network-based control framework over conventional
methods are very significant in handling Byzantine attacks and time delays. Unlike traditional robust
control or consensus-based protocols, this approach is dynamic and adapts to adversarial conditions
and delayed feedback such that system stability and convergence rate are improved. Its capability to
counteract malicious interference and sustain formation control in uncertain environments makes it
extremely robust.

However, some potential challenges need further consideration to improve the effectiveness of
the model. The delays can cause old feedback to be used, which can result in slow convergence
or even system instability. Furthermore, Byzantine attacks that are launched by adversarial agents
who may attempt to inject false information or manipulate consensus are a major risk to the system’s
reliability. Predictive delay compensation mechanisms, improved adversary isolation approaches,
and modular and scalable architectures are among the potential countermeasures that can enhance
robustness. A more effective mitigation strategy could result from further improvements to attack
models, particularly in describing assault plans and objectives. MATLAB simulations can be used to
validate the performance and robustness of the proposed framework by modeling delays as ¢ — 7 and
adversarial agents that introduce false update values to assess system resilience.

4. Conclusions

This paper describes a new formation control method for second-order multi-agent systems with
unknown nonlinear dynamics by using adaptive neural networks in a leader-follower architecture.
This method is different from the previous methods because it deals with the issue of unknown dynamic
functions in a way that is exclusive to neural network approximation, thus giving a more robust solution
for dynamic uncertainty. The proposed framework combines adaptive neural network control with
Lyapunv-based stability analysis, all error signals are semi-globally uniformly ultimately bounded
(SGUUB), and second-order leader follower formation is achieved regardless of initial conditions.
Simulations also show that this approach is effective for real world applications where the dynamics of
the systems are complex.

This study presents a significant distinction in that it recognizes the vulnerabilities that can
result from Byzantine attacks—data corruption, desynchronization, and delay—something that is
not commonly addressed in conventional adaptive formation control techniques. Recognizing these
threats, this research stresses the importance of developing robust fault-tolerant strategies to ensure
the stability of the system in the presence of hostile actors. This contribution is important because
it reveals a major gap in the current literature and at the same time provides a foundation for further
developments in resilient multi-agent control.

Future work will aim to improve the proposed approach by integrating fault detection and isolation,
and optimal control using reinforcement learning. This will aid the development of a comprehensive
framework for resilient control of second-order nonlinear multi-agent systems, an area that has been
predominantly focused on first-order systems. Thus, this research opens up new possibilities for the
development of intelligent multi-agent systems that are robust and reliable in the context of potential
attacks.

AIMS Mathematics Volume 10, Issue 6, 12956-12979.



12976

Author contributions

Asad Khan: Software, resources, project administration; Azmat Ullah Khan Niazi: Writing-review
& editing, supervision; Saadia Rehman: Writing-original draft; Saba Shaheen: Data curation, writing-
original draft, writing-review & editing; Taoufik Saidani: Conceptualization; Adnan Burhan Rajab:
Formal analysis; Muhammad Awais Javeed: Validation, resources; Yubin Zhong: Supervision, project
administration. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-Al tools declaration
The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgements

This work has been carried out at the University of Lahore, Sargodha Campus. The authors are also
grateful for the support from Guangzhou University, China, Northern Border University, Saudi Arabia,
Knowledge University and Al-Kitab University Iraq.

The authors extend their appreciation to Northern Border University, Saudi Arabia, for supporting
this work through project number (NBU-CRP-2025-2225). This research was also sponsored by the
National Natural Science Foundation of China, (grant No. 12250410247), and from the Ministry of
Science and Technology of China, (grant No. WGXZ2023054L).

Conflicts of interest

The authors declare they have no conflict of interest.

References

1. D. Maldonado, E. Cruz, J. A. Torres, P. J. Cruz, S. del Pilar, S. Gamboa, Multi-agent Systems:
A survey about its components, framework and workflo, IEEE Access, 12 (2024), 80950-80975.
https://doi.org/10.1109/ACCESS.2024.3409051

2. M. Abbasi, H. J. Marquez, Dynamic event-triggered formation control of multi-agent systems with
non-uniform time-varying communication delays, IEEE T. Autom. Sci. Eng., 22 (2025), 8988—
9000. https://doi.org/10.1109/TASE.2024.3494658

3. X. L. Quan, R. J. Du, R. C. Wang, Z. S. Bing, Q. Shi, An efficient closed-loop adaptive
controller for a small-sized quadruped robotic rat, Cyborg and Bionic Systems, 5 (2024), 0096.
https://doi.org/10.34133/cbsystems.0096

4. L.H.Ji,Z. Q. Lin, C. J. Zhang, S. S. Yang, J. Li, H. Q. Li, Data-based optimal consensus control
for multiagent systems with time delays: using prioritized experience replay, IEEE T. Syst. Man
Cy., 54 (2024), 3244-3256. https://doi.org/10.1109/TSMC.2024.3358293

5. Y. H. Sun, Z. N. Peng, J. P. Hu, B. K. Ghosh, Event-triggered critic learning impedance control of

lower limb exoskeleton robots in interactive environments, Neurocomputing, 564 (2024), 126963.
https://doi.org/10.1016/j.neucom.2023.126963

AIMS Mathematics Volume 10, Issue 6, 12956-12979.


https://dx.doi.org/https://doi.org/10.1109/ACCESS.2024.3409051
https://dx.doi.org/https://doi.org/10.1109/TASE.2024.3494658
https://dx.doi.org/https://doi.org/10.34133/cbsystems.0096
https://dx.doi.org/https://doi.org/10.1109/TSMC.2024.3358293
https://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.126963

12977

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

B. Ibrahim, H. Noura, Formation flight control of multi-UAV system using neighbor-based
trajectory generation topology, Wseas Transactions on Applied and Theoretical Mechanics, 15
(2020), 173-181. https://doi.org/10.37394/232011.2020.15.20

J. P. Hu, B. Chen, B. K. Ghosh, Formation-circumnavigation switching control of multiple ODIN
systems via finite-time intermittent control strategies, I[EEE T. Control Netw., 11 (2024), 1986—
1997. https://doi.org/10.1109/TCNS.2024.3371597

A. Khan, A. U. K. Niazi, W. Abbasi, F. Awan, M. M. A. Khan, F. Imtiaz, Cyber secure consensus
of fractional order multi-agent systems with distributed delays: Defense strategy against denial-of-
service attacks, Ain Shams Eng. J., 15 (2024), 102609. https://doi.org/10.1016/j.asej.2023.102609

H. T. Reda, A. Anwar, A. Mahmood, Comprehensive survey and taxonomies of false data injection
attacks in smart grids: attack models, targets, and impacts, Renew. Sust. Energy Rev., 163 (2022),
112423. https://doi.org/10.1016/j.rser.2022.112423

N. Suryanto, Y. Kim, H. Kang, H. T. Larasati, Y. Yun, T. T. H. Le, et al., DTA: Physical camouflage
attacks using differentiable transformation network, In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, 15305-15314. https://islab-ai.github.
io/dta-cvpr2022/

Y. S. Liu, W. X! Li, X. W. Dong, Z. Ren, Resilient formation tracking for networked swarm
systems under Malicious data deception attacks, Int. Jo. Robust Nonlin., 35 (2024), 2043-2052.
https://doi.org/10.1002/rnc.7777

A. Khan, M. A. Javeed, A. U. K. Niazi, S. Rehman, W. U. Hassan, Y. B. Zhong, A robust
control framework for multi-agent systems under Byzantine attacks using hybrid event-triggered
techniques, Ain Shams Eng. J., 15 (2024), 103149. https://doi.org/10.1016/j.asej.2024.103149

F. Ding, R. Wang, T. D. Zhang, G. Zheng, Z. X. Wu, S. Wang, Real-time trajectory planning and
tracking control of bionic underwater robot in dynamic environment, Cyborg and Bionic Systems,
5(2024), 0112. https://doi.org/10.34133/cbsystems.0112

J. F. Hao, P. Chen, J. Chen, X. Li, Effectively detecting and diagnosing distributed multivariate time
series anomalies via Unsupervised Federated Hypernetwork, Inform. Process. Manag., 62 (2025),
104107. https://doi.org/10.1016/j.ipm.2025.104107

Z. Wang, M. L. Chen, Y. L. Guo, Z. Li, Q. F. Yu, Bridging the domain gap in satellite pose
estimation: A self-training approach based on geometrical constraints, IEEE T. Aero. Elec. Sys., 60
(2023), 2500-2514. https://doi.org/10.1109/TAES.2023.3250385

H. B. Zeng, Z. J. Zhu, T. S. Peng, W. Wang, X. M. Zhang, Robust tracking
control design for a class of nonlinear networked control systems considering bounded
package dropouts and external disturbance, IEEE T. Fuzzy Syst., 32 (2024), 3608-3617.
https://doi.org/10.1109/TFUZZ.2024.3377799

D. B. Tong, B. Ma, Q. Y. Chen, Y. B. Wei, P. Shi, Finite-time synchronization and energy
consumption prediction for multilayer fractional-order networks, IEEE T. Circuits-11, 70 (2023),
2176-2180. https://doi.org/10.1109/TCSI1.2022.3233420

J. L. Guo, Y. K. Li, B. Huang, L. Ding, H. B. Gao, M. Zhong, An online optimization escape
entrapment strategy for planetary rovers based on Bayesian optimization, J. Field Robot., 41
(2024), 2518-2529. https://doi.org/10.1002/rob.22361

AIMS Mathematics Volume 10, Issue 6, 12956-12979.


https://dx.doi.org/https://doi.org/10.37394/232011.2020.15.20
https://dx.doi.org/https://doi.org/10.1109/TCNS.2024.3371597
https://dx.doi.org/https://doi.org/10.1016/j.asej.2023.102609
https://dx.doi.org/https://doi.org/10.1016/j.rser.2022.112423
https://islab-ai.github.io/dta-cvpr2022/
https://islab-ai.github.io/dta-cvpr2022/
https://dx.doi.org/https://doi.org/10.1002/rnc.7777
https://dx.doi.org/https://doi.org/10.1016/j.asej.2024.103149
https://dx.doi.org/https://doi.org/10.34133/cbsystems.0112
https://dx.doi.org/https://doi.org/10.1016/j.ipm.2025.104107
https://dx.doi.org/https://doi.org/10.1109/TAES.2023.3250385
https://dx.doi.org/https://doi.org/10.1109/TFUZZ.2024.3377799
https://dx.doi.org/https://doi.org/10.1109/TCSII.2022.3233420
https://dx.doi.org/https://doi.org/10.1002/rob.22361

12978

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. M. Shi, D. B. Tong, Q. Y. Chen, W. N. Zhou, Pth moment exponential synchronization for delayed
multi-agent systems with Lévy noise and Markov switching, IEEE T. Circuits-11I, 71 (2023), 697—
701. https://doi.org/10.1109/TCSII1.2023.3304635

X. Liu, S. C. Lou, W. Dai, Further results on “System identification of nonlinear state-space
models”, Automatica, 148 (2023), 110760. https://doi.org/10.1016/j.automatica.2022.110760

W. M. Wang, H. B. Zeng, J. M. Liang, S. P. Xiao, Sampled-data-based load frequency
control for power systems considering time delays, J. Franklin I, 362 (2025), 107477.
https://doi.org/10.1016/j.jfranklin.2024.107477

J. X. Lv, X. Z. Ju, C. H. Wang, Neural network prescribed-time observer-based output-feedback
control for uncertain pure-feedback nonlinear systems, Expert Syst. Appl., 264 (2025), 125813.
https://doi.org/10.1016/j.eswa.2024.125813

Z.S. Zhou, Y. F. Wang, G. F. Zhou, X. L. Liu, M. Y. Wu, K. P. Dai, Vehicle lateral dynamics-
inspired hybrid model using neural network for parameter identification and error characterization,
IEEE T. Veh. Technol., 73 (2024), 16173-16186. https://doi.org/10.1109/TVT.2024.3416317

L. Fu, J. Q. Wang, X. W. Fu, G. L. Zhao, Finite-time Pade-based adaptive FNN controller
implementation for microbial fuel cell with delay and multi-disturbance, Int. J. Hydrogen Energ.,
98 (2025), 1034—-1043. https://doi.org/10.1016/j.ijhydene.2024.10.372

F.Z. Song, Y. Liu, Y. Dong, X. K. Chen, J. B. Tan, Motion control of wafer scanners in lithography
systems: From setpoint generation to multi-stage coordination, IEEE T. Instrum. Meas., 73 (2024),
7508040. https://doi.org/10.1109/TIM.2024.3413202

Y. Y. Liu, Q. L. Hu, G. Feng, Navigation functions on 3-manifold with boundary
as a disjoint union of Hopf tori, [EEE T. Automat. Contr, 70 (2025), 219-234.
https://doi.org/10.1109/TAC.2024.3419817

B. Xu, X. Y. Wang, J. Zhang, Y. Guo, A. A. Razzaqi, A novel adaptive filtering for cooperative
localization under compass failure and non-gaussian noise, IEEE T. Veh. Technol., 71 (2022), 3737—
3749. https://doi.org/10.1109/TVT.2022.3145095

Z.M.Zou, S. M. Yang, L. Zhao, Dual-loop control and state prediction analysis of QUAV trajectory
tracking based on biological swarm intelligent optimization algorithm, Sci. Rep., 14 (2024), 19091.
https://doi.org/10.1038/s41598-024-69911-5

Y. F Yin, Z. T. Wang, L. L. Zheng, Q. R. Su, Y. Guo, Autonomous UAV navigation
with adaptive control based on deep reinforcement learning, Electronics, 13 (2024), 2432.
https://doi.org/10.3390/electronics 13132432

G. L. Jing, Y. F. Zou, M. H. Xu, Y. Q. Zhang, D. X. Yu, Z. G. Shan, et al., Nicaeca: A Byzantine
fault tolerant consensus under unpredictable message delivery failures for parallel and distributed
computing, I[EEE T. Comput., 74 (2025), 915-928. https://doi.org/10.1109/TC.2024.3506856

H. L. Wei, H. Zhang, K. Al-Haddad, Y. Shi, Ensuring secure platooning of constrained intelligent
and connected vehicles against Byzantine attacks: A distributed MPC framework, Engineering, 33
(2024), 35-46. https://doi.org/10.1016/j.eng.2023.10.007

AIMS Mathematics Volume 10, Issue 6, 12956-12979.


https://dx.doi.org/https://doi.org/10.1109/TCSII.2023.3304635
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2022.110760
https://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2024.107477
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2024.125813
https://dx.doi.org/https://doi.org/10.1109/TVT.2024.3416317
https://dx.doi.org/https://doi.org/10.1016/j.ijhydene.2024.10.372
https://dx.doi.org/https://doi.org/10.1109/TIM.2024.3413202
https://dx.doi.org/https://doi.org/10.1109/TAC.2024.3419817
https://dx.doi.org/https://doi.org/10.1109/TVT.2022.3145095
https://dx.doi.org/https://doi.org/10.1038/s41598-024-69911-5
https://dx.doi.org/https://doi.org/10.3390/electronics13132432
https://dx.doi.org/https://doi.org/10.1109/TC.2024.3506856
https://dx.doi.org/https://doi.org/10.1016/j.eng.2023.10.007

12979

32.J. A. V. Trejo, M. Adam-Medina, C. D. Garcia-Beltran, G. V. G. Ramirez, B. yolanda
l6pez Zapata, E. M. Sanchez-Coronado, et al., Robust formation control based on leader-
following consensus in multi-agent systems with faults in the information exchange:
Application in a fleet of unmanned aerial vehicles, IEEE Access, 9 (2021), 104940-104949.
https://doi.org/10.1109/ACCESS.2021.3098303

33. S. Manfredi, Robust consensus design of uncertain multiagent systems with bounded gains
and incremental nonlinear interactions, IEEE T. Ind. Inform., 20 (2024), 11844-11853.
https://doi.org/10.1109/T11.2024.3413319

34. H. Meng, D. H. Pang, J. D. Cao, Y. C. Guo, A. U. K. Niazi, Optimal bipartite consensus control
for heterogeneous unknown multi-agent systems via reinforcement learning, Appl. Math. Comput.,
476 (2024), 128785. https://doi.org/10.1016/j.amc.2024.128785

35.Y. H. Lan, J. Y. Zhao, Improving track performance by combining padé-approximation-based
preview repetitive control and equivalent-input-disturbance, J. Electr. Eng. Technol., 19 (2024),
3781-3794. https://doi.org/10.1007/s42835-024-01830-x

36. X. Z. Ju, Y. S. Jiang, L. Jing, P. Liu, Quantized predefined-time control for heavy-lift launch
vehicles under actuator faults and rate gyro malfunctions, ISA T., 138 (2023), 133-150.
https://doi.org/10.1016/j.isatra.2023.02.022

37. F. Ding, K. C. Zhu, J. Liu, C. Peng, Y. F. Wang, J. G. Lu, Adaptive memory event triggered output
feedback finite-time lane keeping control for autonomous heavy truck with roll prevention, IEEE
T. Fuzzy Syst., 32 (2024), 6607-6621. https://doi.org/10.1109/TFUZZ.2024.3454344

38. S. B. Long, W. C. Huang, J. H. Wang, J. R. Liu, Y. X. Gu, Z. A. Wang, A fixed-time consensus
control with prescribed performance for multi-agent systems under full-state constraints, /IEEE T.
Autom. Sci. Eng., 22 (2025), 6398-6407. https://doi.org/10.1109/TASE.2024.3445135

39. G. X. Wen, C. Y. Zhang, P. Hu, Y. Cui, Adaptive neural network leader-follower formation control
for a class of second-order nonlinear multi-agent systems with unknown dynamics, IEEE Access,
8 (2020), 148149-148156. https://doi.org/10.1109/ACCESS.2020.3015957

40. X. Xu, B. Li, Semi-global stabilization of parabolic PDE-ODE systems with input saturation,
Automatica, 171 (2025), 111931. https://doi.org/10.1016/j.automatica.2024.111931

©2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 10, Issue 6, 12956-12979.


https://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3098303
https://dx.doi.org/https://doi.org/10.1109/TII.2024.3413319
https://dx.doi.org/https://doi.org/10.1016/j.amc.2024.128785
https://dx.doi.org/https://doi.org/10.1007/s42835-024-01830-x
https://dx.doi.org/https://doi.org/10.1016/j.isatra.2023.02.022
https://dx.doi.org/https://doi.org/10.1109/TFUZZ.2024.3454344
https://dx.doi.org/https://doi.org/10.1109/TASE.2024.3445135
https://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.3015957
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2024.111931
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Neural network
	Graph theory
	Auxiliary lemmas

	Important results
	Formulation of the problem
	Impacts of Byzantine attacks
	Designing the control scheme
	Proof-based conjecture
	Simulation
	Discussion
	Advantages and disadvantages of the proposed neural network-based control framework

	Conclusions

