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1. Introduction

In different fields, such as quantum mechanics, solid state physics, plasma waves, fluid mechanics,
field theory, optical fibers, and chemical physics, nonlinear partial differential equations (NLPDEs)
are widely used to induce several different phenomena [1-3]. Exact analytical solutions of NLPDEs
are essential in numerous applied scientific fields for precisely analyzing associated processes and
comprehending the qualitative nature of multiple methods. Lately, scholars have proposed several
kinds of methods to find exact solutions for NLPDEs. Some methods are the variational iteration
method [4-6], tanh function technique [7], modified extended tanh function technique [8—10], sine-
cosine technique [11, 12], exp-function technique [13], inverse scattering technique [14], Hirotas
bilinear technique [15], the modified Sardar sub-equation method [16, 17], and homogeneous balance
technique [18].

The (2+1)-dimensional Zoomeron equation (ZE) in mathematical physics has garnered significant
attention due to its rich mathematical structure and diverse wave dynamics [19]. This equation, which
generalizes certain integrable models, serves as an essential framework for investigating solitonic
behavior in nonlinear media. Various analytical approaches have been designed to investigate its exact
results, including solitons, periodic waves, and other nonlinear wave structures. The approximate
similarity solutions to the Boiti-Leon-Mana-Pempinelli equation are derived by using the extended
unified method [20]. The modified extended direct algebraic method is used to find special soliton
solutions for the (3+1)-fractional modified Zakharov—Kuznetsov equation [21]. In [22], the exact
solutions of the Klein Kramer equation were derived via the extended unified method. The sine-
Gordon expansion technique and the generalized Riccati equation mapping technique provide further
insights into nonlinear wave interactions [23]. These diverse methodologies significantly enhance the
understanding of the (2+1)-dimensional ZE and its soliton behavior in nonlinear wave dynamics.

The first to suggest solitons with variable speeds were Calogero and Degasperis [24], who also
observed a relationship between polarization effects and speed. The ability of the ZE to articulate
localized wave formations and soliton-like solutions has garnered a lot of fascination among NLPDEs.
A bilateral soliton was created as a result, with one appearing from one side and coming from a vast
distance. The soliton boosts the boomerang to that side at the same speed in faraway times, while
the other one rotates repeatedly around the fixed point as though it were pulling in the direction of a
shift in the spatial field. These well-known boomeron and trappon soliton equations were used in [25]
to construct the coupled boomeron equation and other specific integrable structures for coupled wave
equations, respectively. One of these specific instances of the boomeron equation is the nonlinear ZE.
It serves to explain phenomena pertaining to boomerons and trappons and shows how a monovariant
field evolves. Consequently the ZE describes specific cases of solitons with unusual characteristics in a
range of physical situations, specifically in fluid mechanics, laser physics, and nonlinear optics [26—28].

The ZE, a nonlinear integrable PDE first derived by Calogero and Degasperis, plays a pivotal role
in modeling complex wave phenomena across multiple physical domains including nonlinear optics,
plasma physics, and fluid dynamics. The equation’s integrability guarantees exact solvability through
methods like the inverse scattering transform, while its physical relevance extends to optical pulse
propagation in fibers, ion-acoustic waves in plasmas, and rogue wave dynamics in hydrodynamics.
Previous analytical approaches including Hirota’s bilinear method and Lie symmetry analysis have
revealed various solution classes, yet significant gaps remain in understanding (2+1)-dimensional
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solutions with singularities or periodic structures. Our work advances this frontier by employing the
modified extended direct algebraic method (MEDAM) to systematically derive new exact solutions—
including bright/dark solitons, kinks, and singular periodic waves-while establishing their stability
criteria and connecting them to concrete applications like optical signal processing and plasma wave
control. This comprehensive treatment not only enriches nonlinear wave theory but also provides
practical tools for wave manipulation in physical systems, demonstrating the continued relevance of
the ZE in contemporary applied mathematics and theoretical physics.

Now let us explore the modified extended direct algebraic method (MEDAM) for analyzing the

(2+1)-dimensional nonlinear ZE:
(@) —(&) +2(w2) - 0. (1.1)
w I W /xx xt

The amplitude of the associated wave node is symbolized by @w(x, y, ). One such advancement that
provides a methodical framework for generating exact solutions to nonlinear PDEs is the MEDAM. By
adding more algebraic structures, this technique improves the conventional direct algebraic approach
and thereby renders it possible to extract complex wave solutions, such as multi-wave, periodic waves,
and soliton interactions. When applied to the (2+1)-dimensional ZE, this technique has produced
explicit solutions that are consistent with well-known physical phenomena. The beneficial effect of
MEDAM in nonlinear wave analysis was further demonstrated by El-Deeb and Samir [29], who used
it to generate several solitonic wave solutions for an extended (2+1)-dimensional perturbed nonlinear
Schrédinger equation. This approach has been found effective in solving a range of issues, including
those using hyperbolic, rational functions and trigonometric. The goal is to build numerous types of
wave structures and examine their consequences within the deeper context of nonlinear wave theory
by utilizing the benefits of the MEDAM. In this study, the recommended model is executed using the
MEDAM.

This paper introduces the MEDAM that yields exact soliton solutions of the nonlinear ZE. This
expands the range of known solutions by obtaining bright, singular, periodic, singular periodic,
dark, and kink solitons, each of which presents unique nonlinear wave characteristics. The ZE
dynamic behavior and possible applications in modeling physical phenomena are simplified by these
solutions. This research provides deeper insights into soliton dynamics and stability by incorporating
complete 2D, 3D, and contour graphical illustrations, in contrast to earlier efforts that mostly focus
on analytical methodologies. By applying the MEDAM to higher-dimensional nonlinear systems, we
enhance the understanding of fluid dynamics, wave propagation, and optical fiber communications. By
demonstrating that the MEDAM is efficient at solving nonlinear equations, the results enrich the theory
of nonlinear waves and could potentially find application in complicated wave interactions, nonlinear
optics, and plasma physics.

The MEDAM is a powerful analytical technique for obtaining exact solutions of NLPDEs. Its
significance lies in its ability to generate a wide range of soliton and wave solutions including bright,
dark, kink, periodic, and singular solitons through a systematic algebraic framework. Unlike traditional
methods, the MEDAM enhances solution versatility by incorporating a generalized auxiliary function,
enabling the derivation of complex wave structures in higher-dimensional systems. Its adaptability,
simplicity, and symbolic computation compatibility make it an effective tool for analyzing nonlinear
phenomena in fields such as optical fibers, plasma physics, and fluid dynamics. The MEDAM not only
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advances theoretical insights but also provides valuable analytical benchmarks for validating numerical
models and guiding experimental research.

The article is organized as mentioned below. In Section 2, the suggested integration technique
is described. Some results are extracted by applying the MEDAM in Section 3. Section 4 provides
graphical illustration that specifies the characteristics of the derived solutions and the parametric affects
are also discussed in this section. Physical interpretation and applications are provided in Section 5.
The stability analysis of the proposed model is examined in Section 6. Finally, Section 7 provides our
findings.

2. Description of the integration technique

This section presents the MEDA technique, taking NLPDE into consideration as follows:
P(Ha Hx, Hy,HtameHyy’th,- . ) = 0 (21)

Using the MEDA approach [30-32], the following steps are taken to tackle Eq (2.1):
Step 1. Utilize the transformation of traveling waves described below.

H(x,y,t) = B(p),n = x +y — ut. (22)
The ordinary differential equation (ODE) is then obtained by using Eq (2.1):
N(B,B,B’",B”,...)=0. (2.3)

Step 2. The following is the purported solution to the extracted ODE:

l
B = ) bo(), (2.4)

r=—1

where o meets the subsequent requirement,

o () = Vo + u10() + u,02(1) + uz03() + ugo () + ugoS(1), (2.5)
where o = o(p) and 0 = %.

Step 3. The balancing rule is utilized to assess the integer /.

Step 4. The consequence of Eqs (2.5) and (2.4) can be transferred into Eq (2.3) and we accumulate
all o(n)". A set of nonlinear equations is then produced by setting all of the coefficients to zero.
To determine the unknowns, this derived system of equations is handled by using the Mathematica
program.

Step 5. Several cases can be obtained by assigning various possible choices for ug, u;, u,, us, uy,
and ug.

Case 1: If uy = u; = u3 = ug = 0, then the following genres are obtained:

Genre 1. If u; > 0 and uy < 0, then o () = /—z—i sech(+/uz ).
Genre 2. If u; < 0and uy > 0, then o () = /—z—i sec(\=uy n).
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Genre 3. If u, > 0 and uy > 0, then o () = /—Z—j csc ( V=i 77).

2
Case 2: If ug = :724 and u; = uz = ug = 0, then the following genres are obtained:

Genre 1. If uy < O and us > 0, then () = =52 tanh ( =% 1)

Genre 2. If uy > 0 and uy > 0, then o(n) = /2”724 tan ( \/%77)
Genre 3. If u> > 0 and uy > 0, then o (1)) = \/ij esch (V2iz ).

Case 3: If u3 = uy = ug = 0, then the following genres are obtained:

Genre 1. If u, < 0 and uy = 0, then o(7) = “MCVED _ 0

2uy 2uy °
in(2 v/=uzm)
Genre 2. If u, < 0 and uy = 0, then o () = '”smT”m — 3.

Genre 3. If g > 0, u» > 0 and u; = 0, then o°(1y) = \/z sin ( itz 7).

up

Genre . If ug > 0, u, < O and u; = 0, then o"(37) = /=2 sin (y=1z ).
Genre S. If u; > 0 and uy = %, then o () = exp ( \/u_zn) - L

2uy *
Case 4: If uy = u; = up = ug = 0, then the following genre is obtained:

4us

Genre. If u3 < 0 and uy < 0, then o(n7) = .
3

Case 5: If u, = uy = ug = 0, then the following genres is obtained:

Genre. If u; > 0, then o(n7) = f( Vit _4&),

2 u3 us3
Case 6: If uy = u; = ug = 0, then the following genres are obtained:
Genre 1. If u = 2 > 0 and u, > 0, then o(y) = —%2 (tanh (§ vz ) + 1).

Genre 2. If u, = 5 > 0 and u, > 0, then o() = —Z—i (coth (% \/u_zn) + 1).

uy

Case 7: uy = u; = uz = 0, then the following genres are obtained:

2 h?
Genre 1. If u, > 0,u4 > 0 and ug > 0, then o(n) = up sech? (/i) '
2 \Ji2~4ugur—(\J 1k ~4ugur-+us) sech?(vuzn)

2uy sec?(y/—uzn)
—Adugur—( \/ui—4u6u2—u4) sec2(/—uzn) ’
By replacing the established constants in the purported solution to Eq (2.3) with the conventional
results of Eq (2.4), several solutions to Eq (2.1) can be obtained.

Genre 2. u; > 0,u, > 0 and ug > 0, then o() = \/2\/ -
uy

3. Solving methodology for the Zoomeron equation

In this section the MEDAM is applied on the ZE to seek analytic solutions for Eq (1.1) in the form
below:

w(x,y,t) = B(n),n =x+y—ut. 3.1

The real parameter is denoted by u. Equation (1.1) is reduced to an ODE using the transformation
given in Eq (3.1) as:

q 7

2B B 2y _
Hi(g) = (5) - 2uB) =0. (3.2)
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The result of integrating Eq (3.2) twice with regard to 7 is
(> — 1)B” —2uB* + B =0, (3.3)

where the constant is denoted by 7. One can get [ = 1 by balancing B” and B. One way to express the

solution to Eq (3.3) 1s
b_
B() = by + byo() + —. (3.4)
o (1)
By executing Step 4 discussed in the preceding section and merging Eq (3.4) with Eq (2.4) into Eq (3.3),

the below system of equations is yielded by equating the coeflicient of similar power of o-(n) to zero.
o3(): —Zubfl —2b_jug + 2u*b_juy = 0,
0'_2(77)5 —6#[?%1170 - %b—lul + %/sz—ml =0,
o) th_; - 6,ub_1b(2) - 6ub31b1 —b_jus + pPb_juy = 0,
0'0(7]): Tap — 2/1[?(3) - 12ﬂb_1b0b1 - %blul + %,uzb]l/t] - %b_lbly, + %ﬂzb_ll/ly, =0,
ol(n): Tby — 6ubiby — 6ub_ b1 — bius + Pbyu, = 0,
o2(m): —6ubob} — 3bjus + 3p*byuz = 0,
a>(n): —2,ub? — 2byty + 2u*biuy + b_jug — *b_ug = 0,
o> (1): =3biug + 3u*biug = 0.
Solving this system of equations with Mathematica packages yields the following results:
2
Case 1: If ug = uy = us = ug = 0, this gives by = b_; = 0,u, = ,12__—71 and uy = %, and then following
three genres are prodeuced.
Genre 1. If u, > 0 and u4 < 0, then these imply:

T -7
@116y, 1) = /'u—b%sech((x — )., /;ﬂ i 1). (3.5)

Genre 2. If u, < 0 and u4 > 0, then these imply:

[T [ T
@ a(x,y,1) = Iu—b%sec((x — 1) g 1). (3.6)

Genre 3. If u, > 0 and u4 > 0, then these imply:

T T
1Ay, 1) = /ECSC((x—t,u) /#2_ 1). 3.7)

Equation (3.5) presents a bright soliton solution while Eqgs (3.6) and (3.7) present a singular periodic
solution. , 2

Case 2: If ug = :724, uy = uz = ug = 0, this gives by = b_; = 0, u, = ﬂ;—fl, and uy = ;%’ and then
following three genres are produced.

Genre 1. If u; > 0 and uy > 0, then these imply:

- h (x—put) lﬁ
/mtan (T)

wZ,l(-x9y’ t) = \/E . (38)
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Genre 2. If u; > 0 and uy > 0, then these imply:

@,2(x,y,1) = by + csch [ \/_(x — 1)

Genre 3. If u, > 0 and uy > 0, then these imply:

w2,3(~x7 Yy, t) =

-T+ 6,uu0 T— 6;m3
e P\ G2
H MDY
— (o) |55
,/?% tanh(T)
. (3.10)

V2

Equation (3.8) presents a dark soliton solution, Eq (3.9) presents a singular soliton solution, and (3.10)

presents a singular periodic solution.

Case 3: If uy = uy = ug = 0, this gives by = 0,u; =
genres are produced.

Genre 1. If u, < 0 and u( = 0, then these imply:

4ub_1bo _
T and u, =

—T+6ub? .
%, and then following five

w3,l(~x’y, t) = bO +

Genre 2. If u, < 0 and u( = 0, then these imply:

b_
‘ . (3.11)
2psinh[2(x—t;1) m]b b
12 |10
_ (2t ) i
—T+6ubj —T+6ub;
b_
! (3.12)

@32(x,y,1) = by +

> .
T+6ub,

2 }b, 1bg
—1+u

u sin(Z(x—t/J)

_ 2ub_1bg
( —‘r+6,ub(2)) +

Genre 3. If uy > 0, u, > 0, and u; = 0, this gives b;

2
—T+6ubj
wh2 —T+6ub, 0
=0,ug = T —L . and u, = e which imply:

csch ((x —tu) TTSZ i )b_
@33(x,y,1) = by + . (3.13)
ub?*,
—T+6/.lb(2)
Genre 4. If uy > 0, u, < 0, and u; = 0, then these imply:
csc ((x — 1) :rfzb ) b_,
@34(x,y,1) = by + : (3.14)
ub?,
- —T+6,ub(2)
Genre 5. If u; > 0 and u, = %, then these imply:
b_
w@35(x,y,1) = by + : — . (3.15)
-7+
exp (- 0 5 - 22
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Equation (3.11) generates a periodic wave solution, Eqs (3.12) and (3.14) present periodic singular

solutions, (3.13) presents a singular periodic solution, while Eq (3.15) presents a kink soliton solution.
,ub% —27u0+4yu8 +24pu_juou;

, and then the

Case 4: If uy = uy = up = ug = 0, this gives uy = o and u3 =

(=L+pu_y
following genre is produced.
Genre. If u3 > 0 and u4 > 0, then these imply:
4b 1
@a1(x,9,1) = by + 13 + by (v = )Pl — duy). (3.16)

(x — t)>u3 —4uy  4us

Equation (3.16) presents a bright soliton solution.
2

. . ub —21'u0+4,uu3+24,uu,1uou1
Case 6: If ug = u; = ug = 0, this gives uy = #2—_11 and u3 = .

, and then the following

(= 1+pPu-
two genres are produced.
2
Genre 1. If u, = :—z > 0 and u, > 0, then these imply:
pbg
@e1(X,y,1) = by +4bo| 1 + tanh | 2(x — 1) . (3.17)
’ -1+
Genre 2. If u, = g > 0 and u, > 0, then these imply:
pbg
e (X, y,1) = by +4bg| 1 + coth | 2(x — 1) . (3.18)
’ -1+
Equation (3.17) presents a kink soliton solution while Eq (3.18) presents a singular soliton solution.
2
Case 7: If uy = u; = uz = 0, this gives u, = %f#z and uy = %, and then following two genres are
produced.

Genre 1. If u, > 0, u4 > 0, and ug > 0, then these imply:

h ((x -t
@i(ay.0) = V2b, sech” (= ) iz 2 . 319

2 \Jui — dupue — sech? ((x — tu) \/u_z) (us + Ju? — 4urue)

Genre 2. If u, > 0,u4 > 0, and ug > 0, then these imply:

H(x -1,
@ra(ay.0) = V2b, sec? (e = 0 Vi) e . 320)

2 \Ju2 = dusug — sec? ((x — tp0) N=itz) (—us + \Ju2 = dusutg)

Equation (3.19) presents a bright soliton solution while Eq (3.20) presents a singular periodic solution.
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4. Graphical illustration and discussion

This section offers graphical representations that helps to explain how the outcomes of the ZE
behave. Numerical simulations have been used to assess various families of solutions that have
been derived using the MEDAM. The nature of solitons, periodic structures, and their propagation
properties in nonlinear wave systems are highlighted in these visual aids. These solutions include kink,
singular, singular periodic, bright, and dark solitons. The solution’s propagation over space and time
is depicted in 2D, contour, and 3D graphs. Insights into nonlinear wave dynamics are provided by
these representations, which highlight important characteristics like amplitude, velocity, and structural
stability. Various families of solutions were yielded from Eq (2.4) by assigning particular values to the
parameters. The obtained solutions depend critically on the parameters u, 7, by, by, and b_1, which
govern wave speed, amplitude, and stability. Wave speed parameter u controls soliton propagation
velocity. Nonlinearity coefficient T determines the balance between dispersion and nonlinearity. The
dynamic behavior of these solutions can be categorized as follows: Bright solitons in Eqs (3.5)
and (3.19) are localized, bell-shaped waves that maintain their amplitude and shape during propagation,
making them ideal for optical communication systems where signal integrity is crucial. Dark solitons in
Eq (3.8) are characterized by intensity dips-these solutions model phenomena like quantum vortices in
Bose-Einstein condensates. Singular and periodic solutions in Eq (3.6), (3.12), and (3.20) exhibit blow-
up behavior or periodic oscillations, which can describe rogue waves in hydrodynamics or resonant
modes in plasmas. Kink solitons in Eqgs (3.15) and (3.17) are topological solutions that transition
between two constant states, modeling phase transitions in ferromagnetic materials or domain walls in
optics.

A bell shape or bright soliton of Eq (3.5) is presented in Figure 1 by inserting u = 0.6, 7 = 0.6,
by =0.6,b_; = by =0,and y = 0. A singular periodic soliton of Eq (3.6) is presented in Figure 2 by
inserting u = 1.5, 7 = 0.6, by = 1, b_1 = by = 0, and y = 0. A dark soliton of Eq (3.8) is presented
in Figure 3 by inserting u = 1.2, 7 = 0.01, b, = 0.5, b_; = by = 0, and y = 0. A singular soliton of
Eq (3.9) is presented in Figure 4 by inserting © = 1.5, 7 = =0.8, 5, = 0.7, b_; = by = 0, and y = 0.
A periodic solution of Eq (3.11) is presented in Figure 5 by inserting 4 = 0.5, 7 = 0.7, b_; = 0.3,
by = 0,by = 0.2, and y = 0. A singular periodic solution of Eq (3.12) is presented in Figure 6 by
mnserting u = 1.1, 7 = 0.7, by = 03, by = 0, by = 0.1, and y = 0. A kink soliton of Eq (3.15) is
presented in Figure 7 by inserting u = 0.5, 7 = 0.2, b_; = 0.6, 5, =0, by = 0.2, and y = 0. A bright
soliton of Eq (3.16) is presented in Figure 8 by inserting u = —0.2, 7 = 0.8, b_; = 0.7, by = -0.4,
by = 0.3, and y = 0. A kink soliton of Eq (3.17) is presented in Figure 9 by inserting u = 1.5, 7 = 0.5,
by =-0.7,by =0,by = 0.1, and y = 0. A singular soliton of Eq (3.18) is presented in Figure 10 by
inserting u = -0.9, 7 = 0.2, b_; =0, by = 0.3, by = 0.01, and y = 0. A bright soliton of Eq (3.19)
is presented in Figure 11 by inserting u = 1.2, 7 = =0.5, b_y = 0.7, by = 0.4, by = 0, ug = 1.2, and
y = 0.A bright soliton of Eq (3.20) is presented in Figure 12 by inserting u = 1.2, 7 = -0.5, b_; = 0,
by =04,byp=0,us=1,and y = 0.
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(a) 3D Graph (b) 2D Graph (c) Contour Graph

Figure 1. Representation of Eq (3.5) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = 0.6, 7 = 0.6, b; = 0.6,
b_l = b() = 0, andy =0.

-.

(a) 3D Graph (b) 2D Graph (c) Contour Graph

Figure 2. Representation of Eq (3.6) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = 1.5, 7 = 0.6, b; = 1,
b_y =by=0,andy = 0.

(a) 3D Graph (b) 2D Graph (c) Contour Graph

Figure 3. Representation of Eq (3.8) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = 1.2, 7 = 0.01, b; = 0.5,
b_l = b() = 0, andy =0.
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— t0
t=05
— =1

10 20

(a) 3D Graph (b) 2D Graph (c) Contour Graph

Figure 4. Representation of Eq (3.9) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) withu = 1.5, 7 = -0.8, b; = 0.7,
b_1 = b() = O, andy =0.

(a) 3D Graph (b) 2D Graph (c) Contour Graph

Figure 5. Representation of Eq (3.11) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = 0.5, 7 = -0.7, b_; =
0.3, b] = O, b() = 02, andy =0.

w;_z[x.v,t]fni ‘ ““ cM H H I‘i “‘ " 10F - )
501;‘\ ‘ b‘ ‘ W" Ilh‘ / / o }

(c) Contour Graph

(b) 2D Graph

(a) 3D Graph
Figure 6. Representation of Eq (3.12) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) withu = 1.1, 7= 0.7, b_; = 0.3,
by =0,bp=0.1,and y = 0.
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(a) 3D Graph (b) 2D Graph (c) Contour Graph

Figure 7. Representation of Eq (3.15) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = 0.5, 7 = 0.2, 5_; = 0.6,
by =0,byp=0.2,and y = 0.

0.35
@4.11x,Y:tl0.30

5" 2 E] 2 a
(a) 3D Graph (b) 2D Graph (c) Contour Graph

Figure 8. Representation of Eq (3.16) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = -0.2, 7 = 0.8, b_; =
0.7,b; =-0.4,bp=03,and y = 0.

(a) 3D Graph (b) 2D Graph (c) Contour Graph
Figure 9. Representation of Eq (3.17) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = 1.5, 7 = 0.5, b_; =
-0.7,b; =0,by =0.1,and y = 0.
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Figure 10. Representation of Eq (3.18) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = -0.9, 7 =0.2,b_, =0,
by =0.3,by =0.01,and y = 0.

(a) 3D Graph (b) 2D Graph (c) Contour Graph

Figure 11. Representation of Eq (3.19) using different patterns of graphs such as a 3D
graph (top left), line graph (top right), and contour graph (bottom) with ¢ = 1.2, 7 = 0.5,

b1 =0.7,b=04,by=0,us=1.2,andy = 0.
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Figure 12. Representation of Eq (3.20) using different patterns of graphs such as a 3D graph
(top left), line graph (top right), and contour graph (bottom) with u = 1.2, 7 = -0.5,b_; =0,
bl = 04, b() = 0, Ug = 1, andy =0.
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5. Physical interpretation and applications

The ZE was derived by Calogero and Degasperis (1976) to describe ‘“boomeron” and “trappon”
solitons—special types of solitons with variable speeds and non-trivial interactions. Boomerons are
solitons that reverse direction due to nonlinearity. Trappons are solitons that become trapped in a
localized region, resembling bound states. For the analysis of the behavior of nonlinear waves in
some physical systems, including optical media, fluids, and plasma, the (2+1)-dimensional ZE must
be understood. Each term in Eq (1.1) determines various elements of wave motion.

° (%)n describes wave dispersion, revealing how the wave profile alters over time.

e By presenting spatial diffusion, the expression (ww"-" )xx implies whether the wave widens or
sharpens during propagation.

e The nonlinear term 2(w?),;, connecting spatial and temporal fluctuations, illustrates energy
exchange and wave interactions [33].

Several kinds of soliton solutions, such as bright, dark, singular, periodic singular, kink, and periodic
solitons, have been produced by applying the MEDA technique. In addition to illuminating wave
dynamics in higher-dimensional systems, plasma waves, and optical media, these solutions offer
greater insights into the complex relationship between dispersion, diffusion, and nonlinearity.

Real-world applications

The (2+1)-dimensional ZE arises in mathematical physics to describe the behavior of nonlinear and
dispersive waves in two spatial and one temporal dimensions. It models phenomena such as shallow
water waves, ion-acoustic waves in plasma, and spatiotemporal optical solitons in nonlinear media.
This equation is significant in fields like fluid dynamics, plasma physics, and nonlinear optics, where
it helps capture complex wave interactions and localized structures such as solitons and breathers.
Additionally, it serves as a useful model for testing analytical techniques in solving nonlinear partial
differential equations. There are vital implications for these soliton solutions in many distinct fields:

e Bright solitons, which are distinguished by isolated peaks, are essential for optical fiber networks
since they ensure fast data transfer with minimum signal deterioration.

e The study of quantum processes is greatly aided by the observation of dark solitons, which
manifest as intensity dips in Bose-Einstein condensates [34].

e Singular solitons are used to forecast and mitigate extreme wave occurrences, including shock
waves in plasma physics and rogue waves in oceanography [35].

e Periodic and kink solitons are used in condensed matter physics (e.g., domain walls in
ferromagnetic materials) and biophysics (e.g., nerve impulse propagation) to characterize phase
transitions and recurrent wave patterns.

In addition to their theoretical importance, these results have applications in the development of
contemporary technology. Kink solitons are essential to magnetic storage developments, bright solitons
boost optical communication networks [36], singular solitons are involved in maritime and aircraft
safety, and dark solitons play a key role in all-optical signal processing in optical and quantum
technologies. These uses highlight how nonlinear wave research has a wider impact on solving current
scientific and engineering problems.
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6. Stability analysis

To examine its stability small perturbations are inserted into the base solution. It assumes a constant
equilibrium solution. Taking into account a constant equilibrium solution @, = a, where a is a constant,
a renowned steady-state solution @wy(x, y, f) is anticipated. A small perturbation y(x, y, f) is inserted as:

w(x’ ) t) =Wy + p7(x’ Y, t)’ (61)

where rho << 1 is a minimal parameter. The linearized equation is generated after putting Eq (6.1)
into Eq (1.1) and extending terms up to the first order in p and ignoring higher-order terms O(p?).

Y Yx
(=) — (=
wo (ON)

)xx + H@o)yx = 0. (6.2)

As mentioned above @) is a constant, and Eq (6.2) yields:

Yoyt = Yy + 4@0Yu = 0. (6.3)
Taking into account Eq (6.3) the initial solution is as follows:

y(x,y,1) = Aexp 0, (6.4)

where A is the perturbation amplitude, v is the frequency, and [y, [, are spatial wave numbers. Putting
derivatives of Eq (6.4) into Eq (6.3) and simplifying yields

Pl

= — 6.5
l] lg - 4l"lD'()l] ( )

v

The imaginary part of v must be non-positive in order to maintain stability.

e If Im(v) > 0, the perturbation grows exponentially, representing instability.
e If Im(v) < 0, the stable solution is obtained.

The term —4iw(/; adds to an imaginary component when looking at the denominator /;/, —4iwyl;. The
key factor governing the stability of the perturbation is @, which determines whether the perturbation
grows or stays under control.

o If @y is large and positive, the imaginary component of v becomes positive, leading to exponential
growth of perturbations and indicating instability in the system.

e If @, is negative or sufficiently small, the imaginary component of v does not contribute to
unbounded growth, implying stability of the perturbations.

e While /; and [, shape the wave behavior, the dominant factor influencing stability is @y.

Consequently, conditional stability is demonstrated by Eq (1.1), which is stable for certain values of @y
but unstable for greater positive values. This finding raises the possibility that soliton-like structures in
this model could become unstable in specific situations, especially when @ is noticeably positive.
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7. Conclusions

In this study, we successfully applied the MEDAM to construct a wide range of exact solutions for
the (2+1)-dimensional ZE. Through a systematic algebraic approach and the use of appropriate wave
transformations, we derived multiple families of soliton and wave solutions, including bright solitons,
dark solitons, kink solitons, singular and periodic waves, as well as singular periodic and kink-periodic
structures. These solutions reveal diverse nonlinear dynamics and exhibit distinct physical features,
with detailed 2D, 3D, and contour plots demonstrating their spatial and temporal behaviors.

The novelty of our work lies in the breadth and complexity of the obtained solutions, many of which
have not been previously reported in literature. The conditional stability analysis further supports the
physical relevance and structural integrity of these solutions under small perturbations. In addition,
we discussed potential real-world applications of these wave structures in nonlinear optics, plasma
physics, and fluid dynamics, linking the theoretical findings to practical phenomena.

This research highlights the strength of the MEDAM in solving high-dimensional nonlinear PDEs
and generating rich solution structures. Future work may explore the extension of this method to
fractional, perturbed, or stochastic versions of the Zoomeron equation, study interactions among the
obtained wave solutions, and validate the theoretical predictions through numerical simulations or
experimental models.

Despite its effectiveness in generating diverse exact solutions for nonlinear partial differential
equations, the MEDAM has several limitations. First, the method relies heavily on specific forms
of wave transformations and auxiliary functions, which may not always be suitable for highly complex
or strongly non-integrable systems. Its applicability is constrained to equations that can be reduced
to solvable ordinary differential equations through such transformations. Additionally, the MEDAM
typically assumes smooth and continuous solution structures, making it less effective in capturing
discontinuous or shock-type solutions. The method also depends on symbolic computation software
for solving resulting nonlinear algebraic systems, which can become computationally intensive and
challenging for high-order equations or coupled systems. Moreover, while the MEDAM provides
exact solutions, it offers limited insight into the global dynamics or long-time behavior of the solutions
compared to numerical simulations. Lastly, the stability analysis performed through linear perturbation
techniques is local in nature and may not fully account for nonlinear instabilities in broader parameter
regimes.

Future research can extend this method to other nonlinear evolution equations and higher-
dimensional or coupled systems to explore a broader range of wave dynamics. Further investigation
into the stability, physical relevance, and potential real-world applications of the obtained solutions
is essential. Incorporating perturbation or damping effects could enhance the physical realism of the
models. Additionally, numerical simulations, parameter sensitivity analysis, and hybrid analytical-
numerical approaches can be employed to validate and generalize the results. These directions will
contribute to a deeper understanding of nonlinear wave phenomena across diverse scientific and
engineering domains.
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