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Abstract: The quantum statistics mechanism is very powerful for investigating the equilibrium states
and the phase transitions in complex spin disorder systems. The spin disorder systems act as an
interdisciplinary platform for solving the optimum processes in computer science. In this work, I
determined the lower bound of the computational complexity of knapsack problems. I investigated the
origin of nontrivial topological structures in these hard problems. It was uncovered that the nontrivial
topological structures arise from the contradictory between the three-dimensional character of the
lattice and the two-dimensional character of the transfer matrices used in the quantum statistics
mechanism. | illustrated a phase diagram for the non-deterministic polynomial (NP) vs polynomial (P)
problems, in which a NP-intermediate (NPI) area exists between the NP-complete problems and the
P-problems, while the absolute minimum core model is at the border between the NPI and the NP-
complete problems. The absolute minimum core model of the knapsack problem cannot collapse
directly into the P-problem. Under the guide of the results, one may develop the best algorithms for
solving various optimum problems in the shortest time (improved greatly from O(1.3V) to O((1+¢)V)
with e—>0 and e#1/N) being in subexponential and superpolynomial. This work illuminates the road
on various fields of science ranging from physics to biology to finances, and to information
technologies.
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1. Introduction

In recent years, there has been great progresses in computer science, especially in machine
learning, artificial intelligence, and so on. It is well known that neural networks for artificial
intelligence are closely related with spin-glass models in statistic physics. The study of the
computational complexity of a complex problem, for calculations of physical properties of a
complicated system, like a spin disorder system, is an extremely important topic either in physics,
mathematics or in computer science. On the one hand, one would develop the optimum algorithm to
reveal the physical properties of a complicate system by guide of the lower bound of the computational
complexity. The optimum algorithm can find the solution of the spin disorder system (or related
physical systems) in the shortest time, with the sufficient accuracy and within the high precision. On
the other hand, one would develop the optimum processes to investigate various hard problems in
mathematics and computer science, under the guide of physical insight obtained from solving the spin
disorder system.

In physics, it is always a main target to inspect the ground state of a complex system and calculate
its thermodynamic functions (such as internal energy, enthalpy, entropy, free energy, etc.) [1]. From the
differential of the free energy, we can determine the thermodynamic properties; for instance, specific
heat, spontaneous magnetization, susceptibility, correlation functions, and correlation length. The spin
disorder systems are among complex systems, in which abundant physical phenomena may exist and
the processes for calculations of physical properties may be very complicated. It is important to find
out analytically the solution of a physical system for having a deep understanding. Unfortunately, until
now, we have known the exact solutions of only few physical systems. For the complicated systems,
like the spin disorder systems, it is extremely difficult to figure out the exact solution, so researchers
usually develop algorithms to numerically simulate the exact solution. For this purpose, researchers
attempt to design the optimum algorithm to find/reach the exact solution with sufficient accuracy and
within the high precision in the shortest time.

In magnetic systems, there are several sources that introduce disorders. The temperature, or the
thermo-activity, causes the disorder phase at high temperatures. The disorder can be introduced
initially in Hamiltonian of a spin glass system, by terms of diluted spins with random distributions, or
disorderly distributed competing interactions between spins. In the former case, the spins at different
lattice sites may have different values, whereas in the latter case, the interactions between spins may
have different strengths and signs. The introduction of these disorder terms in the Hamiltonian results
in rich magnetic states and abundant physical phenomena [2—4], and the study of their complexity is
important for developing efficient algorithms for optimum problems [5,6]. Moreover, the introduction
of the disorder terms makes the computational processes for the thermodynamic properties much more
complicated. The Ising model is a well-known model widely used for description of phase transitions
and applied as a paradigm for various complex systems [7-9]. The spin-glass Ising model is a
generalization of the ferromagnetic Ising model [4]. The calculation of the ground state (and other
equilibrium physical properties) of the three-dimensional (3D) spin-glass Ising model M38; [10,11]
has been proven to be one among the NP-complete problems [12,13].

In another study [14], | analyzed characters of the 3D spin-glass Ising model, such as topological
effect, randomness, frustration, and non-ergodic behavior, to show its nature of a NP-complete problem.
In previous work [15], | investigated the mapping between the 3D spin-glass Ising model and the
Boolean satisfiability (K-SAT) problems. The major reasons that the spin glass model was chosen as
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a research model for NP-complete problems was because: 1) The 3D spin-glass Ising model is a NP-
complete system with the existence of randomness and nonlocality, causing the non-triviality similar
to other NP-complete problems, while the two-dimensional (2D) spin-glass Ising model is a P-problem.
2) With the Clifford algebraic representation, it is easy to reveal nontrivial topological structures, non-
planarity graphs, nonlocalities, or long-range spin entanglements in the 3D spin-glass Ising model. 3)
It is the easiest system to figure out the absolute minimum core (AMC) model for computational
complexity among all NP-complete problems, since it is a quantum statistic problem. This means it
can reveal the nature of the system directly by different dimensionalities of the 3D spin lattice and the
2D transfer matrices. 4) It is easy to map the 3D spin-glass Ising model to any other NP-complete
problems with two possible states for each element (spin, particle, variable, object, etc.).

The history of studying the knapsack problem (defined as Mp) stretches back to Mathews’ work
on the partition of numbers [16,17]. The knapsack problem has been intensively investigated, since it
was determined to be one of the NP-complete optimization problems in 1970s [18,19]. The 0-1
knapsack problem is the simplest among the knapsack problems [20,21]. With the list of a binary
decisional variable x; for i € [N], of fixed weight (wi) and cost (ci), the aim of the knapsack problem is
to maximize the sum of the costs of objects while the sum of the weights of the objects is restricted to
be less than or equal to the maximal weight Wmax. The knapsack problem can be used for calculations
in the fields of combinatorial mathematics, cryptography, business and so on [22]. Furthermore, the
knapsack problem appears in decision-making processes in the different fields, for instance, searching
the least cost route for reducing the use of raw materials, selecting the investment portfolio, generating
secret key systems, and so on. The knapsack problem also offers many practical applications in various
areas, such as project selection, resource distribution, investment decision making, and so on. There
are some studies on the relations between the knapsack problem and other NP-complete problems such
as K-SAT problem [23,24], traveling salesman problem (TSP) [25,26], etc. The correlation between
the knapsack problem and the spin glass model is described briefly as follows: 1) The binary decisional
variable in the knapsack problem corresponds to the Ising spin in the spin glass model. An object
outside/inside the knapsack corresponds to a spin up/down state. 2) The weighs in the knapsack
problem are mapped to the connections (interactions) with randomness in the spin glass model. 3) The
classical Hamiltonian corresponding to the knapsack problem can be transformed to a Hamiltonian for
the standard all-to-all-connected Ising model with bias terms. Therefore, solving the knapsack problem
can be realized by solving in the spin glass model. Maximizing the sum of the costs of the objects in
the knapsack problem is equivalent to minimizing the free energy in the spin glass model.

I uncovered the most important feature of the mathematical structures of the 3D Ising
models [9,27,28]. By utilizing the key issue of the nontrivial topological structure, I succeeded in
determining the critical point of the ferromagnetic Ising model in a simple cubic lattice to be located
at the golden ration (1/Kc=4.15617384...) [9]. Note a criterion that the critical point of the simple cubic
Ising model must be much higher than that (1/K:=3.6409569...) of the triangular Ising model [9].
It is worth mentioning recent Monte Carlo simulations [29], in which the critical exponents of the 3D
Ising model obtained by taking into account the long-range interactions of spin chains (namely, the
nontrivial topological contribution) agree well with my exact solution. Furthermore, the exact solution
for the critical exponents [9] agree well with experimental results in various materials as a 3D Ising
universality [30-32]. The procedures developed for solving analytically the 3D ferromagnetic Ising
models [9,27,28] can be utilized to understand other related ones, but much more complicated
problems, such as the 3D spin-glass Ising models [14,15]. The lower bound for the computational
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complexity of the 3D spin-glass Ising models [14] and the K-SAT problem [15] has been recognized
by several groups of computer scientists worldwide [33—-35].

My aim of this work is to determine the lower bound of the computational complexity of the
knapsack problem Cj,(Mgp). The problem is sketched as follows: In Section 2, the lower bound of the
computational complexity of the 3D spin-glass Ising model is determined by analyzing the topological
structures and understanding the AMC model. I first inspect the origin of the nontrivial topological
structures in the NP-complete problems. I illustrate a phase diagram for the NP vs P-problems, in
which that there is a NP-intermediate (NPI) problem between the NP-complete problems and the P-
problems, while the AMC model is at the border between the NPI problems and the NP-complete
problems. This indicates that the AMC model of the 3D spin-glass Ising model cannot collapse directly
into the P-problems. In Section 3, the lower bound of the computational complexity of the knapsack
problem is determined by analyzing the correspondence and the mapping between the knapsack
problem and various spin-glass models. The results show the existence of the NPI problems and the
AMC model for the knapsack problem. A phase diagram for the NP vs P-problems, similar to the spin-
glass system, is obtained also for the knapsack problem. Furthermore, attention is given for
applications of other NP-complete problems (such as TSP, networks) and comparisons with other
optimum algorithms, such as dynamic programming and genetic algorithms, are made. The conclusion
is represented in Section 4.

2. Origin of the nontrivial topological structures in a 3D spin-glass Ising model

Definition 1. Let MY be a physical model where the upper script fixes the dimension or named model,
and the lower indices indicate the character of the model.

Definition 2. Let C(M D ) be the computational complexity of the model M%.

Definition 3. Let CU(MR) be the upper bound of the computational complexity of Ma. The upper
bound for a model is equal to the computational complexity, as computed by brute force search.

Definition 4. Let CL(M D ) be the lower bound of the computational complexity of M.

Definition 5. Let M3, denote the 3D spin-glass Ising model, Miycse the AMC model in
M3, MSX the Sherrington—Kirkpatrick spin-glass Ising model with all-to-all-connected interactions,
and ME% the Edwards—Anderson model with the nearest neighboring interactions.

2.1.  Model establishment

The Edwards—Anderson model is a model for describing spin-glass systems, in which interactions
between only the nearest neighboring spins are considered [4]. Spins are arranged on a 1D, 2D, or 3D
lattice with randomly distributed competing interactions. In this section, | focus on the Edwards—
Anderson model to show that even with only the nearest neighboring interactions, the long-range spin
entanglement exists in the system. In the next section, | also discuss other spin-glass models, for
instance, the Sherrington—Kirkpatrick model with the long-range interactions.

The Hamiltonian of a spin-glass Edwards—Anderson model with S=1/2 Ising spins is expressed
as [4,14,15]:
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H=—-Y,-Ji;S:S; (D

where the nearest interactions J; ; are taken values Ji(i=1,2,3) along three crystallographic directions.
The interactions with different signs are randomly distributed in range of [-J, J] by a Gaussian
distribution (or a pseudo-random generator). As usual, | prefer to use the interactions K; = J;/kgT to
replace J;. kg is the Boltzmann constant and T the temperature. The partition function Z, can be
formulated in a fixed replica (a=1,2,...R) as [15,27,28]:

mnl

Zy = (2sinh2K) 2 - trace(VaV,Vy), )
vy = [1727 exp{iky - G}, (3)
V= ;n=n11 exp{ikzs’js’j+1}, 4
Vs = [1724 exp{iKss';s'jomn)- (5)

Here, m, n, and 1 are the numbers of the lattice sizes along three crystallographic directions of the Ising
spin system. K; is defined by [15,27,28],

tanhK; = e~2K1, (6)

The matrices C; and s'; are defined as the direct products of Pauli matrices o;j (j = 1,2,3) [15].

In a spin-glass 3D Ising model with randomly distributed positive and negative interactions
between spins, containing frustration, different ground states, such as a ferromagnetic state, an
antiferromagnetic state or a spin glass state may occur. In a limit case, if all the interactions are
ferromagnetic and randomly distributed, a random ferromagnetic state without frustration may occur.
In this work, I am interested only in the spin-glass 3D Ising lattice with strongly competing interactions
in general cases (or worst cases for computational complexity), in which, in the presence of frustration,
neither ferromagnetic nor antiferromagnetic interaction is dominant so that it is not easy to determine
the ground state of the system to be ferromagnetic, antiferromagnetic, or spin glass.

The partition function Z of the spin-glass system can be calculated from the product of the
partition functions Z, for all fixed replicas (a=1,2,..,R),

Z =g=1Za- (7

Thus, it is enough to focus on Z, for the lower bound of the computational complexity. The elements
in the transfer matrices and the partition function are calculated with a combination of different states
of spins on the 3D lattice points.

2.2.  Non trivial topology analysis

The nonlocal effect in the partition function (2) (see also the transfer matrix (5)) of the 3D Ising
model originates from the contradictory between the 3D character of the lattice and the 2D character
of the transfer matrices used in the quantum statistics mechanism. In what follows, I inspect the origin
of the nonlocal effect:

In a 3D Ising model with the lattice size N= mnl, Ising spins are assigned on every lattice point.
The numbers (i, r, s) denote lattice points running from (1, 1, 1) to (m, n, /) along three crystallographic
directions in the 3D lattice. One may denote the lattice points, a layer by a layer, by the number j =
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[mn(s-1)+m(r-1)+i], which runs in a sequence as 1, 2, 3,..., mnl. Such two representations are
equivalent. The size of the transfer matrices in spinor representation for the 3D Ising model is 2Nx2N.
It is noticed that the sequence in a process of a layer by a layer is the simplest one for mapping a 3D
lattice into a 2D “lattice” (a matrix) for the quantum states described by the transfer matrices. For
studying the 3D Ising model, this sequence can remain some basic characters of the 2D Ising model,
and make the procedure for solving the 3D Ising model as simple as possible. It was understood that
any other sequences will make the problems much more complicated [14].

Let us run j. For the first layer (s=1), corresponding to the running from (1,1,1) to (m, n, 1), we
have j=1,2,3,..., m for the first line (=1), j=m+1, m+2, m+3,..., 2m for the second line (+=2), ..., and
Jj=(n-1)m=+1,(n-1)m+2,..., mn for the last line (r=n). For the second layer (s=2), corresponding to (1, 1,
2) to (m, n, 2), j runs from (mn+1), (mn+2), (mn+3),..., 2mn. It runs in all the way to the last layer
(s=0),j runs from (mn(l-1)+1), (mn(l-1)+2), (mn(l-1)+3),..., mnl. The first spin (1, 1, 1) in the first layer
and the first spin (1, 1, 2) in the second layer correspond to j=1 and j=(mn+1), respectively. Figure 1
illustrates a spin-glass Ising model on a 3D lattice with the size of 3x3x3, for example, which is
mapped into the spin arrangement on a 2D lattice with the size of (3x3+3x3+3x3), as arranged in the
transfer matrix. The spins assigned on the lattice are randomly distributed, pointing up or down. Green,
purple, and blue colors represent the interactions along three crystallographic directions, which can be
randomly distributed ferromagnetic or antiferromagnetic. In the transfer matrix, the interactions with
blue color show the crossings. It is emphasized here that the interaction between the two nearest
neighboring spins behaves as a long-range interaction, which involves the entanglements of all the
spins in a plane. This is the origin of the nontrivial topological structures.

Figure 1. Illustration of a spin-glass Ising model on a 3x3x3 lattice, for example, which is
mapped into the 2D spin arrangement on a (3x3+3x3+3x3) lattice, as in the transfer matrix.
The spins at the bottom, middle, and top layers of the 3D Ising lattice are mapped to those
at the left, middle, and right 2D Ising lattices, respectively. The spins pointing up or down
are assigned on the lattice and randomly distributed. Green, purple, and blue colors
represent the interactions along three crystallographic directions. In the transfer matrix, the
interactions with blue color show the crossings, indicating the existence of non-trivial
topological structures in the 3D spin-glass Ising model.
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For the fully ferromagnetic case, for simplicity, we can apply the cylindrical crystal model
preferred by Onsager [8], in which we wrap our crystal on cylinders. However, unlike in the solid
energy band theory for one-electron approximation in which the periodic boundary conditions can be
applied along three crystallographic directions, we can perform the periodic boundary condition only
along one crystallographic direction in the present system with many-body spin-spin interactions. After
performing the periodic boundary condition, the running number j can be reduced to j=[(s-1)n+r],
running as j=1,2,3,....,nl in a plane. The size of the transfer matrices in spin or representation for the
3D ferromagnetic Ising model is reduced to be 2"x2". For the spin glass case, even such a periodic
boundary condition cannot be employed, mainly due to the randomness of interactions. For the 3D
spin-glass Ising model in a fixed replica, the size of the transfer matrices in spinor representation
remains 2Mx2N. Of course, the nonlocal effects are the natural character of the 3D many-body spin-
spin interacting models in the quantum statistics mechanism. The boundary factors for 2D (or 3D)
models can be neglected in the thermodynamic limit, whereas the internal factors in the transfer
matrix (5) for 3D cases cannot be neglected, since they appear at each lattice point. Indeed, the
nonlinear terms of s';s’;,,,, in the transfer matrix V5 (see Eq (5)) indicate the existence of the
nontrivial topological structures. All these characters together with random interactions and spin
alignments (and also frustrations) cause the system to be NP-complete [2,3,5].

2.3.  Absolute minimum core model

A 3D spin-glass Ising lattice can be constructed by stacking / layers of 2D spin-glass Ising lattices.
This is the simplest way to construct the 3D spin-glass Ising model layer by layer, while keeping the
characters and (thus the physical properties) of the 3D (and also 2D) spin-glass Ising model. Other
ways of constructions may cause much more complicated procedures (referred to Theorem 2 in [14]).
According to Theorem 2 in [14], to find the exact solution of the 3D spin-glass Ising model, any
algorithms cannot break the global effects of entanglements in the AMC model. Figure 2 shows an
example for the AMC model M3y sqr- Notice that two layers are needed to represent the AMC model,
in which the solid lines represent the bottom (I=1) layer with the intralayer interactions and the
interlayer interaction between the two layers, while the dashed lines show that there are no intralayer
interactions on the top layer (1=2). Spins (red arrows) at every lattice point of a two-level grid lattice
align along with randomly distributed directions, caused by randomly distributed interactions, while
spins (blue double arrows) in some plaguettes show the frustrations in the spin-glass system. It has
been proven [14,15] that for the 3D spin-glass Ising model, the upper bound of the complexity (by
brute force search) of the AMC model gives its lower bound. That is,

CL(MSE)) = €Y (MRicsar)- (8)
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Figure 2. Schematic illustration of an AMC model, MAMC s for the 3D spin-glass Ising
model, in which spins (red arrows) at every lattice point of a two-level grid lattice (with
the lattice size N=mnl, here m=n=9 and I=2 as an example) align along with randomly
distributed directions, caused by randomly distributed interactions between spins.
Moreover, spins in some plaquettes are represented by blue double arrows, to show the
existence of frustrations in the spin-glass system.

2.4.  NP-intermediate problems

Ladner [36] showed that, assuming P=NP, there exist NPI problems, that is, problems in NP that
are neither in P nor NP-complete. Ladner explicitly constructed NPI problems by removing strings of
certain lengths from NP-complete languages via a diagonalization technique that is colloquially known
as blowing holes in problems [36,37].

| am interested in whether there is a NPI area between the NP-complete problem (the AMC is
located on its border) and the P-problem in our system. In other words, if the AMC model can collapse
directly into the P-problem? We have determined the lower bound of the complexity of the 3D spin-
glass Ising model is 0(2™™), which is subexponential time [14,15]. We have [14,15]

0(2"™) =0(2""")= 0((1 + &)V), )

when n=m = N/3 and withe - 0and & # 1/N. Itis known that there are some quasi-polynomial
times, for instance, O(N'9"), O(N9WN), etc. Thus, we have

oM »o0R") =0((1+e)N) =0 <2N§) > O(N'9N) > O(N'9'9N) » O(NP). (10)

Figure 3 illustrates schematically these results obtained above to be a phase diagram of different
complexities. The lower bound of the complexity of the 3D spin-glass Ising model is at the boundary
of the area for the NP-complete problems. There is a NPI area between the NP-complete problems (the
AMC model is on its border) and the P-problems. The NPI problems have the computational

complexity (including quasi-polynomial times O(N'9N), O(NWWN), etc.) less than O(2N2/3) and
larger than O(NF). The NPI problem may be constructed by removing some interactions and/or spins
in the AMC model, following the Ladner’s process [36]. Namely, we have some incomplete AMC
models as the NPI problems. It is concluded that the AMC model cannot collapse directly into the P-
problem.
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3D SGl
NP-Complete

Figure 3. Phase diagram for the 3D spin-glass Ising model. In the phase diagram, 3D SGI
represents NP-complete problems, and P represents polynomial problems (2D SGI). NPI
exists between NP-complete and P-problems, while AMC is located on the border of NP-
complete and NPI regions.

2.5.  Strategy for an optimum algorithm

From the analysis above, | propose the following strategy for developing an optimum algorithm
for calculations of physical properties (such as, the ground state, the free energy, the critical point, the
phase transitions, and the critical phenomena) of the 3D spin-glass Ising model.

1) Fix z-layers (z=1,2,3,...) of the AMC model as an element of the algorithms, while performing
a parallel computation of //z layers of this element.

2) Compare the precision as well as the accuracy of the results obtained by the above procedures,
and determine the optimum value of z.

In this way, one can design the optimum algorithm to find/reach the exact solution with the
sufficient accuracy and within the high precision in the shortest time. It can be improved greatly from
the present status of O(1.3N) [6] to O((1+¢)N) with e—0 and e=1/N [14,15], the best case if one can
succeeded in the optimum value z=1. Since the 3D spin-glass Ising model is catalogued to NP-
complete set, the optimum algorithm can be employed to compute the properties of other NP-complete
problems (for instance, TSP, K-SAT problem, knapsack problem, neural networks, etc.).

3. Lower bound of the computational complexity of the knapsack problems
3.1.  Definitions of the knapsack problem
Definition 6. Let Mygp denote the knapsack problem, M2 the knapsack problem on anall — to —

all — connected network, M32 the 3D knapsack problem, M2B the 2D knapsack problem,
and M3Mckp the AMC model in the 3D knapsack problem.

Definition 7. Let Mrsp denote the TSP, M3gp the 3D TSP, M;2, 1sp the TSP model on a two-level
grid lattice, Mgy the TSP model on a 2D lattice, and M3ycrsp the AMC model in the 3D TSP.
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I consider the 0-1 knapsack problem, which is the simplest one among all the knapsack problems [18—
21]. Having the list of a binary decisional variable Xi for i € [N], of fixed weight (wi) and cost (ci). The
goal of the knapsack problem is to maximize the sum of the costs of the objects while the sum of the
weights of objects is restricted to be less than or equal to the maximal weight Wmax. This problem is
NP-complete classically, and can be written as [18-21]:

max e[y CiXi,

s.t. Xien WiXi < Wnax, x; € {0,1} (11)

Here, an object index i runs from 1 to N, weights correspond to integer-valued numbers. For the 0-1
knapsack problem, a binary variable s; is introduced for x; € {0,1}. si is equal to 1 when an object is
inside the box and O otherwise (see Figure 4(a)). For the Ising spin model, a binary variable s; is
introduced for x; € {—1,1}. si=+1 represents the spin up and the spin down, respectively (see
Figure 4(b—d)). The total weight and total value then read

W =YL w;s; (12)
and
C=X¥,csi, (13)

respectively. | further introduce auxiliary binary variables a;, where the index j runs from 1 t0 Wmax.
The formulation above for the 0-1 knapsack problem looks simple, but the time needed for the
computing procedure increases rapidly with the size of the system, as other NP-complete problems.

For the 0-1 knapsack problem, the problem of placing the first i items of objects into a knapsack
with the maximal weight Wmax (0r capacity v), if | focus only on the strategy of the ith object (outside
or inside the knapsack), then it can be transformed into a problem involving only the first i-1 items of
objects (see the classical dynamic programming (DP) algorithm proposed by Bellman [38]. There are
two cases for the ith object: If the ith object is outside the knapsack, the problem will become the first
i-1 items of objects are put inside the knapsack with capacity v and the cost fi.1[v]. If the ith object is
inside the knapsack, the problem will become the first i-1 items of objects are put inside the knapsack
with capacity v-w; and the cost fi.1[v-wi] plus the cost ci for putting the ith object inside the knapsack.
The process of the 0-1 knapsack problem can be mapped to the problem of Ising spins, in which the
states of the ith spin is entangled with the states of the first i-1 spins in the lattice. Note that putting the
objects outside or inside the knapsack corresponds to up or down alignment of the spins, while the
weighs are transformed to the interactions between spins. In principle, determining the ground state of
a N-spin system equalizes to determining the states of the N-th spin that entangled with all the first N-
1 spins in the system. My purpose of this work is to find the lower bound of the computational
complexity of the knapsack problems.
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Figure 4. Sketch of (a) the knapsack problem [39], which corresponds to (b) an all-to-all-
connected Ising network, (c) an Ising network with six connections (interactions) on a spin,
and (d) an Ising network with four connections (interactions) on a spin. Different items of
weight w; and cost cj can be placed in the suitcase (assign binary variable s=1) or left
outside (s=0). Compared with Figure 8 in [39], | have added up and down spins on these
items for indicating the states of inside or outside the suitcase. The maximal weight of the
suitcase is bounded by Wmax. The solution can be obtained by searching the energy
minimum for all the configurations for combined item (si) and auxiliary (ai) spins,
combined into an Ising network.

3.2.  Overview of research on the complexity of knapsack problems

In this subsection, | present a brief overview of the history and current status of research on the
complexity of knapsack problems. At first, I mention the earliest work on this subject: The knapsack
problem has been known since over a century, which can be stretched back to Mathews” work on the
partition of numbers [16,17]. The first algorithmic studies were published in the Fifties [40,41], an intense
research activity started in the Sixties. The knapsack problem has been intensively investigated, since
it was determined to be one of NP-complete optimization problems in Seventies [11,13,18]. In
general, all optimization problems are NP-hard. While the ‘‘simplest’’ single knapsack problems are
NP-hard in the weak sense, i.e., they may be solved in pseudopolynomial time through dynamic
programming, most variants and generalizations are NP-hard in the strong sense (i.e., they cannot be
solved by pseudo-polynomial time algorithms unless P=NP).

For a detailed overview of recent advances on the knapsack problems, readers can refer to
Cacchiani, et al.’s survey [42,43]. Part | of this survey [42] covered the classical single knapsack
problems and their many variants and generalizations: Subset sum, item types, setup, multiple-choice,
conflict graphs, precedences, sharing, bilevel, robust, among others. It also focused on extensions and
generalizations provides pointers to the variants that are especially attractive from the point of view of
possible future investigations. Moreover, Part Il [43] was mainly devoted to multiple,
multidimensional (vector and geometric), and quadratic knapsack problems, but also contained a
succinct treatment of online and multiobjective knapsack problems.
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3.3.  Relation between knapsack problems and spin-glass models

Solving optimization problems is highly demanded in various fields of science ranging from
physics to biology to finances, and to information technologies [44,45]. The relation between the
knapsack problem, the spin glass and the Ising machine were discussed in [39]. In what follows, |
determine the lower bound of the complexity of the knapsack problems via set up the correspondence
between the two problems (namely, spin-glass and knapsack).

The classical Hamiltonian corresponding to the knapsack problem then reads [39]:

2 . 2
H=a(l-3m*a) +a(Xim™ ja; — T, wis) — B I, cisi (14)

where o and g are parameters for the simulation, chosen to ensure that the solution is the global
minimum of the Hamiltonian (14). In the Hamiltonian (14), the weight w; is randomly distributed.
The Hamiltonian (14) can be rewritten as the standard all-to-all-connected Ising model with bias terms
hn as [39]:

N+Winax 7 N+W,
H= = " JamSnSm — Zpe1 " RuSp, (15)

where the Ising spin sn=21. The equivalence between (14) and (15) can be clarified as follows: [,
denotes the Ising coupling matrix formed by weights, and h, is an effective magnetic field formed by
the combination of cost and weight. The parameters are inferred from the original encoding given in
Eq (14). In the Hamiltonian (15), the interactions J,,, of different signs are randomly distributed in
range of [-J, J]. The random distribution of the interactions in the Hamiltonian (15) is transformed
from the randomly distributed weight w; in the Hamiltonian (14), which provides the possibility of
existing plaquettes containing frustrations in the spin-glass system as illustrated in Figure 2. To clarify
a detailed correspondence between (14) and (15), the terms with parameters a and g in (14) are
transformed into the interaction terms s,s,, and the terms with the effective magnetic field h,
in (15), respectively. The variable s; inthe Hamiltonian (14) takes two values 1 and 0, while the Ising
spin in the Hamiltonian (15) takes two values, 1 and -1. The interaction terms s, s, in (15) have four
combinations (++, +-, -+, --), resulting in two values, 1 and -1. Thus, one can carry out a mapping from
the two values 1 and O for the variable s; in (14) into the two values 1 and -1 for the interaction terms
s,Sm in (15). This indicates clearly the correspondence between the terms w;s; in (14) and the terms
JumSnSm in (15). Therefore, the interaction couplings J,,,. in (15) are transformed directly from the
weights w; in (14). On the other hand, it is easy to see the connection between the terms c¢;s;
in (14) and the terms h,s, in (15).

The knapsack problem can be mapped into the spin-glass all-to-all-connected Ising model with
appropriate parametric correspondence (see Figure 4(b)). As mentioned, an object is inside or outside
the box in the knapsack, corresponds to a spin pointing up or down in the spin-glass Ising model. As
mentioned in the last section, | am interested only in the worst cases for computational complexity of
the spin-glass 3D Ising model with strongly competing interactions in the presence of frustration, while
searching the ground state among all the possible states (including ferromagnetic, antiferromagnetic,
and spin—glass states).

3.4.  Lower bound of the computational complexity of the knapsack problem

Theorem 1. The lower bound of the computational complexity of the knapsack problem in the 3D
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lattice, C.,(M3p) or CY(M3Mckp), is in subexponential and superpolynomial.

Proof of Theorem 1. The standard all to aII connected spin-glass Ising model is the so-called
Sherrington—Kirkpatrick model [46,47], MSK,, in which the <i, j> sum in the Hamiltonian is over all
bonds. It is an Ising model with long-range ferromagnetic as well as antiferromagnetic couplings for
frustrated states. Ising spins interact through infinite-ranged exchange interactions, which are
independently distributed with a Gaussian probability density. Sherrington and Kirkpatrick observed
that it is an exactly solvable model of a spin glass in the limit of infinite interactions, within the mean-
field theory. However, for a brute force search of the ground state of the Sherrington—Kirkpatrick
model [46,47], the job is NP-complete for computer. The Sherrington—Kirkpatrick model can be
reduced to a 3D spin-glass Ising (Edwards—Anderson) model with the nearest neighboring interactions
MEZ by simplify neglecting the long-range interactions between spins.

At first, the Sherrington-Kirkpatrick model M$X can be reduced to the Edwards—Anderson
model only with the nearest neighboring interactions, ME%, by cutting the long-range interactions
between spins. Second, it can be reduced further by reducing the nearest neighboring interactions to
be six. In such an artificial lattice with six connections (interactions) on a spin, the averaged number
for the interactions per spin is actually three, since one bond (interaction) connects two spins. Such a
spin-glass system can be arranged either in a 3D lattice or a 2D lattice. If the spin-glass Ising network
with three interactions per spin can be assigned only on a 3D lattice, ME};’,, it will be NP-complete. If
it can be assigned on a 2D triangle (honeycomb) lattice without crossings, M2E, it will be a P-problem.
The spin-glass Ising network with four connections on a spin (i.e., two interactions per spin) is a P-
problem, since it can be assigned on a 2D rectangular (or square) lattice without crossings.

Although the Sherrington—Kirkpatrick model with the long-range interactions can be solved
analytically by a mean-field approach [46,47], for computer simulations, one has to summarize all the
interactions (including all the connections) in the system. Thus, the computational complexity of the
Sherrington—Kirkpatrick model should be much larger than that of the Edwards—Anderson model with
the nearest interactions only. The following relations are held for spin-glass systems:

C(Map™™) > C(M3pF) = C(M3icsar) » C(MEZF4). (16)

Therefore, the lower bound of the computational complexity of the 3D Edwards—Anderson model
C.(MgeP4) is lower than that of the Sherrington—Kirkpatrick model C,(Maor®™). That is,

Cu(Msgr™) < Cu(Mig™). (17)

Thus, it is good enough to figure out the former. Moreover, we can use the results obtained in Section 2
for the 3D spin-glass Ising model.

Utilizing the relationship between the knapsack problems and the Ising model, we assure that an
AMC model exists also in the knapsack problem. Corresponding to Eq (16) for the spin-glass systems,
the following relations are held for the knapsack problems:

C(Mgp) > C(Mip) = C(Mahicke) » C(MZP). (18)
A phase diagram for the NP vs P-problems is illustrated in Figure 5 for the knapsack problems.
Accordingly, the lower bound of the complexity of the knapsack problem C.(M32B) is that as

calculated by brute force search of the AMC model, CY(M3¥ckp)- Namely, similar to Eq (8),
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CL(MgB) = CU(Mz?/Ic,KP)- (19)

3DKP
NP-Complete

Figure 5. Phase diagram for the 0-1 knapsack problem. In the phase diagram, 3D KP
represents the NP-complete problems, and P represents polynomial problems (2D KP).
NPI exists between NP-complete and P-problems, while AMC is on the border of NP-
complete and NPI regions.

On the other hand, to find the most efficient algorithms for solving the knapsack problem, | may
need to arrange the knapsacks (like spins) on a 3D lattice. By adjusting/removing the unimportant
weights in the knapsacks, one may disconnect some long-range interactions between spins, to obtain
an “easier” arrangement of spins with only the nearest interaction in the 3D lattice. Like in a 3D spin-
glass Ising lattice, all the knapsacks can be constructed by stacking / layers of the knapsacks located
on 2D lattices. This is the simplest way and thus the optimum algorithms to construct the knapsacks
on a 3D model layer by layer, while keeping the characters and (thus the physical properties) of the
knapsacks. Other ways of constructions may cause much more complicated procedures (referred to
Theorem 2 in [14]). I have

CL(MZR) = ¢, (M3B) = CY(MZNcsar) = CY(MRNckp)- (20)

As revealed in [14,15] and in the last section, the computational complexities CU(M;?&B[C'SGI) and
CL(MSEI) are in O((1 +¢)N) with ¢e—>0 and e21/N. Therefore, the computational complexities
CU(ME’\I&C,KP) and CL(Mf(B) are in the same class, which are subexponential and superpolynomial.

Similar to the procedure proposed in the last section, taking z-layers of the AMC models as an
element of the algorithms, we may develop an algorithm for performing a parallel computation of //z
layers of the AMC models for the knapsack problems. In this way, | can succeed in designing the
optimum algorithm to find the exact solution with the sufficient accuracy and within the high precision
in the shortest time. It can be improved greatly from the present status of O(1.3") [6] to O((1+¢&)N) with
e—0and e=1/N [14,15].

3.5.  NP-intermediate problems

Theorem 2. A NPI area exists between the NP-complete problems and the P-problems for the
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knapsack problem.

Proof of Theorem 2. According to the results in the last section (see also Figure 3), there exists a NPI
problem Myp; s for spin-glass Ising models, which is in between M3g; and MZg3;, while M3 s
is the border between M3 and Myp; sgr- Similarly, as illustrated in Figure 5 for phase diagram for
the knapsack problem, a NPI problem Myp, kp eXists for the knapsack problem, which is located in
between the NP-complete problem M3 and the P-problem MZP and thus the AMC model M3¥¢ kp
is the border between M3 and Myp, kp-

The 0-1 knapsack problem is the most basic problem among all the knapsack problems, which
consists of the designed states and the basic concepts of equations. Many others are treated as its
generalization and can be transformed to the 0-1 knapsack problem. Therefore, the results obtained
above for the 0-1 knapsack problem can be applied for them.

3.6.  Applications for other NP-complete problems

It is worth noting that this study can be extended to other NP-problems, such as K-SAT
problem [15,23,24], TSP [25,26], neural networks [48,49], etc. In particular, in recent years, the neural
networks have been applied in rapidly progressed fields of deep learning, artificial intelligence, and so
on. It is very visual that the networks illustrated in Figure 4 for the knapsack problem as well as the
Ising models can be transformed into the neural networks. The conventional approach to these
problems is to study the complexity of an equivalent yes/no question. In the following, we take the
TSP [25,26] as an example, which is defined as follows.

A traveling salesman has to visit all N cites and return to the starting point at the end of the tour
(also called Chinese Postman’s problem [50]). Taking into account the two traversals (in opposite
directions) of each tour and the arbitrariness of the starting city, there are (N-1)!/2 distinct tours. The
TSP is asking to find the shortest tour(s) (the optimal one) among them, which can be described also
in the following problem: Given a graph G with costs on the edges, find a cycle in G that visits every
node exactly once and minimizes the length of the cycle. This problem is converted to the question:
Given a graph G and an integer k, does G have a TSP tour of cost at most k? Although this
transformation loses some of the structure of the original problem, it captures the essential difficulty
of the TSP problem because we can solve the original problem by using the yes/no question as a
subroutine. Upon the dimensionality (namely, 2D or 3D) of the tours in the TSP, it can be catalogued
to a NP-complete problem or a P-problem. With a similar procedure to this work, we can find the
AMC model and the NPI problem for the TSP. Figure 6 illustrates the TSP model on a two-level grid
lattice with a small size (with the lattice size N=mnl, here m=n=9 and 1=2), which is NP-complete. The
AMC model for the TSP identifies to the difference between a two-level (1=2) grid TSP model and a
2D TSP model, namely, M3¥crsp = M2 rsp—M%gp, which is NP-complete also. Clearly, either the
3D spin-glass Ising model or the knapsack problem can be transformed into the TSP, the K-SAT
problem and neural networks and so on. Even some information might be lost during the
transformation, the essential difficulty remains, and thus the lower bound of the computational
complexity maintains the same. This means that the lower bound of the computational complexity of
all the NP-complete problems is in the same universality class (being superpolynomial and
subexponential).
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Figure 6. Schematic illustration of a TSP model on a two-level grid lattice (with the lattice
size N=mnl, here m=n=9 and 1=2), M, 1¢p. The black dashed lines represent the lattice,
while the red solid lines represent the tour. Here, I illustrate a tour as an example to connect
all the lattice points (cities) in the two-layers (I=2). There exist some crossings in the tour,
which represent the character of the 3D space. In order to illustrate the connections, some
solid lines are drawn to be not fitted with the dashed lines for the two-level grid lattice.
The AMC model for the TSP identifies to the difference between a two-level (I=2) grid
TSP model and a 2D TSP model.

Similar to the 3D spin-glass Ising model (Figure 3) and knapsack problem (Figure 5), a phase

diagram for the TSP is illustrated in Figure 7, in which NPI region exists between NP-complete and
P-problems, while the AMC model is on the border of NP-complete and NPI regions.

NP-Hard

3D TSP
NP-Complete

Figure 7. Phase diagram for the TSP. In the phase diagram, 3D TSP represents the NP-
complete problems, and P represents polynomial problems (2D TSP). NPI exists between
NP-complete and P-problems, while AMC is on the border of NP-complete and NPI
regions.

3.7.  Comparison with other optimum algorithms

In this subsection, I compare the optimum algorithm suggested in Subsection 2.5 with other
optimum algorithms, such as dynamic programming and genetic algorithms.
The dynamic programming has been developed to investigate different NP-complete problems,
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such as K-SAT [51], knapsack problem [19,52,53], TSP [54], etc. Bertsimas and Demir presented an
approximate dynamic programming approach for the multidimensional knapsack problem [52].
Woeginger discussed whether a dynamic programming formulation guarantees the existence of a fully
polynomial time approximation scheme [53]. Pisinger gave an overview of some exact solution
approaches and to show that the knapsack problem is difficult to solve for these algorithms including
the dynamic programming algorithms for a variety of test problems [19]. Martello et al. gave an
overview of the techniques for solving hard knapsack problems, with special emphasis on the addition
of cardinality constraints, dynamic programming, and rudimentary divisibility [18].

The genetic algorithm has been developed to study various NP-complete problems, such as K-
SAT [55], knapsack problem [56], spin glass models [57], TSP [58,59], etc. Melkman and Akutsu [55]
showed that the general case can be solved in O(1.871") time for studying the problem of finding a
singleton attractor of a Boolean network consisting of n nested canalyzing functions. Chu and Beasley
presented a heuristic based upon genetic algorithms for the multidimensional knapsack problem [56].
Large numbers of ground states of the three-dimensional +J random-bond Ising model were calculated
by using a combination of a genetic algorithm and cluster-exact approximation [57]. Snyder and
Daskin presented an effective heuristic for the generalized TSP, which combines a genetic algorithm
with a local tour improvement heuristic [58]. Larranaga et al. gave a review of the different attempts
made to solve the TSP with genetic algorithms [59], and presented crossover and mutation operators,
developed to tackle the TSP with genetic algorithms with different representations such as: Binary
representation, path representation, adjacency representation, ordinal representation, and matrix
representation.

Although the dynamic programming and the genetic algorithms are very efficient algorithms for
studying the NP-complete problems with short time, and some researchers claimed the single knapsack
problems (NP-hard in the weak sense) may be solved in pseudopolynomial time through dynamic
programming, these algorithms have disadvantages as follows: These algorithms must take some
approximates [52,53,57] or with some particular constraints or by a heuristic approach. Actually, they
did not realize finding an exact solution for the NP-complete problems for large size scale, because
they did not determine the basic character of the NP-complete problems. In order to derive the exact
solution of the NP-complete problems, any algorithms must calculate all the states of the AMC model
by brute force search. On the other hand, the optimum algorithm proposed in Subsection 2.5 can find
the exact solution of the NP-complete problem in subexponential time, because it determines the basic
element (i.e., the AMC model) of the NP-complete problems.

4. Conclusions

In conclusion, | inspected the origin of the nontrivial topological structures and confirmed the
existence of the AMC model in the knapsack problems. | proved that the NP1 problems exist between
the NP-complete problem and P-problems, while the AMC model is at the border between the NPI and
the NP-complete problems. The AMC model of the knapsack problem cannot collapse directly into
the P-problem. I determined the lower bound of the computational complexity of the knapsack
problems C; (Mgp), being in subexponential and superpolynomial. Under the guide of the results, one
may develop the optimum algorithms, within a framework of a parallel computation of //z layers of
the z-layer AMC models to solve combinatorial optimization problems in the shortest time (might be
improved greatly from O(1.3N) to O((1+¢)N) with e—0 and #1/N). The strategy proposed in this work
for developing an optimum algorithm can be applied to compute the properties of other NP-complete
problems, such as TSP and neural networks. This work sheds a light on complexity theories for various
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fields of science ranging from physics to biology to finances, and to information technologies.
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