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Abstract: The quantum statistics mechanism is very powerful for investigating the equilibrium states 

and the phase transitions in complex spin disorder systems. The spin disorder systems act as an 

interdisciplinary platform for solving the optimum processes in computer science. In this work, I 

determined the lower bound of the computational complexity of knapsack problems. I investigated the 

origin of nontrivial topological structures in these hard problems. It was uncovered that the nontrivial 

topological structures arise from the contradictory between the three-dimensional character of the 

lattice and the two-dimensional character of the transfer matrices used in the quantum statistics 

mechanism. I illustrated a phase diagram for the non-deterministic polynomial (NP) vs polynomial (P) 

problems, in which a NP-intermediate (NPI) area exists between the NP-complete problems and the 

P-problems, while the absolute minimum core model is at the border between the NPI and the NP-

complete problems. The absolute minimum core model of the knapsack problem cannot collapse 

directly into the P-problem. Under the guide of the results, one may develop the best algorithms for 

solving various optimum problems in the shortest time (improved greatly from O(1.3N) to O((1+)N) 

with →0 and 1/N) being in subexponential and superpolynomial. This work illuminates the road 

on various fields of science ranging from physics to biology to finances, and to information 

technologies. 
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1. Introduction 

In recent years, there has been great progresses in computer science, especially in machine 

learning, artificial intelligence, and so on. It is well known that neural networks for artificial 

intelligence are closely related with spin-glass models in statistic physics. The study of the 

computational complexity of a complex problem, for calculations of physical properties of a 

complicated system, like a spin disorder system, is an extremely important topic either in physics, 

mathematics or in computer science. On the one hand, one would develop the optimum algorithm to 

reveal the physical properties of a complicate system by guide of the lower bound of the computational 

complexity. The optimum algorithm can find the solution of the spin disorder system (or related 

physical systems) in the shortest time, with the sufficient accuracy and within the high precision. On 

the other hand, one would develop the optimum processes to investigate various hard problems in 

mathematics and computer science, under the guide of physical insight obtained from solving the spin 

disorder system. 

In physics, it is always a main target to inspect the ground state of a complex system and calculate 

its thermodynamic functions (such as internal energy, enthalpy, entropy, free energy, etc.) [1]. From the 

differential of the free energy, we can determine the thermodynamic properties; for instance, specific 

heat, spontaneous magnetization, susceptibility, correlation functions, and correlation length. The spin 

disorder systems are among complex systems, in which abundant physical phenomena may exist and 

the processes for calculations of physical properties may be very complicated. It is important to find 

out analytically the solution of a physical system for having a deep understanding. Unfortunately, until 

now, we have known the exact solutions of only few physical systems. For the complicated systems, 

like the spin disorder systems, it is extremely difficult to figure out the exact solution, so researchers 

usually develop algorithms to numerically simulate the exact solution. For this purpose, researchers 

attempt to design the optimum algorithm to find/reach the exact solution with sufficient accuracy and 

within the high precision in the shortest time. 

In magnetic systems, there are several sources that introduce disorders. The temperature, or the 

thermo-activity, causes the disorder phase at high temperatures. The disorder can be introduced 

initially in Hamiltonian of a spin glass system, by terms of diluted spins with random distributions, or 

disorderly distributed competing interactions between spins. In the former case, the spins at different 

lattice sites may have different values, whereas in the latter case, the interactions between spins may 

have different strengths and signs. The introduction of these disorder terms in the Hamiltonian results 

in rich magnetic states and abundant physical phenomena [2–4], and the study of their complexity is 

important for developing efficient algorithms for optimum problems [5,6]. Moreover, the introduction 

of the disorder terms makes the computational processes for the thermodynamic properties much more 

complicated. The Ising model is a well-known model widely used for description of phase transitions 

and applied as a paradigm for various complex systems [7–9]. The spin-glass Ising model is a 

generalization of the ferromagnetic Ising model [4]. The calculation of the ground state (and other 

equilibrium physical properties) of the three-dimensional (3D) spin-glass Ising model MSGI
3D  [10,11] 

has been proven to be one among the NP-complete problems [12,13]. 

In another study [14], I analyzed characters of the 3D spin-glass Ising model, such as topological 

effect, randomness, frustration, and non-ergodic behavior, to show its nature of a NP-complete problem. 

In previous work [15], I investigated the mapping between the 3D spin-glass Ising model and the 

Boolean satisfiability (K-SAT) problems. The major reasons that the spin glass model was chosen as 
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a research model for NP-complete problems was because: 1) The 3D spin-glass Ising model is a NP-

complete system with the existence of randomness and nonlocality, causing the non-triviality similar 

to other NP-complete problems, while the two-dimensional (2D) spin-glass Ising model is a P-problem. 

2) With the Clifford algebraic representation, it is easy to reveal nontrivial topological structures, non-

planarity graphs, nonlocalities, or long-range spin entanglements in the 3D spin-glass Ising model. 3) 

It is the easiest system to figure out the absolute minimum core (AMC) model for computational 

complexity among all NP-complete problems, since it is a quantum statistic problem. This means it 

can reveal the nature of the system directly by different dimensionalities of the 3D spin lattice and the 

2D transfer matrices. 4) It is easy to map the 3D spin-glass Ising model to any other NP-complete 

problems with two possible states for each element (spin, particle, variable, object, etc.). 

The history of studying the knapsack problem (defined as MKP) stretches back to Mathews’ work 

on the partition of numbers [16,17]. The knapsack problem has been intensively investigated, since it 

was determined to be one of the NP-complete optimization problems in 1970s [18,19]. The 0-1 

knapsack problem is the simplest among the knapsack problems [20,21]. With the list of a binary 

decisional variable xi for i∈[N], of fixed weight (wi) and cost (ci), the aim of the knapsack problem is 

to maximize the sum of the costs of objects while the sum of the weights of the objects is restricted to 

be less than or equal to the maximal weight Wmax. The knapsack problem can be used for calculations 

in the fields of combinatorial mathematics, cryptography, business and so on [22]. Furthermore, the 

knapsack problem appears in decision-making processes in the different fields, for instance, searching 

the least cost route for reducing the use of raw materials, selecting the investment portfolio, generating 

secret key systems, and so on. The knapsack problem also offers many practical applications in various 

areas, such as project selection, resource distribution, investment decision making, and so on. There 

are some studies on the relations between the knapsack problem and other NP-complete problems such 

as K-SAT problem [23,24], traveling salesman problem (TSP) [25,26], etc. The correlation between 

the knapsack problem and the spin glass model is described briefly as follows: 1) The binary decisional 

variable in the knapsack problem corresponds to the Ising spin in the spin glass model. An object 

outside/inside the knapsack corresponds to a spin up/down state. 2) The weighs in the knapsack 

problem are mapped to the connections (interactions) with randomness in the spin glass model. 3) The 

classical Hamiltonian corresponding to the knapsack problem can be transformed to a Hamiltonian for 

the standard all-to-all-connected Ising model with bias terms. Therefore, solving the knapsack problem 

can be realized by solving in the spin glass model. Maximizing the sum of the costs of the objects in 

the knapsack problem is equivalent to minimizing the free energy in the spin glass model. 

I uncovered the most important feature of the mathematical structures of the 3D Ising 

models [9,27,28]. By utilizing the key issue of the nontrivial topological structure, I succeeded in 

determining the critical point of the ferromagnetic Ising model in a simple cubic lattice to be located 

at the golden ration (1/Kc=4.15617384...) [9]. Note a criterion that the critical point of the simple cubic 

Ising model must be much higher than that (1/Kc=3.6409569...) of the triangular Ising model [9]. 

It is worth mentioning recent Monte Carlo simulations [29], in which the critical exponents of the 3D 

Ising model obtained by taking into account the long-range interactions of spin chains (namely, the 

nontrivial topological contribution) agree well with my exact solution. Furthermore, the exact solution 

for the critical exponents [9] agree well with experimental results in various materials as a 3D Ising 

universality [30–32]. The procedures developed for solving analytically the 3D ferromagnetic Ising 

models [9,27,28] can be utilized to understand other related ones, but much more complicated 

problems, such as the 3D spin-glass Ising models [14,15]. The lower bound for the computational 
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complexity of the 3D spin-glass Ising models [14] and the K-SAT problem [15] has been recognized 

by several groups of computer scientists worldwide [33–35]. 

My aim of this work is to determine the lower bound of the computational complexity of the 

knapsack problem CL(MKP). The problem is sketched as follows: In Section 2, the lower bound of the 

computational complexity of the 3D spin-glass Ising model is determined by analyzing the topological 

structures and understanding the AMC model. I first inspect the origin of the nontrivial topological 

structures in the NP-complete problems. I illustrate a phase diagram for the NP vs P-problems, in 

which that there is a NP-intermediate (NPI) problem between the NP-complete problems and the P-

problems, while the AMC model is at the border between the NPI problems and the NP-complete 

problems. This indicates that the AMC model of the 3D spin-glass Ising model cannot collapse directly 

into the P-problems. In Section 3, the lower bound of the computational complexity of the knapsack 

problem is determined by analyzing the correspondence and the mapping between the knapsack 

problem and various spin-glass models. The results show the existence of the NPI problems and the 

AMC model for the knapsack problem. A phase diagram for the NP vs P-problems, similar to the spin-

glass system, is obtained also for the knapsack problem. Furthermore, attention is given for 

applications of other NP-complete problems (such as TSP, networks) and comparisons with other 

optimum algorithms, such as dynamic programming and genetic algorithms, are made. The conclusion 

is represented in Section 4. 

2. Origin of the nontrivial topological structures in a 3D spin-glass Ising model 

Definition 1. Let 𝑀𝐴
𝐷 be a physical model where the upper script fixes the dimension or named model, 

and the lower indices indicate the character of the model. 

Definition 2. Let C(MA
D) be the computational complexity of the model MA

D. 

Definition 3. Let CU(MA
D) be the upper bound of the computational complexity of MA

D. The upper 

bound for a model is equal to the computational complexity, as computed by brute force search. 

Definition 4. Let CL(MA
D) be the lower bound of the computational complexity of MA

D. 

Definition 5. Let MSGI
3D   denote the 3D spin-glass Ising model, MAMC,SGI

3D  the AMC model in 

MSGI
3D , 𝑀𝑆𝐺𝐼

𝑆𝐾  the Sherrington–Kirkpatrick spin-glass Ising model with all-to-all-connected interactions, 

and 𝑀𝑆𝐺𝐼
𝐸𝐴  the Edwards–Anderson model with the nearest neighboring interactions. 

2.1. Model establishment 

The Edwards–Anderson model is a model for describing spin-glass systems, in which interactions 

between only the nearest neighboring spins are considered [4]. Spins are arranged on a 1D, 2D, or 3D 

lattice with randomly distributed competing interactions. In this section, I focus on the Edwards–

Anderson model to show that even with only the nearest neighboring interactions, the long-range spin 

entanglement exists in the system. In the next section, I also discuss other spin-glass models, for 

instance, the Sherrington–Kirkpatrick model with the long-range interactions. 

The Hamiltonian of a spin-glass Edwards–Anderson model with S=1/2 Ising spins is expressed 

as [4,14,15]:
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H = − ∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗<𝑖,𝑗> ,          (1) 

where the nearest interactions 𝐽𝑖𝑗 are taken values 𝐽𝑖(i=1,2,3) along three crystallographic directions. 

The interactions with different signs are randomly distributed in range of [-J, J] by a Gaussian 

distribution (or a pseudo-random generator). As usual, I prefer to use the interactions 𝐾̃𝑖 = 𝐽𝑖/𝑘𝐵𝑇 to 

replace 𝐽𝑖. 𝑘𝐵 is the Boltzmann constant and 𝑇 the temperature. The partition function 𝑍̅𝛼 can be 

formulated in a fixed replica (=1,2,…R) as [15,27,28]: 

𝑍̅𝛼 = (2𝑠𝑖𝑛ℎ2𝐾̃)
𝑚𝑛𝑙

2 ∙ trace(𝑉3𝑉2𝑉1),       (2) 

𝑉1 = ∏ 𝑒𝑥𝑝{𝑖𝐾̃1
∗ ∙ 𝐶𝑗}𝑚𝑛𝑙

𝑗=1 ,          (3) 

𝑉2 = ∏ 𝑒𝑥𝑝{𝑖𝐾̃2𝑠′𝑗𝑠′𝑗+1}𝑚𝑛𝑙
𝑗=1 ,         (4) 

𝑉3 = ∏ 𝑒𝑥𝑝{𝑖𝐾̃3𝑠′𝑗𝑠′𝑗+𝑚𝑛}𝑚𝑛𝑙
𝑗=1 .        (5) 

Here, m, n, and l are the numbers of the lattice sizes along three crystallographic directions of the Ising 

spin system. 𝐾̃1
∗ is defined by [15,27,28], 

𝑡𝑎𝑛ℎ𝐾̃1
∗ ≡ 𝑒−2𝐾̃1.         (6) 

The matrices 𝐶𝑗 and 𝑠′𝑗 are defined as the direct products of Pauli matrices j (j = 1,2,3) [15]. 

In a spin-glass 3D Ising model with randomly distributed positive and negative interactions 

between spins, containing frustration, different ground states, such as a ferromagnetic state, an 

antiferromagnetic state or a spin glass state may occur. In a limit case, if all the interactions are 

ferromagnetic and randomly distributed, a random ferromagnetic state without frustration may occur. 

In this work, I am interested only in the spin-glass 3D Ising lattice with strongly competing interactions 

in general cases (or worst cases for computational complexity), in which, in the presence of frustration, 

neither ferromagnetic nor antiferromagnetic interaction is dominant so that it is not easy to determine 

the ground state of the system to be ferromagnetic, antiferromagnetic, or spin glass. 

The partition function Z of the spin-glass system can be calculated from the product of the 

partition functions 𝑍̅𝛼 for all fixed replicas (=1,2,..,R), 

Z = ∏ 𝑍̅𝛼
𝑅
𝛼=1 .         (7) 

Thus, it is enough to focus on 𝑍̅𝛼 for the lower bound of the computational complexity. The elements 

in the transfer matrices and the partition function are calculated with a combination of different states 

of spins on the 3D lattice points. 

2.2. Non trivial topology analysis 

The nonlocal effect in the partition function (2) (see also the transfer matrix (5)) of the 3D Ising 

model originates from the contradictory between the 3D character of the lattice and the 2D character 

of the transfer matrices used in the quantum statistics mechanism. In what follows, I inspect the origin 

of the nonlocal effect: 

In a 3D Ising model with the lattice size N= mnl, Ising spins are assigned on every lattice point. 

The numbers (i, r, s) denote lattice points running from (1, 1, 1) to (m, n, l) along three crystallographic 

directions in the 3D lattice. One may denote the lattice points, a layer by a layer, by the number j = 
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[mn(s-1)+m(r-1)+i], which runs in a sequence as 1, 2, 3,..., mnl. Such two representations are 

equivalent. The size of the transfer matrices in spinor representation for the 3D Ising model is 2N2N. 

It is noticed that the sequence in a process of a layer by a layer is the simplest one for mapping a 3D 

lattice into a 2D “lattice” (a matrix) for the quantum states described by the transfer matrices. For 

studying the 3D Ising model, this sequence can remain some basic characters of the 2D Ising model, 

and make the procedure for solving the 3D Ising model as simple as possible. It was understood that 

any other sequences will make the problems much more complicated [14]. 

Let us run j. For the first layer (s=1), corresponding to the running from (1,1,1) to (m, n, 1), we 

have j=1,2,3,…, m for the first line (r=1), j=m+1, m+2, m+3,…, 2m for the second line (r=2), …, and 

j=(n-1)m+1,(n-1)m+2,…, mn for the last line (r=n). For the second layer (s=2), corresponding to (1, 1, 

2) to (m, n, 2), j runs from (mn+1), (mn+2), (mn+3),…, 2mn. It runs in all the way to the last layer 

(s=l), j runs from (mn(l-1)+1), (mn(l-1)+2), (mn(l-1)+3),…, mnl. The first spin (1, 1, 1) in the first layer 

and the first spin (1, 1, 2) in the second layer correspond to j=1 and j=(mn+1), respectively. Figure 1 

illustrates a spin-glass Ising model on a 3D lattice with the size of 333, for example, which is 

mapped into the spin arrangement on a 2D lattice with the size of (33+33+33), as arranged in the 

transfer matrix. The spins assigned on the lattice are randomly distributed, pointing up or down. Green, 

purple, and blue colors represent the interactions along three crystallographic directions, which can be 

randomly distributed ferromagnetic or antiferromagnetic. In the transfer matrix, the interactions with 

blue color show the crossings. It is emphasized here that the interaction between the two nearest 

neighboring spins behaves as a long-range interaction, which involves the entanglements of all the 

spins in a plane. This is the origin of the nontrivial topological structures. 

 

Figure 1. Illustration of a spin-glass Ising model on a 333 lattice, for example, which is 

mapped into the 2D spin arrangement on a (33+33+33) lattice, as in the transfer matrix. 

The spins at the bottom, middle, and top layers of the 3D Ising lattice are mapped to those 

at the left, middle, and right 2D Ising lattices, respectively. The spins pointing up or down 

are assigned on the lattice and randomly distributed. Green, purple, and blue colors 

represent the interactions along three crystallographic directions. In the transfer matrix, the 

interactions with blue color show the crossings, indicating the existence of non-trivial 

topological structures in the 3D spin-glass Ising model. 
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For the fully ferromagnetic case, for simplicity, we can apply the cylindrical crystal model 

preferred by Onsager [8], in which we wrap our crystal on cylinders. However, unlike in the solid 

energy band theory for one-electron approximation in which the periodic boundary conditions can be 

applied along three crystallographic directions, we can perform the periodic boundary condition only 

along one crystallographic direction in the present system with many-body spin-spin interactions. After 

performing the periodic boundary condition, the running number j can be reduced to j=[(s-1)n+r], 

running as j=1,2,3,…,nl in a plane. The size of the transfer matrices in spin or representation for the 

3D ferromagnetic Ising model is reduced to be 2nl2nl. For the spin glass case, even such a periodic 

boundary condition cannot be employed, mainly due to the randomness of interactions. For the 3D 

spin-glass Ising model in a fixed replica, the size of the transfer matrices in spinor representation 

remains 2N2N. Of course, the nonlocal effects are the natural character of the 3D many-body spin-

spin interacting models in the quantum statistics mechanism. The boundary factors for 2D (or 3D) 

models can be neglected in the thermodynamic limit, whereas the internal factors in the transfer 

matrix (5) for 3D cases cannot be neglected, since they appear at each lattice point. Indeed, the 

nonlinear terms of 𝑠′𝑗𝑠′𝑗+𝑚𝑛  in the transfer matrix 𝑉3  (see Eq (5)) indicate the existence of the 

nontrivial topological structures. All these characters together with random interactions and spin 

alignments (and also frustrations) cause the system to be NP-complete [2,3,5]. 

2.3. Absolute minimum core model 

A 3D spin-glass Ising lattice can be constructed by stacking l layers of 2D spin-glass Ising lattices. 

This is the simplest way to construct the 3D spin-glass Ising model layer by layer, while keeping the 

characters and (thus the physical properties) of the 3D (and also 2D) spin-glass Ising model. Other 

ways of constructions may cause much more complicated procedures (referred to Theorem 2 in [14]). 

According to Theorem 2 in [14], to find the exact solution of the 3D spin-glass Ising model, any 

algorithms cannot break the global effects of entanglements in the AMC model. Figure 2 shows an 

example for the AMC model MAMC,SGI
3D . Notice that two layers are needed to represent the AMC model, 

in which the solid lines represent the bottom (l=1) layer with the intralayer interactions and the 

interlayer interaction between the two layers, while the dashed lines show that there are no intralayer 

interactions on the top layer (l=2). Spins (red arrows) at every lattice point of a two-level grid lattice 

align along with randomly distributed directions, caused by randomly distributed interactions, while 

spins (blue double arrows) in some plaquettes show the frustrations in the spin-glass system. It has 

been proven [14,15] that for the 3D spin-glass Ising model, the upper bound of the complexity (by 

brute force search) of the AMC model gives its lower bound. That is, 

CL(MSGI
3D ) ≥ CU(MAMC,SGI

3D ).         (8) 
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Figure 2. Schematic illustration of an AMC model, MAMC,SGI
3D , for the 3D spin-glass Ising 

model, in which spins (red arrows) at every lattice point of a two-level grid lattice (with 

the lattice size N=mnl, here m=n=9 and l=2 as an example) align along with randomly 

distributed directions, caused by randomly distributed interactions between spins. 

Moreover, spins in some plaquettes are represented by blue double arrows, to show the 

existence of frustrations in the spin-glass system. 

2.4. NP-intermediate problems 

Ladner [36] showed that, assuming PNP, there exist NPI problems, that is, problems in NP that 

are neither in P nor NP-complete. Ladner explicitly constructed NPI problems by removing strings of 

certain lengths from NP-complete languages via a diagonalization technique that is colloquially known 

as blowing holes in problems [36,37]. 

I am interested in whether there is a NPI area between the NP-complete problem (the AMC is 

located on its border) and the P-problem in our system. In other words, if the AMC model can collapse 

directly into the P-problem? We have determined the lower bound of the complexity of the 3D spin-

glass Ising model is O(2𝑛𝑚), which is subexponential time [14,15]. We have [14,15] 

O(2𝑛𝑚) =O(2𝑁2/3
)= O((1 + )N),        (9) 

when n = m = 𝑁1/3, and with  → 0 and  ≠ 1/N. It is known that there are some quasi-polynomial 

times, for instance, O(𝑁𝑙𝑔𝑁), O(𝑁𝑙𝑔𝑙𝑔𝑁), etc. Thus, we have 

O(2𝑁) ≫ O(2𝑛𝑚) = O((1 + )N) = O (2𝑁
2
3) ≫ O(𝑁𝑙𝑔𝑁) ≫ O(𝑁𝑙𝑔𝑙𝑔𝑁) ≫ O(𝑁𝑃).   (10) 

Figure 3 illustrates schematically these results obtained above to be a phase diagram of different 

complexities. The lower bound of the complexity of the 3D spin-glass Ising model is at the boundary 

of the area for the NP-complete problems. There is a NPI area between the NP-complete problems (the 

AMC model is on its border) and the P-problems. The NPI problems have the computational 

complexity (including quasi-polynomial times O(𝑁𝑙𝑔𝑁), O(𝑁𝑙𝑔𝑙𝑔𝑁), etc.) less than O (2𝑁2/3
) and 

larger than O(𝑁𝑃). The NPI problem may be constructed by removing some interactions and/or spins 

in the AMC model, following the Ladner’s process [36]. Namely, we have some incomplete AMC 

models as the NPI problems. It is concluded that the AMC model cannot collapse directly into the P-

problem. 
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Figure 3. Phase diagram for the 3D spin-glass Ising model. In the phase diagram, 3D SGI 

represents NP-complete problems, and P represents polynomial problems (2D SGI). NPI 

exists between NP-complete and P-problems, while AMC is located on the border of NP-

complete and NPI regions. 

2.5. Strategy for an optimum algorithm 

From the analysis above, I propose the following strategy for developing an optimum algorithm 

for calculations of physical properties (such as, the ground state, the free energy, the critical point, the 

phase transitions, and the critical phenomena) of the 3D spin-glass Ising model. 

1) Fix z-layers (z=1,2,3,…) of the AMC model as an element of the algorithms, while performing 

a parallel computation of l/z layers of this element. 

2) Compare the precision as well as the accuracy of the results obtained by the above procedures, 

and determine the optimum value of z. 

In this way, one can design the optimum algorithm to find/reach the exact solution with the 

sufficient accuracy and within the high precision in the shortest time. It can be improved greatly from 

the present status of O(1.3N) [6] to O((1+)N) with →0 and 1/N [14,15], the best case if one can 

succeeded in the optimum value z=1. Since the 3D spin-glass Ising model is catalogued to NP-

complete set, the optimum algorithm can be employed to compute the properties of other NP-complete 

problems (for instance, TSP, K-SAT problem, knapsack problem, neural networks, etc.). 

3. Lower bound of the computational complexity of the knapsack problems 

3.1. Definitions of the knapsack problem 

Definition 6. Let MKP denote the knapsack problem, 𝑀𝐾𝑃
𝑎𝑙𝑙 the knapsack problem on an all − to −

all − connected network,  MKP
3D  the 3D knapsack problem, MKP

2D  the 2D knapsack problem, 

and MAMC,KP
3D  the AMC model in the 3D knapsack problem. 

Definition 7. Let MTSP denote the TSP, MTSP
3D  the 3D TSP, Ml=2,TSP

3D  the TSP model on a two-level 

grid lattice, MTSP
2D  the TSP model on a 2D lattice, and MAMC,TSP

3D  the AMC model in the 3D TSP. 
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I consider the 0-1 knapsack problem, which is the simplest one among all the knapsack problems [18–

21]. Having the list of a binary decisional variable xi for i∈[N], of fixed weight (wi) and cost (ci). The 

goal of the knapsack problem is to maximize the sum of the costs of the objects while the sum of the 

weights of objects is restricted to be less than or equal to the maximal weight Wmax. This problem is 

NP-complete classically, and can be written as [18–21]: 

max ∑ 𝑐𝑖𝑥𝑖𝑖∈[𝑁] , 

𝑠. 𝑡. ∑ 𝑤𝑖𝑥𝑖 ≤ 𝑊𝑚𝑎𝑥𝑖∈[𝑁] , 𝑥𝑖 ∈ {0,1}       (11) 

Here, an object index i runs from 1 to N, weights correspond to integer-valued numbers. For the 0-1 

knapsack problem, a binary variable si is introduced for 𝑥𝑖 ∈ {0,1}. si is equal to 1 when an object is 

inside the box and 0 otherwise (see Figure 4(a)). For the Ising spin model, a binary variable si is 

introduced for 𝑥𝑖 ∈ {−1,1}. si=1 represents the spin up and the spin down, respectively (see 

Figure 4(b–d)). The total weight and total value then read 

W = ∑ 𝑤𝑖𝑠𝑖
𝑁
𝑖=1          (12) 

and 

C = ∑ 𝑐𝑖𝑠𝑖
𝑁
𝑖=1 ,         (13) 

respectively. I further introduce auxiliary binary variables aj, where the index j runs from 1 to Wmax. 

The formulation above for the 0-1 knapsack problem looks simple, but the time needed for the 

computing procedure increases rapidly with the size of the system, as other NP-complete problems. 

For the 0-1 knapsack problem, the problem of placing the first i items of objects into a knapsack 

with the maximal weight Wmax (or capacity v), if I focus only on the strategy of the ith object (outside 

or inside the knapsack), then it can be transformed into a problem involving only the first i-1 items of 

objects (see the classical dynamic programming (DP) algorithm proposed by Bellman [38]. There are 

two cases for the ith object: If the ith object is outside the knapsack, the problem will become the first 

i-1 items of objects are put inside the knapsack with capacity v and the cost fi-1[v]. If the ith object is 

inside the knapsack, the problem will become the first i-1 items of objects are put inside the knapsack 

with capacity v-wi and the cost fi-1[v-wi] plus the cost ci for putting the ith object inside the knapsack. 

The process of the 0-1 knapsack problem can be mapped to the problem of Ising spins, in which the 

states of the ith spin is entangled with the states of the first i-1 spins in the lattice. Note that putting the 

objects outside or inside the knapsack corresponds to up or down alignment of the spins, while the 

weighs are transformed to the interactions between spins. In principle, determining the ground state of 

a N-spin system equalizes to determining the states of the N-th spin that entangled with all the first N-

1 spins in the system. My purpose of this work is to find the lower bound of the computational 

complexity of the knapsack problems. 



11928 

AIMS Mathematics  Volume 10, Issue 5, 11918–11938. 

 

Figure 4. Sketch of (a) the knapsack problem [39], which corresponds to (b) an all-to-all-

connected Ising network, (c) an Ising network with six connections (interactions) on a spin, 

and (d) an Ising network with four connections (interactions) on a spin. Different items of 

weight wi and cost ci can be placed in the suitcase (assign binary variable s=1) or left 

outside (s=0). Compared with Figure 8 in [39], I have added up and down spins on these 

items for indicating the states of inside or outside the suitcase. The maximal weight of the 

suitcase is bounded by Wmax. The solution can be obtained by searching the energy 

minimum for all the configurations for combined item (si) and auxiliary (ai) spins, 

combined into an Ising network. 

3.2. Overview of research on the complexity of knapsack problems 

In this subsection, I present a brief overview of the history and current status of research on the 

complexity of knapsack problems. At first, I mention the earliest work on this subject: The knapsack 

problem has been known since over a century, which can be stretched back to Mathews’ work on the 

partition of numbers [16,17]. The first algorithmic studies were published in the Fifties [40,41], an intense 

research activity started in the Sixties. The knapsack problem has been intensively investigated, since 

it was determined to be one of NP-complete optimization problems in Seventies [11,13,18]. In 

general, all optimization problems are NP-hard. While the ‘‘simplest’’ single knapsack problems are 

NP-hard in the weak sense, i.e., they may be solved in pseudopolynomial time through dynamic 

programming, most variants and generalizations are NP-hard in the strong sense (i.e., they cannot be 

solved by pseudo-polynomial time algorithms unless P=NP). 

For a detailed overview of recent advances on the knapsack problems, readers can refer to 

Cacchiani, et al.’s survey [42,43]. Part I of this survey [42] covered the classical single knapsack 

problems and their many variants and generalizations: Subset sum, item types, setup, multiple-choice, 

conflict graphs, precedences, sharing, bilevel, robust, among others. It also focused on extensions and 

generalizations provides pointers to the variants that are especially attractive from the point of view of 

possible future investigations. Moreover, Part II [43] was mainly devoted to multiple, 

multidimensional (vector and geometric), and quadratic knapsack problems, but also contained a 

succinct treatment of online and multiobjective knapsack problems. 
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3.3. Relation between knapsack problems and spin-glass models 

Solving optimization problems is highly demanded in various fields of science ranging from 

physics to biology to finances, and to information technologies [44,45]. The relation between the 

knapsack problem, the spin glass and the Ising machine were discussed in [39]. In what follows, I 

determine the lower bound of the complexity of the knapsack problems via set up the correspondence 

between the two problems (namely, spin-glass and knapsack). 

The classical Hamiltonian corresponding to the knapsack problem then reads [39]: 

H = α(1 − ∑ 𝑎𝑗
𝑊𝑚𝑎𝑥
𝑗=1 )

2
+ 𝛼(∑ 𝑗𝑎𝑗

𝑊𝑚𝑎𝑥
𝑗=1 − ∑ 𝑤𝑖𝑠𝑖

𝑁
𝑖=1 )

2
− 𝛽 ∑ 𝑐𝑖𝑠𝑖

𝑁
𝑖=1      (14) 

where α and β are parameters for the simulation, chosen to ensure that the solution is the global 

minimum of the Hamiltonian (14). In the Hamiltonian (14), the weight 𝑤𝑖 is randomly distributed. 

The Hamiltonian (14) can be rewritten as the standard all-to-all-connected Ising model with bias terms 

hn as [39]: 

H = − ∑ 𝐽𝑛𝑚𝑠𝑛𝑠𝑚
𝑁+𝑊𝑚𝑎𝑥
𝑛<𝑚 − ∑ ℎ𝑛𝑠𝑛

𝑁+𝑊𝑚𝑎𝑥
𝑛=1  ,      (15) 

where the Ising spin sn=±1. The equivalence between (14) and (15) can be clarified as follows: 𝐽𝑛𝑚  

denotes the Ising coupling matrix formed by weights, and hn is an effective magnetic field formed by 

the combination of cost and weight. The parameters are inferred from the original encoding given in 

Eq (14). In the Hamiltonian (15), the interactions 𝐽𝑛𝑚 of different signs are randomly distributed in 

range of [-J, J]. The random distribution of the interactions in the Hamiltonian (15) is transformed 

from the randomly distributed weight 𝑤𝑖 in the Hamiltonian (14), which provides the possibility of 

existing plaquettes containing frustrations in the spin-glass system as illustrated in Figure 2. To clarify 

a detailed correspondence between (14) and (15), the terms with parameters α and β in (14) are 

transformed into the interaction terms 𝑠𝑛𝑠𝑚 and the terms with the effective magnetic field ℎ𝑛 

in (15), respectively. The variable 𝑠𝑖 in the Hamiltonian (14) takes two values 1 and 0, while the Ising 

spin in the Hamiltonian (15) takes two values, 1 and -1. The interaction terms 𝑠𝑛𝑠𝑚 in (15) have four 

combinations (++, +-, -+, --), resulting in two values, 1 and -1. Thus, one can carry out a mapping from 

the two values 1 and 0 for the variable 𝑠𝑖 in (14) into the two values 1 and -1 for the interaction terms 

𝑠𝑛𝑠𝑚 in (15). This indicates clearly the correspondence between the terms 𝑤𝑖𝑠𝑖 in (14) and the terms 

𝐽𝑛𝑚𝑠𝑛𝑠𝑚 in (15). Therefore, the interaction couplings 𝐽𝑛𝑚 , in (15) are transformed directly from the 

weights 𝑤𝑖 in (14). On the other hand, it is easy to see the connection between the terms 𝑐𝑖𝑠𝑖 

in (14) and the terms ℎ𝑛𝑠𝑛 in (15). 

The knapsack problem can be mapped into the spin-glass all-to-all-connected Ising model with 

appropriate parametric correspondence (see Figure 4(b)). As mentioned, an object is inside or outside 

the box in the knapsack, corresponds to a spin pointing up or down in the spin-glass Ising model. As 

mentioned in the last section, I am interested only in the worst cases for computational complexity of 

the spin-glass 3D Ising model with strongly competing interactions in the presence of frustration, while 

searching the ground state among all the possible states (including ferromagnetic, antiferromagnetic, 

and spin–glass states). 

3.4. Lower bound of the computational complexity of the knapsack problem 

Theorem 1. The lower bound of the computational complexity of the knapsack problem in the 3D 
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lattice, CL(MKP
3D) or CU(MAMC,KP

3D ), is in subexponential and superpolynomial. 

Proof of Theorem 1. The standard all-to-all-connected spin-glass Ising model is the so-called 

Sherrington–Kirkpatrick model [46,47], 𝑀𝑆𝐺𝐼
𝑆𝐾 , in which the <i, j> sum in the Hamiltonian is over all 

bonds. It is an Ising model with long-range ferromagnetic as well as antiferromagnetic couplings for 

frustrated states. Ising spins interact through infinite-ranged exchange interactions, which are 

independently distributed with a Gaussian probability density. Sherrington and Kirkpatrick observed 

that it is an exactly solvable model of a spin glass in the limit of infinite interactions, within the mean-

field theory. However, for a brute force search of the ground state of the Sherrington–Kirkpatrick 

model [46,47], the job is NP-complete for computer. The Sherrington–Kirkpatrick model can be 

reduced to a 3D spin-glass Ising (Edwards–Anderson) model with the nearest neighboring interactions 

𝑀𝑆𝐺𝐼
𝐸𝐴 , by simplify neglecting the long-range interactions between spins. 

At first, the Sherrington–Kirkpatrick model 𝑀𝑆𝐺𝐼
𝑆𝐾  can be reduced to the Edwards–Anderson 

model only with the nearest neighboring interactions, 𝑀𝑆𝐺𝐼
𝐸𝐴 , by cutting the long-range interactions 

between spins. Second, it can be reduced further by reducing the nearest neighboring interactions to 

be six. In such an artificial lattice with six connections (interactions) on a spin, the averaged number 

for the interactions per spin is actually three, since one bond (interaction) connects two spins. Such a 

spin-glass system can be arranged either in a 3D lattice or a 2D lattice. If the spin-glass Ising network 

with three interactions per spin can be assigned only on a 3D lattice, 𝑀𝑆𝐺𝐼
3𝐷 , it will be NP-complete. If 

it can be assigned on a 2D triangle (honeycomb) lattice without crossings, 𝑀𝑆𝐺𝐼
2𝐷 , it will be a P-problem. 

The spin-glass Ising network with four connections on a spin (i.e., two interactions per spin) is a P-

problem, since it can be assigned on a 2D rectangular (or square) lattice without crossings. 

Although the Sherrington–Kirkpatrick model with the long-range interactions can be solved 

analytically by a mean-field approach [46,47], for computer simulations, one has to summarize all the 

interactions (including all the connections) in the system. Thus, the computational complexity of the 

Sherrington–Kirkpatrick model should be much larger than that of the Edwards–Anderson model with 

the nearest interactions only. The following relations are held for spin-glass systems: 

𝐶(𝑀𝑆𝐺𝐼
3𝐷,𝑆𝐾) > 𝐶(𝑀𝑆𝐺𝐼

3𝐷,𝐸𝐴) ≥ C(MAMC,SGI
3D ) ≫ 𝐶(𝑀𝑆𝐺𝐼

2𝐷,𝐸𝐴).     (16)  

Therefore, the lower bound of the computational complexity of the 3D Edwards–Anderson model 

𝐶𝐿(𝑀𝑆𝐺𝐼
3𝐷,𝐸𝐴) is lower than that of the Sherrington–Kirkpatrick model 𝐶𝐿(𝑀𝑆𝐺𝐼

3𝐷,𝑆𝐾). That is, 

𝐶𝐿(𝑀𝑆𝐺𝐼
3𝐷,𝐸𝐴) < 𝐶𝐿(𝑀𝑆𝐺𝐼

3𝐷,𝑆𝐾).        (17) 

Thus, it is good enough to figure out the former. Moreover, we can use the results obtained in Section 2 

for the 3D spin-glass Ising model. 

Utilizing the relationship between the knapsack problems and the Ising model, we assure that an 

AMC model exists also in the knapsack problem. Corresponding to Eq (16) for the spin-glass systems, 

the following relations are held for the knapsack problems: 

𝐶(𝑀𝐾𝑃
𝑎𝑙𝑙) > 𝐶(𝑀𝐾𝑃

3𝐷) ≥ C(MAMC,KP
3D ) ≫ 𝐶(𝑀𝐾𝑃

2𝐷).      (18) 

A phase diagram for the NP vs P-problems is illustrated in Figure 5 for the knapsack problems. 

Accordingly, the lower bound of the complexity of the knapsack problem CL(𝑀𝐾𝑃
3𝐷)  is that as 

calculated by brute force search of the AMC model, CU(MAMC,KP
3D ). Namely, similar to Eq (8), 
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CL(𝑀𝐾𝑃
3𝐷) ≥ CU(MAMC,KP

3D ).       (19) 

 

Figure 5. Phase diagram for the 0-1 knapsack problem. In the phase diagram, 3D KP 

represents the NP-complete problems, and P represents polynomial problems (2D KP). 

NPI exists between NP-complete and P-problems, while AMC is on the border of NP-

complete and NPI regions. 

On the other hand, to find the most efficient algorithms for solving the knapsack problem, I may 

need to arrange the knapsacks (like spins) on a 3D lattice. By adjusting/removing the unimportant 

weights in the knapsacks, one may disconnect some long-range interactions between spins, to obtain 

an “easier” arrangement of spins with only the nearest interaction in the 3D lattice. Like in a 3D spin-

glass Ising lattice, all the knapsacks can be constructed by stacking l layers of the knapsacks located 

on 2D lattices. This is the simplest way and thus the optimum algorithms to construct the knapsacks 

on a 3D model layer by layer, while keeping the characters and (thus the physical properties) of the 

knapsacks. Other ways of constructions may cause much more complicated procedures (referred to 

Theorem 2 in [14]). I have 

CL(MKP
3D) = CL(MSGI

3D ) ≥ CU(MAMC,SGI
3D ) = CU(MAMC,KP

3D ).     (20) 

As revealed in [14,15] and in the last section, the computational complexities CU(MAMC,SGI
3D )  and 

CL(MSGI
3D )  are in O((1 + )N)  with →0 and 1/N. Therefore, the computational complexities 

CU(MAMC,KP
3D ) and CL(MKP

3D) are in the same class, which are subexponential and superpolynomial. 

Similar to the procedure proposed in the last section, taking z-layers of the AMC models as an 

element of the algorithms, we may develop an algorithm for performing a parallel computation of l/z 

layers of the AMC models for the knapsack problems. In this way, I can succeed in designing the 

optimum algorithm to find the exact solution with the sufficient accuracy and within the high precision 

in the shortest time. It can be improved greatly from the present status of O(1.3N) [6] to O((1+)N) with 

→0 and 1/N [14,15]. 

3.5. NP-intermediate problems 

Theorem 2. A NPI area exists between the NP-complete problems and the P-problems for the 
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knapsack problem. 

Proof of Theorem 2. According to the results in the last section (see also Figure 3), there exists a NPI 

problem MNPI,SGI for spin-glass Ising models, which is in between MSGI
3D  and MSGI

2D , while MAMC,SGI
3D  

is the border between MSGI
3D  and MNPI,SGI. Similarly, as illustrated in Figure 5 for phase diagram for 

the knapsack problem, a NPI problem MNPI,KP exists for the knapsack problem, which is located in 

between the NP-complete problem MKP
3D and the P-problem MKP

2D and thus the AMC model MAMC,KP
3D  

is the border between MKP
3D and MNPI,KP. 

The 0-1 knapsack problem is the most basic problem among all the knapsack problems, which 

consists of the designed states and the basic concepts of equations. Many others are treated as its 

generalization and can be transformed to the 0-1 knapsack problem. Therefore, the results obtained 

above for the 0-1 knapsack problem can be applied for them. 

3.6. Applications for other NP-complete problems 

It is worth noting that this study can be extended to other NP-problems, such as K-SAT 

problem [15,23,24], TSP [25,26], neural networks [48,49], etc. In particular, in recent years, the neural 

networks have been applied in rapidly progressed fields of deep learning, artificial intelligence, and so 

on. It is very visual that the networks illustrated in Figure 4 for the knapsack problem as well as the 

Ising models can be transformed into the neural networks. The conventional approach to these 

problems is to study the complexity of an equivalent yes/no question. In the following, we take the 

TSP [25,26] as an example, which is defined as follows. 

A traveling salesman has to visit all N cites and return to the starting point at the end of the tour 

(also called Chinese Postman’s problem [50]). Taking into account the two traversals (in opposite 

directions) of each tour and the arbitrariness of the starting city, there are (N-1)!/2 distinct tours. The 

TSP is asking to find the shortest tour(s) (the optimal one) among them, which can be described also 

in the following problem: Given a graph G with costs on the edges, find a cycle in G that visits every 

node exactly once and minimizes the length of the cycle. This problem is converted to the question: 

Given a graph G and an integer k, does G have a TSP tour of cost at most k? Although this 

transformation loses some of the structure of the original problem, it captures the essential difficulty 

of the TSP problem because we can solve the original problem by using the yes/no question as a 

subroutine. Upon the dimensionality (namely, 2D or 3D) of the tours in the TSP, it can be catalogued 

to a NP-complete problem or a P-problem. With a similar procedure to this work, we can find the 

AMC model and the NPI problem for the TSP. Figure 6 illustrates the TSP model on a two-level grid 

lattice with a small size (with the lattice size N=mnl, here m=n=9 and l=2), which is NP-complete. The 

AMC model for the TSP identifies to the difference between a two-level (l=2) grid TSP model and a 

2D TSP model, namely, MAMC,TSP
3D = Ml=2,TSP

3D −MTSP
2D , which is NP-complete also. Clearly, either the 

3D spin-glass Ising model or the knapsack problem can be transformed into the TSP, the K-SAT 

problem and neural networks and so on. Even some information might be lost during the 

transformation, the essential difficulty remains, and thus the lower bound of the computational 

complexity maintains the same. This means that the lower bound of the computational complexity of 

all the NP-complete problems is in the same universality class (being superpolynomial and 

subexponential). 
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Figure 6. Schematic illustration of a TSP model on a two-level grid lattice (with the lattice 

size N=mnl, here m=n=9 and l=2), Ml=2,TSP
3D . The black dashed lines represent the lattice, 

while the red solid lines represent the tour. Here, I illustrate a tour as an example to connect 

all the lattice points (cities) in the two-layers (l=2). There exist some crossings in the tour, 

which represent the character of the 3D space. In order to illustrate the connections, some 

solid lines are drawn to be not fitted with the dashed lines for the two-level grid lattice. 

The AMC model for the TSP identifies to the difference between a two-level (l=2) grid 

TSP model and a 2D TSP model. 

Similar to the 3D spin-glass Ising model (Figure 3) and knapsack problem (Figure 5), a phase 

diagram for the TSP is illustrated in Figure 7, in which NPI region exists between NP-complete and 

P-problems, while the AMC model is on the border of NP-complete and NPI regions. 

 

Figure 7. Phase diagram for the TSP. In the phase diagram, 3D TSP represents the NP-

complete problems, and P represents polynomial problems (2D TSP). NPI exists between 

NP-complete and P-problems, while AMC is on the border of NP-complete and NPI 

regions. 

3.7. Comparison with other optimum algorithms 

In this subsection, I compare the optimum algorithm suggested in Subsection 2.5 with other 

optimum algorithms, such as dynamic programming and genetic algorithms. 

The dynamic programming has been developed to investigate different NP-complete problems, 
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such as K-SAT [51], knapsack problem [19,52,53], TSP [54], etc. Bertsimas and Demir presented an 

approximate dynamic programming approach for the multidimensional knapsack problem [52]. 

Woeginger discussed whether a dynamic programming formulation guarantees the existence of a fully 

polynomial time approximation scheme [53]. Pisinger gave an overview of some exact solution 

approaches and to show that the knapsack problem is difficult to solve for these algorithms including 

the dynamic programming algorithms for a variety of test problems [19]. Martello et al. gave an 

overview of the techniques for solving hard knapsack problems, with special emphasis on the addition 

of cardinality constraints, dynamic programming, and rudimentary divisibility [18]. 

The genetic algorithm has been developed to study various NP-complete problems, such as K-

SAT [55], knapsack problem [56], spin glass models [57], TSP [58,59], etc. Melkman and Akutsu [55] 

showed that the general case can be solved in O(1.871n) time for studying the problem of finding a 

singleton attractor of a Boolean network consisting of n nested canalyzing functions. Chu and Beasley 

presented a heuristic based upon genetic algorithms for the multidimensional knapsack problem [56]. 

Large numbers of ground states of the three-dimensional J random-bond Ising model were calculated 

by using a combination of a genetic algorithm and cluster-exact approximation [57]. Snyder and 

Daskin presented an effective heuristic for the generalized TSP, which combines a genetic algorithm 

with a local tour improvement heuristic [58]. Larranaga et al. gave a review of the different attempts 

made to solve the TSP with genetic algorithms [59], and presented crossover and mutation operators, 

developed to tackle the TSP with genetic algorithms with different representations such as: Binary 

representation, path representation, adjacency representation, ordinal representation, and matrix 

representation. 

Although the dynamic programming and the genetic algorithms are very efficient algorithms for 

studying the NP-complete problems with short time, and some researchers claimed the single knapsack 

problems (NP-hard in the weak sense) may be solved in pseudopolynomial time through dynamic 

programming, these algorithms have disadvantages as follows: These algorithms must take some 

approximates [52,53,57] or with some particular constraints or by a heuristic approach. Actually, they 

did not realize finding an exact solution for the NP-complete problems for large size scale, because 

they did not determine the basic character of the NP-complete problems. In order to derive the exact 

solution of the NP-complete problems, any algorithms must calculate all the states of the AMC model 

by brute force search. On the other hand, the optimum algorithm proposed in Subsection 2.5 can find 

the exact solution of the NP-complete problem in subexponential time, because it determines the basic 

element (i.e., the AMC model) of the NP-complete problems. 

4. Conclusions 

In conclusion, I inspected the origin of the nontrivial topological structures and confirmed the 

existence of the AMC model in the knapsack problems. I proved that the NPI problems exist between 

the NP-complete problem and P-problems, while the AMC model is at the border between the NPI and 

the NP-complete problems. The AMC model of the knapsack problem cannot collapse directly into 

the P-problem. I determined the lower bound of the computational complexity of the knapsack 

problems CL(𝑀𝐾𝑃), being in subexponential and superpolynomial. Under the guide of the results, one 

may develop the optimum algorithms, within a framework of a parallel computation of l/z layers of 

the z-layer AMC models to solve combinatorial optimization problems in the shortest time (might be 

improved greatly from O(1.3N) to O((1+)N) with →0 and 1/N). The strategy proposed in this work 

for developing an optimum algorithm can be applied to compute the properties of other NP-complete 

problems, such as TSP and neural networks. This work sheds a light on complexity theories for various 
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fields of science ranging from physics to biology to finances, and to information technologies. 
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