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Abstract: This study presented an upgraded version of the Harris Hawk optimization
algorithm (UHHO) designed to overcome the inherent limitations of the original algorithm, especially
in solving nonlinear constrained optimization problems that tend to converge prematurely and fall into
local optima. First, the initial population generated in a random way was replaced by a good point set
strategy. Second, we replaced the linear strategy with a nonlinear strategy in the intermediate stage
in order to optimize the global search process. Furthermore, the sine-cosine strategy and L-C cascade
chaos strategy were introduced in the development stage to perturb the population’s position. This
aimed to better explore the neighborhood of Harris Hawk optimal individuals in depth, enhance the
local search ability of the algorithm, and avoid the algorithm falling into local optima. Some numerical
experiments for solving nonlinear inequality constrained optimization problems are presented at the
end of this paper. The simulation results show that the multi-strategy upgraded Harris Hawk algorithm
can effectively avoid the problem of the standard Harris Hawk optimization algorithm falling into local
optima.
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1. Introduction

So far, many practical application problems in mathematics-related fields can be attributed to
optimization problems, which have attracted a lot of attention due to their complexity and wide range
of applications. For example, many optimization problems in artificial intelligence are usually
characterized by a variety of features such as constraints, nonlinearities, and discretization [1, 2],
which pose a great challenge to solve and make the problems difficult to be solved by traditional
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mathematical planning methods [3, 4].
For the moment, designing new algorithms to solve optimization problems is an extremely

important research direction. These related optimization algorithms have important applications in the
design of engineering structures, aerospace performance optimization, and mechanical engineering
optimization, among others [5]. With the deepening of research, intelligent optimization algorithms,
as a kind of integration of biology, mathematics, and other multidisciplinary knowledge of new
optimization algorithms, have gradually become an effective method for the resolution of complex
problems. For example, in the field of engineering optimization, algorithms for intelligent
optimization have been used extensively in path planning, job shop scheduling problems, intelligent
traffic control, power system optimization, etc., and have achieved significant breakthroughs and
results [6–8]. At present, among the widely adopted metaheuristic approaches are the ant colony
algorithm, particle swarm optimization, genetic algorithms, and the firefly method, as documented in
prior studies [9–12]. In order to overcome these drawbacks, Wang et al.’s significant contribution [13]
involved the fusion of quantum state updating mechanisms with quasi-contrastive learning
frameworks, and combined with a dynamic Q-learning optimization process and an advanced variable
spiral local domain approach, avoid premature convergence and improve the ability of global
optimization.

Harris Hawk optimization (HHO) was proposed by Heidari, Mirjalili, and Faris et al. in 2019 as a
new intelligent optimization algorithm [14]. It is inspired by the hunting behaviors of Hawks. The
algorithm is designed to perform efficient and effective hunting procedures in real-world conditions.
This is due to its small number of tuning parameters, localized search capability, and ease of
implementation. It is widely used in the solution of various engineering problems and shows better
parameter search performance [15, 16]. For example, QAIS et al. [17] came up with a new method
combining computational and HHO algorithms for updating the PV panel parameters for optimizing
the time-domain finite-difference method model.

As we all know, according to the “no free lunch” theorem in optimization, every algorithm, such as
Harris Hawk optimization, exhibits specific performance boundaries and cannot address all problem
domains effectively. The Harris Hawk optimization algorithm also has certain limitations, such as
being prone to local optimization in the late search stage [18]. Therefore, upgrading the Harris Hawk
optimization algorithm for its defects has important research value. To address the above problems, a
multi-strategy upgraded version of the Harris Hawk algorithm is presented. First, population
initialization is optimized through good point set theory, effectively improving the population
distribution characteristics. Second, we introduce the nonlinear energy factor to improve the global
search ability. In addition, a sine-cosine strategy is introduced to update the individual positions in the
soft and hard attack phases of the HHO algorithm. Furthermore, an L-C chaos strategy is introduced
in the progressive fast swooping soft attack and progressive fast swooping hard attack phases, which
performs a positional perturbation search for inferior individuals to improve the algorithm’s ability to
search for neighborhoods around the elite solution while enhancing the performance of local
exploitation. Finally, comprehensive numerical simulations were conducted to evaluate the
algorithm’s performance. The results demonstrate that the multi-strategy upgraded HHO algorithm
exhibits superior optimization capability and solution stability, while effectively reducing the local
optimization problem to a large extent.

This study is organized into six components: Section 1 presents the research background and

AIMS Mathematics Volume 10, Issue 5, 11783–11812.



11785

motivation for Harris Hawk optimization; Section 2 details the algorithm’s fundamental framework
and operational mechanisms; Section 3 gives the multi-strategy upgrade methods; Section 4 conducts
comprehensive performance assessments; and Section 5 validates the approach through numerical
experimentation. The last section gives relevant conclusions.

2. HHO rationale and steps

The HHO algorithm’s mathematical framework consists of two key phases: exploration and
exploitation. The corresponding tree structure is depicted in Figure 1.

Start

Exploration phase Exploitation phase

� ≥
1
2
？ � ≥

1
2

? � ≥
1
2

?

Figure 1. Harris Hawk algorithm tree diagram.

2.1. Principles of HHO

2.1.1. Initial population generation mode

During the population initialization stage, randomized position vectors are created, and their fitness
value is calculated based on the corresponding location. Set the population size N = 400. Figures 2
and 3 show the 2D and 3D spatial distributions of the initialized population.
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Figure 2. Two-dimensional distribution map.

Figure 3. Three-dimensional distribution map.

2.1.2. Algorithm exploration phase

Harris’s Hawks utilize a strategic probability p to capture food within their search range. See
Eq (2.1) for the exact way the location is updated [14]:

Xmean(t) =
1
N

N∑
i=1

Xi(t), X(t + 1) =

Xrand(t) − r1|Xrand(t) − 2r2X(t)|, p ≥ 1
2 ,

(Xprey(t) − Xmean(t)) − r3(lb + r4(ub − lb)), p < 1
2 .

(2.1)

The meaning of these symbols is shown in Table 1.
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Table 1. Table of symbol meanings.

Notation Hidden meaning
Xmean(t) Average position of Harris Hawks
Xi(t) The search space location of the i-th hawk individual at the t-th iteration
N Harris’s hawk population
X(t) Harris Hawk position at the t-th iteration
Xrand(t) Randomized location of Harris Hawk at the t-th iteration
Xprey(t) Prey position at the t-th iteration
X(t + 1) Harris Hawk position at the (t+1)-th iteration
ri, (i = 1, 2, 3, 4) [0, 1] range of random numbers
lb Lower bound of feasible domain
ub Upper bound of feasible region

2.1.3. Algorithm intermediate phase

The intermediate stage regulates its behavior through an energy dissipation mechanism, and the
escape energy E(t) exhibits an iterative linear decay, which is expressed in Eq (2.2):

E(t) = E0 ×C = 2E0(1 −
t
T

), (2.2)

where the coefficient C exhibits iteration-dependent characteristics and E0 is the initial state energy of
the prey.

Below is a plot of the parameter C, the initial energy E0, and the escape energy E(t) as a function
of the number of iterations (see Figures 4–6).

Figure 4. Linear parameter C.
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Figure 5. Initial energy E0.

Figure 6. Escape energy E(t).

If |E| ≥ 1, the global exploration phase is triggered; otherwise |E| < 1 and the algorithm shifts to
local optimization. As can be seen from Figure 6, the algorithm is prone to fall into local optimization,
so it is necessary to upgrade the algorithm to overcome the shortcomings.

2.1.4. Algorithm development phase

During the development phase, Harris’s Hawks adopt different hunting behaviors based on the
escape behavior of their prey, and four different hunting strategies are given below:
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Soft attack approach: if q ≥ 1
2 and |E| ≥ 1

2 , the Harris Hawk will perform a soft attack on it, at which
point the behavior can be abstracted as the following mathematical model (2.3) [14]:

X(t + 1) = Xprey(t) − X(t) − E
∣∣∣JXprey(t) − X(t)

∣∣∣ . (2.3)

Hard attack method: if q ≥ 1
2 and |E| < 1

2 , the Harris Hawk will hard attack it, at which point the
behavior can be abstracted as the following mathematical model (2.4) [14]:

X(t + 1) = Xprey(t) − E
∣∣∣Xprey(t) − X(t)

∣∣∣ . (2.4)

Progressive fast dive soft attack: if q < 1
2 and |E| ≥ 1

2 , the Harris Hawk employs a progressive fast dive
soft attack strategy, and its specific formula refers to the following Eq (2.5):

Y = Xprey(t) − E
∣∣∣JXprey(t) − X(t)

∣∣∣ ,
Z = Y + S × Levy(D),

X(t + 1) =

Y, F(Y) < F(X(t)),
Z, F(Z) < F(X(t)),

(2.5)

where Levy flight is a special stochastic wandering model. The introduction of Levy flight and the
combination of a specific position update strategy can enhance the global convergence of the algorithm,
which is formulated as follows:

Levy(D) =
µσ

100|v|
1
β

, (2.6)

where µ and v are random numbers between (0, 1) and β is a constant, generally taken as β = 1.5, and

σ = ( Γ(1+β)×sin( πβ2 )

Γ( 1+β
2 )×β×2( β−1

2 )
)

1
β .

Progressive fast dive hard attack: if q < 1
2 and |E| < 1

2 , the Harris Hawk will use the progressive fast
dive hard attack strategy to hunt prey, with a positional strategy detailed in Eq (2.7) below:

Y = Xprey(t) − E
∣∣∣JXprey(t) − Xm(t)

∣∣∣ ,
Z = Y + S × Levy(D),

X(t + 1) =

Y, F(Y) < F(X(t)),
Z, F(Z) < F(X(t)).

(2.7)

The symbolic meanings of Eqs (2.3)–(2.7) are shown in Table 2.

Table 2. Table of symbol meanings.

Notation Hidden meaning
J Jumping strength of prey: [0,2]
D Dimension
S Randomized row vectors of dimension D
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2.2. HHO algorithm steps

Step 1: Determine the population size N and the iteration count T , and then initialize the population;
Step 2: Compute fitness values for all individuals, identifying and storing the current optimum;
Step 3: Select different strategies to update the position of individuals according to p, referring to the
exploration phase formula;
Step 4: Update the prey escape energy E, referring to the intermediate stage formula;
Step 5: Adjust individual positions using energy E and probability q via exploitation-phase equations;
Step 6: According to the algorithm stopping criterion, if it is satisfied, stop and output the optimal
solution and fitness value; otherwise go to step 2.

2.3. HHO algorithm flow chart

The flowchart of the Harris Hawk algorithm is shown in Figure 7:

Start

Set algorithm parameters to randomly generate 
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Figure 7. Harris Hawk algorithm flow chart.

2.4. Algorithm advantages and disadvantages analysis

2.4.1. Benefits analysis

(1) The HHO algorithm has a simple structure.
The HHO algorithm maps the optimization problem to a prey search process by simulating the

predatory behavior of Harris Hawks. Its three phases (exploration, transition, and development) have
a clear structure with few parameters and simple computation, which makes it easy to implement and
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therefore simple to structure.

(2) The HHO algorithm converges quickly.

The algorithm’s exploitation phase employs prey escape energy and probability to simulate
hunting behavior, enabling rapid convergence toward optimal solutions. An adaptive mechanism
dynamically adjusts the transition between global exploration and local exploitation based on escape
energy, significantly accelerating convergence. Furthermore, Levy flight mechanisms enhance search
randomness and directional guidance, further improving convergence speed.

2.4.2. Cons analysis

(1) Unreasonable in the exploration and development phase.

The escape energy E is designed in such a way that the algorithm is weakened in the later stage of
exploration and is prone to fall into the local optimum. As the iteration proceeds, the change in the
value of E causes the algorithm to be overly inclined to the exploitation stage, searching repeatedly in
the local region and making it difficult to jump out of the local optimal solution.

(2) HHO overemphasizes elite individuals.

Each iteration forces the eagle population to move closer to the current optimum, which makes the
algorithm prone to converge to a locally optimal solution and thus fall into local optima.

In the face of the aforementioned shortcomings of the HHO algorithm, further upgrading of the
algorithm is necessary to upgrade its global exploration capability.

3. Multi-strategy upgrade of the Harris Hawk algorithm

3.1. Algorithm upgrade strategies

3.1.1. Modification of initial population generation

With a randomly generated initial population, the Harris Hawk algorithm has a relatively high
probability of duplicate individuals and is prone to problems such as local optimization.

Hence, incorporating a novel approach for generating the initial population emerges as a necessity
to surmount this limitation. For instance, the initial population crafted via the good point set method
exhibits a uniform dispersion [19], which substantially diminishes the repetition rate among individuals
and thereby amplifies the diversity of the Harris Hawk’s initial population.

Definition 3.1. Let Ts be a unit cube in s-dimensional space and if there is

Pn(k) =
{
(rn

1k, rn
2k, ..., rn

s k)|r ∈ Ts, k = 1, 2, ..., n
}
, (3.1)

then Pn(k) is said to be the set of good points and r is a good point. In order to visualize the initial
population distribution, Figures 8 and 9 present a comparative visualization of two-dimensional
initialization patterns, with the population size set to 400.
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Figure 8. Randomized initial population.

Figure 9. Initial population of a good point set.

From the above figure, it can be seen that the initial population produced by the good point set
method outperforms the randomly generated initial population, thus optimizing the Harris Hawk
algorithm to be more traversal.

3.1.2. Introducing a nonlinearly varying energy factor strategy

Intermediate phase:
Within the Harris Hawk optimization algorithm, the scope of the search is contingent upon the

escape energy E, which is updated through Eq (2.2). The HHO algorithm employs a convergence

AIMS Mathematics Volume 10, Issue 5, 11783–11812.



11793

parameter C that undergoes linear reduction from 2 to 0 throughout iterations. However, this linear
decay mechanism fails to reflect the nonlinear population dynamics observed during optimization. The
fixed decrement rate of C restricts adaptive search behavior, creating an imbalance between exploration
and exploitation phases. Consequently, this limitation frequently leads to premature convergence in the
final optimization stages.

In order to overcome the shortcomings of the Harris Hawk algorithm, this paper gives an energy
factor C0 which presents a nonlinear decreasing change (see (3.2) below). In the early iteration period,
C0 decreases at a smaller rate to keep E0 as a larger value, which is conducive to the algorithm searching
in a wide range; in the later period, C0 decreases faster, so that E0 has a longer period of time to keep
the value smaller.

C0 = 2(1 − (
t
T

)
1
5 )

1
5 ,

E = E0C0.
(3.2)

Thus solving the problem of insufficient global search ability of the above algorithm, Figures 10
and 11 show the iteration curve and the change of energy factor. In this way, it can better control the
optimization of the search process with strong coordination between the global and local search
ability.

Upon contrasting Figure 6 with Figure 11, it becomes evident that the adoption of this alternative
energy updating strategy effectively prevents the algorithm from becoming trapped in local optima,
thereby enhancing both the convergence precision and velocity of the algorithm.

Figure 10. Parameters before and after upgrade.
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Figure 11. E change curve in UHHO.

3.1.3. Sine-cosine strategy

It can be seen from the process of the Harris Hawk development phase that the randomness of
the prey position is not considered, which makes the Harris Hawk individuals easily miss the global
optimal position and thus fall into local optimality. In order to solve the above problems, this paper
adopts the sine-cosine strategy to update the individual positions in the soft attack and hard attack
phases, which can improve the capture efficiency, effectively avoid the algorithm from falling into the
local optimum, and improve its global search capability.

According to the sine-cosine strategy, Harris Hawk position Eqs (2.3) and (2.4) can be updated as:

X(t + 1) = Xprey(t) − sin(αE)(X(t) + E
∣∣∣JXprey(t) − X(t)

∣∣∣), |E| ≥ 1
2
,

X(t + 1) = Xprey(t) − cos(αE)E
∣∣∣Xprey(t) − X(t)

∣∣∣ , |E| < 1
2
,

(3.3)

where αE denotes the angle of perception in [0, 2π].

3.1.4. Disadvantaged individual L-C cascade chaos disturbance

Chaos is a phenomenon characterized by stochasticity and the ability to traverse all solutions in the
problem space in a regular manner. For more details, refer to the literature [20]. Initial value sensitivity
affects chaotic randomness and the Lyapunov exponent is a measure of initial value sensitivity [21].
Cascading of chaotic systems is a simple and effective way to improve the initial value sensitivity of
the system.
Theorem 3.1. Let the cascade chaotic system formed by chaotic subsystems f1(x) and f2(x) be
f2( f1(x)), and then the Lyapunov exponent of the chaotic system is equal to the sum of the Lyapunov
exponents of the chaotic systems f1(x) and f2(x). The formula for the L-C cascade chaotic mapping is
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as follows:

rn+1 =

∣∣∣∣∣∣ [µrn(1 − rn)]3

a2 − 3µrn(1 − rn)

∣∣∣∣∣∣ , (3.4)

where a = 0.5, µ ∈ [0, 2], and rn ∈ [0, 1].

In order to avoid the algorithm from falling into local optimum and to improve its convergence
accuracy, this paper employs L-C cascade chaos to perturb the inferior individuals in its development
stage so as to improve the search performance as shown in the following equations:

 Y = rn+1 × Xprey(t) − E
∣∣∣Jrn+1 × Xprey(t) − X(t)

∣∣∣
Z = Y + S × LF(D)

, |E| ≥
1
2
, Y = rn+1 × Xprey(t) − E

∣∣∣Jrn+1 × Xprey(t) − Xm(t)
∣∣∣

Z = Y + S × LF(D)
, |E| <

1
2
,

(3.5)

and combined with the greedy retention strategy, the formula is as follows:

X(t + 1) =

Y, i f F(Y) < F(X(t)),
Z, i f F(Z) < F(X(t)),

(3.6)

where F(x) is the fitness value of x.

3.2. Steps of the UHHO algorithm

In summary, the steps of the upgraded Harris Hawk algorithm proposed in this section are as
follows:
Step 1: Generate the initial positions of N individuals in the population using the good point set
strategy;
Step 2: Calculate the fitness value of each Harris Hawk position in the population by the fitness
function and record the optimal individual;
Step 3: Perform the sine-cosine strategy;
Step 4: Select the Harris Hawk position update method based on the nonlinear escape energy of the
prey;
Step 5: Execute L-C cascade chaos to perturb the inferior individuals;
Step 6: The iterative process terminates upon reaching the prescribed maximum generations, at which
point subsequent operations are initiated; otherwise, return to Step 2 for further optimization;
Step 7: Output the global optimal position and fitness value.

The flowchart corresponding to the above steps of the UHHO algorithm is given below, see
Figure 12:
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1. Soft Surround: using the sine-cosine 
strategy formula (3.3) update.
2. Progressive Soft Surround: using L-C chaos 
strategy formula (3.5) update.
3. Hard Surround: using the sine-cosine 
strategy formula (3.3) update.
4. Progressive Hard Surround: using L-C chaos 
strategy formula (3.5) update.

Figure 12. Flowchart of UHHO algorithm.

4. Algorithm performance evaluation

4.1. Experimental conditions

The hardware configuration of the experimental environment is a Windows 11 operating system,
and the software configuration is MATLAB R2023a. To maintain experimental consistency, identical
initialization parameters were applied across all algorithms: population size (N = 400), maximum
iterations (T = 500), and 20 independent execution trials.

4.2. Test functions

This section is dedicated to evaluating the performance of the multi-policy upgraded Harris Hawk
optimization algorithm. Six benchmark test functions have been chosen to assess the upgraded Harris
Hawk optimization algorithm, with the detailed information of each benchmark test function presented
in Tables 3 and 4.
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Table 3. Function expression (math.).

F Function expression (math.)

f1
1
2 +

sin2(x2
1+x2

2)− 1
2

(1+ 1
1000 (x2

1+x2
2))2

f2
∑n

i=1 x2
i

f3 (x2 −
5.1
4π2 x2

1 +
5
π
x1 − 6)2 + 10(1 − 1

8π )cosx1 + 10
f4 [1 + (x1 + x2 + 1)2(19 + (x1 + x2)(3x1 + x2 − 14))]×

[30 + (2x1 − 3x2
2)(18 + (2x1 − 3x2)(6x1 − 9x2 − 16))]

f5
∑n

i=1(xi + 0.5)2

f6
∑n

i=1[x2
i − 10cos(2πxi) + 10]

Table 4. Test function parameters.

Serial No. F Dimension Range of values Minimum value
1 f1(x) 2 [-100,100] 0
2 f2(x) 30 [-100,100] 0
3 f3(x) 2 [-5,5] 0.398
4 f4(x) 2 [-2,2] 3
5 f5(x) 30 [-100,100] 0
6 f6(x) 30 [-5.12,5.12] 0

Below are three-dimensional spatial images of the six benchmark functions, see Figures 13–18:

Figure 13. f1 three-dimensional diagram.
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Figure 14. f2 three-dimensional diagram.

Figure 15. f3 three-dimensional diagram.
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Figure 16. f4 three-dimensional diagram.

Figure 17. f5 three-dimensional diagram.
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Figure 18. f6 three-dimensional diagram.

4.3. Algorithm optimization accuracy analysis

In this section, the multi-policy upgraded Harris Hawk optimization algorithm (UHHO) is
experimented with seven other algorithms in six benchmark functions with the parameter settings
shown in Table 5. The experimental results are shown in Table 6.

Table 5. Algorithm parameter setting table.

Arithmetic Parameterization
UHHO Energy factor E0: [−1, 1]
DBO Producer scale: [0.1, 0.3]; Roll angle θ: [0, π2 ]
GWO Convergence factor a: [0, 2]
SMA Inertia weights W: [0.5, 1]
FA Attractivity coefficient γ: [0.1, 1]
BWO Predation coefficient a: [0.1, 1]
WOA Spiral coefficient b = 1
HHO Energy factor E0: [−1, 1]

AIMS Mathematics Volume 10, Issue 5, 11783–11812.
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Table 6. Statistical table of test function results.
F Norm UHHO DBO GWO SMA FA BWO WOA HHO

Best 0.00e+00 8.82e−08 0.00e+00 0.00e+00 3.16e−03 2.22e−16 0.00e+00 0.00e+00
f1 Mean 5.57e−15 1.03e−03 0.00e+00 0.00e+00 4.43e−02 1.09e−03 3.13e−04 0.00e+00

Std 2.45e−14 1.88e−03 0.00e+00 0.00e+00 4.18e−02 1.53e−03 9.62e−04 0.00e+00
Best 0.00e+00 2.11e+03 9.09e−217 8.53e−09 4.45e+04 3.18e−05 1.00e−190 0.00e+00

f2 Mean 7.57e−144 6.79e+03 6.53e−213 6.40e−08 5.51e+04 5.68e−05 1.70e−186 0.00e+00
Std 5.90e−144 1.47e+03 0.00e+00 1.91e−08 4.63e+03 9.15e−05 0.00e+00 0.00e+00
Best 3.98e−01 3.98e−01 3.98e−01 3.98e−01 3.98e−01 3.98e−01 3.98e−01 3.98e−01

f3 Mean 3.98e−01 3.98e−01 3.98e−01 3.98e−01 3.98e−01 3.98e−01 3.98e−01 3.98e−01
Std 1.99e−06 4.25e−09 1.91e−08 1.42e−07 3.00e−10 6.28e−14 3.23e−08 2.02e−15
Best 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00

f4 Mean 1.11e+01 3.00e+00 3.00e+00 3.00e+00 3.00e+00 4.35e+00 3.00e+00 3.00e+00
Std 2.49e+01 6.35e−08 9.51e−07 6.11e−07 1.81e−08 6.04e+00 6.60e−08 7.14e−07
Best 8.73e−06 2.58e+03 2.12e−06 1.58e−05 4.69e+04 1.37e−05 3.23e−05 1.62e−05

f5 Mean 1.33e−03 1.29e+04 4.99e−02 3.44e−05 5.54e+04 9.03e−05 2.42e−04 1.51e−04
Std 1.90e−03 5.19e+03 1.31e−01 1.35e−05 4.69e+03 6.16e−05 2.69e−04 1.86e−04
Best 0.00e+00 2.90e+01 0.00e+00 4.40e+01 2.75e+02 9.65e+01 0.00e+00 0.00e+00

f6 Mean 0.00e+00 5.36e+01 1.57e−01 8.42e+01 2.87e+02 1.71e+02 0.00e+00 0.00e+00
Std 0.00e+00 1.79e+01 7.03e−01 2.27e+01 6.21e+00 3.77e+01 0.00e+00 0.00e+00

From the point of view of optimal value, mean value, and standard deviation, it can be seen from the
data in Table 6 that the UHHO algorithm obtains the theoretical optimal value for solving the functions
f1, f2, f3, f4, and f6. Although for function f5, the theoretical optimal value is not obtained, it is the
best quality and closest to the theoretical value compared to the other seven algorithms. In terms of
mean and standard deviation, the UHHO shows strong stability compared to the results of the other
algorithms solving the test functions separately.

It shows that the upgraded HHO algorithm overcomes the problem of poor optimization accuracy
of the standard HHO algorithm, greatly improves the optimization performance of the basic algorithm,
and has an obvious competitive advantage compared with other algorithms. Therefore, the good point
set strategy, nonlinear energy factor strategy, sine-cosine strategy, and L-C chaos strategy introduced
by the HHO algorithm in this paper effectively enhance the local search and global search ability, which
greatly improves the performance of the optimization search and makes the optimization search effect
of the UHHO algorithm better than other algorithms.

4.4. Algorithm convergence analysis

The experimental results below demonstrate the convergence plots of UHHO and the other seven
algorithms on the six benchmark functions.

The above figure shows the optimization performance comparison between the UHHO algorithm
and the other seven algorithms on different functions, with the horizontal coordinate being the number
of iterations and the vertical coordinate being the optimized function values.

(1) Convergence speed: As can be seen in Figures 19–24, the UHHO curve decreases faster in the
early stage, indicating that in the optimization of these functions, the UHHO can quickly approach the
better solution, compared to the other algorithms, which shows the ability to find the better solution
faster in the early stage of the iteration;

(2) Convergence accuracy: As can be seen from Figures 19 and 24, the UHHO algorithm has
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relatively low values of the functions in the later stages of the iteration, which indicates that the UHHO
algorithm is able to converge to a better solution in these functions, and has an advantage in accuracy
compared to other algorithms.

Figure 19. Convergence curves for UHHO and other algorithms for solving f1.

Figure 20. Convergence curves for UHHO and other algorithms for solving f2.
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Figure 21. Convergence curves for UHHO and other algorithms for solving f3.

Figure 22. Convergence curves for UHHO and other algorithms for solving f4.
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Figure 23. Convergence curves for UHHO and other algorithms for solving f5.

Figure 24. Convergence curves for UHHO and other algorithms for solving f6.

Overall, compared with other comparative algorithms, the UHHO algorithm has certain advantages
in terms of convergence speed and convergence accuracy, and performs more stably in the search
process with better overall optimization performance. This fully demonstrates that the multi-strategy
approach proposed in this paper has a significant effect on improving the convergence performance of
the HHO algorithm.
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5. Numerical experiments

In order to verify that the multi-strategy UHHO algorithm is more effective than the standard HHO
algorithm in solving nonlinear inequality-constrained optimization problems, and to further show that
the UHHO algorithm can avoid the HHO algorithm from falling into local optimums to a certain
extent, in this section, the following three numerical examples of nonlinear inequality constrained
optimization problems are considered and solved using the UHHO algorithm and the HHO algorithm,
respectively. During the experiments, the population size is taken to be N = 400, the maximum number
of iterations T = 500, each algorithm is run independently 20 times, and the optimal results are taken
for comparison.

5.1. Numerical experiment 1 [22]

min f (x) = 1.57x1

√
x2

2 + 5776,

s.t.
15
√

5776 + x2
2

0.785x1x2
≤ 7.03, 0.001 ≤ x1 ≤ 7,

15
√

5776 + x2
2

0.785x1x2
≤

(1295 + 20730x2
1)

(46208 + 8x2
2)
, 0.001 ≤ x2 ≤ 187.98.

(5.1)

The problem (5.1) is next solved using the multi-strategy UHHO algorithm and the standard HHO
algorithm, respectively, and the results of the numerical experiments are shown in Table 7 below.

From the experimental data in Table 7, it can be seen that the UHHO algorithm gives results closer
to the theoretical optimum than the HHO, indicating that the UHHO algorithm is more feasible in
solving the nonlinear optimization problem (5.1). Figures 25 and 26 below show the graph of the
optimal solution of the optimization problem solved by the UHHO algorithm and the convergence
curves, respectively.

Combined with Figures 25 and 26, the graphs show that the convergence curve of the UHHO
algorithm decreases rapidly and stabilizes during the iteration process, indicating that it converges
faster and stabilizes on a better solution.

Table 7. Results of solving for UHHO and HHO separately.

Serial No. Arithmetic x1 x2 Minimum value
1 UHHO 4.7975 52.2557 694.6923
2 HHO 4.9392 50.0909 705.8421
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Figure 25. Relationship diagram between the optimal solution and optimization problem.

Figure 26. Convergence plot of the solution results.
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5.2. Numerical experiment 2 [23]

min f (x) = 100(2
√

2x1 + x2),

s.t. 2

√
2x1 + x2

√
2x2

1 + 2x1x2

− 2 ≤ 0, 0 ≤ x1 ≤ 1,

2
x2

√
2x2

1 + 2x1x2

− 2 ≤ 0, 0 ≤ x2 ≤ 1,

2
1

√
2x2 + x1

− 2 ≤ 0.

(5.2)

Subsequently, this paper solves the problem (5.2) using the multi-strategy upgraded Harris Hawk
algorithm and the standard Harris Hawk algorithm, respectively, and the results of the numerical
experiments are shown in Table 8 below.

Table 8. Results of solving for UHHO and HHO separately.

Serial No. Arithmetic x1 x2 Minimum value
1 UHHO 0.7735 0.4530 264.0746
2 HHO 0.8245 0.3154 264.7334

From the experimental data in Table 8, it can be seen that the UHHO algorithm gives results closer to
the theoretical optimum than the HHO, indicating that the UHHO algorithm is more feasible in solving
the nonlinear optimization problem (5.2). Figures 27 and 28 below show the graph of the optimal
solution of the optimization problem solved by the UHHO algorithm as well as the convergence curve,
respectively.

Figure 27. Relationship diagram between the optimal solution and optimization problem.
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Figure 28. Convergence plot of the solution results.

From the figure, it is obvious that the convergence curve of the UHHO algorithm decreases faster
during the iteration process and the fitness value is close to the theoretical optimal value, which
indicates that the algorithm converges faster.

5.3. Numerical experiment 3 [24]

min f (x) = 13x2
1x2,

s.t. 1 −
11x3

2

71785x4
1

≤ 0, 0.05 ≤ x1 ≤ 2,

4x2
2 − x1x2

12566(x3
1x2 − x4

1)
+

1
5108x2

1

− 1 ≤ 0,

1 −
140.45x1

11x2
2

≤ 0, 0.25 ≤ x2 ≤ 1.3,

2(x1 + x2)
3

− 1 ≤ 0.

(5.3)

In this paper, the problem is next solved independently using UHHO and HHO, and the results of the
simulation experiment data are shown in Table 9 below.

Table 9. Results of solving for UHHO and HHO separately.

Serial No. Arithmetic x1 x2 Minimum value
1 UHHO 0.0519 0.3618 0.0127
2 HHO 0.0520 0.3646 0.0128

AIMS Mathematics Volume 10, Issue 5, 11783–11812.



11809

As can be seen from Table 9, UHHO produces solutions closer to the theoretical optimum than
HHO, and the multi-strategy upgraded HHO solution is slightly better than the HHO algorithm.

Figures 29 and 30 show the graph of the optimal solution to the optimization problem (5.3) as well
as the convergence profile, respectively.

Figure 29. Relationship diagram between the optimal solution and optimization problem.

Figure 30. Convergence plot of the solution results.

Combining Figures 29 and 30, it can be seen that the convergence curve decreases faster, which
indicates that the algorithm converges faster.

The three numerical experiments demonstrate that UHHO outperforms HHO in convergence.
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Specifically, UHHO achieves smaller objective function values, indicating higher solution accuracy.
Moreover, its convergence curve shows faster and more stable convergence, reaching a satisfactory
solution with fewer iterations. These results confirm UHHO’s effectiveness in solving nonlinear
optimization problems.

6. Conclusions

When addressing optimization problems, the Harris Hawk optimization algorithm tends to
encounter issues such as becoming trapped in local optima, so this paper combines the principle of the
Harris Hawk algorithm to upgrade it, and puts forward the upgraded Harris Hawk optimization
algorithm, which is mainly designed to make up for the shortcomings of the local optimization and
other defects. The upgraded Harris Hawk algorithm is used to test the six benchmark functions, and
synthesis data confirms that the upgraded algorithm improves the solution accuracy. In addition, the
algorithm can be seen from the convergence curves to have better convergence, and finally the three
numerical experiments given show that the upgraded algorithm has a very good effect in solving the
nonlinear optimization problems.

Author contributions

Juhe Sun: Methodology, Conceptualization, Writing—review; Guolin Huang: Conceptualization,
Writing—original draft, editing; Li Wang: Methodology, Conceptualization; Chuanjun Yin:
Conceptualization; Ning Ma: Conceptualization, Funding acquisition.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Project
No. 52475482).

Conflict of interest

The authors declare that they have no conflicts of interest.

AIMS Mathematics Volume 10, Issue 5, 11783–11812.



11811

References

1. H. Faris, A. M. Al-Zoubi, A. A. Heidari, I. Aljarah, M. Mafarja, M. A. Hassonah,
et al., An intelligent system for spam detection and identification of the most relevant
features based on evolutionary Random Weight Networks, Inform. Fusion, 48 (2019), 67–83.
https://doi.org/10.1016/j.inffus.2018.08.002

2. R. Abbassi, A. Abbassi, A. A. Heidari, S. Mirjalili , An efficient salp swarm-inspired algorithm
for parameters identification of photovoltaic cell models, Energ. Convers. Manage, 179 (2019),
362–372. https://doi.org/10.1016/j.enconman.2018.10.069

3. G. H. Wu, Across neighborhood search for numerical optimization, Inform. Sci., 329 (2016), 597–
618. https://doi.org/10.1016/j.ins.2015.09.051

4. J. Nocedal, S. J. Wright, Numerical optimization, New York: Springer, 2006.
https://doi.org/10.1007/978-0-387-40065-5

5. V. S. Mikhalevich, I. V. Sergienko, N. Z. Shor, Investigation of optimization methods and their
applications, Cybern. Syst. Anal., 17 (1981), 522–548. https://doi.org/10.1007/BF01082482

6. X. S. Xiang, Y. Tian, X. Y. Zhang, J. H. Xiao, Y. C. Jin, A pairwise proximity learning-based
ant colony algorithm for dynamic vehicle routing problems, IEEE T. Intell. Transp., 23 (2022),
5275–5286. https://doi.org/10.1109/TITS.2021.3052834

7. M. B. Ghanamijaber, A hybrid fuzzy-PID controller based on gray wolf optimization algorithm in
power system, Evol. Syst., 10 (2019), 273–284. https://doi.org/10.1007/s12530-018-9228-x

8. A. Raza, M. Zhong, Hybrid lane-based short-term urban traffic speed forecasting: A genetic
approach, In: 2017 4th International Conference on Transportation Information and Safety
(ICTIS), 2017, 271–279. https://doi.org/10.1109/ICTIS.2017.8047776

9. M. Dorigo, G. D. Caro, Ant colony optimization: a new meta-heuristic, In: Proceedings
of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999.
https://doi.org/10.1109/CEC.1999.782657

10. T. M. Shami, A. A. El-Saleh, M. Alswaitti, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, et al.,
Particle swarm optimization: A comprehensive survey, IEEE Access, 10 (2022), 10031–10061.
https://doi.org/10.1109/ACCESS.2022.3142859

11. P. J. Denning, Genetic algorithms, Am. Sci., 80 (1992), 12–14.

12. X. S. Yang, Firefly algorithms for multimodal optimization, In: Stochastic algorithms: Foundations
and applications, 2009. https://doi.org/10.1007/978-3-642-04944-6 14

13. Z. D. Wang, L. L. Huang, S. X. Yang, D. H. Li, D. J. He, S. Chan, A quasi-oppositional learning of
updating quantum state and Q-learning based on the dung beetle algorithm for global optimization,
Alex. Eng. J., 81 (2023), 469–488. https://doi.org/10.1016/j.aej.2023.09.042

14. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. L. Chen, Harris Hawks
optimization: Algorithm and applications, Future Gener. Comp. Sy., 97 (2019), 849–872.
https://doi.org/10.1016/j.future.2019.02.028

AIMS Mathematics Volume 10, Issue 5, 11783–11812.

https://dx.doi.org/https://doi.org/10.1016/j.inffus.2018.08.002
https://dx.doi.org/https://doi.org/10.1016/j.enconman.2018.10.069
https://dx.doi.org/https://doi.org/10.1016/j.ins.2015.09.051
https://dx.doi.org/https://doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/https://doi.org/10.1007/BF01082482
https://dx.doi.org/https://doi.org/10.1109/TITS.2021.3052834
https://dx.doi.org/https://doi.org/10.1007/s12530-018-9228-x
https://dx.doi.org/https://doi.org/10.1109/ICTIS.2017.8047776
https://dx.doi.org/https://doi.org/10.1109/CEC.1999.782657
https://dx.doi.org/https://doi.org/10.1109/ACCESS.2022.3142859
https://dx.doi.org/https://doi.org/10.1007/978-3-642-04944-6_14
https://dx.doi.org/https://doi.org/10.1016/j.aej.2023.09.042
https://dx.doi.org/https://doi.org/10.1016/j.future.2019.02.028


11812

15. M. Issa, A. Samn, Passive vehicle suspension system optimization using Harris
Hawk Optimization algorithm, Math. Comput. Simul., 191 (2022), 328–345.
https://doi.org/10.1016/j.matcom.2021.08.016

16. K. Balakrishnan, R. Dhanalakshmi, U. M. Khaire, A novel control factor and Brownian motion-
based improved Harris Hawks optimization for feature selection, J. Ambient Intell. Human.
Comput., 14 (2023), 8631–8653. https://doi.org/10.1007/s12652-021-03621-y

17. M. H. Qais, H. M. Hasanien, S. Alghuwainem, Paraments extraction of three-diode photovoltaic
model using computation and Harris Hawks optimization, Energy, 195 (2020), 117040.
https://doi.org/10.1016/j.energy.2020.117040

18. S. Barshandeh, F. Piri, S. R. Sangani, HMPA: An innovative hybrid multi-population algorithm
based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering
problems, Eng. Comput., 38 (2022), 1581–1625. https://doi.org/10.1007/s00366-020-01120-w

19. Y. X. Chen, X. M. Liang, Y. F. Huang, Improved quantum particle swarm optimization based on
good-point set, J. Cent. South Univ. (Sci. Technol.), 44 (2013), 1409–1414.

20. L. Z. Duan, S. Q. Yang, D. B. Zhang, The optimization of feature selection based on chaos
clustering strategy and niche particle swarm optimization, Math. Probl. Eng., 2020 (2020),
3138659. https://doi.org/10.1155/2020/3138659

21. G. Y. Wang, F. Yuan, Cascade chaos and its dynamic characteristics, Acta Phys. Sin., 62 (2013),
020506. https://doi.org/10.7498/aps.62.020506

22. J. H Huang, Application of optimization design methods to mechanics of materials, J. Jimei Univ.
(Nat. Sci. Ed.), 02 (1999), 33–37. https://doi.org/10.19715/j.jmuzr.1999.02.007

23. T. Ray, P. Saini, Engineering design optimization using a swarm with an
intelligent information sharing among individuals, Eng. Optim., 33 (2001), 735–748.
https://doi.org/10.1080/03052150108940941

24. A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: A new population
based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput.,
13 (2013), 2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 5, 11783–11812.

https://dx.doi.org/https://doi.org/10.1016/j.matcom.2021.08.016
https://dx.doi.org/https://doi.org/10.1007/s12652-021-03621-y
https://dx.doi.org/https://doi.org/10.1016/j.energy.2020.117040
https://dx.doi.org/https://doi.org/10.1007/s00366-020-01120-w
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1155/2020/3138659
https://dx.doi.org/https://doi.org/10.7498/aps.62.020506
https://dx.doi.org/https://doi.org/10.19715/j.jmuzr.1999.02.007
https://dx.doi.org/https://doi.org/10.1080/03052150108940941
https://dx.doi.org/https://doi.org/10.1016/j.asoc.2012.11.026
https://creativecommons.org/licenses/by/4.0

	Introduction
	HHO rationale and steps
	Principles of HHO
	Initial population generation mode
	Algorithm exploration phase
	Algorithm intermediate phase
	Algorithm development phase

	HHO algorithm steps
	HHO algorithm flow chart
	Algorithm advantages and disadvantages analysis
	Benefits analysis
	Cons analysis


	Multi-strategy upgrade of the Harris Hawk algorithm
	Algorithm upgrade strategies
	Modification of initial population generation
	Introducing a nonlinearly varying energy factor strategy
	Sine-cosine strategy
	Disadvantaged individual L-C cascade chaos disturbance

	Steps of the UHHO algorithm

	Algorithm performance evaluation
	Experimental conditions
	Test functions
	Algorithm optimization accuracy analysis
	Algorithm convergence analysis

	Numerical experiments
	Numerical experiment 1RefJ22
	Numerical experiment 2RefJ23
	Numerical experiment 3RefJ24

	Conclusions

