

https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(5): 11656–11675.

DOI: 10.3934/math.2025528 Received: 16 March 2025 Revised: 06 May 2025 Accepted: 12 May 2025

Published: 21 May 2025

Research article

A derivative-free RMIL conjugate gradient method for constrained nonlinear systems of monotone equations

Xiaowei Fang*

Department of Mathematics, Huzhou University, Huzhou Zhejiang, 313000, China

* Correspondence: Email: fangxiaowei@163.com.

Abstract: In this paper, we introduce a derivative-free RMIL conjugate gradient method designed for nonlinear systems of monotone equations with convex constraints. The proposed method represents a refinement of the RMIL method through its integration with projection techniques and a derivative-free line search strategy. When certain reasonable assumptions are satisfied, we can prove the global convergence of the proposed method. Numerical experiments demonstrate that the method is highly effective. Moreover, we employ the method to solve sparse signal restoration problems.

Keywords: nonlinear monotone equations; conjugate gradient method; hyperplane projection technique; signal recovery

Mathematics Subject Classification: 90C56, 90C30

1. Introduction

This paper aims at finding solutions to the following constrained nonlinear monotone equations:

$$F(x) = 0, \quad x \in \Omega, \tag{1.1}$$

in which $F: \mathbb{R}^n \to \mathbb{R}^n$ is monotone and continuously differentiable, and $\Omega \subseteq \mathbb{R}^n$ is a nonempty closed convex set. The property of monotonicity for F is defined as

$$(F(x) - F(y))^{T}(x - y) \ge 0, \quad \forall x, y \in \mathbb{R}^{n}.$$
(1.2)

Nonlinear monotone equations emerge from different problems and are widely applied in interdisciplinary domains. For example, the automatic control systems [1], the compressive sensing [2–4], and the optimal power flow [5].

There are numerous iterative algorithms for solving (1.1). For instance, the Newton algorithm [6], the quasi-Newton algorithm [7], the Gauss-Newton algorithm [8], and the BFGS algorithm [9]. These

algorithms exhibit good convergence properties from suitable initial guesses. Nevertheless, they are unsuitable for handling large-scale nonlinear equations since the computation of the Jacobian matrix or its approximation is required in every iteration.

Recently, some optimization methods that build on the projection and proximal point method presented by Solodov and Svaiter [10] have been extended to solve (1.1). These include conjugate gradient methods originally applied to solve large-scale unconstrained optimization problems due to the low memory and simple structures. For example, Li and Li [11] described a category of derivativefree approaches for systems of monotone equations. Cheng [12] formulated a PRP-type method using the line search strategy, and Awwal et al. [13] proposed a DFP-type derivative-free method. Ahookhosh et al. [14] developed two new derivative-free approaches for systems of nonlinear monotone equations. According to the RMIL conjugate gradient method presented by Rivaie et al [15], Fang [16, 17] put forward a set of adjusted derivative-free gradient-type approaches for solving nonlinear equations. Depending on the hybrid idea and a new adaptive line search strategy, Liu et al. in [18] proposed a three-term algorithm to solve the nonlinear monotone equations under convex constraints. According to the spectral secant equation, Zhang et al. [19] developed a three-term projection method for the purpose of dealing with nonlinear monotone equations. Moreover, they utilized this method to solve the problem in signal processing. Abdullahi et al. [20,21] described a modified self-adaptive algorithm and a three-term projection algorithm for solving systems of monotone nonlinear equations. Furthermore, they employ these algorithms in signal and image recovery problems. Aji et al. [22] proposed a novel spectral algorithm using an inertial technique to solve a system of monotone equations and for its applications.

Motivated by the aforementioned works, we give a new conjugate gradient projection algorithm for nonlinear monotone equation (1). The structure of this paper is as follows. Section 2 is dedicated to proposing the new method. In Section 3, we conduct the convergence analysis of the newly proposed method. Section 4 showcases the numerical results obtained from solving monotone nonlinear equations. Subsequently, in Section 5, we apply the proposed method to address the signal recovery problem. Finally, Section 6 presents the conclusions. The symbol $\|\cdot\|_1$ stands for Euclidean norm, and $\|\cdot\|_1$ stands for l_1 norm.

2. Algorithm

In this part, we initially review the conjugate gradient method that is employed to solve the following unconstrained optimization problems:

$$\min f(x), \tag{2.1}$$

in which f is a smooth function mapping from \mathbb{R}^n to \mathbb{R} , and the gradient of $f(x_k)$ is symbolized as g_k . The conjugate gradient method has the following iterative formula:

$$x_{k+1} = x_k + \alpha_k d_k, \tag{2.2}$$

in which the step length α_k is given through some line search techniques, and the search direction d_k is derived from

$$d_{k} = \begin{cases} -g_{k} & \text{if } k = 0\\ -g_{k} + \beta_{k} d_{k-1} & \text{if } k \ge 1 \end{cases}$$
 (2.3)

In recent times, Rivaie *et al.* [15] proposed the RMIL conjugate gradient method (RMIL, named after its developers Rivaie, Mustafa, Ismail, and Leong), where the β_k is computed by

$$\beta_k = \frac{g_k^T (g_k - g_{k-1})}{\|d_{k-1}\|^2}. (2.4)$$

Results from numerical experiments reveal that the method is highly efficient.

Motivated by the results of the RMIL method, we develop a derivative-free approach aimed at solving nonlinear systems of monotone equations. For the sake of simplicity, we substitute g_k in equations (2.3) and (2.4) with F_k , where $F_k = F(x_k)$. Moreover, we change the coefficient of g_k from -1 to $-\theta_k$ when $k \ge 1$. In this way, it can ensure that the search direction generated by the algorithm satisfies the property of sufficient descent, and it can effectively improve the computational efficiency of the algorithm. Consequently, the search direction d_k is given by

$$d_{k} = \begin{cases} -F_{k} & \text{if } k = 0\\ -\theta_{k} F_{k} + \beta_{k} d_{k-1} & \text{if } k \ge 1 \end{cases},$$
 (2.5)

where $\theta_k = \beta_k \frac{F_k^T d_{k-1}}{\|F_k\|^2} + 1$, $\beta_k = \frac{F_k^T y_{k-1}}{\|d_{k-1}\|^2}$, $F_k = F(x_k)$, $y_{k-1} = F_k - F_{k-1}$. From the definitions of d_k , it is not difficult to see that for $k \in \mathbb{N}$, we have

$$F_{k}^{T}d_{k} = -F_{k}^{T}(\beta_{k} \frac{F_{k}^{T}d_{k-1}}{\|F_{k}\|^{2}} + 1)F_{k} + F_{k}^{T}\beta_{k}d_{k-1}$$

$$= -\beta_{k} \frac{F_{k}^{T}d_{k-1}}{\|F_{k}\|^{2}} \|F_{k}\|^{2} - \|F_{k}\|^{2} + \beta_{k}F_{k}^{T}d_{k-1}$$

$$= -\|F_{k}\|^{2}.$$
(2.6)

When k = 0, we get $F_0^T d_0 = -\|F_0\|^2$.

Next we state the projection operator $P_{\Omega}[.]$, which is described as follows:

$$P_{\Omega}[x] = \arg\min\{||x - y|| \mid y \in \Omega\}, \quad \forall x \in \mathbb{R}^n.$$
 (2.7)

This operation refers to projecting the vector x onto the closed convex set Ω . By doing so, it is guaranteed that the subsequent iterative point produced by our algorithm remains within the domain Ω . The projection operator is known to possess the non-expansive property, namely

$$||P_{\Omega}[x] - P_{\Omega}[y]|| \le ||x - y||, \quad \forall x, y \in \mathbb{R}^n.$$
 (2.8)

From here on, our attention is directed towards the method for solving the monotone equations (1.1). We adopt the projection procedure presented in [10] and obtain a point

$$z_k = x_k + \alpha_k d_k, \tag{2.9}$$

with the result that

$$F(z_k)^T(x_k - z_k) > 0,$$
 (2.10)

where α_k is obtained using a suitable line search technique.

Meanwhile, for any x^* satisfying $F(x^*) = 0$, owing to the monotonic property of F, we have

$$F(z_k)^T(x^* - z_k) = -(F(x^*) - F(z_k))^T(x^* - z_k) \le 0.$$
(2.11)

Incorporating the expression (2.10), we have the conclusion that the hyperplane

$$H_k = \{ x \in \mathbb{R}^n | F(z_k)^T (x - z_k) = 0 \}$$
 (2.12)

strictly divides the solutions of the equations (1.1) and x_k . Consequently, Solodov and Svaiter [10] calculate the next iterate x_{k+1} through the projection of x_k onto the hyperplane H_k . The x_{k+1} is defined as

$$x_{k+1} = x_k - \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k)\|^2} F(z_k).$$
 (2.13)

Now, we give the steps of our algorithm.

Algorithm 2.1.:

Step 0: Choose $\sigma > 0$, s > 0, $\epsilon > 0$, $1 > \rho > 0$, $2 > \gamma > 0$. and the starting point $x_0 \in \mathbb{R}^n$. Set k = 0.

Step 1 : *If* $||F(x_k)|| < \epsilon$, *stop. Otherwise, move to step 2.*

Step 2: *Define the search direction* d_k *through* (2.5).

Step 3: Determine the steplength $\alpha_k = \max\{s\rho^i|i=0,1,2,\cdots\}$ satisfies

$$-F(x_k + \alpha_k d_k)^T d_k \ge \sigma \alpha_k ||F(x_k + \alpha_k d_k)|| ||d_k||^2, \tag{2.14}$$

then set $z_k = x_k + \alpha_k d_k$ and move to step 4.

Step 4: If $z_k \in \Omega$ and $||F(z_k)|| < \epsilon$, set $x_{k+1} = z_k$, stop. Else compute

$$x_{k+1} = P_{\Omega} \left[x_k - \gamma \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k)\|^2} F(z_k) \right]$$
 (2.15)

and set k := k + 1, move to step 1.

3. Convergence analysis

In this section, for the purpose of attaining the global convergence of Algorithm 2.1, the following assumptions are necessary.

Assumption 3.1. (1) The set of solutions for problem (1.1) is nonempty.

(2) The mapping $F(\cdot)$ is Lipschitz continuous on \mathbb{R}^n , that is

$$||F(x) - F(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n,$$
 (3.1)

in which L represents a positive constant.

From Assumption 3.1, it can be inferred that

$$||F(x)|| \le \kappa \quad \forall x \in \mathbb{R}^n, \tag{3.2}$$

in which κ is defined as a positive constant.

Lemma 3.1. Assume that Assumption 3.1 holds and the sequences $\{x_k\}, \{\alpha_k\}, \{d_k\}$ are yielded in accordance with Algorithm 2.1. Then, for all $x^* \in \Omega$ that satisfies $F(x^*) = 0$, and given that $\gamma \in (0, 2)$, we obtain

$$||x_{k+1} - x^*||^2 - ||x_k - x^*||^2 \le -\gamma(2 - \gamma)\sigma^2 ||\alpha_k d_k||^4.$$
(3.3)

Furthermore, it holds that

$$\lim_{k \to +\infty} ||\alpha_k d_k|| = 0. \tag{3.4}$$

Proof. Suppose $F(x^*) = 0$ and $x^* \in \Omega$; due to the monotonicity of F, we obtain

$$F(z_k)^T(z_k - x^*) \ge 0. (3.5)$$

Combining with (3.5), we get

$$F(z_k)^T(x_k - x^*) = F(z_k)^T(x_k - z_k) + F(z_k)^T(z_k - x^*) \ge F(z_k)^T(x_k - z_k).$$
(3.6)

Thus, from (2.8), (2.10), (2.14), (2.15), and (3.6), we have

$$||x_{k+1} - x^*||^2 - ||x_k - x^*||^2 = ||P_{\Omega}[x_k - \gamma \frac{F(z_k)^T (x_k - z_k)}{||F(z_k)||^2} F(z_k)] - x^*||^2 - ||x_k - x^*||^2$$

$$\leq ||x_k - \gamma \frac{F(z_k)^T (x_k - z_k)}{||F(z_k)||^2} F(z_k) - x^*||^2 - ||x_k - x^*||^2$$

$$= -2\gamma \frac{F(z_k)^T (x_k - z_k)}{||F(z_k)||^2} F(z_k)^T (x_k - x^*) + \gamma^2 \frac{(F(z_k)^T (x_k - z_k))^2}{||F(z_k)||^2}$$

$$\leq -2\gamma \frac{F(z_k)^T (x_k - z_k)}{||F(z_k)||^2} F(z_k)^T (x_k - z_k) + \gamma^2 \frac{(F(z_k)^T (x_k - z_k))^2}{||F(z_k)||^2}$$

$$= -\frac{\gamma(2 - \gamma)(F(z_k)^T (x_k - z_k))^2}{||F(z_k)||^2}$$

$$\leq -\gamma(2 - \gamma)\sigma^2 ||\alpha_k d_k||^4.$$
(3.7)

Then, we can deduce that

$$\gamma(2-\gamma)\sigma^2 \sum_{i=0}^k \|\alpha_i d_i\|^4 \le \|x_0 - x^*\|^2 - \|x_{k+1} - x^*\|^2 \le \|x_0 - x^*\|^2, \tag{3.8}$$

which together with $\gamma \in (0, 2)$, means that

$$\lim_{k \to +\infty} \|\alpha_k d_k\| = 0. \tag{3.9}$$

Lemma 3.2. Assume that Assumption 3.1 holds and sequences $\{x_k\}$, $\{d_k\}$ are yielded in accordance with Algorithm 2.1. Then we have

$$||d_k|| \le \kappa (1 + 2\gamma Ls),\tag{3.10}$$

in which $\kappa > 0$, s > 0, L > 0, $2 > \gamma > 0$.

AIMS Mathematics

Proof. From (2.8) and step 4 of Algorithm 2.1, we obtain

$$||x_{k} - x_{k-1}|| = ||P_{\Omega}\left[x_{k-1} - \gamma \frac{F(z_{k-1})^{T}(x_{k-1} - z_{k-1})}{||F(z_{k-1})||^{2}}F(z_{k-1})\right] - x_{k-1}||$$

$$\leq ||x_{k-1} - \gamma \frac{F(z_{k-1})^{T}(x_{k-1} - z_{k-1})}{||F(z_{k-1})||^{2}}F(z_{k-1}) - x_{k-1}||$$

$$= ||\gamma \frac{F(z_{k-1})^{T}(x_{k-1} - z_{k-1})}{||F(z_{k-1})||^{2}}F(z_{k-1})||$$

$$\leq \gamma ||x_{k-1} - z_{k-1}||$$
(3.11)

For $k \in \mathbb{N}$, using (2.5), (3.1), (3.2), (3.11), and step 3 of Algorithm 2.1, we have

$$||d_{k}|| = || - (\beta_{k} \frac{F_{k}^{T} d_{k-1}}{||F_{k}||^{2}} + 1)F_{k} + \beta_{k} d_{k-1}||$$

$$\leq ||F_{k}|| + 2||\beta_{k} d_{k-1}||$$

$$\leq ||F_{k}|| + 2 \frac{||F_{k}|| ||d_{k-1}|| ||y_{k-1}||}{||d_{k-1}||^{2}}$$

$$= ||F_{k}|| + 2 \frac{||F_{k}|| ||F_{k} - F_{k-1}||}{||d_{k-1}||}$$

$$\leq ||F_{k}|| + 2L \frac{||F_{k}|| ||x_{k} - x_{k-1}||}{||d_{k-1}||}$$

$$\leq ||F_{k}|| + 2\gamma L \frac{||F_{k}|| ||x_{k-1} - z_{k-1}||}{||d_{k-1}||}$$

$$= ||F_{k}|| + 2\gamma L \alpha_{k-1} \frac{||F_{k}|| ||d_{k-1}||}{||d_{k-1}||}$$

$$= ||F_{k}|| (1 + 2\gamma L \alpha_{k-1})$$

$$\leq \kappa (1 + 2\gamma L s).$$

$$(3.12)$$

From (2.5) and (3.2), we get

$$||d_0|| = || - F_0|| \le \kappa. \tag{3.13}$$

Combining with (3.12), we yield (3.10).

Lemma 3.3. Assume that Assumption 3.1 holds and the sequences $\{x_k\}$, $\{z_k\}$, and $\{\alpha_k\}$ are yielded in accordance with Algorithm 2.1; then we get

$$\alpha_k \ge \min \left\{ s, \frac{\|F_k\|^2}{\rho^{-1} \kappa^2 \left(1 + 2\gamma L s\right)^2 \left(L + \sigma \kappa + \sigma \kappa \rho^{-1} L s (1 + 2\gamma L s)\right)} \right\}. \tag{3.14}$$

Proof. In the case where $\alpha_k \neq s$, relying on the line search technique of Algorithm 2.1, it follows that $\rho^{-1}\alpha_k$ fails to satisfy (2.14), namely

$$-F(x_k + \rho^{-1}\alpha_k d_k)^T d_k < \sigma \rho^{-1}\alpha_k ||F(x_k + \rho^{-1}\alpha_k d_k)|| ||d_k||^2.$$
(3.15)

Combining with (3.1), (3.2) and (3.10), we obtain

$$||F(x_{k} + \rho^{-1}\alpha_{k}d_{k})|| = ||F(x_{k} + \rho^{-1}\alpha_{k}d_{k}) - F(x_{k})|| + ||F(x_{k})||$$

$$\leq L\rho^{-1}\alpha_{k}||d_{k}|| + \kappa$$

$$\leq \kappa \Big(1 + \rho^{-1}Ls(1 + 2\gamma Ls)\Big).$$
(3.16)

It follows from (2.6), (3.1), (3.10), (3.15), and (3.16) that we have

$$||F_{k}||^{2} = -F_{k}^{T} d_{k}$$

$$= [F(x_{k} + \rho^{-1} \alpha_{k} d_{k}) - F(x_{k})]^{T} d_{k} - [F(x_{k} + \rho^{-1} \alpha_{k} d_{k})]^{T} d_{k}$$

$$\leq L \rho^{-1} \alpha_{k} ||d_{k}||^{2} + \sigma \rho^{-1} \alpha_{k} (L \rho^{-1} \alpha_{k} ||d_{k}|| + \kappa) ||d_{k}||^{2}$$

$$= \rho^{-1} \alpha_{k} ||d_{k}||^{2} (L + \sigma (L \rho^{-1} \alpha_{k} ||d_{k}|| + \kappa))$$

$$\leq \rho^{-1} \alpha_{k} \kappa^{2} (1 + 2\gamma L s)^{2} (L + \sigma \kappa + \sigma \kappa \rho^{-1} L s (1 + 2\gamma L s)).$$
(3.17)

The above inequality shows that

$$\alpha_k \ge \frac{\|F_k\|^2}{\rho^{-1}\kappa^2 \left(1 + 2\gamma Ls\right)^2 \left(L + \sigma\kappa + \sigma\kappa\rho^{-1}Ls(1 + 2\gamma Ls)\right)}.$$
(3.18)

This implies (3.14).

Theorem 3.4. Assume that Assumption 3.1 holds and the sequences $\{x_k\}$ and $\{F_k\}$ are yielded in accordance with Algorithm 2.1. Then we obtain

$$\liminf_{k \to \infty} ||F_k|| = 0.$$
(3.19)

Proof. Assume that (3.19) is false. Then, there is a positive constant k for which

$$||F_k|| \ge \xi. \tag{3.20}$$

Based on (2.6) and (3.20), we obtain

$$||d_k|| = \frac{||F_k|| ||d_k||}{||F_k||} \ge \frac{||F_k^T d_k||}{||F_k||} \ge ||F_k|| \ge \xi.$$
(3.21)

Combining with Lemma 3.3, we obtain

$$\alpha_k ||d_k|| \ge \min \left\{ s\xi, \frac{\xi^3}{\rho^{-1}\kappa^2 \left(1 + 2\gamma L s\right)^2 \left(L + \sigma\kappa + \sigma\kappa\rho^{-1} L s(1 + 2\gamma L s)\right)} \right\} > 0. \tag{3.22}$$

which contradicts the conclusion (3.4) of Lemma 3.1, then (3.19) holds.

4. Numerical experiments

In the present section, we conduct a series of numerical experiments in order to assess the performance of Algorithm 2.1. We make a comparison between it and the three-term projection method put forward by Zhang et al. [19], the three-term conjugate method proposed by Gao et al. [23], and the PRP-like method presented by Abubakar et al. [24]. We conduct our tests using Matlab R2018a on a personal computer equipped with 32 GB of RAM and an 11th Gen Intel(R) Core(TM) i7-11700K processor.

We test the algorithms on ten problems that have been widely used in the literature for dimensions 50000 and 200000. All test problems are initialized with the following eight starting points: $x_1 = (10, 10, \dots, 10)^T$, $x_2 = (-10, -10, \dots, -10)^T$, $x_3 = (-1, -1, \dots, -1)^T$, $x_4 = (0.1, 0.1, \dots, 0.1)^T$, $x_5 = (\frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^n})^T$, $x_6 = (1, \frac{1}{2}, \dots, \frac{1}{n})^T$, $x_7 = (\frac{1}{n}, \frac{2}{n}, \dots, 1)^T$, $x_8 = (\frac{n-1}{n}, \frac{n-2}{n}, \dots, 0)^T$, which are derived from [17, 19, 23]. With respect to every algorithm and each test problem,, the program concludes when any of the three conditions described below is achieved: $(1) ||F(x_k)|| \le 10^{-6}$, $(2) ||F(z_k)|| \le 10^{-6}$, (3) The algorithm still fails to converge after 1000 iterations. The parameters of methods introduced by Zhang, Gao and Abubakar are set as described in their respective articles. Regarding Algorithm 2.1, we define $\sigma = 10^{-4}$, s = 1, $\epsilon = 10^{-5}$, $\rho = 0.55$, $\gamma = 1.2$. At present, we are going to list out the test problems, where the mapping F has the following definition: $F(x) = (f_1(x), f_2(x), \dots, f_n(x))^T$.

Test Problem 1 This problem sourced from [23] is

$$f_i(x) = x_i - \sin(|x_i| - 1), i = 1, 2, \dots, n,$$

$$\Omega = \{x \in \mathbb{R}^n | x_i \ge -1, \sum_{i=1}^n x_i \le n, i = 1, 2, \dots, n\}.$$

Test Problem 2 This problem sourced from [23] is

$$f_i(x) = e^{x_i} - 1, i = 1, 2, \dots, n,$$

$$\Omega = \mathbb{R}^n_+.$$

Test Problem 3 This problem sourced from [23] is

$$f_i(x) = 2x_i - \sin(x_i), i = 1, 2, \dots, n,$$

$$\Omega = \mathbb{R}^n_+.$$

Test Problem 4 This problem sourced from [19] is

$$f_i(x) = x_i - 3x_i \left(\frac{\sin(x_i)}{3} - 0.66\right) + 2, i = 1, 2, \dots, n,$$

$$\Omega = \{x \in \mathbb{R}^n | x_i \ge -5, i = 1, 2, \dots, n\}.$$

Test Problem 5 This problem sourced from [19] is

$$f_i(x) = (e^{x_i})^2 + 3\sin(x_i)\cos(x_i) - 1, i = 1, 2, \dots, n,$$

$$\Omega = \{x \in \mathbb{R}^n | x_i \ge -5, i = 1, 2, \dots, n\}.$$

Test Problem 6 This problem sourced from [19] is

$$f_1(x) = 4x_1(x_1^2 + x_2^2) - 4,$$

$$f_i(x) = 4x_i(x_{i-1}^2 + x_i^2) + 4x_i(x_i^2 + x_{i+1}^2) - 4, i = 2, 3, \dots, n-1,$$

$$f_n(x) = 4x_n(x_{n-1}^2 + x_n^2),$$

$$\Omega = \mathbb{R}_+^n.$$

Test Problem 7 This problem sourced from [12] is

$$f_1(x) = 2.5x_1 + x_2 - 1,$$

$$f_i(x) = x_{i-1} + 2.5x_i + x_{i+1}, i = 2, 3, \dots, n-1,$$

$$f_n(x) = x_{n-1} + 2.5x_n - 1),$$

$$\Omega = \mathbb{R}_+^n.$$

Test Problem 8 This problem sourced from [25] is

$$f_1(x) = cos(x_1) - 9 + 3x_1 + 8exp(x_2),$$

$$f_i(x) = cos(x_i) - 9 + 3x_i + 8exp(x_{i-1}), i = 2, 3, \dots, n,$$

$$\Omega = \mathbb{R}^n_+.$$

Test Problem 9 This problem sourced from [25] is

$$f_1(x) = \frac{1}{(x_1 + 1)^2} - exp(x_i),$$

$$f_i(x) = \frac{1}{(x_i + 1)^2} + cos(x_{i+1}) - 2exp(x_i), i = 2, 3, \dots, n - 1,$$

$$f_n(x) = \frac{1}{(x_n + 1)^2} - exp(x_n),$$

$$\Omega = \mathbb{R}_+^n.$$

Test Problem 10 This problem sourced from [25] is

$$f_i(x) = 2x_i - \sin|x_i|, i = 1, 2, \dots, n,$$

$$\Omega = \mathbb{R}^n_+.$$

In Tables 1, 2, and 3, we present the detailed outcomes using the format of "Niter/ Nfun/Time". Here, "Niter" represents the number of iterations, "Nfun" denotes the number of function value calculations, and "Time" stands for the CPU time counted in seconds. "Dim" indicates the dimension of test problems, and "Sta" represents the starting points. Through a comprehensive analysis of Tables 1, 2 and 3, it can be clearly observed that, for the given problems, Algorithm 2.1 registered the fewest values for Niter and Nfun in a large number of instances.

Table 1. The results of four algorithms for Test Problems 1, 2, 3, and 4.

Problem	Dim	Sta	Zhang Niter/Nfun/Time	Gao Niter/Nfun/Time	Abubakar Niter/Nfun/Time	Algorithm 2.1 Niter/Nfun/Time
TP1	50000	x_1	18 / 53 / 0.043	12 / 34 / 0.031	10 / 39 / 0.025	18 / 53 / 0.047
		x_2	18 / 54 / 0.038	11/33/0.021	10/39/0.020	18 / 54 / 0.040
		x_3	17 / 52 / 0.035	10 / 30 / 0.024	9/38/0.022	17 / 52 / 0.033
		x_4	14 / 42 / 0.030 17 / 51 / 0.034	11 / 33 / 0.025 11 / 33 / 0.021	10 / 40 / 0.024 36 / 179 / 0.099	14 / 42 / 0.031 17 / 51 / 0.035
		x_5 x_6	17 / 51 / 0.034	11 / 33 / 0.021	39 / 194 / 0.105	18 / 54 / 0.033
		x_6	21 / 58 / 0.043	14 / 39 / 0.030	48 / 228 / 0.129	22 / 61 / 0.042
		x_8	21 / 58 / 0.041	14 / 39 / 0.027	48 / 228 / 0.140	22 / 61 / 0.045
	200000	x_1	19 / 56 / 0.191	13 / 37 / 0.137	11 / 43 / 0.123	19 / 56 / 0.171
		x_2	19 / 57 / 0.195	12 / 36 / 0.143	11 / 43 / 0.122	19 / 57 / 0.193
		x_3	18 / 55 / 0.189	11 / 33 / 0.117	10 / 42 / 0.123	18 / 55 / 0.166
		x_4	15 / 45 / 0.161	12 / 36 / 0.136	10 / 40 / 0.126	15 / 45 / 0.142
		x_5	17 / 51 / 0.186	11/33/0.111	39 / 192 / 0.516	18 / 54 / 0.203
		x_6	18 / 54 / 0.180 21 / 58 / 0.199	11 / 33 / 0.114 14 / 39 / 0.141	39 / 194 / 0.527 50 / 238 / 0.670	18 / 54 / 0.173 21 / 60 / 0.192
		x_7 x_8	21 / 58 / 0.199	14 / 39 / 0.141	50 / 238 / 0.663	21 / 60 / 0.192
TP2	50000	x_1	1 / 15 / 0.009	15 / 59 / 0.046	1/37/0.017	1 / 15 / 0.007
112	20000	x_2	1/2/0.002	1/2/0.002	1/2/0.002	1/2/0.002
		x_3	1/2/0.002	1/2/0.002	1/2/0.001	1/2/0.001
		x_4	16 / 33 / 0.021	11/23/0.018	1/3/0.001	16 / 33 / 0.020
		x_5	13 / 27 / 0.012	10 / 22 / 0.010	31 / 64 / 0.028	13 / 27 / 0.013
		x_6	15 / 31 / 0.021	11 / 25 / 0.015	33 / 71 / 0.041	14 / 29 / 0.016
		x_7	19 / 39 / 0.026	14/31/0.020	55 / 116 / 0.082	19 / 39 / 0.022
	200000	x_8	19 / 39 / 0.030	14/31/0.021	55 / 116 / 0.075	19/39/0.024
	200000	x_1	1 / 15 / 0.045 1 / 2 / 0.009	16 / 61 / 0.220 1 / 2 / 0.007	1 / 37 / 0.085 1 / 2 / 0.009	1 / 15 / 0.045 1 / 2 / 0.007
		x_2	1 / 2 / 0.009	1/2/0.007	1/2/0.009	1/2/0.007
		x_4	17 / 35 / 0.131	12 / 25 / 0.113	1/3/0.007	17 / 34 / 0.124
		χ_5	13 / 27 / 0.095	10 / 22 / 0.069	31 / 64 / 0.176	13 / 27 / 0.075
		x_6	15 / 31 / 0.112	11 / 25 / 0.096	33 / 71 / 0.238	14 / 29 / 0.109
		x_7	20 / 41 / 0.167	15 / 33 / 0.121	57 / 120 / 0.421	20 / 41 / 0.150
TTD2	5 0000	x_8	20 / 41 / 0.166	15 / 33 / 0.120	57 / 120 / 0.413	20 / 41 / 0.144
TP3	50000	x_1	2/6/0.005	14/31/0.022	1/6/0.007	2/6/0.007
		x_2	1 / 4 / 0.005 1 / 3 / 0.002	1 / 3 / 0.003 1 / 3 / 0.002	7 / 18 / 0.012 7 / 15 / 0.010	1 / 4 / 0.004 1 / 3 / 0.002
		x_3 x_4	16 / 33 / 0.022	12 / 25 / 0.017	6 / 13 / 0.007	16 / 32 / 0.017
		x_4	13 / 27 / 0.015	9 / 19 / 0.009	20 / 41 / 0.018	13 / 27 / 0.011
		x_6	14 / 29 / 0.016	10 / 21 / 0.011	37 / 75 / 0.035	14 / 29 / 0.013
		x_7	18 / 37 / 0.024	13 / 27 / 0.015	47 / 95 / 0.059	18 / 37 / 0.025
		x_8	18 / 37 / 0.024	13 / 27 / 0.014	47 / 95 / 0.059	18 / 37 / 0.021
	200000	x_1	2/6/0.030	15 / 33 / 0.148	1/6/0.029	2/6/0.031
		x_2	1/4/0.019	1/3/0.013	7/18/0.065	1/4/0.019
		x_3	1/3/0.008	1/3/0.010	7 / 15 / 0.047	1/3/0.010
		x_4	17 / 35 / 0.131 13 / 27 / 0.080	12 / 25 / 0.099 9 / 19 / 0.057	6 / 13 / 0.036 20 / 41 / 0.119	15 / 30 / 0.091 13 / 27 / 0.068
		x_5	14 / 29 / 0.101	10 / 21 / 0.068	37 / 75 / 0.221	14 / 29 / 0.088
		x_6	18 / 37 / 0.140	14 / 29 / 0.111	49 / 99 / 0.300	18 / 37 / 0.109
		x_8	18 / 37 / 0.126	14 / 29 / 0.115	49 / 99 / 0.330	18 / 37 / 0.117
TP4	50000	x_1	14 / 56 / 0.044	27 / 131 / 0.107	6 / 48 / 0.032	14 / 56 / 0.046
		x_2	14 / 56 / 0.045	27 / 132 / 0.082	6 / 44 / 0.031	14 / 56 / 0.041
		x_3	13 / 53 / 0.038	27 / 134 / 0.093	5 / 41 / 0.021	13 / 53 / 0.035
		x_4	14 / 57 / 0.040	21 / 103 / 0.069	5 / 40 / 0.023	14 / 57 / 0.034
		<i>x</i> ₅	23 / 93 / 0.062	29 / 144 / 0.100	45 / 360 / 0.197	19 / 77 / 0.050
		<i>x</i> ₆	23 / 93 / 0.055	29 / 144 / 0.105	52 / 416 / 0.233	20 / 81 / 0.049
		x_7	30 / 120 / 0.090 30 / 120 / 0.077	30 / 148 / 0.093 30 / 148 / 0.099	70 / 556 / 0.317 70 / 556 / 0.336	23 / 92 / 0.056 23 / 92 / 0.067
	200000	$x_8 \\ x_1$	15 / 60 / 0.198	28 / 136 / 0.472	6 / 48 / 0.156	15 / 60 / 0.196
	_55556	x_1	15 / 60 / 0.195	28 / 137 / 0.406	6 / 44 / 0.132	15 / 60 / 0.190
		x_3	13 / 53 / 0.164	28 / 139 / 0.416	5 / 41 / 0.098	13 / 53 / 0.150
		x_4	14 / 57 / 0.183	22 / 108 / 0.314	5 / 40 / 0.100	14 / 57 / 0.156
		x_5	23 / 93 / 0.279	30 / 149 / 0.463	45 / 360 / 0.838	20 / 81 / 0.218
		x_6	23 / 93 / 0.264	30 / 149 / 0.473	53 / 422 / 0.986	20 / 81 / 0.220
		x_7	31 / 124 / 0.368	31 / 153 / 0.506	72 / 572 / 1.386	23 / 92 / 0.262
		x_8	31 / 124 / 0.374	31 / 153 / 0.469	72 / 572 / 1.395	23 / 92 / 0.257

Table 2. The results of four algorithms for Test Problems 5, 6, 7, and 8.

Problem	Dim	Sta	Zhang Niter/Nfun/Time	Gao Niter/Nfun/Time	Abubakar Niter/Nfun/Time	Algorithm 2.1 Niter/Nfun/Time
TP5	50000	x_1	9 / 45 / 0.197	27 / 157 / 0.758	9 / 106 / 0.478	9 / 56 / 0.215
		x_2 x_3	9 / 24 / 0.040 5 / 20 / 0.022	21 / 85 / 0.111 14 / 67 / 0.079	9 / 47 / 0.066 6 / 51 / 0.045	9 / 24 / 0.040 5 / 20 / 0.025
		x_4	4 / 17 / 0.021	13 / 64 / 0.067	5 / 46 / 0.045	4 / 17 / 0.020
		x_5	33 / 142 / 0.098	12 / 59 / 0.041	48 / 419 / 0.261	11/45/0.028
		x_6	34 / 147 / 0.135 38 / 167 / 0.190	14 / 72 / 0.068 17 / 87 / 0.095	48 / 436 / 0.362 fail / fail / fail	13 / 52 / 0.058 15 / 62 / 0.073
		x_8	37 / 164 / 0.168	17 / 87 / 0.106	fail / fail / fail	15 / 62 / 0.063
	200000	x_1	9 / 45 / 0.802	29 / 165 / 3.370	9 / 106 / 1.911	9 / 56 / 0.875
		x_2 x_3	9 / 24 / 0.179 5 / 20 / 0.091	21 / 85 / 0.456 14 / 67 / 0.313	9 / 47 / 0.256 6 / 51 / 0.176	9 / 24 / 0.174 5 / 20 / 0.089
		x_4	4 / 17 / 0.070	13 / 64 / 0.279	5 / 46 / 0.151	4 / 17 / 0.067
		x_5	33 / 142 / 0.462	12 / 59 / 0.203	48 / 419 / 1.064	11/45/0.131
		$\frac{x_6}{x_7}$	32 / 139 / 0.521 34 / 150 / 0.656	14 / 72 / 0.265 17 / 87 / 0.397	48 / 436 / 1.342 fail / fail / fail	13 / 52 / 0.196 15 / 62 / 0.266
		x_8	43 / 174 / 0.859	17 / 87 / 0.451	fail / fail / fail	15 / 62 / 0.250
TP6	50000	x_1	41 / 269 / 0.102	32 / 287 / 0.103	69 / 1169 / 0.378	37 / 239 / 0.085
		x_2	140 / 1211 / 0.420 45 / 283 / 0.104	320 / 4034 / 1.358 61 / 471 / 0.165	fail / fail / fail 54 / 809 / 0.258	144 / 1415 / 0.479 31 / 188 / 0.069
		x_4	51 / 313 / 0.117	388 / 2730 / 1.005	177 / 2499 / 0.813	30 / 180 / 0.063
		x_5	34 / 208 / 0.075	27 / 208 / 0.076	50 / 746 / 0.245	31 / 188 / 0.069
		$\frac{x_6}{x_7}$	44 / 268 / 0.097 49 / 308 / 0.113	27 / 210 / 0.075 495 / 3482 / 1.295	55 / 820 / 0.264 68 / 1070 / 0.344	31 / 189 / 0.067 39 / 244 / 0.086
		x_8	53 / 336 / 0.122	31 / 244 / 0.088	75 / 1193 / 0.374	34 / 216 / 0.077
	200000	x_1	40 / 265 / 0.572	47 / 448 / 0.916	67 / 1123 / 2.037	36 / 235 / 0.477
		x_2	180 / 1562 / 3.159 42 / 262 / 0.588	fail / fail / fail 59 / 453 / 0.967	50 / 903 / 1.714 53 / 794 / 1.399	221 / 2338 / 4.424 32 / 194 / 0.403
		x_3 x_4	47 / 292 / 0.635	404 / 2835 / 6.352	99 / 1401 / 2.509	32 / 194 / 0.403
		x_5	53 / 328 / 0.715	30 / 232 / 0.504	52 / 779 / 1.373	31 / 189 / 0.398
		<i>x</i> ₆	42 / 263 / 0.581 66 / 414 / 0.907	28 / 218 / 0.469 399 / 2816 / 6.304	55 / 824 / 1.472 75 / 1202 / 2.128	35 / 213 / 0.448 38 / 239 / 0.483
		x_7 x_8	59 / 378 / 0.828	32 / 252 / 0.543	76 / 1211 / 2.237	37 / 234 / 0.508
TP7	50000	x_1	62 / 217 / 0.078	112 / 487 / 0.172	46 / 372 / 0.114	66 / 239 / 0.085
		x_2	76 / 257 / 0.092 69 / 237 / 0.089	101 / 432 / 0.150 139 / 563 / 0.202	59 / 481 / 0.141 47 / 383 / 0.115	71 / 255 / 0.091 64 / 231 / 0.081
		x_3 x_4	69 / 233 / 0.087	136 / 548 / 0.203	46 / 369 / 0.119	61 / 219 / 0.086
		x_5	64 / 217 / 0.082	100 / 432 / 0.156	44 / 356 / 0.103	60 / 216 / 0.073
		$\frac{x_6}{x_7}$	62 / 212 / 0.078 63 / 216 / 0.078	94 / 394 / 0.143 93 / 406 / 0.148	46 / 375 / 0.111 47 / 384 / 0.116	58 / 209 / 0.074 62 / 224 / 0.081
		x_8	63 / 216 / 0.078	93 / 406 / 0.144	47 / 382 / 0.111	62 / 224 / 0.081
	200000	x_1	61 / 212 / 0.520	114 / 501 / 1.400	42 / 344 / 0.617	69 / 248 / 0.565
		x_2	76 / 262 / 0.668 70 / 243 / 0.618	101 / 444 / 1.087 102 / 445 / 1.098	60 / 490 / 0.908 53 / 427 / 0.835	70 / 252 / 0.557 65 / 234 / 0.559
		x_4	71 / 241 / 0.672	97 / 421 / 1.077	46 / 370 / 0.692	65 / 233 / 0.511
		x_5	68 / 233 / 0.619	92 / 399 / 0.966	46 / 368 / 0.664	62 / 223 / 0.486
		$\frac{x_6}{x_7}$	56 / 194 / 0.508 63 / 219 / 0.551	127 / 513 / 1.289 95 / 417 / 1.014	44 / 355 / 0.644 45 / 363 / 0.666	59 / 213 / 0.472 66 / 237 / 0.559
		x_8	63 / 219 / 0.530	95 / 417 / 1.010	45 / 363 / 0.669	66 / 237 / 0.538
TP8	50000	x_1	21 / 140 / 0.149	28 / 215 / 0.232	1/46/0.077	21 / 140 / 0.149
		x_2 x_3	1 / 5 / 0.008 1 / 6 / 0.006	1 / 4 / 0.007 1 / 5 / 0.006	2 / 21 / 0.019 2 / 24 / 0.023	1 / 5 / 0.008 1 / 6 / 0.007
		x_4	18 / 109 / 0.091	25 / 173 / 0.163	1 / 13 / 0.011	18 / 109 / 0.097
		x_5	373 / 2929 / 1.437	26 / 90 / 0.053	fail / fail / fail	12 / 58 / 0.033
		$\frac{x_6}{x_7}$	146 / 1338 / 1.183 284 / 1640 / 1.546	8 / 36 / 0.035 48 / 222 / 0.150	fail / fail / fail 65 / 936 / 0.759	8 / 34 / 0.033 56 / 299 / 0.273
		x_8	300 / 1714 / 1.616	32 / 156 / 0.112	32 / 984 / 3.637	45 / 243 / 0.224
	200000	x_1	22 / 146 / 0.601	29 / 222 / 1.012	1 / 46 / 0.308	22 / 146 / 0.596
		x_2 x_3	1 / 5 / 0.033 1 / 6 / 0.037	1 / 4 / 0.028 1 / 5 / 0.026	2 / 21 / 0.089 2 / 24 / 0.099	1 / 5 / 0.032 1 / 6 / 0.029
		x_4	19 / 115 / 0.385	25 / 173 / 0.650	1 / 13 / 0.047	19 / 115 / 0.373
		x_5	373 / 2929 / 6.855	26 / 90 / 0.313	fail / fail / fail	12 / 58 / 0.166
		$\frac{x_6}{x_7}$	fail / fail / fail 318 / 1853 / 8.556	8 / 36 / 0.152 67 / 298 / 1.056	fail / fail / fail 65 / 1010 / 4.233	8 / 34 / 0.155 62 / 334 / 1.378
		x_8	305 / 2005 / 9.320	43 / 188 / 0.723	34 / 584 / 5.046	49 / 261 / 1.107

Table 3. The results of four algorithms for Test Problems 9 and 10.

D., 1.1	D'	O4 -	771		A.1. 11	A1
Problem	Dim	Sta	Zhang	Gao	Abubakar	Algorithm 2.1
			Niter/Nfun/Time	Niter/Nfun/Time	Niter/Nfun/Time	Niter/Nfun/Time
TP9	50000	x_1	1 / 2 / 0.004	1 / 2 / 0.004	1 / 2 / 0.004	1 / 2 / 0.004
		x_2	1 / 2 / 0.004	1 / 2 / 0.005	1 / 2 / 0.004	1 / 2 / 0.005
		x_3	1 / 2 / 0.008	1 / 2 / 0.007	1 / 2 / 0.006	1 / 2 / 0.007
		x_4	3 / 4 / 0.016	4 / 8 / 0.027	4 / 5 / 0.019	3 / 4 / 0.013
		x_5	3 / 4 / 0.005	3 / 4 / 0.005	3 / 4 / 0.005	3 / 4 / 0.004
		x_6	4 / 5 / 0.015	3 / 4 / 0.011	3 / 4 / 0.014	4 / 5 / 0.015
		x_7	2/3/0.012	2/3/0.009	2/3/0.006	2/3/0.011
		x_8	2/3/0.014	2/3/0.006	2/3/0.005	2/3/0.013
	200000	x_1	1 / 2 / 0.017	1 / 2 / 0.017	1 / 2 / 0.017	1 / 2 / 0.017
		x_2	1/2/0.019	1/2/0.018	1 / 2 / 0.017	1/2/0.018
		x_3	1 / 2 / 0.025	1 / 2 / 0.024	1 / 2 / 0.024	1 / 2 / 0.028
		x_4	3 / 4 / 0.072	4 / 8 / 0.087	4 / 5 / 0.069	3 / 4 / 0.039
		x_5	3 / 4 / 0.022	3 / 4 / 0.023	3 / 4 / 0.023	3 / 4 / 0.021
		x_6	4/5/0.062	3 / 4 / 0.053	3 / 4 / 0.049	4 / 5 / 0.063
		x_7	2/3/0.053	2/3/0.028	2/3/0.029	2/3/0.044
FFD 1 0	7 0000	x_8	2/3/0.050	2/3/0.034	2/3/0.028	2/3/0.051
TP10	50000	x_1	2/6/0.006	14/31/0.022	1/6/0.005	2/6/0.007
		x_2	1/4/0.004	1/3/0.002	2/8/0.007	1/4/0.003
		x_3	16 / 34 / 0.020	1/4/0.003	7 / 19 / 0.009	16 / 34 / 0.022
		x_4	16 / 33 / 0.017	12/25/0.016	6 / 13 / 0.008	16 / 32 / 0.022
		x_5	13 / 27 / 0.013	9 / 19 / 0.010	20 / 42 / 0.019	13 / 27 / 0.010
		x_6	14 / 29 / 0.016	10 / 21 / 0.010	24 / 49 / 0.023	14 / 29 / 0.012
		x_7	18 / 37 / 0.024	13 / 27 / 0.014	29 / 60 / 0.031	18 / 37 / 0.019
	200000	x_8	18/37/0.020	13 / 27 / 0.015	29 / 60 / 0.036	18/37/0.020
	200000	x_1	2 / 6 / 0.024	15 / 33 / 0.129	1/6/0.017	2 / 6 / 0.025
		x_2	1/4/0.013	1/3/0.011	2/8/0.030	1/4/0.015
		x_3	17 / 36 / 0.127	1/4/0.013	7 / 19 / 0.061	13 / 27 / 0.097
		x_4	17 / 35 / 0.128 13 / 27 / 0.087	12 / 25 / 0.098 9 / 19 / 0.067	6 / 13 / 0.038 20 / 42 / 0.117	15 / 30 / 0.093 13 / 27 / 0.074
		x_5			24 / 49 / 0.170	
		x_6	14 / 29 / 0.103 18 / 37 / 0.141	10 / 21 / 0.074 14 / 29 / 0.103	31 / 64 / 0.191	14 / 29 / 0.093 18 / 37 / 0.112
		x_7	18 / 37 / 0.141	14 / 29 / 0.103	31 / 64 / 0.191	18 / 37 / 0.112
		x_8	10 / 37 / 0.130	17 / 47 / 0.10/	31 / 04 / 0.210	10 / 37 / 0.110

In an effort to comprehensively compare all algorithms, we utilize the performance profiles that were proposed by Dolan and Moré [26]. The performance profiles concerning the number of iterations are shown in Figure 1. The performance profiles for the number of function evaluations are displayed in Figure 2, while Figure 3 reveals the performance profiles of the CPU time. It is readily observable that the Algorithm 2.1 introduced in this paper outperforms the algorithms presented by Zhang, Gao, and Abubakar in terms of efficiency.

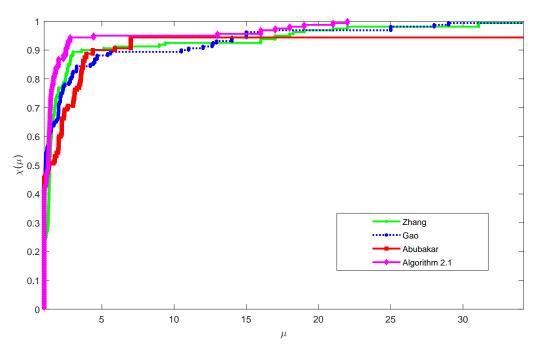


Figure 1. Performance profiles for the number of iterations.

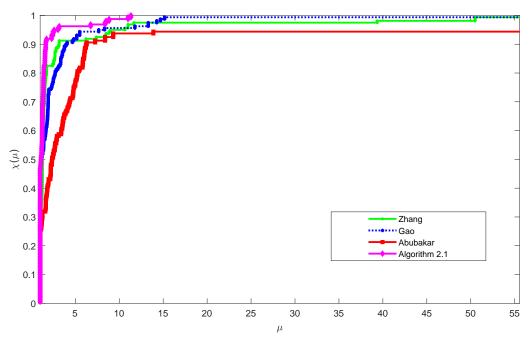


Figure 2. Performance profiles for the number of function evaluations.

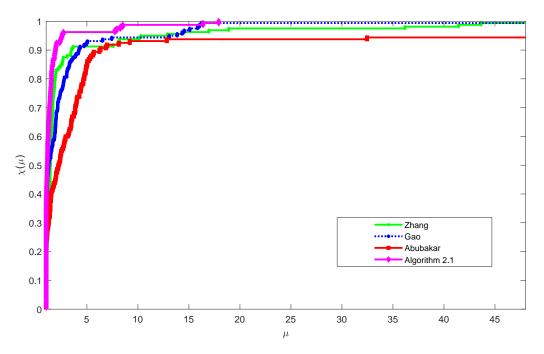


Figure 3. Performance profiles for the CPU time.

5. Applications in sparse signal restoration

In this section, we make use of Algorithm 2.1 to tackle sparse signal restoration problems and compare its performance with that of Zhang [19], Gao [23], and Abubakar [24]. We begin by recalling the compressed sensing model. This model is utilized to retrieve sparse solutions or signals from underdetermined linear systems represented as Ax = b, where $b \in \mathbb{R}^m$ represents the data obtained from observations and $A \in \mathbb{R}^{m \times n} (m \ll n)$ denotes a linear mapping. Specifically, we can achieve sparse signal restoration through the solution of the following l_1 -norm regularized optimization problem

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} ||Ax - b||_2^2 + \tau ||x||_1, \tag{5.1}$$

where τ acts as a constant that reconciles data fitting and sparsity. The vector $x \in \mathbb{R}^n$ can be decomposed as x = u - v, $u \ge 0$, where $u \in \mathbb{R}^n$, $v \in \mathbb{R}^n$, and $u_i = \max\{x_i, 0\}$, $v_i = \max\{-x_i, 0\}$ for $i = 1, 2, \dots, n$. Therefore, we can replace problem (5.1) with the next programming formulation:

$$\min_{u,v \ge 0} \frac{1}{2} ||A(u-v) - b||_2^2 + \tau e_n^T u + \tau e_n^T v, \tag{5.2}$$

in which $e_n = (1, 1, \dots, 1)^T \in \mathbb{R}^n$.

Further, we obtain its standard form

$$\min_{z \ge 0} \frac{1}{2} z^T H z + c^T z,\tag{5.3}$$

in which

$$z = \begin{bmatrix} u \\ v \end{bmatrix}, c = \begin{bmatrix} \tau e_n - A^T b \\ \tau e_n + A^T b \end{bmatrix}, H = \begin{bmatrix} A^T A & -A^T A \\ -A^T A & A^T A \end{bmatrix}.$$
 (5.4)

Evidently, matrix H has semi-positive definiteness; thus, Eq (5.3) is a convex quadratic problem. Based on first-order optimality conditions for (5.3), z qualifies as a minimizer if and only if it satisfies the subsequent equations:

$$F(z) = \min\{z, Hz + c\} = 0, z \ge 0, \tag{5.5}$$

in which F(z) is monotone and continuous. Henceforth, our proposed method may be employed for resolving (5.5).

During these experiments, the primary objective is to reconstruct a one-dimensional sparse signal with a length of n from $m(m \ll n)$ observations. The performance of signal restoration is evaluated using the mean squared error (MSE), defined as

$$MSE = \frac{1}{n} ||x - x^*||^2, \tag{5.6}$$

in which x^* represents the recovered signal and x indicates the initial signal. Let $f(x) = \frac{1}{2}||Ax - b||_2^2 + \tau ||x||_1$ serves as the auxiliary function. The iterative sequence commences with the initial measurement signal $x_0 = A^T b$ and comes to an end when

$$\frac{\|f(x_k) - f(x_{k-1})\|}{\|f(x_{k-1})\|} < 10^{-5}.$$
(5.7)

During our experiments, we define r as the quantity of nonzero entries in x. For a specified set of values of m, n, and r, we generate the subsequent test data using MATLAB:

$$x = zeros(n, 1);$$

$$q = randperm(n);$$

$$x(q(1:r)) = randn(r, 1);$$

$$b = orth(randn(m, n)')' * x + 0.001 * randn(m, 1);$$

$$x_0 = A' * b.$$

$$(5.8)$$

The numerical outcomes presented in Figure 4 contain the original sparse signal, the measurement data, and the reconstructed signals yielded by four algorithms. Clearly, all four algorithms reconstruct the original signal from the measurements with near perfection. However, Algorithm 2.1 outperforms the other algorithms in terms of MSE, the number of iterations, and CPU time. Figure 5 depicts four graphs to visually assess the performance of the four algorithms. These graphs display the convergence characteristics of the algorithms, depicting the changes in the values of the merit function and the MSE as the iterations progress and as the CPU time is consumed. Table 4 displays the numerical outcomes obtained from the experiment on ten diverse noise samples. Evidently, in a majority of cases, Algorithm 2.1 outperforms other algorithms. It achieves a lower MSE, demands a smaller number of iterations, and consumes less time on the CPU.

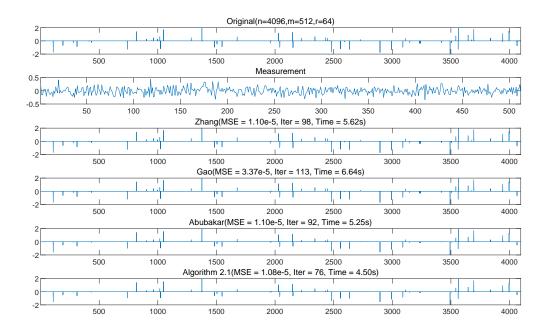


Figure 4. From top to bottom: the original signal, the measurement, and the reconstructed signals by four algorithms.

Table 4. The results of four algorithms in ten experiments on the signal recovery problem.

	Zhang Niter/Time/MSE	Gao Niter/Time/MSE	Abubakar Niter/Time/MSE	Algorithm 2.1 Niter/Time/MSE
	87 / 4.47 / 2.07E-05	116 / 6.20 / 2.39E-05	85 / 4.80 / 1.26E-05	70 / 3.73 / 1.93E-05
	144 / 7.28 / 1.21E-05	150 / 7.81 / 4.06E-05	103 / 5.75 / 1.41E-05	89 / 4.78 / 1.20E-05
	120 / 6.18 / 1.26E-05	132 / 6.92 / 5.45E-05	112 / 6.21 / 1.61E-05	66 / 3.51 / 1.34E-05
	135 / 6.85 / 1.77E-05	124 / 6.47 / 9.44E-05	139 / 7.63 / 1.88E-05	95 / 4.99 / 1.05E-05
	146 / 7.40 / 1.72E-05	136 / 7.14 / 7.16E-05	115 / 6.32 / 2.32E-05	91 / 4.74 / 1.62E-05
	115 / 5.90 / 1.17E-05	127 / 6.62 / 4.50E-05	89 / 4.94 / 1.66E-05	70 / 3.66 / 1.75E-05
	153 / 7.77 / 1.25E-05	161 / 8.31 / 3.99E-05	157 / 8.51 / 1.49E-05	105 / 5.44 / 1.16E-05
	104 / 5.38 / 1.21E-05	113 / 6.10 / 4.62E-05	103 / 5.73 / 1.30E-05	82 / 4.42 / 1.15E-05
	132 / 6.71 / 1.32E-05	132 / 7.01 / 4.64E-05	95 / 5.34 / 1.34E-05	85 / 4.48 / 1.30E-05
	164 / 8.26 / 1.69E-05	160 / 8.22 / 7.25E-05	113 / 6.23 / 2.17E-05	108 / 5.58 / 1.74E-05
Average	130 / 6.62 / 1.47E-05	135 / 7.08 / 5.35E-05	111 / 6.15 / 1.64E-05	86 / 4.53 / 1.42E-05

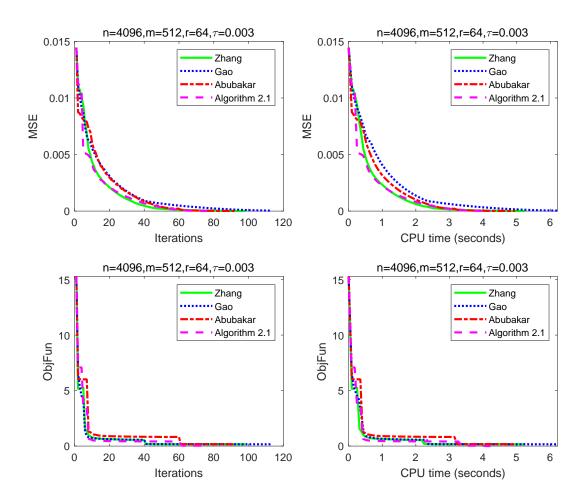


Figure 5. The upper graphs show MSE against iterations and CPU time, and the lower graphs show objective function value against iterations and CPU time.

6. Conclusions

This paper presents a derivative-free conjugate gradient method for the purpose of solving large-scale nonlinear systems of monotone equations that are bounded by convex constraints. The proposed approach is a novel expansion of the RMIL conjugate gradient method. It incorporates projection techniques, which play a crucial role in ensuring that the iterates remain within the feasible region defined by the convex constraints. This not only helps in maintaining the validity of the solution process but also improves the efficiency of the algorithm by avoiding unnecessary computations outside the constraint set. Additionally, the method features a line search strategy that operates without using derivatives. Under certain reasonable assumptions, we prove the global convergence property of the method. To further demonstrate the practical performance of our proposed method, we carry out extensive numerical experiments. The experimental results illustrate that the method we proposed has great promise. It outperforms several existing methods in terms of computational efficiency and accuracy when solving large-scale nonlinear systems of monotone equations. Furthermore, our numerical experiments on sparse signal restoration problems further validate the effectiveness and

practicality of the method.

Acknowledgments

This research was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY23A010007 and the Huzhou Natural Science Foundation under Grant No. 2023YZ29.

Conflict of interest

The author declares to have no competing interests.

Use of Generative-AI tools declaration

The author declares they have not used Artificial Intelligence (AI) tools in the creation of this article.

References

- 1. S. Prajna, P. A. Parrilo, A. Rantzer, Nonlinear control synthesis by convex optimization, *IEEE Trans. Autom. Control.*, **49** (2004), 310–314. https://doi.org/10.1109/TAC.2003.823000
- 2. Y. P. Hu, Y. J. Wang, An efficient projected gradient method for convex constrained monotone equations with applications in compressive sensing, *J. Appl. Math. Phys.*, **8** (2020), 983–998. https://doi.org/10.4236/jamp.2020.86077
- 3. J. K. Liu, L. Du, A gradient projection method for the sparse signal reconstruction in compressive sensing, *Appl. Anal.*, **97** (2018), 2122–2131. https://doi.org/10.1080/00036811.2017.1359556
- 4. Y. H. Xiao, Q. Y. Wang, Q. J. Hu, Non-smooth equations based method for 11-norm problems with applications to compressive sensing, *Nonlinear Anal. Theory Methods Appl.*, **74** (2011), 3570–3577. https://doi.org/10.1016/j.na.2011.02.040
- 5. B. Ghaddar, J. Marecek, M. Mevissen, Optimal power flow as a polynomial optimization problem, *IEEE Trans. Power Syst.*, **31** (2016), 539–546. https://doi.org/10.1109/tpwrs.2015.2390037
- 6. G. Zhou, K. C. Toh, Superliner convergence of a Newton-type algorithm for monotone equations, *J. Optim. Theory Appl.*, **125** (2005), 205–221. https://doi.org/10.1007/s10957-004-1721-7
- 7. X. W. Fang, Q. Ni, M. L. Zeng, A modified quasi-Newton method for nonlinear equations, *J. Comput. Appl. Math.*, **328** (2018), 44–58. https://doi.org/10.1016/j.cam.2017.06.024
- 8. D. H. Li, M. Fukushima, A globally and superlinearly convergent Gauss-Newton based BFGS method for symmetric equations, *SIAM. J. Numer. Anal.*, **37** (1999), 152–172. https://doi.org/10.1137/s0036142998335704
- 9. G. L. Yuan, Z. X. Wei, X. W. Lu, A BFGS trust-region method for nonlinear equations, *Computing*, **92** (2011), 317–333. https://doi.org/10.1007/s00607-011-0146-z
- 10. M. V. Solodov, B. F. Svaiter, *A globally convergent inexact Newton method for systems of monotone equations*, In: M. Fukushima, L. Qi, Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, Springer, **22** (1998), 355–369. https://doi.org/10.1007/978-1-4757-6388-1_18

- 11. Q. Li, D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, *IMA J. Numer. Anal.*, **31** (2011), 1625–1635. https://doi.org/10.1093/imanum/drq015
- 12. W. Y. Cheng, A PRP type method for systems of monotone equations, *Math. Comput. Model.*, **50** (2009), 15–20. https://doi.org/10.1016/j.mcm.2009.04.007
- 13. A. M. Awwal, P. Kumam, K. Sitthithakerngkiet, A. M. Bakoji, A. S. Halilu, I. M. Sulaiman, et al., Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application, *AIMS Math.*, **6** (2021), 8792-8814. https://doi.org/10.3934/math.2021510
- 14. M. Ahookhosh, K. Amini, S. Bahrami, Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations, *Numer. Algorithms*, **64** (2013), 21–42. https://doi.org/10.1007/s11075-012-9653-z
- 15. M. Rivaie, M. Mamat, L. W. June, I. Mohd, A new class of nonlinear conjugate gradient coefficients with global convergence properties, *App. Math. Comput.*, **218** (2012), 11323–11332. https://doi.org/10.1016/j.amc.2012.05.030
- 16. X. W. Fang, Q. Ni, A new derivative-free conjugate gradient method for large-scale nonlinear systems of equations, *B. Aust. Math. Soc.*, **95** (2017), 500–511. https://doi.org/10.1017/s0004972717000168
- 17. X. W. Fang, A class of new derivative-free gradient type methods for large-scale nonlinear systems of monotone equations, *J. Inequal. Appl.*, **2020** (2020), 1–13. https://doi.org/10.1186/s13660-020-02361-5
- 18. P. Liu, H. Shao, Y. Wang, X. Wu, A three-term CGPM-based algorithm without Lipschitz continuity for constrained nonlinear monotone equations with applications, *Appl. Numer. Math.*, **175** (2022), 98–107. https://doi.org/10.1016/j.apnum.2022.02.001
- 19. N. Zhang, J. K. Liu, B. Tang, A three-term projection method based on spectral secant equation for nonlinear monotone equations, *Jpn. J. Ind. Appl. Math.*, **41** (2024), 617–635. https://doi.org/10.1007/s13160-023-00624-4
- 20. M. Abdullahi, A. B. Abubakar, S. B. Salihu, Global convergence via modified self-adaptive approach for solving constrained monotone nonlinear equations with application to signal recovery problems, *Rairo-oper. Res.*, **57** (2023), 2561–2584. https://doi.org/10.1051/ro/2023099
- 21. M. Abdullahi, A. B. Abubakar, K. Muangchoo, Modified three-term derivative-free projection method for solving nonlinear monotone equations with application, *Numer. Algorithms*, **95** (2024), 1459-1474. https://doi.org/10.1007/s11075-023-01616-8
- 22. S. Aji, A. M. Awwal, A. B. Muhammadu, C. Khunpanuk, N. Pakkaranang, B. Panyanak, A new spectral method with inertial technique for solving system of nonlinear monotone equations and applications, *AIMS Math.*, **8** (2023), 4442-4466. https://doi.org/10.3934/math.2023221
- 23. P. Gao, T. Wang, X. Liu, Y. Wu, An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications, *Comput. Appl. Math.*, **41** (2022), 89. https://doi.org/10.1007/s40314-022-01796-4

- 24. A. B. Abubakar, P. Kumam, H. Mohammad, A. H. Ibrahim, PRP-like algorithm for monotone operator equations, *Japan J. Indust. Appl. Math.*, **38** (2021), 805–822. https://doi.org/10.1007/s13160-021-00462-2
- 25. J. Sabiu, S. Sirisubtawee, An inertial Dai-Liao conjugate method for convex constrained monotone equations that avoids the direction of maximum magnification, *J. Appl. Math. Comput.*, **70** (2024), 4319–4351. https://doi.org/10.1007/s12190-024-02123-2
- 26. E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, *Math. Program.*, **91** (2001), 201–213. https://doi.org/10.1007/s101070100263

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)