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Abstract: In varying-coefficient models, accurately estimating the derivatives of coefficient functions
is crucial, particularly for optimal bandwidth selection and confidence interval construction. Despite
its importance, methods have largely ignored derivative estimation. In this paper, we addresse this
gap by proposing a novel weighted difference quotient approach to estimate both first and second
order derivatives of coefficient functions under the differences in the smoothness of the coefficient
functions. We derived the asymptotic properties of our estimator and introduced a data-driven tuning
parameter selection method. Simulations and real-data analyses confirmed the superior performance
of our approach compared to existing techniques. Our method provides the most accurate estimates,
effectively estimating both the first and second derivatives.
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1. Introduction

As an important extension of nonparametric models, varying-coefficient models have evolved
through three distinct methodological epochs since their conceptual inception by Shumway [1]. This
framework fundamentally reimagines traditional parametric specifications by enabling covariate effects
to fit the effects of predictors that change across levels of other variables, making them particularly
useful in scenarios with heterogeneous data or when relationships between variables are not constant.
Many statisticians proposed some effective methods to estimate it; see, e.g., Hastie and Tibshirani [2]
for the smooth spline method, Fan and Zhang [3] for the two-step method , Huang and Shen [4] for the
polynomial spline method, Cai et al. [5] for the local kernel smoothing method.

The derivative estimation of the coefficient functions is equally crucial. The first derivative of
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coefficient functions precisely characterizes the instantaneous rate of change at any given point and
facilitates the detection of inflection points of the coefficient function, while enabling the analysis
of marginal effect in economic [6]. Crucially, the second derivative constitutes the foundation for
statistical inference on coefficient functions [5], and its proper estimation is essential for constructing
valid confidence intervals. However, a large number of researchers have concentrated predominantly
on the estimation of the coefficient functions itself, inadvertently causing the derivative functions
of the coefficient functions to languish in relative obscurity. Within the framework of the varying-
coefficient models, the estimation of derivative functions has been restricted to the local polynomial
method [7] and the smoothing spline method [8]. These methods require the selection of smoothing
parameters. However, existing parameter selection approaches yield only satisfactory estimation
for the coefficient functions, while producing suboptimal results for derivative function estimation
under the same parameters. An intuitive explanation for the failure of smoothing parameters is
that coefficient functions and their derivatives often have different smoothness levels. The selected
smoothing parameters meet only requirements of the coefficient functions, resulting in poor estimation
performance for the derivative functions. Together, these considerations require the development of
novel estimation methods specifically designed for derivative functions of coefficient functions.

We now shift our focus to a special case of varying-coefficient models: nonparametric models.
Within the framework of nonparametric models, researchers have developed a diverse array of
derivative estimation methods that have significantly advanced the field. Consequently, we can
draw upon these estimation techniques to devise a novel approach to estimate derivative functions
of coefficient functions. In the realm of nonparametric models, local polynomial regression [9, 10]
and smoothing spline [11] remain the predominant methods for derivative estimation. Although both
methodologies necessitate the selection of a smoothing parameter, the challenge of optimally choosing
this parameter remains inadequately resolved. Furthermore, Wang and Zhou [12] employed the
Bayesian inference framework to estimate derivative functions under the assumption that the unknown
function follows a Gaussian process. In addition, Liu and Li [13] proposed a plug-in kernel ridge
regression estimator to estimate the derivative function.

Unlike these approaches, the difference-quotient method offers an alternative avenue for derivative
estimation in nonparametric models. Müller et al. [14] introduced derivative estimators based on
difference quotients. However, these estimators are characterized by high variance, which complicates
the smoothing process. To mitigate this issue, Charnigo et al. [15] proposed a linear combination to
reduce the variance of symmetric quotients, based on the assumption of an equispaced design between
independent variables. However, the random variation inherent in independent variables within random
design settings often invalidates theoretical conclusions derived from equispaced design assumptions,
limiting their applicability. In response to this, several researchers have developed novel procedures
in the equispaced design framework, which have produced promising results [16–18]. In pursuit of
a symmetric difference quotient applicable under random design conditions, Liu and Brabanter [19]
elucidated the theoretical properties of derivative estimation utilizing weighted symmetric quotients,
assuming that independent variables follow a standard uniform distribution. Empirical results
demonstrate the superiority of their method over conventional local polynomial and spline approaches.
Furthermore, Liu and Kong [20] constructed empirical derivatives using weighted symmetric difference
quotients to estimate derivatives under the condition of error correlation. In view of the great estimation
performance of the weighted symmetric quotients procedure in nonparametric models, we can draw on
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the weighted symmetric quotient method to estimate the derivatives of coefficient functions.
In this paper, we consider the estimation of the derivatives in a varying-coefficient model where

there are differences in the smoothness of the coefficient functions. First, based on the weighted
symmetric difference quotients idea, an effective method for estimating the first and second derivatives
of the coefficient functions is proposed under the case where the index variables are a uniform
random design. Compared to traditional local kernel estimation and spline methods that cannot select
appropriate smoothing parameters, we propose an effective approach to choosing the tuning parameters
in our estimator, which leads to superior estimation performance over conventional methods. Then, we
derive the corresponding theoretical properties and generalize the estimators to the case that index
variables are arbitrary distributions.

The paper is organized as follows. In Section 2, we show the first-order derivative estimation
of coefficient functions based on variance reducing weighted difference quotients and establish the
theoretical properties of conditional bias, variance. In addition, a method for selecting the optimal
tuning parameter is given. In Section 3, we extend the procedure to second-order derivatives of the
coefficient. In Sections 4 and 5, we perform Monte Carlo experiments and real data analysis to
compare the proposed methodology with the local polynomial regression and the two-step method.
Some conclusions are presented in Section 6, and the proof details of the theorems are provided in
Appendix.

2. First order derivative estimation

2.1. Estimation approach of first order derivative

From now on, let {(Yi; Ui, Xi1, · · · , Xip), i = 1, · · · , n} be a set of independent random samples from
a population (X,U,Y); then, we consider the varying coefficient model

Y =
p∑

j=1

a j(U)X j + ε, (2.1)

where Y is response variable, X1, · · · , Xp are covariate variables, U is index variable, a j(·)( j = 1, · · · , p)
are unknown coefficient functions, and ε is the regression error which satisfies E(ε|U, X1, · · · , Xp) = 0
and Var(ε|U, X1, · · · , Xp) = σ2.

Now, we consider the special case where the index variable U follows a uniform distribution. Let
U ∼ U(0, 1), where U(0, 1) is the standard uniform distribution between 0 and 1. In addition, let
U(i), i = 1, 2, · · · , n be the order statistics of U and âq(·), q = 1, 2, · · · , p be a two-step estimator [3] of
the coefficient functions which are obtained by using local linear fitting in the second step. Inspired
by the success of symmetric difference quotient methods [18–20] in nonparametric regression for
derivative estimation, we can construct weighted symmetric difference quotient estimators to estimate
the derivative of a j(·). Without loss of generality, we consider the derivative estimate of ap(·). If we
want to estimate the derivative of aq(·), we can swap the position of aq(·) with ap(·). Therefore, the
proposed weighted symmetric quotient estimators of first order derivative estimator for uniform order
statistics is

â(1)
p (U(i)) =

k∑
j=1

ωi, j

(
âp(U(i+ j)) − âp(U(i− j))

U(i+ j) − U(i− j)

)
, (2.2)
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where â(1)
p (U(i)) denotes the derivative estimator in U(i), and ωi, j denote weights and satisfy ωi, j ≥ 0,∑k

j=1 ωi, j = 1, then k is a given turning parameter.
The idea behind the symmetric quotient estimator in Equation (2.2) mainly originates from the

definition of a derivative. Given a point u0, the first-order derivative a(1)
1 (u0) = limδ→0

a1(u0+δ)−a1(u0−δ)
2δ .

Based on the definition, given a point U(i), we can naturally derive the following estimator for the first
order derivative

â(1)
p (U(i)) =

âp(U(i+1)) − âp(U(i−1))
U(i+1) − U(i−1)

, (2.3)

(2.3) represents the special case of (2.2) when k = 1. However, in this scenario, the estimator utilizes
only information from points U(i−1) and U(i+1), making it highly susceptible to noise interference.
To mitigate this, we require additional estimators analogous to the derivative definition, denoted
âp(U(i+ j))−âp(U(i− j))

U(i+ j)−U(i− j)
, and obtain a robust derivative estimator through weighted averaging, resulting in (2.2).

In particular, k in this context plays a role similar to the smoothing parameter in the estimation of
the local polynomial: when k is too small, excessive noise is introduced; When k is too large, the
estimator becomes overly smoothed. We conducted an experiment to illustrate the impact of varying k
on the estimation of the first-order derivative, the results of which are visualized in Figure 1. As shown
in Figure 1, when k = 1, the estimator shows significant fluctuations due to noise interference. In
contrast, when k = 120, excessive smoothing leads to poor estimation near the function’s peak. Only
when k = 50 does the estimator achieve satisfactory performance. Therefore, the choice of k is critical
in determining the quality of the estimator.
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Figure 1. The estimated first order functions of â(1)
1 (·). The samples Y = sin(5πU)X1 +

sin(2πU)X2 + ε, U follows a uniform distribution on [0, 1], (X1, X2) ∼ N(µ,Σ), where µ =
(0, 0)T , Σ = {(0)|i− j|}1≤i, j≤2, ε ∼ N(0, 0.1). The sample sizes are n = 800. The parameter
h1 = 0.05, h2 = 0.03, k = 1, 50, 120, ωi, j = 1/k. The red dashed curves: The results of k = 1;
the blue dot-dashed curves: The results of k = 50; the green dotted curves: The results of
k = 120; the black solid curves: True derivative function.
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Furthermore, we employ the two-step estimator instead of the local polynomial estimator, motivated
by potential differences in the smoothness of the coefficient functions in (2.2). When there is a
difference in the smoothness of the coefficient functions, local polynomial estimation may struggle
to provide accurate estimates, resulting in a substantial difference between the estimated and true
functions. This considerable estimation error can propagate to the estimation of (2.2), thereby
hindering the accuracy of the derivative function estimates. However, according to Fan and Zhang [3],
the two-step method effectively enhances the accuracy of the coefficient function estimation when their
smoothness varies. Consequently, we adopt the two-step method to obtain the estimator âp(·).

In (2.2), the weights ωi, j are unknown. Before delving into the analysis of these weights ωi, j, we
first consider the conditional bias and conditional variance order of â(1)

p (U(i)) when j = 1. Now, we
present the following assumptions.

(A1) E(X2s
j ) < ∞ holds for s > 2 and j = 1, · · · , p.

(A2) nh4
2 > nρ1 , for some ρ1 > 0. n−ρ2h−1

2 = op(h2
2), for some ρ2 > 0.

(A3) nhγ1/log(h1)→ ∞, for any γ > s/(s − 2).
(A4) The function K(t) is a finite symmetric density function with compact support.
(A5) The function rk j(u) = E(XkX j|U = u) has a bounded second derivative in a neighborhood of u0

and r(2)
k j (u0) , 0.

(A6) The coefficient a j(·) has a continuous second derivative.
Assumptions (A1) and (A3)-(A6) are often used in the varying-coefficient model literature [3, 5,

21]. Assumption (A2) imposes specific requirements on the convergence rate of h2, and generally the
condition holds as long as h2 = o(n−0.1) is satisfied for some ρ1 > 0 and ρ2 > 0.

Proposition 1. Under the assumptions (A1)-(A6) and h1 → 0, h2 → 0, k → ∞ as n → ∞, such that
nh1 → ∞, h1/h2 → 0, second derivative a(2)

j (·) is Lipschitz continuous, then let

D = (U1, · · · ,Un, X11, · · · , X1n, · · · , Xp1, · · · , Xpn)T ,

thus the asymptotic order of condition bias and condition variance of â(1)
p (U(i)) for j = 1 are given by

Bias
[
â(1)

p (U(i))|D
]
= op (1) , (2.4)

Var
[
â(1)

p (U(i))|D
]
= Op

(
n
h1

)
. (2.5)

According to Proposition 1, under j = 1, as n grows large, the bias term asymptotically converges
to zero, while the variance of the estimator grows without bound, resulting in an unreliable estimate.
To mitigate this risk of uncontrolled variance, the proposed weighting scheme effectively controls the
variance of the parameter â(1)

p (U(i)). The following proposition provides a method to determine the
optimal weights ωi, j.

Proposition 2. For k + 1 ≤ i ≤ n − k, the weights ωi, j that minimize an upper bound of conditional
variance of (2.2), satisfying

∑k
j=1 ωi, j = 1, are given by

ωi, j =
(U(i+ j) − U(i− j))2∑k
c=1(U(i+c) − U(i−c))2

. (2.6)
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Note that optimal weights are obtained by minimizing an upper bound of the conditional variance
of (2.2) rather than minimizing the conditional variance. However, in the next section, it is shown
that under the optimal weights given by Proposition 2, the conditional variance can be controlled with
appropriate parameter settings, and the performance of our proposed estimator is better than the method
in simulation.

Remark 1. Our estimator is formulated under the assumption that the index variable follows
a standard uniform distribution. In particular, this simplifying assumption aligns with established
practices in the literature on varying-coefficient modeling [21–23], where researchers often impose
uniformity on the index variable for empirical implementation. Although this convention facilitates
tractable analysis, we explicitly address its limitations in the following sections by deriving derivative
estimates when the variable follows nonuniform distributions.

2.2. Asymptotic properties of the first-order derivative estimator

We establish the upper bounds of asymptotic conditional bias and variance of our proposed
estimator (2.2) for the interior points k + 1 ≤ i ≤ n − k. Now, we will use the following notation.
Define

µm =

∫
K(t)tmdt, M = sup

t
K(t),

and

r−pp = in f
U∈[0,1]

E(X2
p|U),

r+dp = sup
U∈[0,1]

∣∣∣∣E(XdXp|U)
∣∣∣∣,

r∗dp = sup
U∈[0,1]

∣∣∣∣eT
d,p(E(XXT |U))−1ep,p

∣∣∣∣,
for d = 1, · · · , p − 1.

Theorem 1. Under assumptions (A1)-(A6) and h1 → 0, h2 → 0, k → ∞ as n→ ∞, such that nh1 → ∞,
h1/h2 → 0, k2/n2h2 → 0, the upper bounds of conditional bias and the conditional variance of âp(U(i))
are given by ∣∣∣∣Bias

[
â(1)

p (U(i))|D
]∣∣∣∣ ≤ sup

u∈[0,1]

∣∣∣a(2)
p (u)

∣∣∣
×

{
3k(k + 1)

4(n + 1)(2k + 1)
+ h2

2µ2
3(n + 1)
2(2k + 1)

}
(1 + op(1)) (2.7)

and

Var
[
â(1)

p (U(i))|D
]
≤

9(n + 1)2Mσ2

(2k + 1)2nr−pp

 1
h2
+

1
h1

p−1∑
d=1

r+dpr∗dp

 (1 + op(1)). (2.8)

As demonstrated in Theorem 1, we establish asymptotic upper bounds for conditional bias and
conditional variance. This corollary provides a precise asymptotic order for conditional bias and
conditional variance, thereby characterizing their exact rates of convergence.
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Corollary 1. Under assumptions (A1)-(A6) and h1 → 0, h2 → 0, k → ∞ as n → ∞, such that nh1 →

∞, h1/h2 → 0, k2/n2h2 → 0, then the exact asymptotic order for conditional bias and conditional
variance of â(1)

p (U(i)) are given by

Bias
[
â(1)

p (U(i))|D
]
= Op

(
max

{
h2

2,
k
n

})
, (2.9)

Var
[
â(1)

p (U(i))|D
]
= Op

(
n

k2h1

)
. (2.10)

According to Corollary 1, we can obtain

MS E
[
â(1)

p (U(i))|D
]
= Bias2

[
â(1)

p (U(i))|D
]
+ Var

[
â(1)

p (U(i))|D
]

= Op

(
max

{
h4

2,
k2

n2 ,
n

k2h1

})
. (2.11)

Now, we compare the MSE of this method with those of the two-step method and the local
polynomial method. According to the proof of Fan and Zhang’s theorem [3], when a j(·) has a
continuous second order derivative, we can obtain the convergence rates of the bias and variance
of the estimated first-order derivative, where the local linear fitting is employed in the second

step, thus Bias
[
â(1)

tse,p(U(i))|D
]
= Op

(
max

{
h2

tse,2,
h2

tse,1

htse,2

})
and Var

[
â(1)

tse,p(U(i))|D
]
= Op

(
1

nh3
tse,2

)
, then

MS E
[
â(1)

tse,p(U(i))|D
]
= Op

(
max

{
h4

tse,2,
h4

tse,1

h2
tse,2
, 1

nh3
tse,2

})
. If we select h2 = O(n−0.13), h1 = O(n−0.14),

htse,2 = O(n−0.2) and htse,1 = O(n0.21), we have MS E
[
â(1)

tse,p(U(i))|D
]
= Op

(
n−0.4

)
. Thus, we need only

select k = O(n−l) (0.77 ≤ l ≤ 0.8), then MS E
[
â(1)

p (U(i))|D
]
= op(n−0.4). Notice that htse,2 = O(n−0.2)

is optimal to minimize the mean squared error (MSE) of the coefficient function in the two-step
estimation method. Generally, existing bandwidth selection methods aim to maximize the accuracy
of the coefficient function estimation. Therefore, our choice of htse,2 = O(n−0.2) is theoretically
justified. Therefore, when the parameters k, h1, and h2 are appropriately chosen, the convergence
rate of MS E

[
â(1)

p (U(i))|D
]

is superior to that of MS E
[
â(1)

tse,p(U(i))|D
]
.

For local polynomial estimation based on linear expansion, Bias
[
â(1)

lpe,p(U(i))|D
]
= Op

(
h2

)
and

Var
[
â(1)

lpe,p(U(i))|D
]
= Op

(
1

nh3

)
, MS E

[
â(1)

lpe,p(U(i))|D
]
= Op

(
max

{
h4, 1

nh3

})
. If we select h = O(n−0.2),

h2 = O(n−0.13) and h1 = O(n−0.14), we have MS E
[
â(1)

lpe,p(U(i))|D
]
= Op

(
n−0.4

)
. Then, by appropriately

choosing k = O(n−l) (0.77 ≤ l ≤ 0.8), we can ensure MS E
[
â(1)

p (U(i))|D
]
= op(n−0.4). The bandwidth

h = O(n−0.2) also follows the optimal bandwidth that minimizes the mean squared error (MSE) of the
coefficient function in the local polynomial framework.

We complete the theoretical analysis of â(1)
p (U(i), but the method for obtaining the parameter k

remains unknown in (2.2). According to the analysis in Section 2.1, parameter k controls the estimation
performance. Notice that the MSE measures the estimation performance of an estimator and controls
the bias-variance trade-off of the estimator. Therefore, we can minimize the upper bound of the
conditional MSE to choose the optimal turning parameter k.

Corollary 2. Under the assumptions of Theorem 1, the optimal k is obtained by minimizing the
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following formula

kopt = arg min
k∈N+

{ (
sup

u∈[0,1]

∣∣∣a(2)
p (u)

∣∣∣ { 3k(k+1)
2(n+1)(2k+1) + h2

2µ2
3(n+1)
4(2k+1)

})
+

9(n+1)2 Mσ2

(2k+1)2nr−pp

{
1
h2
+ 1

h1

∑p−1
d=1 r+dpr∗dp

} }
. (2.12)

Although a fast and easy parameter selection method is provided in Corollary 2, some unknown
quantities need to be estimated. The error variance can be estimated by

σ̂2 =
1

n − 1

n∑
i=1

(Yi −

p∑
q=1

âq(Ui)Xiq)2.

The sup
u∈[0,1]

∣∣∣a(2)
p (u)

∣∣∣ can be estimated using the two-step method with a local polynomial expansion of

3 order in the second step. The E(XdXp|U) can be obtained based on observation (Ui, XidXip) using
the local linear fitting with bandwidth that is selected by cross-validation. Then, r−pp, r

+
dp, r

∗
dp can be

calculated by taking the maximum or minimum of the fitting values of the corresponding E(XdXq|U).
By adding the estimators above, the optimal value kopt can be obtained by searching the grid over the
set of integers [1, ⌊ n−1

2 ⌋], where ⌊·⌋ denotes round down.
Due to limitations in these smoothing parameter selection schemes, the first order derivatives of the

coefficient functions cannot be reliably estimated for local polynomial estimation, two-step methods,
and spline estimation approaches. In Corollary 2, we propose an effective approach for selecting
the parameter k. Subsequent simulation studies demonstrate the validity of our parameter selection
method, showing that it yields derivative estimates with superior accuracy compared to alternative
approaches. Furthermore, it should be noted that the estimation of the derivatives also requires the
estimation of âp(Ui), which involves the selection of smoothing parameters h1 and h2. For this purpose,
cross-validation methods are sufficient, as they adequately meet the requirement of producing a good
estimate of âp(Ui). Our approach needs only ensure the proper estimation of âp(Ui), a requirement that
standard cross-validation techniques can satisfy fully.

2.3. Smoothing the estimators and generalizing results and arbitrary distributions

In the previous discussion, we were only able to obtain the first-order derivative estimate at point Ui,
i = k+1, · · · , p−k, and estimates at other points could not be obtained using the current method. Within
the framework of univariate nonparametric estimation, by treating Ui as the covariate variable and
âp(Ui) as the response variable, we can apply nonparametric estimation techniques to fit the first-order
derivative, thus estimating the first-order derivative at other points. According to the local polynomial
estimation for nonparametric regression [7], given an arbitrary point u0 ∈ [0, 1] and kernel function
K(·), we can obtain the derivative estimator through the following equation,

ã(1)
p (u0) = eT

1,g

(
UT (u0)W(u0)U(u0)

)−1
UT (u0)W(u0)â(1)

p , (2.13)

where g represents the order of local polynomial fitting, e1,g represents a column vector of length g,
and the first element is 1, and the remaining elements are 0,

W(u0) = Diag
(
Kh(U(k+1) − u0), · · · ,Kh(U(n−k) − u0)

)
, Kh(·) = K(·)/h,
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U(u0) =


1 U(k+1) − u0 · · · (U(k+1) − u0)p

1 U(k+2) − u0 · · · (U(k+2) − u0)p

...
...

...

1 U(n−k) − u0 · · · (U(n−k) − u0)p

 , â(1)
p =


â(1)

p (U(k+1))
â(1)

p (U(k+2))
...

â(1)
p (U(n−k))

 .
Note that u0 is a predetermined point. Immediately after specifying u0 and the order statistics U(i), we
can directly derive U(u0) and W(u0).

However, in estimating local polynomials, a smoothing parameter h must be determined. Here, we
use the plug-in bandwidth selector [10], which is a simple and effective bandwidth selection method.
In subsequent simulations, we also compute the smoothed derivative estimates. The improvement in
the accuracy of the estimation after smoothing further demonstrates the effectiveness of the smoothing
method we propose.

In addition, the index variables U do not follow a standard uniform distribution, which means that
the above estimation method fails under other distributions. In the frame of nonparametric derivative
estimation, to generalize covariate Z with unknown distribution F, we can use probability integral
transformation (PIT)

F(Z) ∼ U(0, 1), (2.14)

where F(·) is continuous, such that the density function f (x) = F(1)(x) exists and let f be bounded
away from zero. This means that the index variables U with the distribution function F satisfying the
above conditions can be transformed to an index variable following a uniform distribution. Now, the
index variable with unknown distribution denotes Z. Then, in the varying coefficient models, we use
the chain rule

p∑
q=1

d
dZ

aq(Z)Xq =

p∑
q=1

drq(U)
dU

dU
dZ

Xq = f (Z)
p∑

q=1

r(1)
q (U)Xq,

where aq(Z) = rq(F(Z)). In practice, since the distribution F(·) and density f both are unknown, the
kernel density estimator [24] can be used to estimate the distribution and density to obtain f̂ (·) and F̂(·)
based on the plug-in bandwidth h [10], namely,

f̂ (z) =
1

nh

n∑
i=1

K
(Zi − z

h

)
, F̂(z) =

1
n

n∑
i=1

∫ Zi−z
h

−∞

K(z)dz. (2.15)

The detailed derivative estimation algorithm in Table 1 is given below.

Table 1. Algorithm 1.

Step 1. Input Z, using kernel density estimation to obtain estimator F̂(Z), f̂ (Z),
and construct new index variable U = F̂(Z).

Step 2. Input X,U,Y ,
using corollary 2 and formula (2.2) to obtain optimal k and r̂(1)

q (U).
Step 3. Let â(1)

q (Z) = f̂ (Z)r̂(1)
q (U).

Establishing the estimation of a(1)
q (·) under index variable is unknown.
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3. Second order derivative estimation

3.1. Estimation approach and asymptotic results of a second derivative

In varying-coefficient models, many researchers are also interested in the second derivative; for
example, in analyzing the curvature of certain coefficient functions. However, higher-order derivatives
of coefficient functions become more difficult to estimate, and the performance of the traditional
estimation method becomes worse and worse with increasing derivative order. In order to obtain a
better estimator of the second derivative estimator of coefficient functions, we proposed second order
derivative estimator for uniform order statistics, as

â(2)
p (U(i)) = 2

k2∑
j=1

ωi, j,2


âp(U(i+ j+k1))−âp(U(i+ j))

U(i+ j+k1)−U(i+ j)
−

âp(U(i− j−k1))−âp(U(i− j))
U(i− j−k1)−U(i− j)

U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j)

 . (3.1)

where â(2)
p (U(i)) denotes the derivative estimator in U(i), and ωi, j,2 denote weights and satisfy ωi, j,2 ≥ 0,∑k

j=1 ωi, j,2 = 1, then k1, k2 are given turning parameter.
The weightωi,2 =

{
ωi,1,2, · · · , ωi,k2,2

}T determination method is analogous to the first order derivative
estimation, so the optimal weights can be derived by minimizing the conditional variance of â(2)

p (U(i)).
Thus, we obtain the optimal weights ωi,2 by solving the following optimization problem

ω̂i,2 = arg min
ωi, j,2 j=1,··· ,k2

Var
[
â(2)

p (U(i))|D
]
. (3.2)

Proposition 3. Var
[
â(2)

p (U(i))|D
]

is a quadratic function of ωi,2 =
{
ωi,1,2, · · · , ωi,k2,2

}
, namely,

Var
[
â(2)

p (U(i))|D
]
= σ2ωT

i,2Σ0ωi,2, (3.3)

where Σ0 is a k2 × k2 positive semidefinite matrix, and the specific expression for Σ0 can be found in 6.

According to Proposition 3, we can know that the conditional variance of â(2)
p (U(i)) can be expressed

as a quadratic function of ωi, j,2, which inspires us to use a quadratic programming algorithm to
solve (3.2). Consequently, optimal weights ω̂i,2 can be derived by solving the following quadratic
programming problem with the given samples:

ω̂i,2 = arg min∑k2
j=1 ωi, j,2=1, ωi, j,2≥0

ωT
i,2Σ0ωi,2. (3.4)

There are several well-established algorithms to solve quadratic programming problems; in this
paper, we adopt the dual interior point method proposed by [25] to optimize and solve the equation
(3.4). This method has been implemented in the R package ’LowRankQP’ specifically for solving
quadratic programming problems, thus we choose to use the R package ’LowRankQP’ to solve the
optimization problem. In practice, the computational speed depends on the tuning parameter k2. We
conduct a simulation experiment to evaluate the time required to obtain â(2)

p (U(i)), comparing it with
the two-step method involving triple expansion in its second step. The result is shown in Table 2.
All computations are performed on an Intel(R) Xeon(R) CPU E5-2683 v4 processor (2.10 GHz base
frequency). Table 2 reveals that the computational speed of our method is slightly slower than that of
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the two-step approach, indicating that its performance remains acceptable. Furthermore, employing
faster optimization techniques could further reduce computation time.

Table 2. The CPU computation time (in seconds) of â(2)
1 (U(i)), k1 + k2 + 1 ≤ i ≤ n − k1 − k2.

The samples Y = sin(6πU)X1 + sin(3πU)X2 + ε, U follows a uniform distribution on [0, 1],
(X1, X2) ∼ N(µ,Σ), where µ = (0, 0)T , Σ = {(0.1)|i− j|}1≤i, j≤2, ε ∼ N(0, 0.4). The sample sizes
are n = 800. The parameter h1 = 0.04, h2 = 0.05, k1 = 20.

k2 = 2 k2 = 5 k2 = 10 k2 = 15 k2 = 20
Our method 12.3 12.8 13.0 13.6 13.8

Two-step estimation 12.2 12.0 12.2 12.0 11.9

However, there is a disadvantage that optimal weights are obtained using the weight of the quadratic
programming algorithm, that is, we cannot get a theoretical expression for the weights ωi, j,2, which
means that difficulties arise for the theoretical analysis of (3.1). Thus, we assume that the weights ωi, j,2

are known for the following theorem.

Theorem 2. Under assumptions (A1)–(A5), and h1 → 0, h2 → 0, k1 → ∞ as n → ∞, such that
nh1 → ∞, h1/h2 → 0, k2

1/n
2h2 → 0. Besides, we assume ap(·) has a third-order derivative a(3)

p (·), and
the weights ωi, j,2 are known. The absolute conditional bias and conditional variance of (3.1) are∣∣∣∣Bias

[
â(2)

p (Ui)|D
]∣∣∣∣ ≤ sup

u∈[0,1]

∣∣∣a(3)
p (u)

∣∣∣
×

k2∑
j=1

ωi, j,2

 j2 + jk1 +
1
3k2

1

(n + 1)(2 j + k1)
+ h2

2µ2
n + 1

4 j + 2k1

 (1 + op(1)), (3.5)

and

Var
[
â(2)

p (U(i))|D
]
≤

(n + 1)4Mσ2

k2
1nr−pp

k2∑
j=1

k2∑
m=1

ωi, j,2ωi,m,2

(2 j + k1)(2m + k1)

×

 2
h2
+

2
h1

 p−1∑
d=1

r+dpr∗dp +

p−1∑
d=1

RdpR
∗
dp


 (1 + op(1)), (3.6)

where Rdp = max{0, sup
U∈[0,1]

E(XdXp|U)},R∗dp = max{0, sup
U∈[0,1]

eT
d,p(E(XXT |U))−1ep,p}, and µm, M, r−pp, r+dp,

r∗dp maintain identical definitions to those specified in Theorem 1.

Corollary 3. Under the assumptions of Theorem 2, and k2 is bounded, then the exact asymptotic order
for conditional bias and conditional variance of â(2)

p (U(i)) are given by

Bias
[
â(2)

p (U(i))|D
]
= Op

(
max

{
n
k1

h2
2,

k1

n

})
, (3.7)

Var
[
â(2)

p (U(i))|D
]
= Op

(
n3

k4
1h1

)
. (3.8)
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3.2. Optimal parameter selection for k1 and k2

Similarly to parameter k for the first-order derivative estimation, parameter k1, k2 should also be
selected, which controls the bias-variance trade-off. Based on the upper bound of conditional MSE,
the following corollary provides the selection method of k1, k2.

Corollary 4. Under the assumptions of Theorem 2, we can obtain optimal k1, k2 that minimizes the
upper bound of conditional MSE is

(k1,k2)opt = arg min
k1,k2∈N+

1
n

n∑
i=1

[  sup
u∈[0,1]

∣∣∣a(3)
p (u)

∣∣∣ k2∑
j=1

ωi, j

 j2 + jk1 +
1
3k2

1

(n + 1)(2 j + k1)
+ h2

2µ2
n + 1

4 j + 2k1




2

+
(n + 1)4Mσ2

k2
1nr−pp

k2∑
j=1

k2∑
m=1

ωi, jωi,m

(2 j + k1)(2m + k1)

 2
h2
+

2
h1

 p−1∑
d=1

r+dpr∗dp +

p−1∑
d=1

RdpR
∗
dp



]}
. (3.9)

The unknown quantity sup
u∈[0,1]

∣∣∣a(3)
p (u)

∣∣∣ can be obtained by the two-step method with local polynomial

expansion of order p = 4 in the second step. Moreover, Rdp,R
∗
dp are estimated in a way similar to r∗dp.

The estimation methods for the remaining unknown quantity σ2, r−pp, r
+
dp, r

∗
dp are the same as those in

Corollary 2. The optimal value k1, k2 can then be obtained by a grid search.

3.3. Smoothing the second order estimators and generalizing it to arbitrary distributions

Similar to (2.13), we can also obtain the smooth estimator provided at arbitrary point u0 ∈ [0, 1] by
local polynomial smoothing, that is,

ã(2)
p (u0) = eT

1,g

(
UT

2 (u0)W2(u0)U2(u0)
)−1

UT
2 (u0)W2(u0)â(2)

p , (3.10)

where g represents the order of local polynomial fitting, e1,g represents a column vector of length g,
and the first element is 1 and the remaining elements are 0,

W2(u0) = Diag
(
Kh(U(k1+k2+1) − u0), · · · ,Kh(U(n−k1−k2) − u0)

)
,

U2(u0) =


1 U(k1+k2+1) − u0 · · · (U(k1+k2+1) − u0)p

1 U(k1+k2+2) − u0 · · · (U(k1+k2+2) − u0)p

...
...

...

1 U(n−k1−k2) − u0 · · · (U(n−k1−k2) − u0)p

 , â2
p =


â(2)

p (U(k1+k2+1))
â(2)

p (U(k1+k2+2))
...

â(2)
p (U(n−k1−k2))

 .
The smoothing parameter h is chosen in the same way as in Section 3.3.

To generalize to arbitrary distributions for the index variables U, we still use the Probability Integral
Transform (PIT) as in (2.14) to transform the index variables Z to U. Then, let aq(Z) = rq(F(Z)), the
second derivative of coefficient functions with respect to Z is

d2

dZ2 aq(Z) =
d

dZ

(
f (Z)r(1)

q (U)
)
= f (1)(Z)r(1)

q (U) + f (Z)r(2)
q (U),

where the estimation of unknown f (1)(x) can be estimated using the kernel density derivative estimator.
To take a similar procedure to Algorithm 1, we can obtain

â(2)
q (Z) = f̂ (1)(Z)r̂(1)

q (U) + f̂ (Z)r̂(2)
q (U). (3.11)
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4. Simulation studies

4.1. Simulation 1

In this section, we perform simulations to demonstrate the performance of the proposed methods.
We consider the following varying coefficient model

Y = a1(U)X1 + a2(U)X2 + a3(U)X3 + a4(U)X4 + ε.

For the above model, two examples are considered. The true coefficient functions in two examples
are given in Table 3 based on the smoothness difference. In Example 1, the smoothness of a2(U) and
a3(U) is the same, whereas in Example 2, the smoothness of all the coefficient functions differs.

Table 3. True coefficient functions in two examples.

True Functions Example 1 Example 2
a1(U) sin(6πU) sin(5πU) + 2U
a2(U) sin(3πU) sin(3πU)
a3(U) cos(3πU) 9U3 − 5U2 + 2U
a4(U) sin(πU) sin(πU)

In two examples, U follows a uniform distribution on [0, 1]. For X1 and X2, we set
(X1, X2, X3, X4)T ∼ N(µ,Σ),where µ = (0, 0, 0, 0)T , Σ = (σi j)4×4 and σi j = ρ

|i− j|, ρ = 0.1 or 0.5.
Here, we set (X1, X2, X3, X4), U, and ε to be independent of each other. Let the random error term ε

follow a normal distribution with mean 0 and variance σ2, and σ2 is chosen so that the signal-to-noise
ratio is 5:1, namely,

σ2 = 0.2var{E(Y |U, X1, X2, X3, X4)}.

For each example, we perform 200 simulations with sample sizes n = 400, 800 in each case. To
evaluate the performance of the symmetric difference quotients method (SQE), the performance of
the symmetric difference quotients smoothing method (S-SQE) of order g = 3, the local polynomial
estimator (LPE) of order g = 3, and the two-step estimator (TSE), where we use local polynomial
fitting of order g = 3 in the second step, which are also computed. Additionally, we incorporate
a smoothing spline estimator (SPE) based on B-spline, where the derivative estimate can be obtained
directly by differentiating the B-spline basis functions. For SQE, optimal k and k1, k2 are selected based
on Corollary 2 and 4 in a set {1, 2, . . . , ⌊n/2⌋} and a search space {1, 2, . . . , ⌊n/4⌋}⊗{1, 2, . . . , ⌊n/4⌋}. For
LPE, the optimal bandwidth hLLE is selected by the cross-validation method. In the two-step estimation,
the initial bandwidth h0 = 0.5hLLE is taken in the first step, and then we use cross-validation to select
the bandwidth in the second step. Furthermore, for SPE, we employ equidistant knots, with the number
of knots selected via cross-validation. For each method, the Epanechnikov kernel function is used, i.e.,
K(t) = 0.75(1− t2)+. All the aforementioned numerical simulations are implemented in the R software.

To systematically compare the estimation performance between methodologies, we calculate the
mean absolute error (MAE) of the derivative estimates for each coefficient function. A critical
challenge arises from the inherent scale incompatibility between coefficient functions. As their
derivatives exhibit distinct dynamic ranges (varying upper and lower bounds), direct comparison of
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raw MAE values becomes dimensionally inconsistent. To resolve this, we implement a range-based
standardization procedure that normalizes MAE values relative to the characteristic scale of each
derivative function. Furthermore, we address the boundary effect paradox observed in LPE, TSE, and
SPE, where derivative estimation accuracy deteriorates severely near domain boundaries. In addition,
SQE provides reliable estimates only within the interior region of the domain. Consequently, to ensure
a fair comparison, we exclude boundary points and focus on evaluating performance exclusively within
the interior domain. Thus, the performance measure is defined using the adjusted mean absolute error.

MAE1 =
1

n − 2k

n−k∑
i=k+1

∣∣∣â(1)
p (Ui) − a(1)

p (Ui)
∣∣∣ / {max(a(1)

p (U)) −min(a(1)
p (U))

}
, (4.1)

and

MAE2 =
1

n − 2(k1 + k2)

n−k1−k2∑
i=k1+k2+1

∣∣∣â(2)
p (Ui) − a(2)

p (Ui)
∣∣∣ / {max(a(2)

p (U)) −min(a(2)
p (U))

}
. (4.2)

We also calculate the average adjusted mean absolute error of the coefficient functions, denoted as
mean. For each method, the mean adjusted mean absolute error based on 200 simulations is presented
in Tables 4 and 5. Moreover, in Figures 2 and 3, we present the graphs of the first- and second-
order derivatives of the estimated coefficient functions for Example 2, when n = 800 and ρ = 0.1.
Additionally, Figures 4 and 5 present boxplots of the root mean squared error (RMSE) for the derivative
function estimates under the same examples.

The results in Tables 4 and 5 show that, in terms of the mean adjusted mean absolute error, the
average error of the SQE method is significantly smaller than that of the TSE, SPE and LPE methods,
thus highlighting the effectiveness of the proposed approach. In the estimation of the derivative with
the highest smoothness, LPE consistently performs the worst. This is because the local polynomial
method can only employ a fixed bandwidth when estimating the derivative, resulting in poor estimates
for the derivatives of coefficient functions with higher smoothness. The limited bandwidth leads
to an inadequate approximation of the derivative, especially for functions with higher smoothness.
Furthermore, SPE consistently yields poor derivative estimates for coefficient functions with the lowest
smoothness, demonstrating that SPE should generally be avoided for derivative estimation. In addition,
the estimation error of S-SQE relative to SQE is smaller, demonstrating the effectiveness of our
smoothing method in further improving estimation accuracy and reducing the estimation error. As seen
in Example 1, the estimation of the SQE and S-SQE method in ρ = 0.1 is better than the estimation
at ρ = 0.5. However, the mean of the adjusted mean absolute error of SQE and S-SQE in the case
ρ = 0.5 does not increase much compared to the case ρ = 0.1. However, the LPE, TSE, and LPE
methods exhibit a substantial decrease in the accuracy of the estimation as the correlation increases,
suggesting that our method is less sensitive to the correlation between variables. Furthermore, it can
be seen that the error in the second-order derivative is larger than that in the first-order derivative, but
SQE and S-SQE are able to give an estimate with lower error. In addition, as the sample size increases,
the adjusted mean absolute error of the four methods becomes smaller.
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Table 4. Means of adjusted mean absolute error of first order derivative based on 200
samples.

n = 400 n = 800
Method

â(1)
1 (·) â(1)

2 (·) â(1)
3 (·) â(1)

4 (·) mean â(1)
1 (·) â(1)

2 (·) â(1)
3 (·) â(1)

4 (·) mean
Example 1 ρ = 0.1

SQE 0.077 0.065 0.061 0.058 0.065 0.059 0.061 0.053 0.036 0.052
S-SQE 0.068 0.057 0.059 0.058 0.060 0.051 0.049 0.046 0.036 0.046

LPE 0.056 0.062 0.062 0.189 0.092 0.038 0.061 0.064 0.183 0.086
TSE 0.114 0.063 0.060 0.080 0.079 0.081 0.057 0.059 0.036 0.057
SPE 0.309 0.101 0.075 0.067 0.138 0.309 0.038 0.061 0.032 0.111

Example 1 ρ = 0.5
SQE 0.081 0.076 0.065 0.060 0.071 0.063 0.072 0.063 0.040 0.059

S-SQE 0.068 0.068 0.062 0.059 0.064 0.058 0.060 0.055 0.040 0.053
LPE 0.059 0.080 0.079 0.216 0.108 0.047 0.060 0.062 0.159 0.082
TSE 0.122 0.111 0.111 0.056 0.100 0.075 0.079 0.073 0.037 0.066
SPE 0.308 0.102 0.091 0.127 0.157 0.309 0.047 0.063 0.034 0.113

Example 2 ρ = 0.1
SQE 0.077 0.067 0.098 0.067 0.077 0.048 0.052 0.011 0.037 0.037

S-SQE 0.075 0.060 0.098 0.066 0.075 0.042 0.050 0.011 0.037 0.035
LPE 0.054 0.063 0.390 0.190 0.176 0.034 0.049 0.047 0.140 0.067
TSE 0.162 0.074 0.270 0.090 0.150 0.068 0.073 0.014 0.036 0.047
SPE 0.303 0.086 0.074 0.043 0.126 0.301 0.058 0.052 0.035 0.112

Example 2 ρ = 0.5
SQE 0.078 0.078 0.243 0.067 0.117 0.061 0.067 0.082 0.041 0.063

S-SQE 0.071 0.071 0.240 0.066 0.112 0.054 0.062 0.082 0.041 0.060
LPE 0.059 0.081 0.501 0.224 0.217 0.046 0.056 0.338 0.145 0.146
TSE 0.172 0.127 0.322 0.095 0.179 0.089 0.119 0.114 0.040 0.091
SPE 0.304 0.105 0.097 0.132 0.160 0.301 0.063 0.066 0.037 0.117
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Table 5. Means of adjusted mean absolute error of second order derivative based on 200
samples.

n = 400 n = 800
Method

â(2)
1 (·) â(2)

2 (·) â(2)
3 (·) â(2)

4 (·) mean â(2)
1 (·) â(2)

2 (·) â(2)
3 (·) â(2)

4 (·) mean
Example 1 ρ = 0.1

SQE 0.102 0.110 0.083 0.220 0.129 0.105 0.089 0.12 0.119 0.100
S-SQE 0.085 0.097 0.081 0.217 0.120 0.065 0.091 0.081 0.118 0.089
LPE 0.153 0.078 0.082 0.583 0.224 0.110 0.083 0.083 0.118 0.237
TSE 0.139 0.079 0.080 0.213 0.128 0.099 0.076 0.081 0.109 0.089
SPE 0.327 0.144 0.167 0.198 0.309 0.322 0.068 0.138 0.086 0.153

Example 1 ρ = 0.5
SQE 0.113 0.101 0.092 0.185 0.123 0.085 0.105 0.104 0.112 0.101

S-SQE 0.087 0.0.094 0.090 0.184 0.114 0.071 0.095 0.095 0.111 0.093
LPE 0.154 0.090 0.092 0.658 0.248 0.140 0.076 0.077 0.480 0.193
TSE 0.148 0.136 0.136 0.168 0.147 0.088 0.100 0.090 0.103 0.095
SPE 0.325 0.141 0.175 0.548 0.297 0.323 0.082 0.137 0.082 0.156

Example 2 ρ = 0.1
SQE 0.077 0.097 0.071 0.157 0.117 0.092 0.089 0.062 0.120 0.090

S-SQE 0.075 0.109 0.082 0.218 0.125 0.073 0.084 0.062 0.119 0.085
LPE 0.140 0.084 0.369 0.533 0.280 0.122 0.0749 0.297 0.416 0.227
TSE 0.230 0.089 0.190 0.199 0.177 0.099 0.098 0.081 0.104 0.095
SPE 0.326 0.190 0.049 0.094 0.165 0.301 0.058 0.052 0.035 0.112

Example 2 ρ = 0.5
SQE 0.100 0.123 0.19 0.233 0.162 0.096 0.134 0.074 0.125 0.107

S-SQE 0.093 0.115 0.189 0.232 0.157 0.078 0.119 0.074 0.125 0.099
LPE 0.134 0.094 0.470 0.609 0.327 0.133 0.082 0.081 0.402 0.235
TSE 0.242 0.257 0.205 0.201 0.201 0.107 0.121 0.097 0.111 0.109
SPE 0.311 0.228 0.062 0.535 0.284 0.327 0.125 0.048 0.094 0.148

From Figures 2 and 3, the estimation of the first-order derivatives of four methods is similar.
However, the estimation of the fourth function in the second-order derivatives estimated by the other
methods is poor, whereas S-SQE estimates the general shape of the functions. In addiction, the LPE
and SPE methods show significantly poorer performance in estimating the second-order derivative
compared to the TSE and S-SQE methods, which is attributed to the chosen bandwidth not being
optimal for second-order derivative estimation. According to 4 and 5, the boxplot width of S-SQE is
nearly the smallest among all methods, while maintaining a stable width across all derivative functions
without observable outliers. This demonstrates the superior stability of our proposed estimation
method.

AIMS Mathematics Volume 10, Issue 5, 11592–11626.



11608

0.2 0.4 0.6 0.8

−
2
0

−
1
0

0
1
0

2
0

3
0

TRUE

SQE

LPE

TSE

SPE

0.2 0.4 0.6 0.8

−
1
0

−
5

0
5

1
0

TRUE

SQE

LPE

TSE

SPE

0.2 0.3 0.4 0.5 0.6 0.7 0.8

−
3

−
2

−
1

0
1

2
3 TRUE

SQE

LPE

TSE

SPE

0.2 0.3 0.4 0.5 0.6 0.7 0.8

−
3

−
2

−
1

0
1

2
3 TRUE

SQE

LPE

TSE

SPE

â
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Figure 2. The average of the first order function estimations based on Example 2 and sample
size n = 800 and ρ = 0.1. The green solid curves: The results of S-SQE; The red dot-dashed
curves: The results of TSE; The blue dotted curves: The results of LPE; The purple dot-long
dashed curves: The results of SPE; The black solid curves: True function.
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Figure 3. The average of the second order function estimations based on Example 2 and
sample size n = 800 and ρ = 0.1. The green solid curves: The results of S-SQE; The red
dot-dashed curves: The results of TSE; The blue dotted curves: The results of LPE; The
purple dot-long dashed curves: The results of SPE; The black solid curves: True function.
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Figure 4. The boxplot of RMSE for the first order function estimations based on Example 2
and sample size n = 800 and ρ = 0.1.

AIMS Mathematics Volume 10, Issue 5, 11592–11626.



11610

LPE S−SQE TSE SPE

2
4

6
8

1
0

LPE S−SQE TSE SPE

0
.5

1
.0

1
.5

2
.0

2
.5

LPE S−SQE TSE SPE

0
.0

0
.5

1
.0

1
.5

2
.0

LPE S−SQE TSE SPE

0
.5

1
.0

1
.5

â
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Figure 5. The boxplot of RMSE for the second order function estimations based on Example
2 and sample size n = 800 and ρ = 0.1.

4.2. Simulation 2

In this section, we consider a more complicated example: A six-dimensional varying-coefficient
model. We consider the following varying coefficient model

Y = sin(6πU)X1 + (sin(4πU) + 2U)X2 + cos(4πU)X3

+(sin(3πU) − U)X4 + cos(2πU)X5 + sin(πU)X6 + ε.

In this example, U follows a uniform distribution on [0, 1]. For X1 and X2, we set
(X1, X2, X3, X4, X5, X6)T ∼ N(µ,Σ),where µ = (0, 0, 0, 0, 0, 0)T ,Σ = (σi j)6×6 and σi j = 0.5|i− j|.

Here, we set (X1, X2, X3, X4, X5, X6), U, and ε to be independent of each other. Let the random
error term ε follows a normal distribution with mean 0 and variance σ2, and σ2 is chosen so that the
signal-to-noise ratio is 5:1, namely,

σ2 = 0.2var{E(Y |U, X1, X2, X3, X4, X5, X6)}.

The mean of the adjusted mean absolute error based on 200 simulations is presented in Tables 6 and 7.

Table 6. Means of adjusted mean absolute error of first order derivative based on 200
samples.

Sample size Methods â(1)
1 (·) â(1)

2 (·) â(1)
3 (·) â(1)

4 (·) â(1)
5 (·) â(1)

6 (·) mean
n = 400 SQE 0.091 0.075 0.078 0.074 0.075 0.062 0.076

S-SQE 0.075 0.071 0.076 0.074 0.074 0.061 0.072
LPE 0.112 0.054 0.055 0.061 0.086 0.168 0.089
TSE 0.148 0.258 0.155 0.061 0.119 0.059 0.133
SPE 0.309 0.054 0.073 0.107 0.068 0.096 0.118

n = 800 SQE 0.063 0.056 0.063 0.064 0.059 0.053 0.060
S-SQE 0.057 0.052 0.056 0.060 0.059 0.053 0.056
LPE 0.047 0.049 0.046 0.065 0.091 0.179 0.080
TSE 0.160 0.114 0.171 0.100 0.061 0.045 0.109
SPE 0.310 0.047 0.069 0.095 0.083 0.114 0.120
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Table 7. Means of adjusted mean absolute error of second order derivative based on 200
samples.

Sample size Methods â(2)
1 (·) â(2)

2 (·) â(2)
3 (·) â(2)

4 (·) â(2)
5 (·) â(2)

6 (·) mean
n = 400 SQE 0.112 0.107 0.104 0.091 0.084 0.187 0.136

S-SQE 0.110 0.099 0.096 0.090 0.084 0.187 0.111
LPE 0.224 0.128 0.140 0.091 0.112 0.414 0.185
TSE 0.183 0.546 0.226 0.091 0.180 0.168 0.232
SPE 0.312 0.070 0.103 0.228 0.107 0.287 0.185

n = 800 SQE 0.102 0.084 0.109 0.094 0.070 0.194 0.120
S-SQE 0.097 0.081 0.091 0.087 0.070 0.194 0.103
LPE 0.158 0.092 0.094 0.074 0.120 0.480 0.170
TSE 0.259 0.166 0.334 0.144 0.082 0.167 0.192
SPE 0.319 0.063 0.101 0.202 0.192 0.514 0.232

Like in Simulation 1, Tables 6 and 7 show that LPE, TSE, and SPE struggle to accurately estimate all
functions among the second-order derivatives, but SQE and S-SQE maintain a relatively low estimation
error. However, in this example, the TSE and SPE methods perform the worst, suggesting that as the
dimensionality increases, the estimation accuracy of coefficient function derivatives using TSE and
SPE declines significantly. In addition, compared to LPE, TSE, and SPE, the SQE and S-SQE methods
demonstrate relatively stable estimation accuracy for the derivatives of each coefficient function. With
the exception of the second-order derivative of the sixth coefficient function, the estimation errors for
all other coefficient functions remain at a consistent level.

Furthermore, to demonstrate the statistically significant improvement in mean estimation accuracy
of S-SQE over competing methods, we conduct paired t-tests [26] comparing S-SQE’s mean term
based on 200 simulations against those of other approaches. We obtain the corresponding p-values, all
of which are less than 1×10−10, demonstrating that S-SQE achieves significantly improved performance
compared to other methods. This further validates that our method yields more stable estimates in the
presence of varying smoothness across the coefficient functions.

5. Real data analysis

To further illustrate the proposed methodologies, we choose to implement these approaches to
estimate derivative functions on the Boston Housing Dataset in this section. For this dataset, calculating
the first order derivatives of the coefficient functions enables the analysis of the rate of change for each
coefficient function at different points, while the second order of derivatives can be used to construct
confidence intervals for local polynomial estimation of the coefficient functions. For the given dataset,
we construct a varying-coefficient model. Consequently, the estimation of derivative functions carries
substantial significance.

The dataset encompasses 506 observations spanning 14 distinct variables and is retrievable from the
R package’mlbench’. According to Fan and Huang’s [27] modeling analysis of the data using a varying
coefficient model, we designate MEDV, which denotes the median value of owner-occupied homes
measured in thousands of dollars, as our response variable, and LSTAT, indicating the proportion
of the population with a lower socioeconomic status, as our index variable. In terms of covariate
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variables, we adopt the selection criteria established by Wang and Xia through the application of the
KLASSO method [22]. This has led to the inclusion of four predictor variables: INT (the model
intercept), CRIM (the crime rate per capita within each town), RM (the average number of rooms per
residential unit), and PTRATIO (the ratio of pupils to teachers in each town). Prior to the deployment
of these methodologies, the data undergoes a normalization process for the covariate variables, with
the exception of INT and the response variable. In addition, the index variable is subjected to a
transformation to ensure that its distribution conforms to a uniform distribution between 0 and 1.

We estimate the first and second order derivatives of the coefficient functions using SQE, LPE, TSE,
and SPE. The plots of the estimated first and second derivatives are presented in Figures 6 and 7. To
assess the accuracy of these estimates, we identify the points corresponding to the index variables at
the maxima and minima of the first-order derivative for each coefficient function at the interior points.
We then calculate the mean distance from the second-order derivative estimates at these points to zero,
and the results are presented in Table 8. In theory, the second-order derivative at the extrema of the
first-order derivative should be zero. Therefore, a smaller distance from the second-order derivative to
the zero point indicates a more accurate estimate, while a larger distance suggests a poorer estimation.
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Figure 6. The estimated first order functions for four variables. The green solid curves: The
results of SQE; the red dot-dashed curves: The results of TSE; the blue dotted curves: The
results of LPE; the purple dot-long dashed curves: The results of SPE.
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â
(2

)
3

(·)

â
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Figure 7. The estimated second order functions for four variables. The green solid curves:
The results of SQE; the red dot-dashed curves: The results of TSE; the blue dotted curves:
The results of LPE; the purple dot-long dashed curves: The results of SPE.

As shown in Figure 6, when LSTAT exceeds 0.5, the first-order derivatives of all coefficient
functions are negative, indicating a declining trend. This aligns with empirical observations: Areas
with higher proportions of lower socioeconomic status populations generally exhibit lower median
home values. Notably, a local minimum occurs near LSTAT=0.7 (corresponding to 15%), where the
rate of decline peaks. Beyond this threshold, the descent rate moderates, suggesting that housing price
depreciation slows when LSTAT surpasses 15%. Furthermore, the first-order derivatives of coefficient
functions estimated by SPE on INT are asymptotically zero, indicating that INT’s coefficient function is
essentially constant. This conclusion sharply contradicts Wang and Xia’s finding [22], which confirmed
the existence of a varying-coefficient intercept term. Such inconsistency significantly undermines the
credibility of SPE.

According to Table 8, we observe substantial distance among LPE, TSE, and SPE estimates,
indicating their uniformly poor performance in derivative estimation. For the RM variable, all methods
yield substantially large distances, likely attributable to the high amplitude of its first-order derivative
function. In addition, with the exception of the RM variable, the distances estimated by SQE are very
close to zero, which suggests that our method provides the most accurate estimates. In, summary, our
method effectively estimates both the first and second derivatives, and accurately identifies the maxima
and minima of the derivatives in this dataset.
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Table 8. The mean distance from given points to the zero.

Methods INT CRIM RM PTRATIO
SQE 0.07 0.61 4.83 0.38
LPE 3.49 5.75 15.37 1.75
TSE 1.46 5.54 12.60 2.44
SPE 0.03 10.64 9.26 2.43

6. Conclusions

We consider the first and second order derivative function estimation problem of the varying
coefficient model when the coefficient functions may have different degrees of smoothness, and a
weighted symmetric difference quotient estimation method is proposed. Along with the proposed
method for estimating derivative functions, we also present an effective approach for selecting tuning
parameters. Both the simulation results and the real data analysis demonstrate the effectiveness
of our method in estimating the derivative functions. Furthermore, under certain conditions, we
provide the asymptotic upper bounds for the conditional bias and conditional variance of the estimator
and exact order of conditional bias and variance. In addition, based on these bounds, we propose
a parameter selection method derived from the asymptotic upper bound of the conditional MSE.
Furthermore, relevant researchers may explore alternative methods to obtain a more precise estimate
âp(·). Incorporating âp(·) higher-precision estimate of a into the weighted symmetric difference
quotient estimator could potentially further enhance the accuracy of derivative estimation.

In future research, we plan to extend our method to time-varying coefficient models in economics.
Additionally, we aim to investigate higher-order derivative estimation of coefficient functions,
derivative estimation for multivariate covariates, and the extension of our approach to additive models
for derivative function estimation. Furthermore, due to the difficulty of the proof, we do not present
an exact expression of asymptotic conditional bias and conditional variance. Thus, obtaining precise
asymptotic expressions for the conditional bias and variance will be essential, as this could facilitate
the selection of more appropriate tuning parameters, ultimately leading to improved estimation results.
Besides, when deriving the upper bounds for the asymptotic bias and variance of the second-order
derivative estimator, we assume that the weights are known—a relatively stringent condition, and we
aim to explore methods for obtaining the exact expression of the second-order derivative weights to
circumvent this condition in the future.

Appendix: Proof of Theorem

We use the following notation.

X = (X1, · · · , Xp), Y = (Y1, · · · ,Yn)T , ε = (ε1, · · · , εn)T .

Ωp(U) = E(XT X|U), Kh(u − u0) = K
(u − u0

h

)
.

A = diag(1, h1), Q = diag(1, h2), G = Ip ⊗ diag(1, h1),
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where Ip is a p × p matrix.

X2,(b) =


X1p X1p(U1 − U(b))
...

...

Xnp Xnp(Un − U(b))

 .

X0,b =


X11 X11(U1 − Ub) · · · X1p X1p(U1 − Ub)
...

...
. . .

...
...

Xn1 Xn1(Un − Ub) · · · Xnp Xnp(Un − Ub)

 .

X(b) =


X11 X11(U1 − U(b)) · · · X1p X1p(U1 − U(b))
...

...
. . .

...
...

Xn1 Xn1(Un − U(b)) · · · Xnp Xnp(Un − U(b))

 .
W2,(b) = diag(Kh2(U1 − U(b)), . . . ,Kh2(Un − U(b))),

W0,b = diag(Kh1(U1 − Ub), . . . ,Kh1(Un − Ub)),
W(b) = diag(Kh1(U1 − U(b)), . . . ,Kh1(Un − U(b))).

Bn =

p−1∑
q=1


X1qeT

2q−1,2p(XT
0,1W0,1X0,1)−1X0,1W0,1
...

XnqeT
2q−1,2p(XT

0,nW0,nX0,n)−1X0,nW0,n

 .
A1. Proof of Proposition 2.

The proof of this proposition is essentially a simplified version of Corollary 1. For detailed proof,
please refer to Corollary 1.

A2. Proof of Proposition 2.

Var
[
â(1)

p (Ui)|D
]
= Var

 k∑
j=1

ωi, j(
âp(U(i+ j)) − âp(U(i− j))

U(i+ j) − U(i− j)
)|D


= Var

 k∑
j=1

ωi, j

U(i+ j) − U(i− j)

{
H(i+ j) − H(i− j)

}
ε|D


= σ2

n∑
l=1

 k∑
j=1

ωi, j

U(i+ j) − U(i− j)

(
Hl,(i+ j) − Hl,(i− j)

)
2

≤ σ2
k∑

j=1

(
ωi, j

U(i+ j) − U(i− j)

)2
 n∑

l=1

k∑
j=1

(
Hl,(i+ j) − Hl,(i− j)

)2
 .
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where H(b) = (1, 0)(XT
2,(b)W2,(b)X2,(b))−1XT

2,(b)W2,(b)(In − Bn), Hl,(b) is the l-th element of H(b). Therefore,
we obtain an upper bound of Var(â(1)

p (Ui)|D). Then, the Lagrange multiplier method is used to solve
the minimum point of ωi, j for this upper bound. The optimal solution is

ωi, j =
(U(i+ j) − U(i− j))2∑k
c=1(U(i+c) − U(i−c))2

.

When the asymptotic conditional bias and variance are calculated, the following lemma on the uniform
convergence is used.

Lemma 1. Let (X1,Y1), . . . , (Xn,Yn) be i.i.d random vectors, where the Y ′i s are scalar random
variables. Assume further that E|y|3 < ∞ and supx

∫
|y|s f (x, y)dy < ∞, where f denotes the joint

density of (X,Y). Let K be a bounded positive function with a bounded support, satisfying a Lipschitz
condition. Then,

sup
x∈B

∣∣∣∣∣∣∣n−1
n∑

i=1

{Kh(Xi − x)Yi − E(Kh(Xi − x)Yi)}

∣∣∣∣∣∣∣ = Op[(nh/log(1/h))−1/2]

provided that n2ϵ−1h→ ∞ for some ϵ < 1 − s−1.

Proof. This follows immediately from the result obtained by Mack and Silverman [28].

Lemma 2. Let (X1,Y1), . . . , (Xn,Yn) be i.i.d random vectors, where the Y ′i s are scalar random
variables, X is 2-dimention random vector with the continuous marginal density function f (x), and
f (x) has a compact support. Besides, nh4 > nρ1 , for some ρ1 > 0, n−ρ2h−1 = op(h2), for some ρ2 > 0.
Then

sup
t∈R2

∣∣∣∣∣∣∣ 1
nh2

n∑
i=1

YiK(
t1 − Xi1

h
)K(

t2 − Xi2

h
) −

1
h2 EY1K

[
(
s1 − Xi1

h
)K(

s2 − Xi2

h
)
]∣∣∣∣∣∣∣→ 0,

completely as n→ 0, where t = (t1, t2).

Proof. This follows immediately from the result obtained by Cheng and Taylor [29].

Lemma 3. Let U = {U1, · · · ,Un} be a sample generated from the random variable U, where U follows
the standard uniform distribution. Also, let U(1), · · · ,U(n) be the corresponding order statistics. Then,
we have:

U(i+i) − U(i− j) = E(U(i+ j) − U(i− j)) + Op

{ √
Var(U(i+ j) − U(i− j))

}
.

=
2 j

n + 1
+ Op

√ j
n2

 .
U(i+i) − U(i) = E(U(i+ j) − U(i)) + Op

{ √
Var(U(i+ j) − U(i))

}
.

=
j

n + 1
+ Op

√ j
n2

 .
Proof. This follows immediately from the result obtained by David and Nagaraja [30].
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A3. Proof of Theorem 1.

For the initial estimator âq,0(U(b)) of the two-step estimator, we have

âq,0(Ui) = (XT
(b)W(b)X(b))−1XT

(b)W(b)Y.

Note that by Taylor’s expansion, we have

ap(Ui) = ap(U(b)) + a(1)
p (U(b))(Ui − U(b)) +

1
2

a(2)
p (ηi,(b))(Ui − U(b))2,

where ηi,(b) is between Ui and U(b) for i = 1, . . . n.
Therefore,

âp(U(b))

= (1, 0)(XT
2,(b)W2,(b)X2,(b))−1XT

2,(b)W2,(b)


Y1 −

∑p−1
q=1 âq,0(U1)Xq1
...

Yn −
∑p−1

q=1 âq,0(Un)Xqn


= (1, 0)(XT

2,(b)W2,(b)X2,(b))−1XT
2,(b)W2,(b)

×


∑p−1

q=1(aq(U1) − âq,0(U1))X1q + ap(U1)X1p + ε1
...∑p−1

q=1(aq(Un) − âq,0(Un))Xnq + ap(U1)Xnp + εn


= ap(Ub) +

1
2

J1 + J2 + (1, 0)(XT
2,(b)W2,(b)X2,(b))−1XT

2,(b)W2,(b)ε,

where

J1 = (1, 0)(XT
2,(b)W2,(b)X2,(b))−1XT

2,(b)W2,(b)

×


a(2)

p (η1,(b))(U1 − U(b))2X1p
...

a(2)
p (ηn,(b))(Un − U(b))2Xnp

 ,

J2 = (1, 0)(XT
2,(b)W2,(b)X2,(b))−1XT

2,(b)W2,(b)

×


∑p−1

q=1(aq(U1) − âq,0(U1))X1q
...∑p−1

q=1(aq(Un) − âq,0(Un))Xnq

 .
According to the Lemma 1 and continuity assumption for a(2)

j (·), we can obtain

XT
2,(b)W2,(b)X2,(b) = nrpp(U(b))Q

(
µ0 0
0 µ2

)
Q(1 + op(1)), (A.1)
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XT
2,(i+ j)W2,(b)


a(2)

p (η1,(b))(U1 − U(b))2X1p
...

a(2)
p (ηn,(b))(Un − U(b))2Xnp


= nh2

2rpp(U(b))ap(U(b))Q
(
µ2

0

)
(1 + op(1)). (A.2)

By substituting (A.1) and (A.2) into J1, we have

E(J1|D) = h2
2µ2a(2)

p (U(b))(1 + op(1)). (A.3)

Similarly, we have

E(J2|D) = −
h2

1µ2

2rpp(U(b))

p−1∑
q=1

a(2)
q (U(b))rqp(U(b))(1 + op(1)). (A.4)

By combining (A.3) and (A.4), we have

E(âp(U(b))|D) = ap(U(b)) +
1
2

h2
2µ2a(2)

p (U(b)) + op(h2
2). (A.5)

According to the standard uniform distribution property in Lemma 3, we have∣∣∣∣∣∣∣E
 k∑

j=1

ωi, j(
ap(U(i+ j)) − ap(U(i− j))

U(i+ j) − U(i− j)
)|D

 − a(1)
p (U(i))

∣∣∣∣∣∣∣
=

1
2

∣∣∣∣∣∣∣
k∑

j=1

ωi, j
(U(i+ j) − U(i))2a(2)

p (ηi,(i+ j)) − (U(i− j) − U(i))2a(2)
p (ηi,i− j)

U(i+ j) − U(i− j)

∣∣∣∣∣∣∣
≤

1
2

sup
u∈[0,1]

∣∣∣a(2)
p (u)

∣∣∣ (U(i+ j) − U(i− j))
[
(U(i+ j) − U(i))2 − (U(i− j) − U(i))2

]
∑k

l=1 U(i+l) − U(i−l)

= sup
u∈[0,1]

∣∣∣a(2)
p (u)

∣∣∣ 3k(k + 1)
4(n + 1)(2k + 1)

{
1 + Op

(
1
√

k

)}
(A.6)

According to the (A.5) and (A.6), we can obtain an upper bound of the absolute conditional bias

∣∣∣∣Bias
[
â(1)

p (U(i))|D
]∣∣∣∣ =

∣∣∣∣∣∣∣E
 k∑

j=1

ωi, j(
âp(U(i+ j)) − âp(U(i− j))

U(i+ j) − U(i− j)
)|D

 − a(1)
p (U(i))

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ k∑
j=1

ωi, j

{
ap(U(i+ j)) − ap(U(i− j))

U(i+ j) − U(i− j)

+
h2

2µ2(a(2)
p (U(i+ j)) − a(2)

p (U(i− j)))
2(U(i+ j) − U(i− j))

+ op(h2
2)
}
− a(1)

p (U(i))

∣∣∣∣∣∣
≤ sup

u∈[0,1]

∣∣∣a(2)
p (u)

∣∣∣ { 3k(k + 1)
4(n + 1)(2k + 1)

+ h2
2µ2

3(n + 1)
2(2k + 1)

}
(1 + op(1)).
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Then, we deal with conditional variance. First, for H(b)H
T
(c), we have

H(b)H
T
(c)

= eT
1,2(XT

2,(b)W2,(b)X2,(b))−1XT
2,(b)

×
{
W2,(b)W2,(c) − 2W2,(b)BnW2,(c) +W2,(b)BnBT

n W2,(c)

}
×X2,(c)(XT

2,(c)W2,(c)X2,(c))−1e1,2.

According to Lemma 2, we can obtain

XT
2,(b)W2,(b)W2,(c)X2,(c)

= nrpp(U(b))Kh2(U(b) − U(c))

× Q
 µ0 op(1)
U(b) − U(c) + op(1) µ2 +

(U(b)−U(c))2

h2
op(1) + op(1)

 Q(1 + op(1)), (A.7)

and

BnW2,(c)X2,(c)

=

p−1∑
q=1


X1qKh2(U1 − Uc)eT

2q−1,2p(Ω−1
p (U1) ⊗ A−1)C1Q

...

XnqKh2(Un − Uc)eT
2q−1,2p(Ω−1

p (Un) ⊗ A−1)CnQ

 (1 + op(1)). (A.8)

where

Cl =



r1p(Ul) r1p(Ul)
Ul−U(c)

h2
+ op(1)

op(1) op(1)Ul−U(c)

h2
+ op(1)

...
...

rpp(Ul) rpp(Ul)
Ul−U(c)

h2
+ op(1)

op(1) op(1)Ul−U(c)

h2
+ op(1)


.

Notice, eT
2q−1,2p(Ω−1

p (Ul) ⊗ A−1)Cl = (0, op(1)). Therefore, we have

eT
1,2(XT

2,(b)W2,(b)X2,(b))−1XT
2,(b)W2,(b)BnW2,(c)X2,(c)(XT

2,(c)W2,(c)X2,(c))−1e1,2 = op(1).

Let

XT
2,(b)W2,(b)BnBT

n W2,(c)X2,(c) = (τrs)2×2.

We expand the τrs, we have

τrs

=

n∑
t=1

n∑
l=1

Xtp(Ut − U(b))rKh2(Ut − U(b))

 p−1∑
q=1

XtqeT
2q−1,2p(XT

0,tW0,tX0,t)−1XT
0,tW0,t



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×

Xlp(Ul − U(c))sKh2(Ul − U(c))

 p−1∑
q=1

XlqeT
2q−1,2p(XT

0,lW0,lX0,l)−1XT
0,lW0,l


T

=

p−1∑
q=1

p−1∑
d=1

n∑
a=1

{[ n∑
t=1

XtqXtp(Ut − U(b))rKh2(Ut − U(b))

×eT
2q−1,2p(XT

0,tW0,tX0,t)−1Xa(t)Kh1(Ua − Ut)
]

×

 n∑
l=1

XldXlp(Ul − U(c))sKh2(Ul − U(c))eT
2d−1,2pXT

a(l)(X
T
0,lW0,lX0,l)−1Kh1(Ua − Ul)

 }.
where

Xa(t) =
(
Xa1, Xa1(Ua − Ut), · · · , Xap, Xap(Ua − Ut)

)T
.

Then, using Lemma 1, we have

n∑
t=1

XtqXtp(Ut − U(b))rKh2(Ut − U(b))eT
2q−1,2p(XT

0,tW0,tX0,t)−1Xa(t)Kh1(Ua − Ut)

= rqp(U(b))(Kh1(Ua − U(b))eT
2q−1,2pG

−1(Ω−1
p (U(b)) ⊗ A−1)G−1

×


Xa1

Xa2
...

Xap

 ⊗
(

hr
2µr

hr
2µr(Ua − U(b)) + hr+1

2 µr+1

)
(1 + op(1)). (A.9)

Substituting (A.9) into τrs, we have

τrs

=

p−1∑
q=1

p−1∑
d=1

{ n∑
a=1

rdp(U(c))rqp(U(b))Kh1(Ua − U(b))Kh1(Ua − U(c))

×eT
2q−1,2p(Ω−1

p (U(b)) ⊗ A−1)G−1

×

{(
Xa1 Xa2 · · · Xap

)T (
Xa1 Xa2 · · · Xap

)
⊗Crs

}
×G−1(Ω−1

p (U(c)) ⊗ A−1)e2d−1,2p

}
(1 + op(1)).

where

Crs =
(
hr

2µr hr
2µr(Ua − U(b)) + hr+1

2 µr+1

)T (
hr

2µr hr
2µr(Ua − U(b)) + hr+1

2 µr+1

)
.

According to Lemma 2 and the properties of the Kronecker product, we have

τrs
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= n
p−1∑
q=1

p−1∑
d=1

hr+s
2 µrµsrqp(U(b))rdp(U(c))Kh1(U(b) − U(c))eT

q,pΩ
−1
p (U(b))ed,p(1 + op(1))

= −nhr+s
2 µrµsrpp(U(b))Kh1(U(b) − U(c))

×

p−1∑
d=1

rdp(U(c))eT
d,pΩ

−1
p (U(b))ep,p(1 + op(1)). (A.10)

Substituting (A.7), (A.8), and (A.10) into the expansion of H(b)HT
(c), we have

H(b)H
T
(c)

=
1

nrpp(U(c))

{
Kh2(U(b) − U(c))

−Kh1(U(b) − U(c))
p−1∑
d=1

rdp(U(c))eT
d,pΩ

−1
p (U(b))ep,p

}
(1 + op(1))

≤
1

nr−pp

M
h2
+

M
h1

p−1∑
d=1

r+dpr∗dp

 (1 + op(1)) (A.11)

Now, we provide an upper bound for Var
[
â(1)

p (U(i))|D
]
. First, the Var

[
â(1)

p (U(i))|D
]

is expanded by

Var
[
â(1)

p (U(i))|D
]

= Var

 k∑
j=1

ωi, j(
âp(U(i+ j)) − âp(U(i− j))

U(i+ j) − U(i− j)
)|D


= Var

 k∑
j=1

ωi, j

U(i+ j) − U(i− j)

{
H(i+ j) − H(i− j)

}
ε|D


= σ2

k∑
j=1

k∑
m=1

ωi, jωi,m

(U(i+ j) − U(i− j))(U(i+m) − U(i−m))

×
{
H(i+ j) − H(i− j)

} {
H(i+m) − H(i−m)

}T

= σ2
k∑

j=1

k∑
m=1

ωi, jωi,m

(U(i+ j) − U(i− j))(U(i+m) − U(i−m))

×
{
H(i+ j)H

T
(i+m) − H(i− j)H

T
(i+m) − H(i+ j)H

T
(i−m) + H(i− j)H

T
(i−m)

}
.

By substituting (A.11) into the above expansion, we can obtain the upper bound for
Var

[
â(1)

p (U(i))|D
]
,

Var
[
â(1)

p (U(i))|D
]
≤

Mσ2

nr−pp

 k∑
j=1

k∑
m=1

ωi, jωi,m

(U(i+ j) − U(i− j))(U(i+m) − U(i−m))


×

 1
h2
+

1
h1

p−1∑
d=1

r+dpr∗dp

 (1 + op(1))
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=
9(n + 1)2Mσ2

(2k + 1)2nr−pp

 1
h2
+

1
h1

p−1∑
d=1

r+dpr∗dp

 (1 + op(1)).

A4. Proof of Corollary 1.

ap(U(i+ j)) − ap(U(i− j))

= a(1)
p (U(i))

(
U(i+ j) − U(i+ j)

)
+

1
2

a(2)
p (U(i))

{(
U(i+ j) − U(i)

)2
−

(
U(i− j) − U(i)

)2
}
+ Op

(
j2

n2

)
. (A.12)

According to the upper bound of the absolute conditional bias and (A.12), we have

∣∣∣∣Bias
[
â(1)

p (U(i))|D
]∣∣∣∣ = ∣∣∣∣∣∣ k∑

j=1

ωi, j

{
ap(U(i+ j)) − ap(U(i− j))

U(i+ j) − U(i− j)

+
h2

2µ2(a(2)
p (U(i+ j)) − a(2)

p (U(i− j)))
2(U(i+ j) − U(i− j))

+ op(h2
2)
}
− a(1)

p (U(i))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
{a(1)

p (U(i))
∑k

j=1

(
U(i+ j) − U(i+ j)

)2
+ Op(k4/n3)∑k

j=1

(
U(i+ j) − U(i+ j)

)2

+

k∑
j=1

ωi, j
h2

2µ2(a(2)
p (U(i+ j)) − a(2)

p (U(i− j)))
2(U(i+ j) − U(i− j))

+ op(h2
2)
}
− a(1)

p (U(i))

∣∣∣∣∣∣
= Op

(
max

(
h2

2,
k
n

))
.

According to the upper bound of the absolute conditional variance, we have

Var
[
â(1)

p (U(i))|D
]

= σ2
k∑

j=1

k∑
m=1

ωi, jωi,m

(U(i+ j) − U(i− j))(U(i+m) − U(i−m))

×
{
H(i+ j)H

T
(i+m) − H(i− j)H

T
(i+m) − H(i+ j)H

T
(i−m) + H(i− j)H

T
(i−m)

}
= Op

(
n

k2h1

)
.

Thus, Corollary 1 is proven.

A4.1. Proof of Proposition 3.

Var
[
â(2)

p (U(i))|D
]
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= Var

 k2∑
j=1

ωi, j,2


âp(U(i+ j+k1))−âp(U(i+ j))

U(i+ j+k1)−U(i+ j)
−

âp(U(i− j−k1))−âp(U(i− j))
U(i− j−k1)−U(i− j)

U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j)


∣∣∣∣∣∣D


= σ2

{ k2∑
j=1

ωi, j,2

(U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j))

×

{
H(i+ j+k1) − H(i+ j)

U(i+ j+k1) − U(i+ j)
−

H(i− j−k1) − H(i− j)

U(i− j−k1) − U(i− j)

}}
×

{ k2∑
j=1

ωi, j,2

(U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j))

×

{
H(i+ j+k1) − H(i+ j)

U(i+ j+k1) − U(i+ j)
−

H(i− j−k1) − H(i− j)

U(i− j−k1) − U(i− j)

}}T

. (A.13)

Let

ξ j =

{
H(i+ j+k1)−H(i+ j)

U(i+ j+k1)−U(i+ j)
−

H(i− j−k1)−H(i− j)

U(i− j−k1)−U(i− j)

}
(U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j))

,

and ξ = (ξ1, · · · , ξk2)
T . We can obtain

Var
[
â(2)

p (U(i))|D
]
= σ2ωT

i,2ξξ
Tωi,2.

Then, let Σ0 = ξξ
T , thus Proposition 3 is proven.

A5. Proof of Theorem 2.

Similar to the proof of Theorem 1, we can obtain the upper bound of the conditional bias of â(2)
p (Ui)∣∣∣∣Bias

[
â(2)

p (Ui)|D
]∣∣∣∣

=

∣∣∣∣∣∣∣∣E
 k2∑

j=1

ωi, j,2


âp(U(i+ j+k1))−âp(U(i+ j))

U(i+ j+k1)−U(i+ j)
−

âp(U(i− j−k1))−âp(U(i− j))
U(i− j−k1)−U(i− j)

U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j)


∣∣∣∣∣∣D

 − a(2)
p (U(i))

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ k2∑
j=1

ωi, j,2

( ap(U(i+ j+k1))−ap(U(i+ j))
U(i+ j+k1)−U(i+ j)

−
ap(U(i− j−k1))−ap(U(i− j))

U(i− j−k1)−U(i− j)

U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j)

+
1
2

h2
2µ2

a(2)
p (U(i+ j+k1))−a(2)

p (U(i+ j))
U(i+ j+k1)−U(i+ j)

−
a(2)

p (U(i− j−k1))−a(2)
p (U(i− j))

U(i− j−k1)−U(i− j)

U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j)

)
+ op

(
nh2

2

k2
1

)
− a(2)

p (U(i))

∣∣∣∣∣∣
≤ sup

u∈[0,1]

∣∣∣a(3)
p (u)

∣∣∣ k2∑
j=1

ωi, j,2

 j2 + jk1 +
1
3k2

1

(n + 1)(2 j + k1)
+ h2

2µ2
n + 1

4 j + 2k1

 (1 + op(1)).

Similar to the proof of the upper bound of the conditional variance in Theorem 1, we can substitute
(A.11) into (A.13), and we can have

Var
[
â(2)

p (U(i))|D
]
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≤

k2∑
j=1

k2∑
m=1

{
ωi, j,2

(U(i+ j+k1) + U(i+ j) − U(i− j−k1) − U(i− j))

×
ωi,m,2

(U(i+m+k1) + U(i+m) − U(i−m−k1) − U(i−m))

}
×

4Mσ2

nr−pp

(n + 1)2

k2
1

 2
h2
+

2
h1

2 p−1∑
d=1

r+dpr∗dp + 2
p−1∑
d=1

RdpR
∗
dp


 (1 + op(1))

=
4(n + 1)4Mσ2

k2
1nr−pp

 2
h2
+

2
h1

 p−1∑
d=1

r+dpr∗dp +

p−1∑
d=1

RdpR
∗
dp




×

 k2∑
j=1

k2∑
m=1

ωi, j,2ωi,m,2

(2 j + k1)(2m + k1)

 (1 + op(1)).

Thus, Theorem 2 is proven.

A6. Proof of Corollary 3.

According to the proof of Theorem 2, we can immediately obtain Corollary 3.
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