
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(5): 11444–11464.
DOI: 10.3934/math.2025521
Received: 29 November 2024
Revised: 12 May 2025
Accepted: 14 May 2025
Published: 20 May 2025

Research article

A Ramanujan-type supercongruence related to harmonic numbers

Wenbin Zhang1, Yong Zhang2,*and Jiachen Wu2

1 Department of Applied Mathematics, Guangzhou Huashang College, Guangzhou, 511300, China
2 School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, 211167, China

* Correspondence: Email: yongzhang1982@163.com.

Abstract: We prove that, for all primes p > 5, positive integers r and m with p ∤ m and p ∤
(

2mpr−1

mpr−1

)
,

there holds

1

m4 p4r
(

2mpr−1

mpr−1

)3

( mpr−1∑
k=0

(21k + 8)
(
2k
k

)3

− p
mpr−1−1∑

k=0

(21k + 8)
(
2k
k

)3)
≡ −6

Hp−1

p2 (mod p2),

where Hn =
∑n

j=1
1
j (n = 1, 2, · · · ) are the usual harmonic numbers. This partially confirms a conjecture

by Z.-W. Sun.
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1. Introduction

For Ramanujan’s and Ramanujan-like series, the reader may consult [7–9, 20, 28] for related work.
In the spirit of [35], all known Ramanujan-type formulas for 1/π and 1/π2 admit similar p-analogues.
For example, Zeilberger [32] discovered the following Ramanujan-type formula:

∞∑
k=0

21k − 8

k3
(

2k
k

)3 = ζ(2) =
π2

6
.
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Sun [24] proposed its p-analogue as follows:

p−1
2∑

k=0

21k − 8

k3
(

2k
k

)3 ≡ (−1)
p+1

2 4Ep−3 (mod p),

where E0, E1, E2, · · · are the Euler numbers. He also found the above congruence has the following
equivalent form:

p−1
2∑

k=0

(21k + 8)
(
2k
k

)3

≡ 8p +
(
−1
p

)
32p3Ep−3 (mod p4),

where ( . ) denotes the Jacobi symbol.
In 2011, Sun [26] studied the above summation index k from 0 to pr − 1 and showed that for any

prime p and r ∈ Z+,

pr−1∑
k=0

(21k + 8)
(
2k
k

)3

≡ 8pr + 16pr+3Bp−3 (mod pr+4), (1.1)

where B0, B1, B2, · · · are the Bernoulli numbers and B−1 is regarded as zero. Recall that Glaisher [4, 5]
proved that, for any prime p ≥ 5,

Hp−1 ≡ −
1
3

p2Bp−3 (mod p3), (1.2)

where Hn (n = 1, 2, · · · ) denotes the usual harmonic number
∑n

j=1
1
j . We refer the reader to [31] for

applications of harmonic numbers. Recently, Xia [30] confirmed that, for primes p ≥ 7,

p−1∑
k=0

(21k + 8)
(
2k
k

)3

≡ 8p − 48p2Hp−1 (mod p6). (1.3)

This, together with (1.2), extends (1.1) to the modulus p6 case for r = 1. Based on the above work,
Sun [25, Conjecture 21(i)] proposed the following more general conjecture:

Conjecture 1. Let p , 2, 5 be a prime, and let r ∈ Z+. Let m be a positive integer with p ∤ m. Then∑mpr−1
k=0 (21k + 8)

(
2k
k

)3
− p

∑mpr−1−1
k=0 (21k + 8)

(
2k
k

)3

m4 p4r
(

2mpr−1

mpr−1

)3 ≡ −6
Hp−1

p2 (mod p2). (1.4)

Remark 1. The case p |
(

2mpr−1

mpr−1

)
in Conjecture 1 is somewhat difficult to deal with. In this case, we need

to find a more appropriate identity to approximate away this factor
(

2mpr−1

mpr−1

)3
and achieve modulo greater

than 4r + 2. Conjecture 1 is the Atkin and Swinnerton–Dyer type (see [1]) congruence’s extension
related to harmonic numbers and Bernoulli numbers. We are all interested in this type of congruence
and think it meaningful to study such congruence. That is the motivation for our work.
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Here we shall establish the following result, thus partially confirming a weaker version of
Conjecture 1, which is the case p ∤

(
2mpr−1

mpr−1

)
of the congruence (1.4).

Theorem 1. Let p > 5 be a prime and r be a positive integer. Let m be a positive integer with p ∤ m
and p ∤

(
2mpr−1

mpr−1

)
. Then the congruence (1.4) is true.

Remark 2. Clearly, taking r = m = 1 in (1.4) yields (1.3). The congruence (1.4) is often called
a Ramanujan-type supercongruence. In recent years, many authors have studied Ramanujan-type q-
supercongruences; the reader may refer to [10–14, 16, 21, 27, 29]. We think Theorem 1 may be useful
to those who are interested in Ramanujan’s and Ramanujan–like series, and the Atkin and Swinnerton-
Dyer type congruences in combinatorics.

The paper is organized as follows: some lemmas are given in section 2. In section 3, we will give
the proof of Theorem 1. The last section is the conclusions.

2. Some lemmas

In order to prove Theorem 1, we need the below eight lemmas. The first one is a result of Beukers [2,
Lemma 2 (i)].

Lemma 1. Let n be an integer, and let p be a prime. Let r and k be positive integers. Then(
prn − 1

k

)
≡

(
pr−1n − 1⌊

k
p

⌋ )
(−1)k−

⌊
k
p

⌋(
1 − npr

k∑
j=1,p∤ j

1
j

)
(mod p2r). (2.1)

Remark 1. The previous version of (2.1) (also see [2, Lemma 2 (i)]) is very important. We list it out as
follows. (

prn − 1
k

)
=

(
pr−1n − 1⌊

k
p

⌋ ) k∏
j=1,p∤ j

prn − j
j
. (2.2)

The second one is Jacobsthal’s binomial congruence (see [18, Lemma 2.1 and the proof of Theorem
1.3]).

Lemma 2. Let p be a prime. Then, for all integers a, b, and positive integers r, s,(
pra
psb

)
≡

(
pr−1a
ps−1b

)
(−1)psb−ps−1b (mod p2r+min{r,s}−δp,3−2δp,2). (2.3)

where the Kronecker symbol δm,n is defined as 1 if m = n and 0 otherwise.

Remark 2. The p ≥ 5 case of (2.3) was confirmed by Gessel [3] and Granville [6]. Straub [22] proved
the extension to negative integers.

The third result we require is due to Osburn, Sahu, and Straub [18, Lemma 2.2].

Lemma 3. Let p > 5 be a prime, and let n be an even positive integer. Then, for all integers r ≥ 1,

pr−1
2∑

k=1,p∤k

1
kn ≡ 0 (mod pr). (2.4)
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From (2.4) it is easy to see that

pr−1∑
k=1,p∤k

1
kn =

pr−1
2∑

k=1,p∤k

( 1
kn +

1
(pr − k)n

)
≡ 2

pr−1
2∑

k=1,p∤k

1
kn ≡ 0 (mod pr). (2.5)

For any positive integer m, let Hn,m =
∑n

j=1
1
jm (n = 1, 2, ...) denote the generalized harmonic numbers

of order m. Clearly, Hn,1 = Hn. For convenience, we adopt the notation H′n,m to stand for the number∑n
j=1,p∤ j

1
jm and let H′n = H′n,1. For example, we can revise the congruences (2.4) and (2.5) as follows:

H′pr−1
2 ,n
≡ 0 (mod pr) and H′pr−1,n ≡ 0 (mod pr).

We need to establish another five lemmas.

Lemma 4. Let p > 5 be a prime, and let k be a positive integer. Then, for any positive integer s,

H
′

psk−1 ≡ −p2sk2
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)
(mod p2s+2), (2.6)

and

H
′

psk−1,2 ≡ kH
′

ps−1,2 (mod p2s+δs,1). (2.7)

Proof. For any prime p ≥ 7, Sun [23, Theorem 5.1] proved that

Hp−1,3 ≡ −
6p2Bp−5

5
(mod p3). (2.8)

It is easily seen that, for any positive integer s,

H
′

ps−1,3 =

ps−1∑
j=1,p∤ j

1
j3 =

ps−1∑
j=1,p∤ j

1
(ps − j)3 ≡ −

ps−1∑
j=1,p∤ j

1
j3 ≡ 0 (mod ps). (2.9)

Note that Zhang [33] has given the following result:

H
′

ps−1,2 ≡ 2ps
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)
(mod ps+2). (2.10)

It follows from (2.5), (2.8), and (2.9) that

H
′

ps−1 =
1
2

ps−1∑
j=1,p∤ j

(
1
j
+

1
ps − j

)
=

ps

2

ps−1∑
j=1,p∤ j

1
j(ps − j)

≡ −
ps

2

ps−1∑
j=1,p∤ j

1
j2

(
1 +

ps

j
+

p2s

j2

)
= −

ps

2

(
H
′

ps−1,2 + psH
′

ps−1,3 + p2sH
′

ps−1,4

)
≡ −

ps

2
H
′

ps−1,2 (mod p2s+2),

and

H
′

psk−1 =

k−1∑
i=0

ps−1∑
j=1,p∤ j

1
psi + j

≡

k−1∑
i=0

ps−1∑
j=1,p∤ j

1
j

(
1 −

psi
j
+

p2si2

j2 −
δs,1 p3si3

j3

)
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= kH
′

ps−1 −
k(k − 1)psH

′

ps−1,2

2
+ p2sH

′

ps−1,3
k(k − 1)(2k − 1)

6

− δs,1 p3sH
′

ps−1,4

k−1∑
i=1

i3

≡ −
psk2

2
H
′

ps−1,2 ≡ −p2sk2
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)
(mod p2s+2).

Similarly to the proof of (2.6), by using (2.5), (2.8), and (2.9), we can get the following
supercongruence:

H
′

psk−1,2 =

k−1∑
i=0

ps−1∑
j=1,p∤ j

1
(psi + j)2 ≡

k−1∑
i=0

ps−1∑
j=1,p∤ j

1
j2

(
1 −

2psi
j
+

3p2si2δs,1

j2

)

= kH
′

ps−1,2 − k(k − 1)psH
′

ps−1,3 +
k(k − 1)(2k − 1)p2sH

′

ps−1,4δs,1

2
≡ kH

′

ps−1,2 (mod p2s+δs,1).

This completes the proof. □

We will use Lemma 5 to handle the sums divisible by p of Theorem 1.

Lemma 5. Let p ≥ 7 be a prime, and let m be a positive integer with p ∤ m. Then, for any positive
integer r,

mpr−1−1∑
k=1

(
−mpr−1

k

)2 (
2H

′

pk−1 − mprH
′

pk−1,2

)
≡ 2m2 p2r(1 − δr,1)(1 − (p + 2mp)δr,2)

( B2p−4

2p − 4
− 2

Bp−3

p − 3

) m−1∑
l=0

(
−m − 1

l

)2

− 2p2r
( B2p−4

2p − 4
− 2

Bp−3

p − 3

) m−1∑
k=1

(
−m
k

)2

k(k + m) (mod p2r+2). (2.11)

Proof. By (2.6), (2.7), and (2.10), the supercongruence (2.11) is true for r = 1.
We now assume that r ≥ 2. In view of [2, Lemma 1], we have∑

⌊ k
pr ⌋=0,p∤k

1
k
≡ 0 (mod p2r), (2.12)

and so
p−1∑
k=1

Hk−1 ≡

p−1∑
k=1

k∑
j=1

1
j
=

p−1∑
j=1

1
j

p−1∑
k= j

1 =
p−1∑
j=1

p − j
j
≡ 1 − p (mod p2). (2.13)

Similarly to the proof of (2.13), by (2.6) and (2.10), we can show that

p−1∑
k=1

Hk,2 =

p−1∑
j=1

1
j2

p−1∑
k= j

1 = pHp−1,2 − Hp−1 ≡ 0 (mod p2). (2.14)
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Note that for any nonnegative integer l and positive integer k, by (2.6), (2.7), and (2.10), we get

∑
⌊ k−1

p ⌋=l,p∤k

2H
′

pk−1 − mp2H
′

pk−1,2

k2 ≡

( B2p−4

2p − 4
− 2

Bp−3

p − 3

) ∑
⌊ k−1

p ⌋=l,p∤k

(
− 2p2 −

2mp3

k

)
≡ 2p2(1 − p)

( B2p−4

2p − 4
− 2

Bp−3

p − 3

)
(mod p4) (2.15)

and ∑
⌊ k−1

p ⌋=l,p∤k

H
′

k−1H
′

pk−1

k2 ≡ −p2
( B2p−4

2p − 4
− 2

Bp−3

p − 3

) ∑
⌊ k−1

p ⌋=l,p∤k

H
′

k−1 (mod p4). (2.16)

With the help of (2.10), (2.13), and (2.14), we can deduce that

∑
⌊ k−1

p ⌋=l,p∤k

H
′

k−1 =

p−1∑
k=1

H
′

pl+k−1 ≡

p−1∑
k=1

k−1∑
j=1

1
pl + j

≡

p−1∑
k=1

k−1∑
j=1

(1
j
−

pl
j2

)

=

p−1∑
k=1

(
Hk−1 − plHk−1,2

)
≡ 1 − p (mod p2). (2.17)

For r = 2, by (2.1), (2.6), (2.7), (2.10), and (2.15)–(2.17), we have

mp−1∑
k=1,p∤k

(
−mp

k

)2 (
2H

′

pk−1 − mp2H
′

pk−1,2

)
≡ m2 p2

mp−1∑
k=1,p∤k

1
k2

(
−m − 1
⌊ k−1

p ⌋

)2(
1 + 2mpH

′

k−1

) (
2H

′

pk−1 − mp2H
′

pk−1,2

)
≡ m2 p2

m−1∑
l=0

(
−m − 1

l

)2 ∑
⌊ k−1

p ⌋=l,p∤k

2H
′

pk−1 + 4mpH
′

k−1H
′

pk−1 − mp2H
′

pk−1,2

k2

≡ 2m2 p4(1 − p − 2mp)
( B2p−4

2p − 4
− 2

Bp−3

p − 3

) m−1∑
l=0

(
−m − 1

l

)2

(mod p6).

In light of (2.3), (2.6), (2.7), and (2.10), we can show that

mp−1∑
k=1,p|k

(
−mp

k

)2 (
2H

′

pk−1 − mp2H
′

pk−1,2

)
=

m−1∑
k=1

(
−mp

pk

)2 (
2H

′

p2k−1 − mp2H
′

p2k−1,2

)
≡ −2p4

( B2p−4

2p − 4
− 2

Bp−3

p − 3

) m−1∑
k=1

(
−m
k

)2

k(k + m) (mod p6).
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Combining the above two congruences, we arrive at (2.11) with r = 2.
Next, we will consider the case r ≥ 3. For any integer 1 ≤ s ≤ r − 2 and 1 ≤ k ≤ mpr−s − 1 with

p ∤ k, by (2.7) and (2.10), we have pr
(
−mpr−1

ps−1k

)2
H
′

psk−1,2 ≡ 0 (mod p2r+2). It follows that

mpr−1−1∑
k=1

(
−mpr−1

k

)2 (
2H

′

pk−1 − mprH
′

pk−1,2

)
≡ 2

r−2∑
s=1

mpr−s−1∑
k=1,p∤k

(
−mpr−1

ps−1k

)2

H
′

psk−1

+

mp−1∑
k=1

(
−mpr−1

pr−2k

)2 (
2H

′

pr−1k−1 − mprH
′

pr−1k−1,2

)
(mod p2r+2). (2.18)

With the help of (2.3) and (2.6), we obtain

2
r−2∑
s=1

mpr−s−1∑
k=1,p∤k

(
−mpr−1

ps−1k

)2

H
′

psk−1

≡ −2m2 p2r
( B2p−4

2p − 4
− 2

Bp−3

p − 3

) r−2∑
s=1

mpr−s−1∑
k=1,p∤k

(
−mpr−s − 1

k − 1

)2

(mod p2r+2). (2.19)

For any integer 1 ≤ s ≤ r − 2, by Lemma 1, we can show that

mpr−s−1∑
k=1,p∤k

(
−mpr−s − 1

k − 1

)2

≡

mpr−s−1∑
k=1,p∤k

(
−mpr−s−1 − 1
⌊ k−1

p ⌋

)2

=

mpr−s−1−1∑
l=0

(
−mpr−s−1 − 1

l

)2 ∑
⌊ k−1

p ⌋=l,p∤k

1

= (p − 1)
mpr−s−1−1∑

l=0

(
−mpr−s−1 − 1

l

)2

(mod p2). (2.20)

If s = r − 2, then using (2.6), (2.13), and Lemma 1, we have

(p − 1)
mp−1∑

l=0

(
−mp − 1

l

)2

≡ (p − 1)
m−1∑
k=0

(
−m − 1

k

)2 ∑
⌊ l

p ⌋=k

(
1 + 2mpH

′

l

)

≡ −(1 + 2m)p
m−1∑
k=0

(
−m − 1

k

)2

(mod p2). (2.21)

If 1 ≤ s ≤ r − 3, then similarly to the proof of (2.20), by (2.21) we get

(p − 1)
mpr−s−1−1∑

l=0

(
−mpr−s−1 − 1

l

)2
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≡ p(p − 1)
mpr−s−2−1∑

l=0

(
−mpr−s−2 − 1

l

)2

≡ p(p − 1) · [s = r − 3] ·
mp−1∑

l=0

(
−mp − 1

l

)2

≡ 0 (mod p2). (2.22)

It is clear that [m = n] coincides with the Kronecker symbol δm,n. Substituting (2.20)–(2.22) into (2.19)
leads to

2
r−2∑
s=1

mpr−s−1∑
k=1,p∤k

(
−mpr−1

ps−1k

)2

H
′

psk−1

≡ 2m2(1 + 2m)p2r+1
( B2p−4

2p − 4
− 2

Bp−3

p − 3

) m−1∑
k=0

(
−m − 1

k

)2

(mod p2r+2). (2.23)

In light of (2.6)–(2.7), (2.10), (2.13), (2.17), and Lemma 2, we have

mp−1∑
k=1,p∤k

(
−mpr−1

pr−2k

)2 (
2H

′

pr−1k−1 − mprH
′

pr−1k−1,2

)
≡ 2m2 p2r

(
−

B2p−4

2p − 4
+ 2

Bp−3

p − 3

)( mp−1∑
k=1,p∤k

(
−mp − 1

k − 1

)2

+ pm
mp−1∑

k=1,p∤k

1
k

(
−mp − 1

k − 1

)2)

≡ 2m2 p2r
(
−

B2p−4

2p − 4
+ 2

Bp−3

p − 3

) m−1∑
l=0

(
−m − 1

l

)2 ∑
⌊ k−1

p ⌋=l,p∤k

(
1 + 2mpH

′

k−1 +
pm
k

)

≡ 2m2 p2r(p − 1 + 2mp)
(
−

B2p−4

2p − 4
+ 2

Bp−3

p − 3

) m−1∑
l=0

(
−m − 1

l

)2

(mod p2r+2), (2.24)

and

m−1∑
k=1

(
−mpr−1

pr−1k

)2 (
2H

′

prk−1 − mprH
′

prk−1,2

)
≡ −2p2r

( B2p−4

2p − 4
− 2

Bp−3

p − 3

) m−1∑
k=1

(
−m
k

)2

(k2 + km) (mod p2r+2). (2.25)

Finally, combining (2.18), (2.23), (2.24) and (2.25), we reach (2.11) with r ≥ 3. This proves Lemma
5. □

The following Lemma 6 plays an important role in proving Lemma 7.

Lemma 6. Let p ≥ 7 be a prime. Then, for any positive integer r,

mpr−1∑
k=0

(
−mpr − 1

k

)2

≡ pr(1 + 2m)(1 − 2mpδr,1)
m−1∑
l=0

(
−m − 1

l

)2

(mod pr+2). (2.26)
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Proof. By (2.2), we have

mpr−1∑
k=0

(
−mpr − 1

k

)2

− 1

=

mpr−1∑
k=1

(
−mpr−1 − 1
⌊ k

p⌋

)2 k∏
j=1,p∤ j

(
1 +

mpr

j

)2

≡

mpr−1∑
k=1

(
−mpr−1 − 1
⌊ k

p⌋

)2 k∏
j=1,p∤ j

(
1 +

2mpr

j
+

m2 p2rδr,1

j2

)

≡

mpr−1∑
k=1

(
−mpr−1 − 1
⌊ k

p⌋

)2(
1 + 2mprH

′

k − m2 p2rδr,1H
′

k,2 + 2m2 p2rδr,1H
′

k
2
)

(mod pr+2). (2.27)

In view of (2.6) and the Chu–Vandermonde convolution identity, we get

p−1∑
k=0

(
p − 1

k

)2

=

(
2p − 2
p − 1

)
=

p
2p − 1

p−1∏
j=1

(
1 +

p
j

)
≡ −2p2 − p (mod p3). (2.28)

On the other hand,

p−1∑
k=0

(
p − 1

k

)2

≡ 1 +
p−1∑
k=1

(
1 − 2pHk − p2Hk,2 + 2p2H2

k

)
(mod p3). (2.29)

Combining (2.6), (2.13), (2.14) and (2.28) with (2.29), we obtain

p−1∑
k=1

H2
k ≡ −2 (mod p). (2.30)

For any nonnegative integer l, by (2.6), (2.13), and (2.14), we have

∑
⌊ k

p ⌋=l

H
′

k ≡

p−1∑
k=1

H
′

pl+k ≡

p−1∑
k=1

k∑
j=1

1
pl + j

≡

p−1∑
k=1

k∑
j=1

(1
j
−

pl
j2

)

=

p−1∑
k=1

Hk − pl
p−1∑
k=1

Hk,2 ≡ 1 − p (mod p2),

∑
⌊ k

p ⌋=l

H
′

k,2 ≡

p−1∑
k=1

H
′

pl+k,2 ≡

p−1∑
k=1

k∑
j=1

1
(pl + j)2 ≡

p−1∑
k=1

k∑
j=1

1
j2 =

p−1∑
k=1

Hk,2 ≡ 0 (mod p),

and by (2.30),

∑
⌊ k

p ⌋=l

H
′

k
2
≡

p−1∑
k=1

H
′

pl+k
2
≡

p−1∑
k=1

( k∑
j=1

1
pl + j

)2

≡

p−1∑
k=1

Hk
2 ≡ −2 (mod p).
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Therefore,
mp−1∑
k=0

(
−mp − 1

k

)2

≡

m−1∑
l=0

(
−m − 1

l

)2 ∑
⌊ k

p ⌋=l

1

+

m−1∑
l=0

(
−m − 1

l

)2 ∑
⌊ k

p ⌋=l,p∤k

(
2mpH

′

k − m2 p2H
′

k,2 + 2m2 p2H
′

k
2
)

≡ p(1 + 2m)(1 − 2mp)
m−1∑
l=0

(
−m − 1

l

)2

(mod p3), (2.31)

where we shouldn’t accept that p | k in sums of the second line in (2.31). This completes the proof of
(2.26) for r = 1.

Now, we consider the case r ≥ 2. From (2.27), (2.31), and the above congruences, we can deduce
by induction that

mpr−1∑
k=0

(
−mpr − 1

k

)2

≡

mpr−1−1∑
l=0

(
−mpr−1 − 1

l

)2 ∑
⌊ k

p ⌋=l

(
1 + 2mprH

′

k

)

≡

(
p + 2mpr(1 − p)

) mpr−1−1∑
l=0

(
−mpr−1 − 1

l

)2

≡

r∏
j=2

(
p + 2mp j(1 − p)

) mp−1∑
l=0

(
−mp − 1

l

)2

≡ pr
r∏

j=2

(
1 + 2mp j−1(1 − p)

)
(1 + 2m)(1 − 2mp)

m−1∑
l=0

(
−m − 1

l

)2

≡ pr(1 + 2m)
m−1∑
l=0

(
−m − 1

l

)2

(mod pr+2),

which is just the supercongruence (2.26) for r ≥ 2. □

We will use Lemma 7 to deal with the sums not divisible by p of Theorem 1.

Lemma 7. Let p ≥ 7 be a prime. Then, for any positive integer r,

mpr−1∑
k=1,p∤k

1
k2

(
−mpr − 1

k − 1

)2

≡ 2(1 + 2m + mδr,1)(1 + mpδr,2)pr
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)

×

m−1∑
l=0

(
−m − 1

l

)2

(mod pr+2). (2.32)

Proof. By (2.2), modulo pr+2,

mpr−1∑
k=1,p∤k

1
k2

(
−mpr − 1

k − 1

)2

≡

mpr−1−1∑
l=0

(
−mpr−1 − 1

l

)2
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×
∑

⌊ k−1
p ⌋=l,p∤k

1 + 2mprH
′

k−1 + m2 p2rδr,1(2H
′

k−1
2
− H

′

k−1,2)

k2 . (2.33)

By (2.7) and (2.10), for any positive integer s and nonnegative integer l, we have

∑
⌊ k

ps ⌋=l,p∤k

1
k2 =

psl+ps−1∑
k=1,p∤k

1
k2 −

psl−1∑
k=1,p∤k

1
k2 ≡ H

′

ps−1,2 ≡ ps−1Hp−1,2 (mod ps+2). (2.34)

In light of Lemma 1 and (2.34), by induction, for any positive integer s ≤ r − 1, we can conclude that

mpr−1−1∑
l=0

(
−mpr−1 − 1

l

)2( ∑
⌊ k

p ⌋=l,p∤k

1
k2 − Hp−1,2

)

≡

mpr−1−1∑
l=0

(
−mpr−2 − 1
⌊ l

p⌋

)2( ∑
⌊ k

p ⌋=l,p∤k

1
k2 − Hp−1,2

)

=

mpr−2−1∑
l=0

(
−mpr−2 − 1

l

)2( ∑
⌊ k

p2 ⌋=l,p∤k

1
k2 − pHp−1,2

)

≡

mpr−s−1−1∑
l=0

(
−mpr−s−1 − 1

l

)2( ∑
⌊ k

ps+1 ⌋=l,p∤k

1
k2 − psHp−1,2

)

≡

m−1∑
l=0

(
−m − 1

l

)2( ∑
⌊ k

pr ⌋=l,p∤k

1
k2 − pr−1Hp−1,2

)
≡ 0 (mod pr+2). (2.35)

Recall that Zhao [34, Theorems 1.7 with s1 = s2 = m = n = 2] proved that for any prime p ≥ 5,

p−1∑
k=1

Hk−1,2

k2 ≡ 0 (mod p). (2.36)

In 2013, Meštrović [17, Theorem 1 and Lemma 6] showed that for any prime p ≥ 7,

p−1∑
k=1

Hk

k2 ≡ −
3
p2 Hp−1 ≡

3
2p

Hp−1,2 ≡ 3
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)
(mod p2), (2.37)

p−1∑
k=1

Hk−1

k3 ≡ 0 (mod p) and
p−1∑
k=1

Hk
2

k2 ≡ 0 (mod p). (2.38)

In light of (2.6), (2.8), (2.36)-(2.38), and Lemma 6, we obtain

mpr−1−1∑
l=0

(
−mpr−1 − 1

l

)2 ∑
⌊ k−1

p ⌋=l,p∤k

H
′

k−1

k2
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=

mpr−1−1∑
l=0

(
−mpr−1 − 1

l

)2 p−1∑
k=1

H
′

pl+k−1

(pl + k)2

≡

mpr−1−1∑
l=0

(
−mpr−1 − 1

l

)2 p−1∑
k=1

(
1
k2 −

2pl
k3

) k−1∑
j=1

1
pl + j

≡

mpr−1−1∑
l=0

(
−mpr−1 − 1

l

)2 p−1∑
k=1

(
Hk−1

k2 −
2plHk−1

k3 −
plHk−1,2

k2

)

≡ 3(p(1 + 2m)δr,2 + δr,1)
( B2p−4

2p − 4
− 2

Bp−3

p − 3

) m−1∑
l=0

(
−m − 1

l

)2

(mod p2). (2.39)

By (2.5)–(2.6), (2.10), (2.36), and (2.38), we get

m−1∑
l=0

(
−m − 1

l

)2 ∑
⌊ k−1

p ⌋=l,p∤k

2H
′

k−1
2
− H

′

k−1,2

k2

=

m−1∑
l=0

(
−m − 1

l

)2 p−1∑
k=1

2H
′

pl+k−1
2
− H

′

pl+k−1,2

(pl + k)2

≡

m−1∑
l=0

(
−m − 1

l

)2 p−1∑
k=1

2Hk−1
2 − Hk−1,2

k2 ≡ 0 (mod p), (2.40)

where the last congruence comes from

p−1∑
k=1

Hk−1
2

k2 =

p−1∑
k=1

(Hk −
1
k )2

k2 =

p−1∑
k=1

Hk
2

k2 − 2
p−1∑
k=2

Hk−1

k3 − Hp−1,4 ≡ 0 (mod p).

Finally, combining (2.33), (2.35), (2.39)–(2.40), and Lemma 6, we reach (2.32). □

At the end of proving Theorem 1, we need such a curious identity as follows:

Lemma 8. For any positive integer m, we have

2m(1 + 3m)
m−1∑
k=0

(
−m − 1

k

)2

− 2
m−1∑
k=1

(
−m
k

)2

k(k + m)

−2m2
m−1∑
k=0

(
−m
k

)2

=
3m2

2

(
2m
m

)2

. (2.41)

Proof. Since (
−m
k

)
k = −m

(
−m − 1
k − 1

)
and

(
−m
k

)
(k + m) = m

(
−m − 1

k

)
,

we obtain
m−1∑
k=1

(
−m
k

)2

k(k + m) = −m2
m−1∑
k=1

(
−m − 1

k

)(
−m − 1
k − 1

)
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= −m2
m−2∑
k=0

(
−m − 1
k + 1

)(
−m − 1

k

)
. (2.42)

It is clear that

2
m−1∑
k=0

(
−m − 1

k

)2

−

(
−m − 1
m − 1

)2

=

m−2∑
k=0

((
−m − 1

k

)2

+

(
−m − 1
k + 1

)2)
+ 1

=

m−2∑
k=0

((
−m − 1

k

)
+

(
−m − 1
k + 1

))2

− 2
m−2∑
k=0

(
−m − 1

k

)(
−m − 1
k + 1

)
+ 1

=

m−1∑
k=0

(
−m
k

)2

− 2
m−2∑
k=0

(
−m − 1

k

)(
−m − 1
k + 1

)
. (2.43)

By Zeilberger’s algorithm (see, e.g., [19, pp. 101–119]), Andersen found the following identity:

n−1∑
k=0

(21k + 8)
(
2k
k

)3

= 4n
(
2n
n

) n−1∑
k=0

(
−n
k

)2

. (2.44)

Let S (n) denote 1
(2n

n )
∑n−1

k=0(21k + 8)
(

2k
k

)3
. Via Zeilberger’s algorithm in Mathematica, we have the

recurrence relation

−(n + 1)S (n) + 2(1 + 2n)S (n + 1) = 4(n + 1)(21n + 8)
(
2n − 1
n − 1

)2

.

Let F(n) denote 4n
∑n−1

k=0

(
−n
k

)2
. Applying the Zeilberger algorithm, we get the same recurrence relation.

By induction on n, we can get (2.44).
Taking n = m,m + 1 in (2.44), we get

8(2m + 1)
m−1∑
k=0

(
−m − 1

k

)2

− 4m
m−1∑
k=0

(
−m
k

)2

=
2(2m + 1)

(m + 1)
(

2(m+1)
m+1

) m∑
k=0

(21k + 8)
(
2k
k

)3

− 8(2m + 1)
(
−m − 1

m

)2

−
1(
2m
m

) m−1∑
k=0

(21k + 8)
(
2k
k

)3

= 5m
(
2m
m

)2

. (2.45)

Substituting (2.42) and (2.43) into the left-hand side of (2.41) gives

2m(1 + 3m)
m−1∑
k=0

(
−m − 1

k

)2

− 2m2
m−1∑
k=0

(
−m
k

)2
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+ m2
( m−1∑

k=0

(
−m
k

)2

− 2
m−1∑
k=0

(
−m − 1

k

)2

+

(
−m − 1
m − 1

)2)
= 2m(1 + 2m)

m−1∑
k=0

(
−m − 1

k

)2

− m2
m−1∑
k=0

(
−m
k

)2

+
m2

4

(
2m
m

)2

. (2.46)

The congruence (2.41) then follows from (2.45) and (2.46). □

3. Proof of Theorem 1

Substituting n = mpr−1+ j for j ∈ {0, 1} and r ≥ 1 in (2.44) yields

1

m4 p4r
(

2mpr−1

mpr−1

)3

( mpr−1∑
k=0

(21k + 8)
(
2k
k

)3

− p
mpr−1−1∑

k=0

(21k + 8)
(
2k
k

)3)

=
1

m3 p3r
(

2mpr−1

mpr−1

)3

(
4
(
2mpr

mpr

) mpr−1∑
k=0

(
−mpr

k

)2

− 4
(
2mpr−1

mpr−1

) mpr−1−1∑
k=0

(
−mpr−1

k

)2)
. (3.1)

For all nonnegative integers s, t with t ≤ s and primes p ≥ 5, Helou and Terjanian [15] established the
following supercongruence:(

ps
pt

)
≡

(
s
t

)(
1 − st(s − t)

( p3

2
Bp3−p2−2 −

p5

6
Bp−3

+
s2 − st + t2

5
p5Bp−5

))
(mod p6+vp(s−t)+vp((s

t))), (3.2)

where νp(n) is the largest integer k such that pk | n. Taking s = 2mpr−1 and t = mpr−1 into (3.2) gives(
2mpr

mpr

)
−

(
2mpr−1

mpr−1

)
≡ −

(
2mpr−1

mpr−1

)
m3 p3rBp3−p2−2 (mod p3r+2). (3.3)

Here we will explain why a congruence modulo what might be pr+5 (that is (3.2)) can imply a
congruence modulo p3r+2 (that is (3.3)). Note that(

2mpr

mpr

)
= 2

mpr−1∏
j=1

2mpr − j
j

= (−1)mpr−1(p−1)
(
2mpr−1

mpr−1

) mpr−1∏
j=1,p∤ j

(
1 −

2mpr

j

)
≡

(
2mpr−1

mpr−1

)(
1 − 2mprH

′

mpr−1 + 2m2 p2r(H
′

mpr−1
2
− H

′

mpr−1,2)
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−
∑

1≤i< j<k≤mpr−1,p∤i jk

8m3 p3r

i jk
+

∑
1≤i< j<k<l≤mpr−1,p∤i jkl

16m4 p4rδr,1

i jkl

)
(mod p3r+2). (3.4)

If two terms
(

2mpr−1

mpr−1

)
−
(

2mpr−1

mpr−1

)
m3 p3rBp3−p2−2 exist in the congruence (3.2) modulo a low power pr+5, they

will also exist in the congruence (3.4) modulo a high power p3r+2. So we just bring the special values
s = 2mpr−1 and t = mpr−1 into (3.2) and get the congruence (3.3).

The congruence (3.3) can also be understood in another way. If r = 1, we can get (3.3) by taking
s = 2m and t = m in (3.2) immediately. Now we suppose that r ≥ 2. Letting mpr−a→ i, mpr−b→ j,
and mpr − c→ k in the following summation, we see that∑

1≤i< j<k≤mpr−1,p∤i jk

1
i jk
=

∑
1≤c<b<a≤mpr−1,p∤cba

1
(mpr − a)(mpr − b)(mpr − c)

≡ −
∑

1≤c<b<a≤mpr−1,p∤abc

1
cba
≡ 0 (mod pr). (3.5)

Recall that Sun [23, Remark 5.1] has obtained the supercongruence: for any prime p ≥ 7,

Hp−1 ≡ −

( B2p−4

2p − 4
− 2

Bp−3

p − 3

)
p2 (mod p4). (3.6)

By Kummer’s congruence, we obtain

Bϕ(p5)−2 ≡ Bϕ(p4)−2 ≡ Bϕ(p3)−2 = Bp3−p2−2 (mod p2), (3.7)

where ϕ(n) denotes the Euler’s totient function and ϕ(pr) = pr − pr−1 for any positive integer r. Note
that

Hp−1 ≡ −
p2

2
Bϕ(p5)−2 (mod p4). (3.8)

By (3.6) and (3.7)–(3.8) (also see [33, (3.10) and (3.13)]), we have

Bp3−p2−2 ≡ 2
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)
(mod p2). (3.9)

Substituting (2.6)–(2.7), (2.10), and (3.5) into the rightside of (3.4) gives

(
2mpr

mpr

)
≡

(
2mpr−1

mpr−1

)(
1 − 2m3 p3r

( B2p−4

2p − 4
− 2

Bp−3

p − 3

))
(mod p3r+2). (3.10)

Combining (3.9) and (3.10), we deduce the congruence (3.3) in the case r ≥ 2.
With the help of Lemma 2, by induction, we get

mpr−1∑
k=0

(
−mpr

k

)2

≡

mpr−1−1∑
k=0

(
−mpr

pk

)2

≡

mpr−1−1∑
k=0

(
−mpr−1

k

)2
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≡

mp−1∑
k=0

(
−mp

k

)2

≡

m−1∑
k=0

(
−m
k

)2

(mod p2). (3.11)

In view of (1.4), (2.3), (3.1), and (3.3)–(3.11), to prove the theorem, it suffices to show that

mpr−1∑
k=0

(
−mpr

k

)2

−

mpr−1−1∑
k=0

(
−mpr−1

k

)2

≡ m3 p3r
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)(3
2

(
2m
m

)2

+ 2
m−1∑
k=0

(
−m
k

)2)
(mod p3r+2). (3.12)

Note that

mpr−1∑
k=0

(
−mpr

k

)2

=

mpr−1∑
k=1,p|k

(
−mpr

k

)2

+

mpr−1−1∑
k=0

(
−mpr

pk

)2

.

Now we will divide the sum into two parts: the sum divisible by p and not divisible by p. Since(
−x
k

)
(−1)k =

(
x+k−1

k

)
for any nonnegative integer k,we have(

−mp
pk

)2

=

(
p(m + k) − 1

pk

)2

=

(
p(m + k)

pm

)2 m2

(m + k)2 .

Moreover, taking s = m + k and t = m in (3.2) gives(
p(m + k)

pm

)
≡

(
m + k

m

)(
1 − mk(m + k)p3

( B2p−4

2p − 4
− 2

Bp−3

p − 3

))
(mod p5),

and so (
−mp

pk

)2

=

(
−m
k

)2(
1 − 2mk(m + k)p3

( B2p−4

2p − 4
− 2

Bp−3

p − 3

))
(mod p5). (3.13)

Thus, in order to prove (3.12) for r = 1, it suffices to prove that

− 2p
( B2p−4

2p − 4
− 2

Bp−3

p − 3

) m−1∑
k=1

(
−m
k

)2

k(k + m) +
mp−1∑

k=1,p∤k

m
k2

(
−mp − 1

k − 1

)2

≡ m2 p
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)(3
2

(
2m
m

)2

+ 2
m−1∑
k=0

(
−m
k

)2)
(mod p3), (3.14)

which follows from (2.32) and (2.41). This proves the r = 1 case of the theorem. For the sake of
convenience, we use the notation H

′

(r, s, t; n) to denote the number
∑

1≤i< j<l≤n,p∤i jl
1

ir jslt . Similarly to the
proof of [34, (3.33)]: using substitution of indices l→ pk − l and 1

pk−i ≡ −(1
i +

pk
i2 ) (mod p2), we have

H
′

(1, 1, 1; pk − 1)
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=

pk−1∑
l=1,p∤l

1
l

l−1∑
j=1,p∤ j

1
j

j−1∑
i=1,p∤i

1
i

=

pk−1∑
l=1,p∤l

1
pk − l

pk−1∑
j=l+1,p∤ j

1
pk − j

pk−1∑
i= j+1,p∤i

1
pk − i

≡ −H
′

(1, 1, 1; pk − 1) − pk(2H
′

(2, 1, 1; pk − 1) + H
′

(1, 2, 1; pk − 1)) (mod p2).

By Lemma 4, we can prove that

H
′

(2, 1, 1; pk − 1) =
pk−1∑

l=1,p∤l

1
l

l−1∑
j=1,p∤ j

1
j

j−1∑
i=1,p∤i

1
i2 =

k−1∑
a=0

p−1∑
b=1

1
pa + b

pa+b−1∑
j=1,p∤ j

1
j

j−1∑
i=1,p∤i

1
i2

≡ kH
′

(2, 1, 1; p − 1) (mod p)

and

H
′

(1, 2, 1; pk − 1) ≡ kH
′

(1, 2, 1; p − 1) (mod p).

Recall that Zhao [34, (3.20)] has proved the following congruences:

H
′

(1, 2, 1; p − 1) ≡ H
′

(2, 1, 1; p − 1) ≡ 0 (mod p).

It follows that H
′

(1, 1, 1; pk − 1) ≡ 0 (mod p2). For r ≥ 2, noting that(
−mpr

pk

)2(
−mpr−1

k

)2 =

pk−1∏
j=1,p∤ j

(mpr + j)2

j2

≡

1 + mprH
′

pk−1 +
m2 p2r(H

′

pk−1
2
− H

′

pk−1,2)

2
+ m3 p3rH

′

(1, 1, 1; pk − 1)


2

≡ 1 + 2mprH
′

pk−1 + 2m2 p2rH
′

pk−1
2
− m2 p2rH

′

pk−1,2 (mod p3r+2),

and

p2r

(
−mpr−1

k

)2

H
′

pk−1
2
≡ 0 (mod p4r+2+2νp(k)),

since
(
−mpr−1

k

)2
≡ 0 (mod p2(r−1−νp(k))) and H

′

pk−1
2
≡ 0 (mod p4(1+νp(k))) by (2.6), we obtain(

−mpr

pk

)2

≡

(
−mpr−1

k

)2 (
1 + 2mprH

′

pk−1 − m2 p2rH
′

pk−1,2

)
(mod p3r+2). (3.15)

Thus, to prove (3.12), it suffices to prove that
mpr−1−1∑

k=1

(
−mpr−1

k

)2 (
2H

′

pk−1 − mprH
′

pk−1,2

)
+

mpr−1∑
k=1,p∤k

mpr

k2

(
−mpr − 1

k − 1

)2

≡ m2 p2r
( B2p−4

2p − 4
− 2

Bp−3

p − 3

)(3
2

(
2m
m

)2

+ 2
m−1∑
k=0

(
−m
k

)2)
(mod p2r+2).

But the above supercongruence follows from Lemmas 5, 7, and 8. This proves the r ≥ 2 case of the
theorem.
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4. Conclusions

In this paper, we make use of some unknown congruences involving the generalized harmonic
numbers and Bernoulli numbers and an identity involving sums of binomial coefficients’ squares by
induction and Zeilberger’s algorithm, and partially prove a congruence modulo high powers related to∑

(21k + 8)
(

2k
k

)3
. Conjecture 1 in the case p |

(
2mpr−1

mpr−1

)
may be solved by finding a suitable identity or

seeking a q-analogue of the identity via Mathematica or Maple (As shown in Table 1).

Table 1. A summary table lists all congruences used in this paper and their sources.

All congruences are used Sources
Hp−1 ≡ −

1
3 p2Bp−3 (mod p3) J. W. L. Glaisher [4, 5](

prn−1
k

)
=

(pr−1n−1⌊
k
p

⌋ )∏k
j=1,p∤ j

prn− j
j F. Beukers [2](

pra
psb

)
≡

(
pr−1a
ps−1b

)
(−1)psb−ps−1b Gessel [3], Granville [6] and

(mod p2r+min{r,s}−δp,3−2δp,2) Straub [22]∑ pr−1
2

k=1,p∤k
1
kn ≡ 0 (mod pr) (n is even) Osburn, Sahu, and Straub [18]

Hp−1,3 ≡ −
6p2Bp−5

5 (mod p3) Sun [23]

H
′

ps−1,2 ≡ 2ps
(

B2p−4

2p−4 − 2 Bp−3

p−3

)
Zhang [33]∑p−1

k=1
Hk
k2 ≡ −

3
p2 Hp−1 ≡

3
2p Hp−1,2 Meštrović [17]

≡ 3
(

B2p−4

2p−4 − 2 Bp−3

p−3

)
(mod p2)∑p−1

k=1
Hk−1

k3 ≡ 0 (mod p) Meštrović [17]∑p−1
k=1

Hk
2

k2 ≡ 0 (mod p) Meštrović [17](
ps
pt

)
≡

(
s
t

)(
1 − st(s − t)

(
p3

2 Bp3−p2−2 −
p5

6 Bp−3 Helou and Terjanian [15]

+ s2−st+t2
5 p5Bp−5

))
(mod p6+vp(s−t)+vp((s

t)))

Hp−1 ≡ −

(
B2p−4

2p−4 − 2 Bp−3

p−3

)
p2 (mod p4) Sun [23]

Bp3−p2−2 ≡ 2
(

B2p−4

2p−4 − 2 Bp−3

p−3

)
(mod p2) Zhang [33]

H
′

(1, 2, 1; p − 1) ≡ H
′

(2, 1, 1; p − 1) ≡ 0 (mod p). Zhao [34]
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