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Abstract: We prove that, for all primes p > 5, positive integers r and m with p f m and p ¢ (2’;”; 11)

there holds

rll

mp’ -1 mp 3
: (Z(21k+8)( ) > (21k+8)( ))
mp" 1

4 4
mpr(mprl k=0

where H, = "
by Z.-W. Sun.

j=1 7 L (n=1,2,---) are the usual harmonic numbers. This partially confirms a conjecture

Keywords: supercongruences; central binomial coefficients; harmonic numbers; Ramanujan-type
supercongruences
Mathematics Subject Classification: Primary: 11A07, 11B75; Secondary: 05A10, 11B65.

1. Introduction

For Ramanujan’s and Ramanujan-like series, the reader may consult [7-9, 20, 28] for related work.
In the spirit of [35], all known Ramanujan-type formulas for 1/ and 1/7* admit similar p-analogues.
For example, Zeilberger [32] discovered the following Ramanujan-type formula:
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Sun [24] proposed its p-analogue as follows:

p—1

21k — 8 el
T (=1)'T4E,_3 (mod p),
=0 k (k)
where Ey, E, E,, - - - are the Euler numbers. He also found the above congruence has the following

equivalent form:

p-1
2

2%\’ ~1\,. 3 A
ik+8) | =8p+ (?)32;7 E,_; (mod p*),

>~
o

where (:) denotes the Jacobi symbol.
In 2011, Sun [26] studied the above summation index k from O to p” — 1 and showed that for any
prime p and r € Z°,

= 2K\’
Z(zuc + 8)( k) = 8p’ + 16p'*B,_3 (mod p™**), (1.1)
k=0

where By, By, B, - - - are the Bernoulli numbers and B_; is regarded as zero. Recall that Glaisher [4, 5]

proved that, for any prime p > 5,

1
H,, = ‘51’23!’-3 (mod p?), (1.2)

where H, (n = 1,2,---) denotes the usual harmonic number Z;le % We refer the reader to [31] for
applications of harmonic numbers. Recently, Xia [30] confirmed that, for primes p > 7,

3
Z(Zlk + 8)(2:) = 8p — 48p*H,_; (mod p°). (1.3)

This, together with (1.2), extends (1.1) to the modulus p® case for » = 1. Based on the above work,
Sun [25, Conjecture 21(i)] proposed the following more general conjecture:

Conjecture 1. Let p # 2,5 be a prime, and let r € Z*. Let m be a positive integer with p Y m. Then

w21k + 8)(%) - pxrn @ik + 8)(%)

N3
4 o dr(2mp!
mp’( 1

mp’

H,
= -6 ;21 (mod p?). (1.4)

r—1

Remark 1. The case p | (2’:5_1 ) in Conjecture 1 is somewhat difficult to deal with. In this case, we need
3

e ) and achieve modulo greater

than 4r + 2. Conjecture 1 is the Atkin and Swinnerton—Dyer type (see [1]) congruence’s extension

related to harmonic numbers and Bernoulli numbers. We are all interested in this type of congruence

and think it meaningful to study such congruence. That is the motivation for our work.

r—1
to find a more appropriate identity to approximate away this factor (2”’p
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Here we shall establish the following result, thus partially confirming a weaker version of
zmpr—l
mpr—l

Conjecture 1, which is the case p 1 ( ) of the congruence (1.4).

Theorem 1. ILet p > 5 be a prime and r be a positive integer. Let m be a positive integer with p { m
and p £ (2'"’7 ) Then the congruence (1.4) is true.

mpr—l

Remark 2. Clearly, taking r = m = 1 in (1.4) yields (1.3). The congruence (1.4) is often called
a Ramanujan-type supercongruence. In recent years, many authors have studied Ramanujan-type g-
supercongruences; the reader may refer to [10-14,16,21,27,29]. We think Theorem 1 may be useful
to those who are interested in Ramanujan’s and Ramanujan-like series, and the Atkin and Swinnerton-
Dyer type congruences in combinatorics.

The paper is organized as follows: some lemmas are given in section 2. In section 3, we will give
the proof of Theorem 1. The last section is the conclusions.

2. Some lemmas

In order to prove Theorem 1, we need the below eight lemmas. The first one is a result of Beukers [2,
Lemma 2 (i)].

Lemma 1. Let n be an integer, and let p be a prime. Let r and k be positive integers. Then

"n—1 rfln -1 ) k 1
(p " ) = (p . )(_1)H2J(1 —np” Y f) (mod p*). 2.1)
k H it

Remark 1. The previous version of (2.1) (also see [2, Lemma 2 (i)]) is very important. We list it out as

follows. ; )
(p nk— 1):(19 {ZJ_ 1) [ pnj—f. (2.2)
p

J=Lptj

The second one is Jacobsthal’s binomial congruence (see [18, Lemma 2.1 and the proof of Theorem
1.3]).

Lemma 2. Let p be a prime. Then, for all integers a, b, and positive integers r, s,

r r—1
(P Z) _ (P IZ)(_I)pr—pf-lb (mod p2r+min{r,s}—5p,3—26,,,2). (2.3)
P’ D’

where the Kronecker symbol 6,,, is defined as 1 if m = n and 0 otherwise.
Remark 2. The p > 5 case of (2.3) was confirmed by Gessel [3] and Granville [6]. Straub [22] proved
the extension to negative integers.

The third result we require is due to Osburn, Sahu, and Straub [18, Lemma 2.2].

Lemma 3. Let p > 5 be a prime, and let n be an even positive integer. Then, for all integers r > 1,

p-l
2

1
m = 0 (mod p"). 2.4)
k=1,ptk
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From (2.4) it is easy to see that

pr-1

1 ( 1 1 ) 1
== —F ———]=2 — =0 (mod p). (2.5)

k:lz,p)(k k k:lz,p)(k kr o (p" =k k:lz,l;)(k k
For any positive integer m, let H,,, = >/, ]im (n = 1,2, ...) denote the generalized harmonic numbers
of order m. Clearly, H,; = H,. For convenience, we adopt the notation H, ,, to stand for the number
’]1':1,17)( i Ji and let H, = H,;,l- For example, we can revise the congruences (2.4) and (2.5) as follows:

H', . =0 (mod p") and H;},_Ln = 0 (mod p").

=
We need to establish another five lemmas.

Lemma 4. Let p > 5 be a prime, and let k be a positive integer. Then, for any positive integer s,

’ B2 —4 B -3
— . 2s72 p P 25+2
Hpsk_1 = -p~k (2 1 2 3) (mod p~**), (2.6)

and

’

H o 1, =kH,_,, (mod p***). (2.7)

Proof. For any prime p > 7, Sun [23, Theorem 5.1] proved that

6szp_5

H, 3=~ (mod p*). (2.8)

It is easily seen that, for any positive integer s,

s

[J’—l ps_l px_l
1 1 1
i3

Hpna= D) 5= 2 WE_._Z

J=Lptj J=Lptj

= 0 (mod p*). (2.9)

Note that Zhang [33] has given the following result:

B s B,
) )(mod ). (2.10)

H, 52“'(
P12 =\ T4 T T3

It follows from (2.5), (2.8), and (2.9) that

and
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k(k—Dp*H k(k — )2k — 1)

= kH[,)‘V—l 2 + pZSH;)S_l,3 6
k-1
— 6S,1p3SHps_1,4 Z l-3
i=1
pE 2s 2( Bap4 B3 ) 2542
=——H,  ,=-p7k -2 d .
y Hpoa=—pr K\ =23 ) (med p70)
Similarly to the proof of (2.6), by using (2.5), (2.8), and (2.9), we can get the following
supercongruence:
k=1 p*-1 k-1 p*-1 . 252
, 1 1 2pfi 3p~titosg
R ENIEIEE SRS S
p k 1’2 S D 0 . )
o S P A J /
, , k(k = )2k = D)p*H ,_, 16,1
= ka“—l,Z - k(k - l)pSHps_l’:; + >

= kH,,_, , (mod p>**),
This completes the proof.

We will use Lemma 5 to handle the sums divisible by p of Theorem 1.

Lemma S. Let p > 7 be a prime, and let m be a positive integer with p ¥ m. Then, for any positive

integerr,

mp' -1

o r—1)2
Z ( m]]: ) (2H1;k—1 _mer:nk—l,Z)

k=1

—n 22 By B, 3\'"& (—m -1\
=2m p”(1 = 6,)(1 — (p + 2mp)od,») -2
-4 p-3

Bz_4 B_3 m—1 _m2
-2 ZF( P -2 p ) k(k d 2r+2.
5555 ; L | ke +m) (mod p*?)

Proof. By (2.6), (2.7), and (2.10), the supercongruence (2.11) is true for r = 1.
We now assume that » > 2. In view of [2, Lemma 1], we have

1_ 2r
> E=o0modph,

L 1=0,ptk
and so
p-1 p-1 k 1 p-1 1 p-1 p-1 -]
Hi, = Z—.: - 1= 2 <2 =1-p(mod p?).
k=1 k=1 j=1 J j=1 J k=j j=1 J

1= pHp—l,Z - Hp—l =0 (mod p2)

(2.11)

(2.12)

(2.13)

(2.14)
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Note that for any nonnegative integer / and positive integer k, by (2.6), (2.7), and (2.10), we get

k? 2p-4 p-3 k

LSt I=Lptk LS =L ptk
= 2p%(1 - p)( - ’13 )(modp ) 2.15)
and
H_ H, B, B,
L _pZ( 2t ) > H,_, (mod ph. (2.16)
L k? 2p—4 p-3/
UL =L ptk LA =1 ptk
With the help of (2.10), (2.13), and (2.14), we can deduce that
p—1 p—1 k-1 p-1 k-1 1 pl
LZ Hk—1=ZHp1+k = pl+JEZ_ (;_F)
I-TJ Lptk k=1 k=1 j=1 k=1 j=1
p—1
= 3 (Her = plHic12) = 1= p (mod p) (2.17)
k=1

For r = 2, by (2.1), (2.6), (2.7), (2.10), and (2.15)—(2.17), we have

mp—1 _ 2 ) )
Z ( 717:1?) (2Hpk—l _mP2Hpk—1,2)
k=1,ptk

mp—1

m-—1 , ,

_17121)2 Z k2( |_k 1) ) (1 +2mka 1)(ZH —mszpk_l,z)
k=1,ptk

_mzpzmz(_m_l) Z 2Hpk1+4mpH Hpk1 pHpk12

k2
LSt J=Lptk

m—1

B, —m =1\
— 2.4 2p—4 p-3 6
= 2mPp*(1 = p - 2mp)( e 2p_3);( 1 )(modp).

In light of (2.3), (2.6), (2.7), and (2.10), we can show that

mp—1 _ 2 , ,
Z ( 1]7:]9) (2Hpk—l _mszpk—l,2)
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Combining the above two congruences, we arrive at (2.11) with r = 2.

Next, we will consider the case r > 3. For any integer 1 < s <r—2and 1 < k < mp"™

r—l 2 ’
p 1 k, by (2.7) and (2.10), we have p ( e ) Hoy = 0 (mod p¥*2). Tt follows that

mp" -1 _mpr_l 2 ) )
Z ( k ) (2Hpk—l _merpk—],Z)
2

mp—1 12
—mp ' ryy 242
+ Z ( pr_zk ) (2Hp”1k—1 —mp Hp”lk—l,Z) (mOdp )

With the help of (2.3) and (2.6), we obtain

25, 22, () o

s=1 k=1,ptk

By, 4 =2 mp s —-mp"~ 2
— 2 2r P— 2r+2
= -2m°p (2p 1 p 3) El E ( (mod p~™°).

k=1,ptk

For any integer 1 < s < r —2, by Lemma 1, we can show that

mp"=S-1 —mps — 1 2
D

k=1,ptk
B mp' =1 _mpr—s—l -1 2 ~ mp" -1 _mpr—s—l -1 2 .
- Z |1 B Z I

k=1,ptk p =0 L%J:l,p{k

mpr_s_l_l r—s—1 2
-mp -1 )

=(p-1 mod p°).

(p-1) IZ; ( l ) (mod p?)

If s = r — 2, then using (2.6), (2.13), and Lemma 1, we have

mp—1

<p—1>Z( " ) —<p—1>2( ) > (1 +2mpH,)

L5 1=k

m—1 2
=~(1+2mp y (_mk_ 1) (mod p?).
k=0

If 1 < s < r -3, then similarly to the proof of (2.20), by (2.21) we get

mpr—x—l -1

_n,lpr—s—l_l2
-0 )] ( l )

=0

$ — 1 with

(2.18)

(2.19)

(2.20)

(2.21)
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mp’ -1 _mpr—s—Z -1 2
=p(p-1 ), ( l )
1=0
el —mp — 1\’
EP(P—I)'[S=V—3]'Z( ] ) = 0 (mod p?). (2.22)
1=0

It is clear that [m = n] coincides with the Kronecker symbol 6,,,. Substituting (2.20)—(2.22) into (2.19)
leads to

r=2 mp"°-1 _mpr_l 2 )
IS e

s=1 k=1,ptk ps_lk
B2 . B 3 m—1 —m—1 2
= 221 + 2 2”‘( rt g ”‘) d p2r2), 223
me(L+ 2mp? p_3; | mod p7?) (2.23)

In light of (2.6)—(2.7), (2.10), (2.13), (2.17), and Lemma 2, we have

mp—1 —I’I’lpr_l 2 ) )
Z (pr—Zk) (2Hpr’lk—1 _merpr*Ik—l,Z)

k=1,ptk
Byys _ Bysy S (—mp -1\ " =mp - 1)
= 2m2p2r( - —— 42 )( + pm - )
2p-4" "p-3 “Z;*k k-1 HZ;AMk k-1
B B._ m—1 —m—1 2 )
E2m2p2’(—22p1+2 £ ;) ( ml ) Z (1+2mka_l+%)
P =25 LSS I=Lptk
sz_4 Bp_3 = -m-1 2
= o (p—1 + Zmp)( +2 ) (mod p>*2), (2.24)
2p-4  p-3/4 [
and
m—1 _mp
Z( 1 ) pk-1 mPerrk—l,z)
1
B2 A B 3 m—1 m 2
=2 Zf( o Y ) K+ k d p> ). 205
P55 p3§;k( m) (mod p**?) (2.25)

Finally, combining (2.18), (2.23), (2.24) and (2.25), we reach (2.11) with r > 3. This proves Lemma
5.

O
The following Lemma 6 plays an important role in proving Lemma 7.
Lemma 6. Let p > 7 be a prime. Then, for any positive integer r,
" (~mpr 1 — 1)
> ( pk ) = p"(1 + 2m)(1 — 2mpé,,) Z ( ) (mod p™*?). (2.26)
k=0 1=0

AIMS Mathematics Volume 10, Issue 5, 11444-11464.
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Proof. By (2.2), we have

mp’—l_ r—12
Z(" )

k=0

mp'—1 - 2k ,
_"2 —-mp™t -1 l—[(1+mp)2
- ) :

e L] J=1.pt) J

! —mpt -1\ 2mp"  m*p*s,,
= Z L£] 1_[ (1 Tt 2 )

k=1 P j=1.pti J J

mp"—1 r—1 2

-m -1 , , ,

= Z kaJ (l +2mp H, — m*p”6, 1 Hy, + 2m2p2’(5,,1Hk2) (mod p'*?).

=1
In view of (2.6) and the Chu—Vandermonde convolution identity, we get

-1 p-1
-1 2p -2
(Pk) (1’ ) S ( _)E_zpz_p(modp3>.
p p-11

=

k

Il
[«

On the other hand,

p-1 2 p—-1
—1
(p . ) =1+ (1 —2pH, - p*Hys + 2p2H,§) (mod p?).
k=0 k=1

Combining (2.6), (2.13), (2.14) and (2.28) with (2.29), we obtain

-1

<

H} = -2 (mod p).

p—1 p-1 k 1 p-1 k 1 pl
ZHkEZ}L]‘MEZZMH EZZ(;_J_Z)
L& )= k=1 k=1 j=1 k=1 j=1
p-1 p-1
= Hk—pl Hk2= 1 —p(modpz),
k=1 k=1
p-l p-1 Zkl 1 p-1 Zk: 1 p-1
H,= ) H,,= — = — = ) Hipx =0 (mod p),
= k=1 g k=1 j=1 (pl+)) =1 =17 k=1
and by (2.30)
5 p—1 5 p-1 k 1 2 p-1
H = H,, = (Z " ) = H? = -2 (mod p)
LE)J:[ k=1 k=1~ j=1 p J k=1

(2.27)

(2.28)

(2.29)

(2.30)
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Therefore,

m—1 2
+ (—m B 1) (ZmpH,; — mzsz,;2 + 2m2p2H,;2)
=0 l L J=Lptk
m—1 —m—1 2
= p(1 + 2m)(1 — Zmp)Z( 1 ) (mod p?), 2.31)
=0

where we shouldn’t accept that p | k in sums of the second line in (2.31). This completes the proof of
(2.26) forr = 1.

Now, we consider the case r > 2. From (2.27), (2.31), and the above congruences, we can deduce
by induction that

mpzril (—mpk’ - 1)2 = mp_o_ (_mp 1) > (1 +2mp"H, )

l= L& 1=t

mp" -1 —mp”‘l _1\2
(p+2mp’(1 —p)) Z ( ] )

=0

Il
—_—
<
+
[\>]
3
<
~
—_
|
<
N
N —
M“
|
3
-
|
—

r m—1
o (1 +2mp(1 - p))(l +2m)(1 = 2mp) (_ml_ 1)

j=2 =0
m—1 —m—1 2
— T r+2
=p(1+2m);;( 1 ) (mod p™*?),

which is just the supercongruence (2.26) for r > 2. O
We will use Lemma 7 to deal with the sums not divisible by p of Theorem 1.

Lemma 7. Let p > 7 be a prime. Then, for any positive integer r,

mp -1 2
1{-mp -1 By, B,
ﬁ( ’:p 1 ) 52(1+2m+m5,,])(1+mp5r,2)pr(2 gt ;)
k=T,ptk N P pP-
m—1
x (_m_ ) (mod p™*?). (2.32)
=0

Proof. By (2.2), modulo p"*?,

mpijli_mpr_12=mpz_l: —mp"1—12
e\ k-1 )]~ £ I

k=1,ptk

AIMS Mathematics Volume 10, Issue 5, 11444-11464.
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1+ 2mp’H,  +m*p¥6,,QH, > —H. )
% k-1 1 k-1 k=12 . (2.33)

k2
L =1 prk

By (2.7) and (2.10), for any positive integer s and nonnegative integer /, we have

pil+p°—1

s
Z % Z l2 - Z =H,_1,=p" Hp12(mod P, (2.34)
1.ptk

L%J:l,p{k k=1,ptk

In light of Lemma 1 and (2.34), by induction, for any positive integer s < r — 1, we can conclude that

r—1

S NE g

1=0 L& I=Lptk
mp'~1-1 r—2 2
mp"™ -1 1
= 2 ( L] ) Y i)
=0 P Ly =L.ptk
mp"2-1 r—2 2
-mp"™ -1 1
S (LA (I VETTaN
=0 L5 J=Lptk
prf.vfl_l
—mp -1 1 s
) ( ! )( Y, @ vt
1=0 L J=lptk
m—1 2
-m—1 1
= ( 1 ) ( > - pr_al_l,z) = 0 (mod p™?). (2.35)
=0 Lar I=Lptk

Recall that Zhao [34, Theorems 1.7 with s; = s, = m = n = 2] proved that for any prime p > 5,

p-1
Hi1»
2

k=1

= 0 (mod p). (2.36)

In 2013, Mestrovi¢ [17, Theorem 1 and Lemma 6] showed that for any prime p > 7,

© H, 3 3 Boys B, ;
5—5_— = —H,  ,=3—"2= -2 & ) d 2.37
Z B 7 p-1 2 p-12 (2p—4 P—3 (mod p?), (2.37)
p-1 Pl .0
H,_ H
]; L =0 (mod p) and —1; = 0 (mod p). (2.38)
=1 k=1

In light of (2.6), (2.8), (2.36)-(2.38), and Lemma 6, we obtain

mp =1 1\2 /
> () Y e

=0 L&t J=Lptk

AIMS Mathematics Volume 10, Issue 5, 11444-11464.
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m’i_l —mpt -1\ & H;al+k—1
- ! i (pl + k)?
M IV 1 2
= ; I k_l(ﬁ_ﬁ);PH'J
) mpr-1-1 —mprl = 1 2 p-1 (Hk—l ) 2plH_, ~ lek_l,z)
B 1=0 ! =N K o

m—1

=3(p(1 +2m)d,5 + 6,1)

By (2.5)—(2.6), (2.10), (2.36), and (2.38), we get
2

(= —m — 1 2H1I<—1 - H1;—1,2
2 -

L& J=Lptk

(= —m—l pz: pl+k1 - pl+k12
— (pl + k)?
-1

i —m—12 2Hk1 _Hk—l
k2

2 =0 (mod p),

where the last congruence comes from

1 1 -1
pZIHlkczl :le(Hkk2 ) pz: 22Hk1 p14_0(m0dp)

=1 k=1
Finally, combining (2.33), (2.35), (2.39)—(2.40), and Lemma 6, we reach (2.32).

At the end of proving Theorem 1, we need such a curious identity as follows:

Lemma 8. For any positive integer m, we have

2 m—1 2
2m(1+3m) Y (_mk_ 1) —2 Z (‘Z’) k(k + m)

5]

Proof. Since

we obtain

2
(2122”_‘1-2 p3)lz(—m‘ ) (mod p?).

(2.39)

(2.40)

(2.41)

AIMS Mathematics Volume 10, Issue 5, 11444-11464.
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m-2
o ("" - 1)("” - 1). (2.42)

It is clear that

—m-1\2 & (-m-1\(-m—1
-2 1
+(k+1)) 0( k )(k+1)+
m— 2 m=2
—m) -m—1\(-m -1

_ S ( )( ) @.43)

= ( k ~ k k+1
By Zeilberger’s algorithm (see, e.g., [19, pp. 101-119]), Andersen found the following identity:

Z(Zlk + 8)( )3 - 4n( )i (_k”)z (2.44)

k=0

3
Let S(n) denote (2—1) ZZ;&(Zlk + 8)(2kk) . Via Zeilberger’s algorithm in Mathematica, we have the
recurrence relation

2
—n+DS)+2(1+2n)S(n+ 1) =4n+ DH2ln + 8)(2 11)

2
Let F(n) denote 4n ZZ;(I, (_k") . Applying the Zeilberger algorithm, we get the same recurrence relation.
By induction on n, we can get (2.44).
Taking n = m,m + 1 in (2.44), we get

m—1 m—1
8(2m+1)Z(_m_ ) 4m ( )
k=0 k

k=0

o22m+1) ¥ ( ) (—m—1)2
=" 321k +8 ~82m +1
(m+ DY) ;( P I

m+1 =

m—1 3 2
- LZ(zlk 8)( ) = sm(zl;”) : (2.45)

() =
Substituting (2.42) and (2.43) into the left-hand side of (2.41) gives

m—1 2 m—1 2
2m(1 +3m) Y (_m B 1) DY (_m)
2\ k k

k=0

AIMS Mathematics Volume 10, Issue 5, 11444-11464.



11457

I R ]

k=0 k=0
m—1 2 m—1 2 2 2
-m -1 - 2
= 2m(1 + 2m) ( mk ) — ( ]:") + ’%( m) : (2.46)
k=0 k=0 m
The congruence (2.41) then follows from (2.45) and (2.46). O

3. Proof of Theorem 1

Substituting n = mp’~'*/ for j € {0, 1} and r > 1 in (2.44) yields

mp"—1 mp -1_1 2k3
(el sl
— 1 2mp” "L —-mp 2mp"! mp’_ -1 —mp'! 2
A ST T e
mp"

For all nonnegative integers s, f with ¢ < s and primes p > 5, Helou and Terjanian [15] established the
following supercongruence:

)

where v,(n) is the largest integer k such that p* | n. Taking s = 2mp’~! and t = mp"~! into (3.2) gives

2 r 2 r—1 2 r=1
(mp)_( > )E_( > )m3p3er3_pz_2 (mod p™"™). (3-3)

mpr mpr—l mpr—l

s 3 5
([)(1 - SZ(S - t)(%Bp3_p2_2 - %Bp_3

§2 — st + 1

. » Bp—s)) (mod p6+vp(s—t)+v,,((;')))’ 32)

Here we will explain why a congruence modulo what might be p"* (that is (3.2)) can imply a
congruence modulo p**? (that is (3.3)). Note that

2mp”
mp"

mp"—1

_21—[ 2mp -J

r—1 2m ! mpr_l 2m r
= (-1 1>(m]51) [1(-=2)

=t J
B 21’1’1 pr—l
- mpr—]

)(1 - 2mp’H;npr_1 +2m? 2r(H - H;np"—l,Z)
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8m3p3r 16m4p4r5r’1

3r+2' 4
ik 2 ikl J nod ) G

1<i<j<k<mp"—1,ptijk 1<i<j<k<I<mp’—1,ptijkl

r—1 r—1 . .
2;1";_1 ) - (2;;;",_1 )m3 p¥"B,s_ 2 exist in the congruence (3.2) modulo a low power p™*?, they

If two terms (
will also exist in the congruence (3.4) modulo a high power p**2. So we just bring the special values
s =2mp"~' and t = mp"~! into (3.2) and get the congruence (3.3).

The congruence (3.3) can also be understood in another way. If r = 1, we can get (3.3) by taking
s =2mand ¢t = min (3.2) immediately. Now we suppose that r > 2. Letting mp"—a — i, mp"—b — }j,

and mp” — ¢ — k in the following summation, we see that

1
1 preva P" — @)mp” = b)(mp" —c)

1
ijk
1<i<j<k<mp"—1,ptijk J 1<c<b<a<mp

——=0(mod p). (3.5)
coa
1<c<b<a<mp’™—1,ptabc

Recall that Sun [23, Remark 5.1] has obtained the supercongruence: for any prime p > 7,

H, = (D=t B

—- _ 2 4
p-1 (2p_4 p_3)p (mod p™). (3.6)

By Kummer’s congruence, we obtain

B¢(p5)_2 = B¢(p4)_2 = B¢(p3)_2 = BPS_I,Z_Z (mod pz), (37)

r

where ¢(n) denotes the Euler’s totient function and ¢(p”) = p” — p"~! for any positive integer r. Note

that

2
H, = —%B¢(p5)_2 (mod p*). (3.8)

By (3.6) and (3.7)—(3.8) (also see [33, (3.10) and (3.13)]), we have

Bs,4 _s B, ;3
2p—-4 p-3

By s =2 ) (mod %), (3.9)

Substituting (2.6)—(2.7), (2.10), and (3.5) into the rightside of (3.4) gives

2 r 2 r—1 B, B._
( mp ) E( mp 1)(1 —2m3p3r( B Yo )) (mod p*2). (3.10)
mp” mp’™ 2p—4 p—3

Combining (3.9) and (3.10), we deduce the congruence (3.3) in the case r > 2.
With the help of Lemma 2, by induction, we get

mf] (_mp,.)z )’l’l]i—l (_mpr)z l’l’l[i—l (_mpr_l)2
k=0 k k=0 pk k=0 k
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mp—1 —mp 2 m—1 —m 2
= Z( ) ) EZ(k) (mod p). (3.11)

k=0

In view of (1.4), (2.3), (3.1), and (3.3)—(3.11), to prove the theorem, it suffices to show that

mf] (_mp,)z mprzl—l (_mpr_l)z
k=0 k k=0 k
m—1

- m3p3r(£;”_‘1 _ 25” 33)( ( ) ; 2;( ) )(mod P, (3.12)

Note that
k=0 k k=1,plk k k=0 pk

Now we will divide the sum into two parts: the sum divisible by p and not divisible by p. Since
(_kx)(—l)k (“k 1) for any nonnegative integer k,we have

—mpz_ p(m+k)—12_ p(m+k)2 m?
pk ) pk “\ pm (m + k)?

Moreover, taking s = m + k and t = m in (3.2) gives

(p(m + k)) =(m +k

)(1 —mk(m+k)p3(2l;_4 2 B’f )) (mod p¥),

pm m
and so
—mp\" _ (-m 2(1 2mk(m + k) 3( Bops 5 Bps ))( d p) (3.13)
= - + - . :
Dk k MM TP\, —4 T 7y —3)) et p

Thus, in order to prove (3.12) for r = 1, it suffices to prove that
sz_4 Bp_3 — (- m(—mp — 1
-2 -2 k(k
p(2p—4 p—3);( ) (k+m) + Z ( k-1

B, B
Emzp( ¥t p3)( +2
2p-4 p-3

which follows from (2.32) and (2.41). This proves the r = 1 case of the theorem. For the sake of
convenience, we use the notation H (r, s, t; n) to denote the number Zl<i< j<l<nptiji Similarly to the

S

2
( :) (mod p), (3.14)

_1_
ii’jSlt .
proof of [34, (3.33)]: using substitution of indices /| — pk — [ and —— pk - —(% + f—f) (mod p?), we have

H1,1,1;pk—1)
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k—1 -1 ji—1
DEDIEDIE
] I
I=1,ptl ~ j=1,ptj J i=1,pti
pk—1 pk—1 pk—1

1

‘_
[
‘H

I=1,ptl pk—1 jetipti P i PO
~H1,1,1; pk—1) - pkQH (2,1, 1; pk — 1) + H (1,2, 1; pk — 1)) (mod p?).

By Lemma 4, we can prove that

pk—1 1 j-1 1 k-1 p-1 pa+b-1 1 J= 1
H 2,1,1;pk—1) = — - = = -
( Pem b= ZIZPU lez;n J lzn B path 4 Zp: 2

Lp
= kH 2,1,1; p—1) (mod p)
and
H(1,2,1;pk—1)=kH (1,2,1; p — 1) (mod p).
Recall that Zhao [34, (3.20)] has proved the following congruences:
H1,2,1;p-1)=H@2,1,1;p—-1) =0 (mod p).
It follows that H' (1,1, 1; pk — 1) = 0 (mod p?). For r > 2, noting that

) ’ﬁ (mp” + j)’
(""ir_l)2 sy

2 ey 2 ’
PPH = Hy ) ,
P+ mpVH (L L L ph = 1)

= (1 + mer;,k_1 +

=1+2mp'H, | +2m*p"H,_ 1 —-m’p*H,_,, (mod p**?),

and

» (—m}f ) H, 1 = 0 (mod p*r*2+ b))

r— 2 ’
since (_’"lf ]) = 0 (mod p*r~1=»®)) and Hpk_l2 = 0 (mod p*!*»®)) by (2.6), we obtain

r\2 r—1\2
—mp —mp rry r r
( ok ) E( L ) (1 +2mp'H,_ —m*p”"H 12) (mod p**?). (3.15)

Thus, to prove (3.12), it suffices to prove that

mp’~' -1 _mpr—l 2 , , mp"—1 mpr _mpr_l 2
DI (A NCTARE T B Y

k=1 k=1,ptk

_ mzpzr(zijp_—z 3 zfp 33)( ( ) ZZ( ) )(mod P,

But the above supercongruence follows from Lemmas 5, 7, and 8. This proves the r > 2 case of the
theorem.
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4. Conclusions

In this paper, we make use of some unknown congruences involving the generalized harmonic
numbers and Bernoulli numbers and an identity involving sums of binomial coefficients’ squares by
induction and Zeilberger s algorithm, and partially prove a congruence modulo high powers related to

> 21k + 8)(2") Conjecture 1 in the case p | (2'"; l) may be solved by finding a suitable identity or
seeking a g-analogue of the identity via Mathematica or Maple (As shown in Table 1).

Table 1. A summary table lists all congruences used in this paper and their sources.

All congruences are used Sources
H, | = —1p’B,3 (mod p*) J. W. L. Glaisher [4, 5]
(prrilc_l) = (pTgJ_l) ’; L.ptj % F. Beukers [2]
(’;Z) = ( O b)( 1yp'b=p"'b Gessel [3], Granville [6] and
(mod p?rmintrsi=03-20,2) Straub [22]
ij 1]p*k w = 0 (mod p") (nis even) Osburn, Sahu, and Straub [18]
Hy15 = - 2222 (mod p?) Sun [23]
H, ., =2p' (ﬁj;; - 2;;) Zhang [33]
Yo B =—%Hy = 5H, 0 Mestrovi¢ [17]
53(‘;;”;; _2 ”)(modp )
>0 Bl = 0 (mod p) Mestrovié [17]
P f B = 0 (mod p) Mestrovic [17]
(;f) = (S)(l — st(s — t)(; 2 — "6—531,,3 Helou and Terjanian [15]
4 2ostrr st+t pSB )) (mod p6+v,,(s—z)+v,,((j)))
H,, = —(lj;"_j - 21’%‘)192 (mod p*) Sun [23]
By = 2(5;3 - 222 (mod p?) Zhang [33]
H1,2,1;p-1)=H (2,1, 1,p —1) =0 (mod p). Zhao [34]
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