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1. Introduction

The motivation to study orthogonality preserving maps comes from quantum mechanics. Birkhoff
and von Neumann [1] first discovered that the logical structure of quantum mechanics is related to the
orthogonal lattices formed by closed subspaces of complex Hilbert spaces. The state is an important
type of function defined on every orthogonal lattice, and all states form a convex set whose extreme
points are called pure states. By Gleason’s theorem [3], the set of pure states of a quantum mechanical
system can be identified with the set of rank-one projections, that is, the set of rays in a complex Hilbert
space. The classic Wigner theorem [22] describes symmetries of quantum mechanical systems, and it
characterizes unitary and anti-unitary operators as symmetries of quantum mechanical systems, that is,
every bijective transformation of the set of pure states preserving the transition probability is induced by
a unitary or anti-unitary operator. Also, there is a non-bijective version of this result concerning linear
and conjugate-linear isometries. From Wigner’s theorem one can also derive the Schrodinger equation
for conservative physical systems. In [23], Wigner established the foundational role of group theory in
quantum mechanics, particularly for analyzing atomic spectra. By leveraging symmetry properties of
physical systems, he demonstrated how group representations (especially irreducible representations
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of the rotation group S O(3) and permutation groups) classify quantum states and predict spectral line
splitting. The work bridges abstract algebraic structures with observable phenomena, showing that
symmetry operations (e.g., rotations, permutations of electrons) constrain Hamiltonian eigenstates and
simplify solving complex atomic systems. Wigner’s insights laid the groundwork for understanding
angular momentum, selection rules, and degeneracy in quantum systems, profoundly influencing
modern theoretical physics and chemistry.

In general, Wigner’s theorem includes bijective and non-bijective versions, and each version has a
variety of different statements. Various kinds of Wigner-type theorems can be found in [13]. The non-
bijective version of Wigner’s theorem says that an arbitrary transformation of the Grassmannian formed
by rays of a complex Hilbert space, which preserves the angles between any two rays, is induced by
a linear or conjugate-linear isometry. The bijective version of Wigner’s theorem was first observed
by Uhlhorn [19]. Let H be a complex Hilbert space of dimension not less than three. Then every
bijective transformation of Grassmannian formed by rays of H preserving the orthogonality relation
in both directions is induced by a unitary or anti-unitary operator. In fact, Uhlhorn’s theorem is a
simple consequence of the Fundamental Theorem of Projective Geometry. But it reveals the following
important relation between the logical structure and the probabilistic structure of quantum mechanical
systems: if the logical structure is preserved, then probabilistic structure also is preserved. Since pure
states are characterized as extreme points of the convex set of all states, the bijective transformations
preserving the convex structure of the set of all quantum states induces a bijective transformation of
the set of pure states. These transformations preserve the orthogonality relation in both directions, and
this gives rise to a unitary or an anti-unitary operator.

Uhlhorn’s theorem has been improved in several directions. Gyory [9] and Semrl [16] independently
described bijective transformations of Hilbert Grassmannians preserving the orthogonality relation in
both directions. Recently, Pankov [12] studied orthogonality preserving transformations of Hilbert
Grassmannians, and Semrl [17] gave another extension of Wigner’s theorem in which the maximal
principal angle is replaced by the minimal one. Instead of complex Hilbert spaces one can also treat
real and quaternionic inner product spaces. Rodman and Semrl [14,15] studied this kind of problem in
indefinite inner product spaces. In this paper, we study the orthogonal invariants in the geometry of a
unitary group over C. We use geometric methods in the spirit of Chow’s theorem [2].

Let n > 2 be an integer, and consider C" as the n-dimensional row vector space over C. For
vectors ay,@s,...,ay € C", let [@y,as,...,a] denote their span. For @ = (a1,az,---,a,),p =
(by,by, -+ ,b,) € C", let (a,f) = all_)l + aZEQ + -+ a,,l_J,, be the standard inner product of vectors
a and S. Given a nonsingular Hermitian matrix H € C™", the vector @ € C" is said to be H-orthogonal
to the vector 8 € C" if (o, BH) = 0. We use the notation @ Ly S to denote the H-orthogonality of
to 8. If @ is not H-orthogonal to § then it is denoted as @ Ly . Clearly we have @ Ly g if and only
if B Ly a. Given a nonzero vector @ € C", call a isotropic (with respect to H) whenever ¢ Ly «a,
and call the vector space [«] isotropic when « is isotropic. Let CP" = {[a]le € C*'\(0,...,0)} be
the respective projective space. For [«], [5] € CP", we call them H-orthogonal whenever o Ly 3, and
denote it as [@] Ly [B]. For any [a] € CP", let Ly, = {[B] € CP"|[B] Ly [a]}, and then L, is a
hyperplane of CP".

An n X n matrix T is called a unitary matrix of order n over C if THT = H. The set of unitary
matrices of order n over C form a group with respect to the matrix multiplication, which is called the
unitary group of degree n over C, denoted by U,(C, H), or simply U,(C). Let S ={a € Claa =1} bea
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subgroup of C*, Z = {al™|a € S}, and U,(C)/Z be denoted by PU,(C), which is called the projective
unitary group of degree n over C.

Let ¢ be a transformation of C". As is well known, for any «, 8 € C", we have («,8) = (¢(a), ¢(B))
if and only if ¢ is a unitary transformation. In this paper, we consider H-orthogonality instead of the
standard inner product. Since any n X n nonsingular Hermitian matrix is necessarily cogredient to

0 I
H=| IV 0 ,
+ I(n—2v)

for some v € N and 0 < 2v < n, we can consider the nonsingular Hermitian matrix of the above form
only.

A bijective transformation of CP" preserving H-orthogonality in both directions is called an H-
orthogonal transformation of CP". Denote the set of all H-orthogonal transformations by O(CP"),
which is a group with the multiplication of composition. Let A denote the subgroup of O(CP") which
consists of the identity transformation and conjugate transformation. By [14], when n > 3, we have:

Theorem 1.1. O(CP") = PU,,;(C) - A.

For [y] € CP", denote O(CP"),,; the stabilizer subgroup of O(CP") fixing [y]. Since CP" \ Ly, is
an open set of CP" in the sense of algebraic geometry, similarly, we define and study O(CP" \ L,) for
every [y] € CP". Clearly O(CP");,; can act on CP" \ Ly, and we denote it by O(CP")pylcpn\r,,,- In fact,
by [14], when n > 4, we can obtain O(CP" \ L)1) = O(CP")lcpn iy,

When H is not a positive definite matrix, let ®y = {[a] € CP"' | @ Ly a}. For any [y] € CP"!,
let @y, = Op \ L. In the same way, we define O(®p) and O(®y,;). Every T € U,(C) induces an
automorphism of CP""! : [a] ~ [aT] which will be denoted by o7, i.e., or([a]) = [@T]. Also o7
induces an H-orthogonal transformation of ®,. For any [y] € CP""!, there exists T € U,(C) such that
[eiT] = [y] or [(e; + e,41)T] = [y], according to [y] € @, or [y] ¢ ®y. Then if [y] € @y, T induces
an isomorphism o7 from @) to @y, and if [y] ¢ Oy, T induces an isomorphism o7 from @, . ,; to
®,;. Hence O(®y,) is isomorphic to O(Py,;) or O(P, +,,,1). Denote @ = O,y and O, = Dy, 4, -
To give a uniform treatment, write n = 2v + 9, where 6 € N = {0, 1,2, .. .}. Define a matrix

0 i
H=| IV 0 ,
+]©®

and then any n X n nonsingular Hermitian matrix is necessarily cogredient to H. When v > 3, we will
determine O(®;),0 < i < 2. When 6 > 1, we only consider the case

0 I
H=| IV 0 ,
1©®
0o ™
and the othercase H=| I® 0 can be considered similarly.

_J©®
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Let (RY)" = {x € Rlx > 0} and Us(C) = {W € My,s(C)|WW = I®} when & > 1. We define a group
Q; of the cartesian product (R*)* X A x Us(C) with the multiplication * defined by

M,

(ky, 1, Wh) * (kp, 12, Wa) = (kiky, 1712, 7T1(,Uk2W2)W1),

Miciky
where y; is one fixed element of the set {a € Claa = k} for any k € (R*)", and y; := 1. Let U,(ll)(C) =
(T €ULC): 1T = €1}, U (C) = {T € Up(C) : (e1 + €,:)T = (e1 + &1}
Let E; be the subset of O(®;),i = 1,2, which consists of those o € O(®D;) satisfying

0-([6] + eV+1]) = [e] + eV+l] (,] = 2’ 37 L 9V)’

o([ley+1]) = [ey41],

o([ey1 + ey j]) = [eyr1 +kjeysi] (j=2,3,...,v),
where k; € C*, j = 2,3,...,v, and C" represents the set of nonzero complex numbers. Let Eq, be the
subset of E| such that k, = k3 = --- = k, € R*. In this paper, we will give the following main results:

Theorem 1.2. When v > 3 and 6 € N, we have

1) O(®@g) = PU,(C) - A |a-
2) O(®,) = UP(©)- Eg,, Eo, is a subgroup of O(®,), and

Eo = R*x A, whenoé =0,
o= Qs, when o > 1.

3) O(®,) = UP(C) - A o,
2. Preliminaries

In this section, we will introduce some propositions and lemmas that are needed to derive our main
results.

In order to determine O(®;),i = 0,1,2, we define a graph I'; with ®; as the vertex set and the
adjacency is defined by [a] ~ [B] if and only if [a] Ly [B]. Then O(®;) = Aut(I;), where Aut(I';) is
the group of automorphisms of I';. In [4-8,18,20,21], the automorphism groups of graphs constructed
by symplectic, orthogonal, and unitary groups over finite fields were studied. The methods there can
be used to study Aut(I';) now.

Proposition 2.1. When v > 2, every T € U,(C) induces an automorphism o of I'y : [a] — [aT], and
forany T,,T, € U,(C), o7, = o1, ifand only if Ty = kT,, where k € §S..

Proof. 1tis clear that oy, = o, if T) = kT5,k € S. Conversely, suppose that o7, = or,. Then for any
[a] € @y, aT; = kaT, for some k € C*.
When n = 2v, take @ = ey,e,...,€5, and we get that 7y = diag(k, ky, ..., k,)T>, for some
ki, ko, ... ’k2v eC*. Takea =¢e; + e3,e7 + €3, ,€2,_1 T €2y, and we seethatk; =k, =--- = k2v-
Whenn =2v+ 6,6 > 1, take @ = eq,es,...,€2,€1 + de,i1 + €2p41,...,€1 + A€, + €2,.5 Where
A€ C*suchthat A+ A+ 1 =0, and we get that Ty = MT,, where

_ diag(kl, kz, ey kzy) 0

M .
N dlag(k2v+l, ey k2v+5) )
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for some ki, ks, ..., ks € C*, and

(koye1 — kp)er + Akays1 — kyi1)eyi

N = :
(kayis — ki)er + Akayis = kys)ever )y,
Take @ = e; + e3,e5+e3,...,€0_1 +€3,,1 + €+ Aey | +€2pi1,...,€1 + €1+ Aey1 + 2,45, and we
see that k] == k2y = k2V+1 == k2y+6.
—
Thus, T\ = k;T,. Then, kI = T\T; I ¢ U,(C), which implies (k{I)H(k;I) = H. Therefore,
klk_lH = H and, hence, klk_l =1,1e,k €85. O

Proposition 2.2. Every .T € U,(,i)(C) induces an automorphism o of I'; : [a] — [aT] where i = 1,2,
and for any Ty, T, € UY(C), or, = o, ifand only if Ty = T,.

Proof. We prove only for i = 1. Suppose o, = or,. Then, for every vertex [a] of ®,, there exists
k € C* such that T = kaT,.

Case (i) 0 = 0. Let M be the 2v X 2v matrix with rows: ej,es + €,11,...,€, + €,41,€y411,€y41 +
€y12,--.,6y41 + €, in order. Since for every vertex [a] of @, there exists k € C* such that
aT, = kaT,, there exist ky,...,k;, € C* such that MT, = diag(l,ky,--- ,ky,)MT,. Let N =
M~'diag(1,k,,- - ,ky,)M. By computation, we have

€1

€ — €)1

M—l — €y — €yq1
€y+1

—€yr1 t €442

—€y1 T €y 2yx2y

and
€1
kyes + (ky — kyi1)ey4

kvev + (kv - kv+1)ev+1
kv+lev+1
(kv+2 - kv+l )ev+l + kv+Zev+2

(k2V - kv+l)ev+l + kZVeZV 2yx2y

But, N = T1T2‘1 € U,,(C), thus NHNI = H, which implies k; = k3 = --- = ky, = 1 and hence
T] = TQ.
Case (ii) 0 > 1. Let M, be the (2v+06) X (2v+ ) matrix with rows: ej,es+¢e,41,...,€,+ €11, €141, €11 +
Crinsnnrs sl €, €1 +€s1+ ity ., €] +eyu1 +esin order, where A € C* satisfies A+ 1+ 1 = 0.
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Since for every vertex [a] of @y, there exists k € C* such that aT = kaT>, there exist ks, .. ., ky,+s € C*,
such that
M, T, = diag(1,kz, - -+ , koyr5)MT>.

Let Ny = Ml‘ldiag(l, ky, -, koy+s)M,. Similarly, we have

€]
kyey + (ky — kyi1)ey 41

kve, + (k, — kyr1)eys
kyii€y4
Ny = (kv+2 - kv+1)ev+1 + kv+26v+2 S U2V+5(C).

(k2V - kv+1)ev+1 + k2v82v
Akzys1 — Dey + (kay1 — kyi1)ey1 + kayrr€ay41

Alkyys — Der + (kayrs — kyr1)eyr + koyiseoyas
Then, NIHEI = H, which implies k = k3 = --- = ky,.s = 1 and hence T = T>. |
Recall that E; is the subset of O(®;),i = 1,2, which consists of those o~ € O(®;) satisfying

o(lej +ei]) =lej+e] (j=2,3,...,v),
0-([61/+1]) = [ey11],
O-([ev+l + ev+j]) = [ev+1 + kjev+i] (] = 27 37 LR V)a

where k; € C*,j = 2,3,...,v, and C" represents the set of nonzero complex numbers. Let o €
E,i = 1,2, v > 3, and [a] = [aj,a,,...,a2+5] € D;. Suppose o([a]) = [a’] and write [@'] =
la},a),...,d,,,;]. Then, we have:

Lemma 2.1. a; # O if and only ifa’ # 0 for j=1,..., v,y +2,...,2v.

Proof. For j =1, a; # 0if and only if [a] Ly [e,4], if and only if [@'] ~ [e,,], if and only if a| # 0.
For j # 1, we prove the Lemma only for the case j = 2. Consider first the case a; = 0, and then
a, # 0 if and only if [a] Ly [e,+1 + e,42], if and only if [@'] Ly [ey+1 + kae,i2], if and only if @) # 0.
Similarly, when a; = 0, we also have a; # 0 if and only if a;. #0, j=2,...,v,v+2,...,2v. Now
assume a; # 0. If a, # 0, then [a] Ly [e,+1 — 0_2_161_1€V+2], from which we deduce a;, # 0. On the other
hand, if a, = 0 but @} # 0, there is an element a € C* such that o([e,,; + ae,»]) = [e,+1 — a_’z_la_’lev+2].

R P
But [a] Ly [e)+1 + aeyi2], while [@'] Ly [e,11 — @) aje,s2], which is a contradiction. Thus, a; # 0 if
and only if @, # 0. O

Moreover, when 6 > 1, we have:

Lemma 2.2. Let v > 3, and suppose any one of the following two conditions is satisfied by [a] =
lay,as,...,a0,45] € ©;i = 1,2:
(1) ai = @y = -+ = ayay, =0,
(2) [a] = [xe; + ye; + e,.1 + zey+j], for some x,y,z€ Cand2 < j<v.
Then, (a,,,,,...,a),.s) =(0,...,0).
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Proof. When the condition (1) is satisfied, the conclusion is evident. When the condition (2) is satisfied,
first we prove this lemma for [a] = [ye; + e,+; + ze,, ;] with y, z € C. If not, there are some y, z € C
and 2 < j < v such that

o([ye; + ey + 26y ) = Ve + ey + e+ tieayer + -+ + t5€2,46]

for some y’,7’ € C,t; € C*,1 < s < 6. Since t;, # 0, there is ¢ € C* such that 1 + ;¢ = 0. Let
[B] = [e1 + bey + e, + ey4x + Cenyis], Where 2 < j # k < vand b € C satisfying 2 + b + b + cc = 0.
Then [f] € ®;,i = 1,2, and [y'e; + ey, +7'€,sj+11€2y41 + -+ +1s5€2,45] Ly [B]. But the preimage [y] of
[B] is of the form [y] = [ae, + b'e; + d'e,.| + e, + ti€2,41 + -+ + 1i€2,,5] With a € C* by Lemma 2.1,
and clearly [y] Ly [ye; + e,41 + ze,4;], which is a contradiction. Our claim is proved.

Now we prove this lemma for [a] = [xe; + ye; + e,.1 + ze,,;] with x € C*,y, z € C. If not, there are
some x € C*,y, ze€ C,and 2 < j < v such that

/7 ’ ’
o([xey +yej+ e, +2ze,.]) =[Xe +Yej+ae. . +7e.j+tey + -+ 54l

for some y',a,7 € C,x',t; € C*,1 < s < 6. Since ¢, # 0, there is ¢ € C* such that x" + t;¢c = 0. Let
[B] = [ber + e,41 + e,y + Ceayis], Wwhere 2 < j # k < vand b € C satisfying b + b+ c¢ = 0. Then
(Bl € @;,i = 1,2, and [xX'e; +Y'e; + ae,, + ey, j+ tiey + -+ + ts€r,15] Ly [Bl. But the preimage
[y] of [B] is of the form [y] = [b'ex + d'e 1 + eypp + L2041 + -+ + L5€2,45] With @’ € C*, and clearly
[y] Lu [xe, + ye; + e,.1 + ze,4;], which is a contradiction. Our claim is proved. O

3. H-orthogonal transformations of @,

In this section we will determine O(®,). By proposition 2.1, PU,(C) can be regarded as a subgroup
of O(®y). For more works on projective unitary groups refer to [11], in which Pankov explored
the interplay between semilinear embeddings (structure-preserving maps between vector spaces over
division rings) and their combinatorial applications. He investigated how these embeddings define
geometric constraints on incidence structures, such as graphs and codes, particularly in projective
and polar spaces. Key results include characterizing embeddings that preserve adjacency or distance
properties in graphs (e.g., Grassmann graphs) and their implications for constructing error-correcting
codes with optimal parameters.

Let Eg, be the subset of O(®,) which consists of those automorphisms o satisfying o([e;]) =
[e;], 1 <i < 2vy. In order to prove O(®y) = PU,(C) - A ¢, for v > 3 and 6 € N, we need only to prove:

Theorem 3.1. Let v > 3, and then O(®y) = PU,C) - Eg,. Let o € Eg, for any [a] =
lay,as,...,a:,.5] € ®y, and we have o([a]) =

m(ar), ... k(@) ki m(@yr)s. . Ky 7(az)], when o =0,
—1 —1
(kim(ar), ..., knay), ki w(ay),. ...k ma),d, ..., a4,, 1, whend > 1,

where ki, ...k, € C',mr e A\, (&), ,...,a),.5) = (m(ax+1),...,m(az.5)W, and W € Us(C) such that
—t
WW =19,

Proof. Suppose o([ay, az, ..., az.5]) = [a},a),...,a,, s]. Since o([e;]) = [e;],1 < i < 2v, we have
a; = 0 if and only if a; = 0 for 1 < i < 2v. Moreover, if a1a,+1 = axa,2 = --+ = a,a, = 0, we can
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deduce (a},,,,-..,a,,,s) = (0,...,0). Then, similar to the proof of Theorems 3.3 and 4.1 in [21], we
have O(®y) = PU,(C) - Eg, and o([a]) =

{ ar(ay), . .. k(@) ki w(@ys), .. K, w(as)], when s =0,

—1 —1
[kim(a), . ... kn(a,), k w(ay),. ...k, ma),d,, ..., a4, 51, when 6 > 1,

where ki,...,k, € C', m € A. Whené > 1, let A € C* such that 1 + 1+ 1 = 0. Then, [vi] =
—1

[Ae1 +evs1 + eyl € Do and o([yi]) = [kim(Der +ki - eyr1+wineaysr +- - - + wiseayss], Where w;; satisfies

(D) + () + X wjwi; = 0,1 <0, j < 6. By A+ A+ 1 =0, we deduce T%_ wijw;; = 1,1 < i, j < 6.

Lemma 3.1. Let [a] = [aje; + -+ - + aryer, + €3,4:] € Py, and [a] Ly [vi], 1 < i< 6. Suppose

—1 —1
o(la)) = [kin(ay), ... . kn(a,), ki 7(ay), ...k 7(az), dyys- - ayisls

and then
(Ayiys - o> Ohyis) = (Wit .. W), 1 ST <6.

Proof. Since [a] € @y and [a] Ly [y],1 < i < 6, we have Z;zl(ajﬁ +aja,.;) +1 = 0 and
ay + a1 A+ 1 = 0. From o([a]) € @y, we have

—1 —1
[kim(ay), ... kna(ay), ki w(ay),. ...k, 7w(az),dy,, ... a5,,5]1 € Do,

i.e.,

4
D lrapmaye) + w@pm(@y ) + @y @y + -+ s, s = 0.
=

Since m € A, we deduce

4
- - 4 ’ 4 ’ —_
Z n(aja, j +aay ;) + a,, a, .+ +ay,,sa, =0.
J=1

Since o([a]) Ly o([yi]), 1 <i <6, we have
n(ay) + m(ay1)m(A) + a0 + -+ a5y, 505 = 0,1 <P <6

By the above equations, we obtain

’ ’ 4 ’ —
Ay oy + oo F Ay 50y 5 =1

and a),, Wy + -+ +d,, ;w5 = 1,1 < i < 6 Moreover, since Z(j.zlw,-jw_,-j = 1,1 <i,j <6, by the
Cauchy-Schwarz inequality, we deduce (@}, ,,...,d5,,5) = (Wi, . .., Wis). m]

Let W = (w;j)sxs, and we have the following lemma.

Lemma 3.2. WW = 19,
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Proof. When 6 = 1, since w1w1; = 1, the result is clear. Now we consider the case when ¢ > 2. For
any 1 < s #1 <06, let [a] = [de; + e,11 + ey + €245, [B] = [dey + ex + e,41 + i€y + €2,4,], Where
i € C such that i = —1. Then, we have [a], [8] € @, [] Ly [¥,],[B] Lz [v:], and [] Ly [B]. Hence,
by Lemma 3.1 we obtain

—1 —1
o([a]) = [kin(De; + ki e, +ky eyin + Wsi€0y41 + -+ + Wss€2y45]

and
— —
o([BD = [kin(Dey + kyer + ki e, +ky m(i)e, 12 + wWpeayrq + -+ - + Wis2y45].

Since o([a]) Ly o([B]), we deduce that Z‘;zlws jw;; = 0. In combination with Z?lei jwij = 1, we can
see that WW' = [©, o

By Lemmas 3.1 and 3.2, similar to the proof of Lemma 3.17 in [8], we have
Lemma 3.3. Let [a] = [aje; + -+ + azer, + €2,1] € Py, | < i< 6. Suppose
1 -1 ’ ’
o(la]) = [kin(ay), . ... kx(a,), ki 7(ay1), ...,k 7(az),ay,, -5 5,51,

and then
(a/2v+1, .. .,a'2V+5) = ((,L)l'l, .. .,(1),'5), 1 < 1 < 0.

Proof. Consider the case [a] Ly [y;]. By Lemma 3.1, we have
(a’2V+1, e ,a'2V+6) = ((,()1'1, e ,(,()1'5), 1 < ] < 0.

Then consider the case when [a] Ly [y;]. We distinguish the following three cases:
(1) There is some a; # 0 where 2 < j < v. Pick

[B] = [(=2 = Dey + €1 + (A + Dayy — ar = 1a;' ey + €241,

Then [B] € @y, [a] Ly [B], and [B] Ly [v:]. By Lemma 3.1, we have

o(IBD) = ar(—A = Dey + &1 ey + &5 a((A+ Datyer — a1 — Da; e + 0inener + -+ + wigeasasl.
From [a] Ly [B] we deduce o([a]) Ly o([B]). Thus

aar) + 7((=2 = Dayr) + 7+ Dayr = ay = 1) + doy @1 + -+ + dby 505 = 0,
which implies @} ., w; + - -+ + a), , sw;s = 1. Since [a] and o ([a]) € @), we deduce

’ 7 ’ 7 _
Ay4195, 1 Tt Aryi6Qoy45 = L.

0

Moreover, since ), wywy = 1, by the Cauchy-Schwarz inequality, we deduce that
k=1

(aév+1’ e a/2v+6) = (wil’ ey wié)-
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Note that, in this case, since [@] Ly [yi], we cannot use Lemma 3.1 directly. Hence we introduce the
third element [3] such that [a] Ly [B] and [B] Ly [y:], and then we can use Lemma 3.1 for [8] and
deduce the conclusion.

(2) There is some a,.; # 0, where 2 < j < v. Pick

[B] = [(=A = Dey + (A + Dayay —ay = Dayl e+ eyir + el

Then [B] € @y, [a] Ly [B], and [B] Ly [v:]. As subcase (1), we still have

(aév+1’ LRI a/2y+§) = (wih ey wié)-

(3) Suppose [a] = [aje; + ayy1€,41 + €2,4i] € Dy, Where aya,.| + aja,y; + 1 = 0. Pick [B] =
laie+ex+a, 1e,11+€2,4], and then [5] € @ and [a] Ly [B]. By case (1), we have o([B]) = [kin(a;)e,+
kaer + K1 W(@yer)eyer + Witesyes + -+ + Wiseayss]. From [a] Ly [B] we deduce o([a]) Ly o([B]). Thus
d,,, @i+ +d), w5 = 1. Since [a] and o([a]) € Dy, we deduce @}, ), + -+, ;a5 = 1.

Moreover, since Zzzlwikw_,-k = 1, by the Cauchy-Schwarz inequality, we deduce that (@}, ,...,a),,s) =
(Wit - . ., Wig).
Hence in all cases (@), ,,...,a5,,5) = (Wji,...,w;), 1 <P <6. m]

Now we return to the proof of Theorem 3.1. For any 1 < s < 9, take [5,] = [bs1e1 + - -+ + byoven, +
€2y+5] € @p such that [a] Ly [Bs]. By Lemma 3.3, we have

—1 —1
U([BS]) = [kln'(bsl)v o ’kvﬂ'(bsv)’ kl ﬂ(bs,v+1), o ,kv ﬂ'(bs,ZV), W1y e vy wS(S]-

Since [a] Ly [B,] and o([a]) Ly o([Bs]), we have

o
Z(ajbs,v+j + av+jbsj) +dy =0

J=1
and
6 — ——
> W@ )AByyi)) + Wy b)) + Ty, T = 0.
=1
By the two equations above, we deduce

a w_S] = ﬂ'(a2v+s)’ I<s<o.

3
’
2v+j

=1

J

Hence (a4, ,,....d,,, 6)Wt = (m(azy+1), - - . s m(asy+s)). By Lemma 3.2, Theorem 3.1 can be concluded.
O

4. H-orthogonal transformations of @,

In this section we will determine O(®,). By proposition 2.2, UY(C) can be regarded as a subgroup
of O(®,). First, let us write out some elements of Eg,.
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Case 1) 0 = 0. Letm € A and k € R*. Let oy, be the map which takes any vertex
la1,as,...,a,,1,a,.2,...,a] of @ to the vertex

[kn(ay), n(an), . .., n(ay), 1, kn(a,2), . . ., kn(ay,)].

Then it is clear that o , is well defined and o, € Eg,. Define a map from the direct product R* X A
to Eg, by h : (k,m) —> 0. Clearly, h is an injective map of sets. In order to prove Eg, is a group and
Ee, = R* X A, it suffices to show that every elements o of Eg, are of the form o7 .

Case (2) 6 > 1. Denote oy, w as the map which takes any vertex [ay,...,a,,1,a,:2,...,a2.1] of @)
to the vertex [kn(a,), m(ay), ... ,n(a,), 1, kn(a,2), ..., kn(az,), a),,,,...,a,, s], where k € R, me A,
(dyy s, 5) = m(m(azys1), . .., m(a2:5))W, and W € Us(C) such that WW' = I®. Then it is
clear that o, is well defined and oy, w € Eg,. For any oy, »,.w, and o, ., w,, were ki, k, € (R*)",
1,7 € A, and Wy, W, € Us(C) such that WW = I, and we have o¢, », w,» Tkomows € Ea,, and the

.. ) _ ) )
composition of them 1S o, », w, 0, .,.w, T kz’nm’#:kl 1y W W, € Eg,. Define a mapping & : Qs —
152

Eg, by (k,m1, W) — 0 ow. Clearly, h is an injective map of sets. In order to prove Eg, is a group and
Eq, = Q;, it suffices to show that every elements o of Eg, are of the form o .
Now, in order to prove (2) of Theorem 1.2, we need only to prove:

Theorem 4.1. Let v > 3, and then O(®)) = UY(C) - Ey,. Let ¢ € Eo, for any [a] =
lai,...,a,,1,a,.0,...,40,.5] € P, and we have

(1) if6 =0, then o([a]) = [kn(ay), n(ay), . ..,n(a,), 1, kn(a,2), ..., kn(ay,)], where k e R*, m € A;
(2) if 6 =2 1, then
o(la]) = [kn(ay), n(an), . .., w(ay), 1, kn(a,s2), . . ., kn(az,), ay, s - - s Qoyisls

where k € R*)",me A, (d), ..., ay,.s) = Mi(m(azy+1), - . ., 1(a2y45))W and W € Us(C) such that

WW' = 10,
Proof. Similar to the proof of Theorem 3.3 in [8], we have O(®;) = U.)(C) - Ep,. Let o €
Ep, v 2 3, and [a] = [ai,...,ay,1,ay42,...,02,45] € @;. Suppose o([a]) = [a’] and write

’

[@'] =[a},...,a,,1,a
have

1) if 6 = 0, then o([a]) = [kn(a)), n(a,), ..., n(a,), 1, kn(a,»), . .., krn(ay,)], where k € R*, m € A;
2) if 6 > 1, then

’

vear -2y, s]. By Lemmas 2.1 and 2.2, as in the proof of Theorem 3.3 in [8], we

o([a]) = [kn(a)), n(a2), ... ,n(a,), 1, kn(ay.2), . . . kn(ay,), ay,, s . . . a5, 5],
where k € (RY)", m € A.

When 6§ > 1, let 1 € C* such that A+ A+ 1 = 0. Then [vi] = [1e1 + ey + €2,4i] € O and
o([yi]) = [kn(Der + e,11 + prwji€ays1 + - - - + prwisesy ], where w;; satisfies

o
k() + k(D) + ) ki =0, 1 <0, j<6.

=1
By 41+ A+ 1 =0, we deduce E‘js.zla)ijw_ij =1,1<1i,j<96. Let W = (w;j)sxs, similar to the proof of

Theorem 3.1, and we have WW = I® and (@yyiys - Ayps) = Mi(T(A2y41), - - -, (A2 46)) W o
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5. H-orthogonal transformations of ©,

In this section we will determine O(®,). By proposition 2.2, UZ(C) can be regarded as a subgroup
of O(®,). Let Eg, be the subset of E, such that k, = k3 = --- = k, = 1. In order to prove O(®,) =
U,(f)(C) A |p, for v > 3 and 6 € N, we need the following theorem.

Theorem 5.1. Let v > 3, and then O(®,) = U,(lz)(C)'Eq)z. Let o € Ey,, forany [a] = [a;, ay, . .., a4s5] €
®,, and we have o([a]) =

{ [7(a1), 7(ay), . .., 7(az)], when s =0,
[n(ar), m(az), ..., n(az),ay, »...,a;,.;], wheno > 1,

wherem € A, (d),, |, ..., d,,.s) = (M(az41), ..., 1(a2+6))W, and W € Us(C) such that WW' = 19,

Proof. Lett € O(®,). To extend the domain of 7 to ®,U{[e|+e,,]}, we define T([e; +e,.1]) = [e1+e,11].
Suppose 7([e,+1]) = [e),,] and 7([e; + e,1]) = [el], i = 2,...,v,v +2,...,2v. To be definite, we can

assume (e; + em)He;t =1,fori =2,...,2v. Then e;He_’/.t #0ifi = j(mod v) and i # j;oritis O

. _t e .
otherwise. Suppose e}He!,,, =k; € C',2 <i <.
Let A(A’, respectively) be the 2v X (2v + ) matrix whose rows are e; + e€,.1,€3 + €,41,...,€, +
€yi1>€yilsCyrl T €y, ... 001 T e (e + ey, €, ..., e, Tespectively) in order. Let

1 -1
1 -1

0 = |

2vx2y

and 0, = diag(I"*V, k3", ..., k;")Q;. One can check that
0\(AHA)Q, = Q,(A'HA')Q; .

en, by Theorem 2 on page 0 , there is some matrix T € U,,,5(C), such that =
Then, by Th 2 260 of [10], there i ix T € U,,,s(C) h that A’'T
0,'01A = MA, where

J 482

M= 0;'0 = 07 (diag(I**V. ks, ... k)01 = L—ky ko
1- kv ky 2vX2v

Comparing the first row of both sides of A’T = MA, we have (e; + e,.1)T = e; + e,41, and thus

T € UL (C). Set 7y = 077, and then 7 ([e; + ¢,11]) = [+ €yu1], Ti([evi1]) = [l Ti([evr +ey1]) =
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ley+1 + kieyyil, i = 2,...,v. Then 71 € E,. In the following, we will show thatk, = k3 = --- =k, =1,
i.e., Ey = Eq,. Thus 7 = 07'1; € US, (C) - Eq,, from which it follows that O(®;) = U (C) - Eq,.
By Lemma 2.1, we have that o([e|]) = [e;] or o([e1]) = [d1e1 + e,41] and o([Are; + e,41]) = [e1],
where ;, 1, € A\{0} and A 2 {1 € C|1+ 1 = 0}. In the following we will show that the second case is
impossible.
Now we suppose o([e1]) = [1i1e1 + e,+1] and o ([12e1 + €,11]) = [e1], where Ay, 1, € A\{O}. When
a; = A, and a,,; = 1, since [a] Ly [dre + e,.1], we have

o(la]) = [a},a),...,a5,,.s] Lu o([de) + ey1]) = [en],

which implies @/, = 0.

By Lemmas 2.1 and Lemma 2.2, we have bijectives m;, i = 2,...,v,v+2,...,2v, of C such that for
a € C, o(lae; + e,y1]) = [mi(a)e; + e,11], m(0) = 0, and by the definition of E’, m(1) = --- = m,(1) =
L, my2(l) = ko, ..., (1) = K,

By Lemmas 2.1 and 2.2, and our assumption, we have bijective 7 from A\{4,} to A\{A4,} such that for
A e A\{}, o([dey + ey41]) = [T(De; + e,41], where T(1) € A\{4;}, 7(0) = 0. Thus for any A € A\{A,},
we have —1 = A. Since 7(1) € A, (=) = () = —=71().

We proceed to prove m, = - -- = m, and 7, is an automorphism of C. As a preparation we prove:

Lemma 5.1. For any 1 € A\{0, 1;},a € C*,andi=2,...,v, we have

o([de; +ae; +e,,1]) = [T(De; - T(/l)ﬂm(/la_l)_l@i + eyl

and 1

T([Aer + eyey + aeyi]) = [T(Dey + eyar — TDTAT ) eyl

1

Foranya e C* andi=2,...,v, we have o([de| + ae; + e,,1]) = [e1 — 7ry+,~(/125_1)_ e;]l and o([Are) +
S

eya1 + aeyil) = [y —m(Ld ) eyuil.

Proof. By Lemmas 2.1 and 2.2, when 4 € A\{0, A,},a € C*, we can assume o([de; + ae; + €,,1]) =
[Ve +de; +e,.1]. Otherwise, if o([de; + ae; + e,.1]) = [Ae; + d’e;], then [AUe; + d’e;]] Ly [eq],
hence [de; + ae; + e,+1] Ly [dreq + e,41], which implies 4 = A,, which is a contradiction. From
[le; + ae; + ey1] Ly [-1e, + e,41], we deduce [Ve, + d'e; + eyp1] Ly [t(=De; + e,41], which
implies A’ = —7(=2) = 7). Similarly, from [de; + ae; + e,11] Ly [ey+1 — zﬁ_lem], we deduce

-
a = —t(Dmy(Aa’) .

By Lemmas 2.1 and 2.2, as above, we can assume o ([de; + e,,1 + ae,,;]) = [Ue; + e,41 + d'e,4i].
From [Ae; + e, + ae,,;] Ly [—Ae; + e,q], we deduce [Ae; + e,41 + d'e,;] Ly [T(=De; + e 411,

which implies A" = —1(=1) = 7(). Similarly, from [Ade; + e,, + ae,.;] Ly [—zﬁ_lei +e,.1], we deduce
-1
a = -1(Dm(Aa’"y .
Since [Ad,eq + ae; + e,.1] Ly [A2e1 + e,.1], we have o([d,e; + ae; + e,,1]) Ly [e1], hence we can
assume o ([dre; + ae; + e,,1]) = [e1 + d’e;]. From [Ayeq + ae; + e,.1] Ly [e,41 — Azﬁ_lev+i], we deduce
-

’

a = —7r,,+,~(/125_1)_ . Similarly we have

_
o([Are) + eyy1 +aeyyi]) = [e; — ﬂi(/lza_l) ey+il.

O
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Lemma 5.2. Let2 <i, j<v,andi # j. Forany a, b € C, we have
o ([eys1 + aeysi + beyyj]) = [eyr + Tyii(@eysi + Ty j(D)eys .

Similarly, o([ae; + e .1 + be,,;]) = [mi(a)e; + e, + 7, j(b)ey, ;] and o([ae; + be; + e,,1]) = [mi(a)e; +
mi(b)ej + e,.1].

Proof. It suffices to prove the lemma for a, b € C*. By Lemmas 2.1 and 2.2, we can assume o ([e,+ +
ae,.; + be,.;l) = [eys1 +d'e,; + Ve, ;] From [e,. + ae,,; + be,,;] Ly [de; — /lﬁ_le,- + e,.1], where
A € A\{0, 4.}, by Lemma 5.1 we deduce [e,,; + d’e,.; + b'e,, ;] Ly [T(De; — T(/l)m_le,- + ey,
which implies a’ = ,,;(a). Similarly, we have b" = &, ;(b).

By Lemmas 2.1 and 2.2, we can assume o([ae; + e, + be,.j]) = [d'e; + e, + b'e,.;]. From
[ae; + eyi1 + be,. ] Ly [de) + ey — /lﬁ_levﬂ-], where 4 € A\{0, 4}, by Lemma 5.1 we deduce [a’e; +

e +b'e ] Ly [T(De) + ey — T(/l)ﬂ,-(a)_ley+i], and hence a’ = m;(a).

Similarly, we have b’ = &, (b), and o([ae; + be; + e,.1]) = [mi(a)e; + mi(b)e; + ey1]. |
Lemma5.3. k, = k3 =--- =k, € R*. Foranya € C, n/(—a) = —ni(a), n,.(—a)
=-n,.(a), 2<i<v.Moreover, my =n3 =--- =71, and T, = My43 = -+ = M2, = koM.
Proof. Leta, be C*. Fori =3,...,v, from [ae, + e,+| + be,.;] Ly [ae; +e,.1 — Eev+2], by Lemma 5.2
we deduce

[ma(@)es + eyet + Mysi(b)eysi] Ly [mi@e; + eyt + 7yia(=b)eysa]

which implies 3
mo(a)my2(=b) = —mi(@)m,+i(b).

Letb = —1and a = 1, and we can get 7r,,;(—1) = —k_2 from the above formula. Hence
Ta(=1) = oo = my(=1) = ~k;.
Letb=1and a =1, and we have 7,,,(—1) = —E, hence ks = --- = k,, and
7a(=1) = ~ks.

Let b = —a and a = —1, and we can get (= Dmys0(=1) = —m;(=Dm,.(1), where 3 < i < v. Hence
m(=1) = =m/(=1).
Let2 <i<v-1andae€C. Itis easy to verify that
[ae; + eyp1 + aeyyip1] Ly [ei + ey — 4],

[ae; + aei +eyi1] Ly [eyr1 —eyii + €ypivi],

and
leys1 +ae,i +aeyiv1] Ly [—ei +ein1 +e,iq].

Applying o to the above non-adjacency relations and using Lemma 5.2, we obtain
[mi(@)e; + eyi1 + Tyrivi(@eyrivt] Lu (i1 + ey + Tui(—=Deysil,
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[ri(a)e; + misi(a)eir + eyi1] Ly [eys1 + myi(=1)e,si + Kivieysiv],

and
leys1 + myri(@)ey i + myyivi(@)eysiv1] Ly [mi(=1)e; + eiry + eysr],

respectively. From the_above non-adjacency relations, we deduce m(a)m,,;(=1) = —-m,i1(a),
ri(@m,i(=1) = —mip1(a)kivr, and 7,4 (@) (—1) = —m,4;11(a). Therefore

~Ti(@kist = T(@,4i(=1) = ~7yin (@) = 7 (@)m(=1), (5.1

where 2 < i < v — 1. Substituting a = 1, i = 2, into (5.1), we have —k_3 =m0 (=1) = —k3 = kampy(—1).
Hence k5 = k_3
Similarly, we have
[aeiv1 + eyi1 +ae,i] Ly e+ ey — eyprivt],

[eys1 +aey,i+ae, ] Ly [ei— e +e,41],

and
[ae; + aei +eyi1] Ly [ey1 + evi — eyri1]

Applying o to the above non-adjacency relations and using Lemma 5.2, we obtain
[mi1(@ei + eyr + mi(@e,y] Ly [ei + eprr + M (—Deysinl,

[eys1 + myri(@)eysi + myyivi(@)eysivt] Ly [€; + i (=1)ei + ey,
and
[ri(a)e; + mivi(a)eit + eyi1] L ey + kieysi + mypivi(=1)ey1in],

respectively. From the above non-adj_acency relations, we deduce 7, (a)m,4iv1(—1) = —m,.i(a),
—7y4i(a@) = Tyyini(@mi(—1), and —mi(a)k; = w1 (a)m,4i1(—1). Therefore

Ty4i(@) = ~Ti (@7 i1 (= 1) = m(@k; = —7si1 (@i (= 1), (5.2)

where 2 < i < v — 1. Substituting a = 1, i = 2, into (5.2), we have k, = —m,,3(—1) = ky = —k3m3(—1).
Hence &k, = k_z

From (5.1) we have —7r,-+1(a)m = m(a)m(=1), and from (5.2) we have m,.(a) =
—miv1(@)m,i01(—1). Substituting the last equation into the previous one we obtain

A1 (@it = =1 (@it (D=1,
Cancelling —r;,(a) and then applying the involutive automorphism, we obtain
kivi = mtypip1 (=Dmi(=1), (5.3)
where2 <i<v-—1. —
From (5.1) we have m;(a)7,,.;(—=1) = =m,.(a)m;(—=1), and from (5.2) we have «,,;(a) = mi(a)k;.
Substituting the last equation into the previous one we obtain

ri(a)m,i(=1) = mi(a)kim(=1).
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Cancelling 7;(a) and then applying the involutive automorphism, we obtain
my1i(=1) = kmi(=1), (5.4)

where2 <i<v-1.
From (5.1) we have also —-m,..1(a) = m,(a)r(-1), and from (5.2) we have m,.;(a) =
—my4iv1(@)mi1(—1). Substituting the last equation into the previous one we obtain

—Tyis1(@) = =Ty (@i (= Dm(=1).
Cancelling —n,,;,1(a) and then applying the involutive automorphism, we obtain
T (=Dmi(=1) =1, (5.5)

where 2 <i<v-1.

Substituting i = 2 into (5.3) and (5.4), we have k3 = m,.3(—=1)m(=1) and 7,,»(=1) = kym(—1),
respectively. Since m,,3(—1) = —k_z, we obtain k3 = —k_znz(—l) and —k_3 = kpym(—1), respectively, hence
mo(=1) = 1D, _

Since m (=D, 2(=1) = —m3(=1)m,,3(1) and —my(—1)ks = —m3(—1)ks, hence m(—1) = m3(—1).
Substituting i = 2 into (5.5), we have m3(—=1)m(—1) = 1. Moreover, from m,(=1) = m(—1) and
m5(—=1) = m3(=1) we deduce m(=1)> = 1 and my(=1) = m3(=1).

Since m, is a bijective of C and m,(1) = 1, we have my(—1) = —1. Since m,(—1) = m3(—1), we have
m(=1) = m3(=1) = .-+ = m(=1) = —1. Since k3 = —kym>(—=1), k3 = kp. From k, = k,, we obtain
ky=k; € R*. Fromk, = k3 = --- = k, € R*, my3(=1) = - -+ = my,(=1) = —ky, and 71,42(~1) = —k3, we
obtain 7Tv+2(_1) == ﬂzv(—l) = —kz.

Substituting ki1 = k, € R*, m,,,(—1) = —k,, and m;(—1) = —1 into (5.1), we have
mi(@ky = mi(@ky = mypi1(a) = my4ia), (5.6)

where2 <i<v-1,aeC. By (5.6),wehavenm, =n3 =--- =m,and m,;p = T3 = -+ = My, =
kym,. From [ae; + e,y — ae,3] Ly [es + e,41 + e,42], by Lemma 5.2, we deduce [my(a)e; + e, +
my3(—a)e,3] Ly [e3 + ey + kaeyyn], which implies 7,,3(—a) = —koma(a). By (5.6), m(a)k, = m,43(a).
Thus m,,3(-a) = —m,.3(a). Writing a for —a in (5.6), we obtain my(—a) = —k; "3(a) = —my(a). In
virtue of (5.6) we also have m;(—a) = —n;(a), 7,i(—a) = —m,.i(a), 2 <i <. O

Lemma 5.4. Foranya, b € C* and 2 < i < v, ni(a) = nj(a), mi(ab) = nj(a)mi(b), and ni(a™") = mi(a)~".

Proof. From [ae, + e, + abe,.3] L H [es +e,41 — Eev+2], by Lemma 5.2, we deduce [m,(a)e; + e,41 +
mty3(ab)e, 3] Ly [e3 + ey + mypo(=b)e, ], which implies

Tyea(ab) = —my(a)m,o(=b) = my(a)m,a(b).

Substituting a = 1 into the above formula, we obtain m,.3(b) = 7rv+2(5). By Lemma 5.3 we have
mty2(b) = m,,3(b). Thus

Tye2(b) = 7,12(b)
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and 7TV+2(E) = m,.2(b). Hence,
mty43(ab) = my(a@)my12(D).

In Lemma 5.3 we have m, =3 = --- = 1y, Myyp = Myy3 = -+ = Moy, and m,,.» = kom,. Therefore for
2<i<v,

m(@) = k' 7,4:@) = k' 1,40(0) = K ' myi0(a) = k' mya0(a) = mo(a) = mi(a),
and we have
ni(ab) = k;'m,.i(ab) = ky';,43(ab) = k' wy(a)m, (b)) = my(a)my(b) = mi(a)m(b).

Replacing b by a™! in ;(ab) = mj(a)mi(b), we have mi(a™") = mi(a)~". o

Lemma §.5. Let [a] = [ay,ay, ..., a2,:5] € Py and a; # 0. Suppose o([a]) = [a},4d,,...,a), ). Then

da;, = da\ky'my(ar) ' mo(a;y) and a,, ;= a\my(ar) ' mo(ays ), where2 < j <.

Proof. The case a; = 0 and a,,; = O follows from Lemma 2.1. If a; # 0, 2 < j < v, then

lai,an,...,a0,4s5] Ly [eys1 — alaj‘.lew,j], and by Lemmas 5.3 and 5.4, we deduce

[d\,a),...,a5,s] Lu ey — komyij(an)my, j(aj) ey ],

hence, a} = a}kznw, jlam,.j(a j)‘l. By Lemma 5.3 we have

-1 -1 -1 -1 -1 -1
a;. = a'lkz 71'V+j(a]) 7Tv+j(aj) = a'1k2 ﬂj(d]) ﬂj(aj) = Clllkz my(ay) ﬂz(aj)-

Similarly, if a,,; # 0, 2 < j < v, then [ay,a,,...,a245] Lu [—ala;ijej +e,41], and by Lemmas 5.3 and
5.4, we deduce

la),d),...,a45, 5] Ly [—7j(a)n(a,. ) e; + e,
hence a;,, ; = aimi(a)) ' j(ays)) = ajma(ar) ' ma(ay4 ) by Lemma 5.3. o

Proposition 5.1. 7, is an identity mapping or conjugate mapping of C.

Proof. First, we prove m, € Aut(C), and by Lemma 5.4, it suffices to show that my(a+b) = my(a) +m,(b)
fora, b € C*.
Clearly [e; + e, + (a + b)e; + e, — €,42] € ©,. By Lemma 5.5 we can assume

o([er + 2+ (a+bes + eye1 — €,:2])
= [ale, + ajk;' e + dk; ' ma((a + b))es + d, 1eys) — A\eysn + b, €0ys1 + -+ + db, s2015],
where a} € C*,a),,,d} . ,,...,a,, s € C. From
[e1 + €2+ (@ + b)es + ey1 — eyua] Ly [eyi1 + @ 'beyin — a'eys],
by Lemmas 2.2 and 5.2 we deduce

’ 7 7—1 7 7,—1 ’ ’ ’ ’
[ale; +ajky e, + ajky m((a+ b))es +a, e, — aleyn + a5, €241 -+ + Ay, 5€246]
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-1 -1
Ly ey + mya(a b)e,r + my3(—a™eyusl,

which implies

a) + a\k;' m,0(a'b) + a\ ks ' my((a + b)my3(=at) = 0.

From Lemmas 5.3 and 5.4, we have n,(a + b) = my(a) + m,(b). Hence m, € Aut(C).
Since m, € Aut(C) and my(a) = my(a) for any a € C by Lemma 5.4, 7, is an identity mapping or
conjugate mapping of C.

O
Denote m, = 7, k; 2 k, and then by Lemma 5.3, 1, =73 = --- =n, =mand 7,y = M43 = -+ =
T, = k.
We deduce the following result immediately.
Lemma 5.6. Foranya € Candi=2,...,v, we have o([dze; + ae; + e,.1]) = [e; + k~'n(A) ' n(a)e;]
and o([e) + e,41 + ae,;]) = [e) + () ' m(a)e, ).
o(le; +e+e,1 —e,]) = ke +e; + ﬂ(%—;l)evﬂ —ke,.il, wherei =2,3,...,v.

Proof. By Lemmas 2.2 and 5.5, we have o([e; + ¢e; + €,.1 — e,4i]) = [K'e; + Kk e + a,. e —keyl,
forsome a/,, € C,k' € C*and K'd,_ +k'd,, —2k'k’k™' = 0, hence d/,, # 0. By Lemma 5.1, we have

o([er + eyar + (= = Deyy]) = [er + (=1 = 5 )ey].
From [e; + e; + €,41 — ey1i] Ly [er + €,41 + (= — De,i], we deduce @, = K’k~'n(1 — A;"). Hence
o(ler + e+ eyer —eyii]) = [Key + Kk 7le; + Kk 'm(1 = 43)eyar — K eysi]
A -1

= [ke; + e; + n(———)e,+1 — ke,1i].
A

O
Lemma 5.7. Let2 < i <v. For any A € A\{A,}, a € C, we have (1) = % and
kn()m(A,) kn(A2)m(a)

o([de; + e,y +ae,]) = [ 2 — 1) e +é, t mem]-

kn(Dn(d2)
n(A—A)

n(A)m(a)
n(A—A)

Similarly, o([dey + ae; + e,+1]) = [ e+ e+ e,

Proof. Suppose A € A\{0, A,}, by Lemmas 5.1 and 5.5, and we have
o([Ae) + eyi1 + ae,.i]) = [T(Dey + eyi1 + T(DA() ' 7(@)ey]

and
o([der + ae; + e,41]) = [T(Dey + Tk 7)) m(a)e; + eya1].

In particular, we have
o([dey + ey + (A= Deyy]) = [t(Dey + eys1 + T(Dm(D) ' 7(A = Deyyil.
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Since [e) + €; + €,41 — eysil Ly [Aer + a1 + (1= Deysil, by Lemma 5.6, we deduce
A =1 1~
(ke +e; + ﬂ(T)€v+1 —keyi] Ly [T(Der + ey + T(D(A)” 7(A — Deyy],
2

which implies k + T()((2)"'7(A = 1) + x(£=)7(2) = 0. Hence 7(1) = £ and it follows that

krn(AD)m(Ay) kn(A)m(a)
o([1ey + ey +ae,]) = [ﬂ(T_/f)el teé t mem]
and o ([de; + ae; + e,y1]) = [LATLp 4 T g 4 o], O

Lemma 5.8. Let [a] = [ay,...,a,,]1,a,42,...,02,.5] € ©r,a; # 0, and a; # A,. Suppose o([a]) =

’ ’ ’ y _ kn(a))n(d2) y _ mlapn(dy) ’ _ km(ay j)m(A2) .
la},...,a,,1,a oy, sl Then a) = a4 = Tohman G T Tt for2 < j<w.

’
y+22 "

Proof. We distinguish the following four cases:

(1) Suppose [a] = [a1e; + e,+1], where a; € A\{0, A,}. By Lemma 5.7 we have
_ kn(ann(dy)

(A —ay)

’

a;
(2) There is some a; # 0 where 2 < j < v. Let b € A\{0, A,}. From
(a1, s L ayin, o Gayis] Li [ber + ey = (ar + b)a; ey ],
by Lemma 5.7 we deduce

kn(b)n(Ay) k(@ + bynlay) a(dy)
(= D) ert ey (= b) eyyjls

’

la},....a,,1,d,,5,....d5,.s] Lu [

which implies

n(dy — b)a\ — a’kn(a; + byn(a j)_ln(/lz) + kn(b)n(Ay) = 0.
By Lemma 5.5, we have o/, = a\k™'m(a)) ' n(a;). Hence
, kn(a))m(A,) , m(a;)m(A2)
"o —a)t T rh—ar)’

(3) There is some a,.,; # 0 where 2 < j <v. Let b € A\{0, A,}. From

[ala ey, l9av+27 e ’a2V+5] Lln [bel - (a_l + b)a;ijej + ev+l]a

by Lemma 5.7, we have

— —_—1
d.....d.l.d @] [kﬂ(b)ﬂ(/lz)e _ Mntar + bmtayy) :
1o ooy Lo Myy Do e e e s MDyas H ﬂ'(ﬁz_b) 1 ﬂ'(/lZ_b) J v+11s

which implies

(A, — b)a; — a,, m(a; + bn(a,, j)_ln(/lz) + kn(b)m(A,) = 0.

i
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’

By Lemma 5.5 we have a, i)

= da|n(a,) 'n(a,+,). Hence
, _ kn(a)n(4y) - kr(ay+ )m(A2)
Vo —a)” YT (- an)

(4) When ¢ > 1, suppose [a] = [ae; + e,y1 + aayr1€2p41 + - -+ + A2yi5€2045) € P, where a € C* and
A2yils .5 Aoyys € C such that

5
a+a+ Za2y+jazy+j =0
J=1
and

3
Z Aoy jA2yy * 0.
J=1

Since [a] € @;,a # 1, and a # A,. We assume o([a]) = [d'e; + e,1 + @), €241 + -+ + @), 5€245].
By the cases (2) and (3) above, we have
_kn(a)n(4,) n(@)n(A) kr(A,)

b+ T+t i o

o([—aey +aey + e,41 + €,12]) = [

From
[ae) + eyi1 + Ayi1€2p51 + -+ + Aoyi5€2045] L [—ae; +aex + e, + ey40],

we have _ _
kﬂ(a)ﬂ(/lz)e ﬂ(a)ﬂ(/lz)e . km(A,) e
h+a) | oah+a c T +a)
_ ka(a)n(12)

D,
which implies a’ = Ca) O

o(la]) Ly [-

Lemma 5.9. Let [a] = [1,...,a,,1,a,12,...,02,:5] € Dy. Suppose

o(le]) =11,...,d,,0,d,,,5,...,a45,.5]
Then, a; =k 'n() 'n(a)), a;ﬂ. = n() 'n(ay.) for2 < j <.

Proof. 1f we have some a; # 0 where 2 < j < v, from
[/127 <5 Ay, l’av+2’ R a2v+6] Ly [el + ey — (/1_2 + l)aj_‘lev+j]7

by Lemma 5.7 we deduce

—_ —1
kn(A,) kn(d + Dr(a;) n(Ar)
l,...,a,,0,a,,,....,85,.s] Ly [————e; + e, —
[ ’ » Vs Ay a2v+6] H [7.((/12 _ l)el Ev+l 71'(12 - 1)

ev+j]’

which implies a’, = k() n(a)).
If we have some a,.,; # 0 where 2 < j < v, from

[A2,....ay, 1,42, ..., G0046] Ly [e1 — (A2 + 1)a;+1j6’j + eyl

by Lemma 5.7, we have

() (Al + D)

[15---’a;709a;+29---9a/2y+5] J—I‘I [71'(/12— l)el - 71_(/12_ 1) ej+ev+l]»
which implies a;,, ; = m(A2) 7 (ay. ). o
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Lemma 5.10. Let [a] = [0,aa,...,a,,1,a,42,...,a2,.5] € Dy. Suppose
o(la) =10,d5,...,d,,1,d,,,,...,4d5,.5]
Then, a = n(a;), avﬂ kn(ay.;) for2 < j <.

Proof. Let b € A\{0, A4,}. If thereis ana; # 0, 2 < j < v, from

[Oa az,...,ay, 1a Ayi2s e ey a2v+6] Lp [bel + ey — ba;lev+j]7
by Lemma 5.7, we deduce
|
, , kn(b)r(4>) kr(A)n(b)r(a;)
[O,az,.. ay,l,av+2,...,a2V+5] 1y [mel +e,41 — ﬂ_(/lz-b)J ey+j],

which implies a} = n(a;).
If thereisana,,; # 0, 2 < j < v, from

[0,as,...,ay,1,ay42,...,0a245] Ly [bey — bawe, + eyl

by Lemma 5.7, we deduce

kn(b)r(A,) n(A)n(b)n(a,. j)_l

[0,d),....a4,,1,d, 5, ...,0d%,,s] LH[ﬂ(ﬂz—b) e — <L D) iFenl,
which implies a,, i = kn(ay. ;). O
By Lemmas 5.8-5.10 we have:
Lemma 5.11. Let [a] = [ay,...,a,,1,ay42,...,a2,45] € ©y. Suppose o([a]) = [a},a},...,...,d;, ;]

Then a| = kn(a,),a,,, = n(1 - al/lgl), a;. = n(a;), a’v+j = kn(ay.j) for2 < j <.
Lemma 5.12. Let [a] = [1, az,.. ,ay,0,a,40, ..., a2,45] € @y Suppose o([a]) = [1,4),...,4d,, ]
Thena,, , = A} ! a =k n(/l + 1)+ A7 1)7r(a]) av+j (7r(/l£1 +1)+ k/ll‘l)ﬂ(av+j)f0r2 <j<w
Proof. From [a] Ly [e;], we deduce [1,d),...,a), 5] Ly [die; + e,41], whichimplies a/, | = /lfl.
If we have some a; # 0 where 2 < j < v, from
[17 a,...,ay, 07 Ayi2yenny a2V+§] Ly [el téey — a]_‘lev+j],
by Lemma 5.7 we deduce

k() kn(a;) ()

[l,a'z,...,av,/ll > V+2,---,Cl’2y+5] Ly [mel + €41 — mev+j]a
which implies a’, = (k7 'n(A + 1) + A7 Hn(a)).

If we have some a,,; # 0 where 2 < j < v, from

[1,a2,...,8,,0,ap52, ..., G2y16] Lu [e1r = @)} e+ eyl

by Lemma 5.7, we have |
, , km(A,) n(A)n(a,. ;)
[17612’- '-’aya /11 ) y+27""a2V+5] J—H [ 2 € — el ej + ev+l]’

(= 1) (= 1)
which implies a;,, ; = (75" + 1) + kA Dm(ays ). o
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Lemma 5.13. 7(4;') + kA;' = 0.

Proof. Forany a € C\{-1}, let [a] = [ae,+e,—aes+e,1+€,.3], and then [a] € @, and [a] Ly [e;—e,42].
By Lemmas 5.11 and 5.12, we have o([a]) = [kn(a)e, + e, — m(a)e; + (1 — a/lgl)em + ke, 3] and
o([er — ey2]) = [er + A eysr — (WA, + 1) + kA Deyin]. From o([@]) Ly o([e) — ey42]), we have
@(ﬂ(ﬂg N+ k/ll‘l) = n(A; D+ k/ll‘l, which implies n(/lgl) + k/ll‘1 =0. O

By Lemmas 5.12 and 5.13, we have:

Lemma 5.14. Let [a] = [l,as,...,a,,0,a,42,...,a2,:5] € ®2. Suppose o([a]) = [1,d},...,4}, ;]
Thend,,, = A", da; = k'n(a;), a,,;=n(a,) for2 < j<v.

We can now complete the proof of Theorem 5.1. Let [a] € @, and write [@] = [a;,as,. .., d24s],
where a,,; = 1 ora,;; =0and a; = 1, and by Lemmas 5.11, 5.13, and 5.14, we have

o([a]) = [kn(ar), m(az), . .., 71(a,), O1a,., + kAT w(ar), kn(@ysa), . . ., k@), @b, s - - s sl

_ 1, av+] i 0
where 0, ,,,, = { 0. a,=0"
Since k € R, 4; € A\{0}, we have 44 # 1. Let
ol = - (e (A 4+ ol
al =[-n e1+mn e +e, e,nl,
/ll +1 1 /11 +1 2 +1 +2

and then [a] € D, and o([a]) Ly [e; + e,+1], hence o([a]) ¢ ®,, which is a contradiction. So
o([e1]) = [11e; + e,41] is impossible.

Hence we have o([e;]) = [e;]. By the proof of Theorem 3.1 in [8], similarly for any [a] =
lai,...,a,,1,a,.0,...,a40,.5] € Do, we have

O-[CZ] = [kﬂ-(al)a Tr(GZ)’ MR ﬂ-(av)a 17 kﬂ-(av+2)’ MR kﬂ-(aZV)7 a’2y+1’ cee a,2y+§]'
Now we show k = 1. If k # 1, then 7 '(k™") # 1. Let
[a] = [ ' (k Dey + 17 (K ey + €41 + €y42],

and then [a] € @, and o([@]) Ly [e; +e,11], hence o([a]) ¢ D,, which is a contradiction. Hence k = 1.

For any [a] = [1,a,...,4a,,0,a,42,...,a2.s] € Oy, since o([e;]) = [e;] we can assume o ([a]) =
[1,d,,...,a,,0,a,,,,...,4a,,s]. Forany a; # 0,2 < i < v, from [a] Ly [e,s1 — a_,-_lev+l~], we deduce
a. = n(a;). Forany a,,; # 0,2 <i < v, from [a] Ly [—ﬂ_lei +ey41], we deduce @/ ,; = n(a,.;). Hence
for any [a] = [1,a2,...,a,,0,a,42,...,0d2,s5] € Oy, we have

O-[Q,] = [1’ ﬂ(aZ)a R ﬂ'(av)’ 09 ﬂ-(av+2)a L] 7T(512v), a/2V+] LI} a,2V+(5]'
Hence for any [a] = [ay,ay, ..., a.s] € @2, we have
olal = [n(a)), ..., n(a,), n(ay1), 7(@y12), . . ., 7(a2)), Crypys - - - 5 oys]-

Moreover we have E, = Eg,, and Theorem 5.1 is proved for the case where 6 = 0. Now we consider
the case where 6 > 1. Let 4 € C*\{—1} such that A + A + 1 = 0. Then [y;] = [1e; + e,41 + €2,4i] € Oy
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and O'([’)/l]) = [7T(/1)€1 + e, + wiprérye +000 + a)i5€2V+5], where wij satisfies 7T(/1) + ﬂ(/i) + Z‘;.:la)ijw_ij =
0,1 <i,j<o. By/l+ﬁ+ 1 = 0 we deduce

o
D wy=1,1<i,j<6.

=

Let W = (wij)sxs, and similar to the proof of Theorem 3.1, we have WW = I9 and
(aév_'_l’ cee a’2V+5) = (ﬂ(a2V+1)’ R ﬂ(a2V+6))W' a
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