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Abstract: It is well known that transformations of Cn preserving the standard inner product are unitary
transformations. In this paper, all bijective transformations of isotropic sets of CPn preserving H-
orthogonality in both directions, called H-orthogonal transformations, have been determined. This
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Keywords: H-orthogonal; unitary group; isotropic vector; orthogonality preserving; Wigner theorem
Mathematics Subject Classification: 05C60, 05E30, 15A63

1. Introduction

The motivation to study orthogonality preserving maps comes from quantum mechanics. Birkhoff
and von Neumann [1] first discovered that the logical structure of quantum mechanics is related to the
orthogonal lattices formed by closed subspaces of complex Hilbert spaces. The state is an important
type of function defined on every orthogonal lattice, and all states form a convex set whose extreme
points are called pure states. By Gleason’s theorem [3], the set of pure states of a quantum mechanical
system can be identified with the set of rank-one projections, that is, the set of rays in a complex Hilbert
space. The classic Wigner theorem [22] describes symmetries of quantum mechanical systems, and it
characterizes unitary and anti-unitary operators as symmetries of quantum mechanical systems, that is,
every bijective transformation of the set of pure states preserving the transition probability is induced by
a unitary or anti-unitary operator. Also, there is a non-bijective version of this result concerning linear
and conjugate-linear isometries. From Wigner’s theorem one can also derive the Schrödinger equation
for conservative physical systems. In [23], Wigner established the foundational role of group theory in
quantum mechanics, particularly for analyzing atomic spectra. By leveraging symmetry properties of
physical systems, he demonstrated how group representations (especially irreducible representations
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of the rotation group S O(3) and permutation groups) classify quantum states and predict spectral line
splitting. The work bridges abstract algebraic structures with observable phenomena, showing that
symmetry operations (e.g., rotations, permutations of electrons) constrain Hamiltonian eigenstates and
simplify solving complex atomic systems. Wigner’s insights laid the groundwork for understanding
angular momentum, selection rules, and degeneracy in quantum systems, profoundly influencing
modern theoretical physics and chemistry.

In general, Wigner’s theorem includes bijective and non-bijective versions, and each version has a
variety of different statements. Various kinds of Wigner-type theorems can be found in [13]. The non-
bijective version of Wigner’s theorem says that an arbitrary transformation of the Grassmannian formed
by rays of a complex Hilbert space, which preserves the angles between any two rays, is induced by
a linear or conjugate-linear isometry. The bijective version of Wigner’s theorem was first observed
by Uhlhorn [19]. Let H be a complex Hilbert space of dimension not less than three. Then every
bijective transformation of Grassmannian formed by rays of H preserving the orthogonality relation
in both directions is induced by a unitary or anti-unitary operator. In fact, Uhlhorn’s theorem is a
simple consequence of the Fundamental Theorem of Projective Geometry. But it reveals the following
important relation between the logical structure and the probabilistic structure of quantum mechanical
systems: if the logical structure is preserved, then probabilistic structure also is preserved. Since pure
states are characterized as extreme points of the convex set of all states, the bijective transformations
preserving the convex structure of the set of all quantum states induces a bijective transformation of
the set of pure states. These transformations preserve the orthogonality relation in both directions, and
this gives rise to a unitary or an anti-unitary operator.

Uhlhorn’s theorem has been improved in several directions. Györy [9] and Šemrl [16] independently
described bijective transformations of Hilbert Grassmannians preserving the orthogonality relation in
both directions. Recently, Pankov [12] studied orthogonality preserving transformations of Hilbert
Grassmannians, and Šemrl [17] gave another extension of Wigner’s theorem in which the maximal
principal angle is replaced by the minimal one. Instead of complex Hilbert spaces one can also treat
real and quaternionic inner product spaces. Rodman and Semrl [14,15] studied this kind of problem in
indefinite inner product spaces. In this paper, we study the orthogonal invariants in the geometry of a
unitary group over C. We use geometric methods in the spirit of Chow’s theorem [2].

Let n ≥ 2 be an integer, and consider Cn as the n-dimensional row vector space over C. For
vectors α1, α2, . . . , αs ∈ C

n, let [α1, α2, . . . , αs] denote their span. For α = (a1, a2, · · · , an), β =
(b1, b2, · · · , bn) ∈ Cn, let (α, β) = a1b1 + a2b2 + · · · + anbn be the standard inner product of vectors
α and β. Given a nonsingular Hermitian matrix H ∈ Cn×n, the vector α ∈ Cn is said to be H-orthogonal
to the vector β ∈ Cn if (α, βH) = 0. We use the notation α ⊥H β to denote the H-orthogonality of α
to β. If α is not H-orthogonal to β then it is denoted as α ̸⊥H β. Clearly we have α ⊥H β if and only
if β ⊥H α. Given a nonzero vector α ∈ Cn, call α isotropic (with respect to H) whenever α ⊥H α,
and call the vector space [α] isotropic when α is isotropic. Let CPn = {[α]|α ∈ Cn+1\(0, . . . , 0)} be
the respective projective space. For [α], [β] ∈ CPn, we call them H-orthogonal whenever α ⊥H β, and
denote it as [α] ⊥H [β]. For any [α] ∈ CPn, let L[α] = {[β] ∈ CPn|[β] ⊥H [α]}, and then L[α] is a
hyperplane of CPn.

An n × n matrix T is called a unitary matrix of order n over C if T HT
t
= H. The set of unitary

matrices of order n over C form a group with respect to the matrix multiplication, which is called the
unitary group of degree n over C, denoted by Un(C,H), or simply Un(C). Let S = {a ∈ C|aa = 1} be a
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subgroup of C∗, Z = {aI(n)|a ∈ S }, and Un(C)/Z be denoted by PUn(C), which is called the projective
unitary group of degree n over C.

Let ϕ be a transformation of Cn. As is well known, for any α, β ∈ Cn, we have (α, β) = (ϕ(α), ϕ(β))
if and only if ϕ is a unitary transformation. In this paper, we consider H-orthogonality instead of the
standard inner product. Since any n × n nonsingular Hermitian matrix is necessarily cogredient to

H =


0 I(ν)

I(ν) 0
±I(n−2ν)

 ,
for some ν ∈ N and 0 ≤ 2ν ≤ n, we can consider the nonsingular Hermitian matrix of the above form
only.

A bijective transformation of CPn preserving H-orthogonality in both directions is called an H-
orthogonal transformation of CPn. Denote the set of all H-orthogonal transformations by O(CPn),
which is a group with the multiplication of composition. Let Λ denote the subgroup of O(CPn) which
consists of the identity transformation and conjugate transformation. By [14], when n ≥ 3, we have:

Theorem 1.1. O(CPn) = PUn+1(C) · Λ.

For [γ] ∈ CPn, denote O(CPn)[γ] the stabilizer subgroup of O(CPn) fixing [γ]. Since CPn \ L[γ] is
an open set of CPn in the sense of algebraic geometry, similarly, we define and study O(CPn \ L[γ]) for
every [γ] ∈ CPn. Clearly O(CPn)[γ] can act on CPn \ L[γ], and we denote it by O(CPn)[γ]|CPn\L[γ] . In fact,
by [14], when n ≥ 4, we can obtain O(CPn \ L[γ]) = O(CPn)[γ]|CPn\L[γ] .

When H is not a positive definite matrix, let Φ0 = {[α] ∈ CPn−1 | α ⊥H α}. For any [γ] ∈ CPn−1,
let Φ[γ] = Φ0 \ L[γ]. In the same way, we define O(Φ0) and O(Φ[γ]). Every T ∈ Un(C) induces an
automorphism of CPn−1 : [α] 7→ [αT ] which will be denoted by σT , i.e., σT ([α]) = [αT ]. Also σT

induces an H-orthogonal transformation of Φ0. For any [γ] ∈ CPn−1, there exists T ∈ Un(C) such that
[e1T ] = [γ] or [(e1 + eν+1)T ] = [γ], according to [γ] ∈ Φ0 or [γ] < Φ0. Then if [γ] ∈ Φ0, T induces
an isomorphism σT from Φ[e1] to Φ[γ], and if [γ] < Φ0, T induces an isomorphism σT from Φ[e1+eν+1] to
Φ[γ]. Hence O(Φ[γ]) is isomorphic to O(Φ[e1]) or O(Φ[e1+eν+1]). Denote Φ1 = Φ[e1] and Φ2 = Φ[e1+eν+1].
To give a uniform treatment, write n = 2ν + δ, where δ ∈ N = {0, 1, 2, . . .}. Define a matrix

H =


0 I(ν)

I(ν) 0
±I(δ)

 ,
and then any n × n nonsingular Hermitian matrix is necessarily cogredient to H. When ν ≥ 3, we will
determine O(Φi), 0 ≤ i ≤ 2.When δ ≥ 1, we only consider the case

H =


0 I(ν)

I(ν) 0
I(δ)

 ,

and the other case H =


0 I(ν)

I(ν) 0
−I(δ)

 can be considered similarly.
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Let (R+)∗ = {x ∈ R|x > 0} and Uδ(C) = {W ∈ Mδ×δ(C)|WW
t
= I(δ)} when δ ≥ 1. We define a group

Ωδ of the cartesian product (R+)∗ × Λ × Uδ(C) with the multiplication ∗ defined by

(k1, π1,W1) ∗ (k2, π2,W2) = (k1k2, π1π2,
µk1

µk1k2

π1(µk2W2)W1),

where µk is one fixed element of the set {a ∈ C|aa = k} for any k ∈ (R+)∗, and µ1 := 1. Let U (1)
n (C) =

{T ∈ Un(C) : e1T = e1}, U (2)
n (C) = {T ∈ Un(C) : (e1 + eν+1)T = (e1 + eν+1)}.

Let Ei be the subset of O(Φi), i = 1, 2, which consists of those σ ∈ O(Φi) satisfying
σ([e j + eν+1]) = [e j + eν+1] ( j = 2, 3, . . . , ν),
σ([eν+1]) = [eν+1],
σ([eν+1 + eν+ j]) = [eν+1 + k jeν+i] ( j = 2, 3, . . . , ν),

where k j ∈ C
∗, j = 2, 3, . . . , ν, and C∗ represents the set of nonzero complex numbers. Let EΦ1 be the

subset of E1 such that k2 = k3 = · · · = kν ∈ R∗. In this paper, we will give the following main results:

Theorem 1.2. When ν ≥ 3 and δ ∈ N, we have

1) O(Φ0) = PUn(C) · Λ |Φ0 .
2) O(Φ1) = U (1)

n (C) · EΦ1 , EΦ1 is a subgroup of O(Φ1), and

EΦ1 �

{
R∗ × Λ, when δ = 0,
Ωδ, when δ ≥ 1.

3) O(Φ2) = U (2)
n (C) · Λ |Φ2 .

2. Preliminaries

In this section, we will introduce some propositions and lemmas that are needed to derive our main
results.

In order to determine O(Φi), i = 0, 1, 2, we define a graph Γi with Φi as the vertex set and the
adjacency is defined by [α] ∼ [β] if and only if [α] ̸⊥H [β]. Then O(Φi) = Aut(Γi), where Aut(Γi) is
the group of automorphisms of Γi. In [4–8,18,20,21], the automorphism groups of graphs constructed
by symplectic, orthogonal, and unitary groups over finite fields were studied. The methods there can
be used to study Aut(Γi) now.

Proposition 2.1. When ν ≥ 2, every T ∈ Un(C) induces an automorphism σT of Γ0 : [α] 7→ [αT ], and
for any T1,T2 ∈ Un(C), σT1 = σT2 if and only if T1 = kT2, where k ∈ S .

Proof. It is clear that σT1 = σT2 if T1 = kT2, k ∈ S . Conversely, suppose that σT1 = σT2 . Then for any
[α] ∈ Φ0, αT1 = kαT2 for some k ∈ C∗.

When n = 2ν, take α = e1, e2, . . . , e2ν, and we get that T1 = diag(k1, k2, . . . , k2ν)T2, for some
k1, k2, . . . , k2ν ∈ C

∗. Take α = e1 + e2, e2 + e3, · · · , e2ν−1 + e2ν, and we see that k1 = k2 = · · · = k2ν.
When n = 2ν + δ, δ ≥ 1, take α = e1, e2, . . . , e2ν, e1 + λeν+1 + e2ν+1, . . . , e1 + λeν+1 + e2ν+δ where

λ ∈ C∗ such that λ + λ + 1 = 0, and we get that T1 = MT2, where

M =
(

diag(k1, k2, . . . , k2ν) 0
N diag(k2ν+1, . . . , k2ν+δ)

)
AIMS Mathematics Volume 10, Issue 5, 11411–11434.
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for some k1, k2, . . . , k2ν+δ ∈ C
∗, and

N =


(k2ν+1 − k1)e1 + λ(k2ν+1 − kν+1)eν+1

...

(k2ν+δ − k1)e1 + λ(k2ν+δ − kν+1)eν+1


δ×2ν

.

Take α = e1 + e2, e2 + e3, . . . , e2ν−1 + e2ν, e1 + e2 + λeν+1 + e2ν+1, . . . , e1 + e2 + λeν+1 + e2ν+δ, and we
see that k1 = · · · = k2ν = k2ν+1 = · · · = k2ν+δ.

Thus, T1 = k1T2. Then, k1I = T1T−1
2 ∈ Un(C), which implies (k1I)H(k1I)

t
= H. Therefore,

k1k1H = H and, hence, k1k1 = 1, i.e., k1 ∈ S . □

Proposition 2.2. Every T ∈ U (i)
n (C) induces an automorphism σT of Γi : [α] 7→ [αT ] where i = 1, 2,

and for any T1, T2 ∈ U (i)
n (C), σT1 = σT2 if and only if T1 = T2.

Proof. We prove only for i = 1. Suppose σT1 = σT2 . Then, for every vertex [α] of Φ1, there exists
k ∈ C∗ such that αT1 = kαT2.
Case (i) δ = 0. Let M be the 2ν × 2ν matrix with rows: e1, e2 + eν+1, . . . , eν + eν+1, eν+1, eν+1 +

eν+2, . . . , eν+1 + e2ν in order. Since for every vertex [α] of Φ1, there exists k ∈ C∗ such that
αT1 = kαT2, there exist k2, . . . , k2ν ∈ C

∗ such that MT1 = diag(1, k2, · · · , k2ν)MT2. Let N =

M−1diag(1, k2, · · · , k2ν)M. By computation, we have

M−1 =



e1

e2 − eν+1
...

eν − eν+1

eν+1

−eν+1 + eν+2
...

−eν+1 + e2ν


2ν×2ν

and

N =



e1

k2e2 + (k2 − kν+1)eν+1
...

kνeν + (kν − kν+1)eν+1

kν+1eν+1

(kν+2 − kν+1)eν+1 + kν+2eν+2
...

(k2ν − kν+1)eν+1 + k2νe2ν


2ν×2ν

.

But, N = T1T−1
2 ∈ U2ν(C), thus NHN

t
= H, which implies k2 = k3 = · · · = k2ν = 1 and hence

T1 = T2.

Case (ii) δ ≥ 1. Let M1 be the (2ν+δ)× (2ν+δ) matrix with rows: e1, e2+eν+1, . . . , eν+eν+1, eν+1, eν+1+

eν+2, . . . , eν+1+e2ν, λe1+eν+1+e2ν+1, . . . , λe1+eν+1+e2ν+δ in order, where λ ∈ C∗ satisfies λ+λ+1 = 0.
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Since for every vertex [α] ofΦ1, there exists k ∈ C∗ such that αT1 = kαT2, there exist k2, . . . , k2ν+δ ∈ C
∗,

such that
M1T1 = diag(1, k2, · · · , k2ν+δ)M1T2.

Let N1 = M−1
1 diag(1, k2, · · · , k2ν+δ)M1. Similarly, we have

N1 =



e1

k2e2 + (k2 − kν+1)eν+1
...

kνeν + (kν − kν+1)eν+1

kν+1eν+1

(kν+2 − kν+1)eν+1 + kν+2eν+2
...

(k2ν − kν+1)eν+1 + k2νe2ν

λ(k2ν+1 − 1)e1 + (k2ν+1 − kν+1)eν+1 + k2ν+1e2ν+1
...

λ(k2ν+δ − 1)e1 + (k2ν+δ − kν+1)eν+1 + k2ν+δe2ν+δ



∈ U2ν+δ(C).

Then, N1HN1
t
= H, which implies k2 = k3 = · · · = k2ν+δ = 1 and hence T1 = T2. □

Recall that Ei is the subset of O(Φi), i = 1, 2, which consists of those σ ∈ O(Φi) satisfying
σ([e j + eν+1]) = [e j + eν+1] ( j = 2, 3, . . . , ν),
σ([eν+1]) = [eν+1],
σ([eν+1 + eν+ j]) = [eν+1 + k jeν+i] ( j = 2, 3, . . . , ν),

where k j ∈ C
∗, j = 2, 3, . . . , ν, and C∗ represents the set of nonzero complex numbers. Let σ ∈

Ei, i = 1, 2, ν ≥ 3, and [α] = [a1, a2, . . . , a2ν+δ] ∈ Φi. Suppose σ([α]) = [α′] and write [α′] =
[a′1, a

′
2, . . . , a

′
2ν+δ]. Then, we have:

Lemma 2.1. a j , 0 if and only if a′j , 0 for j = 1, . . . , ν, ν + 2, . . . , 2ν.

Proof. For j = 1, a1 , 0 if and only if [α] ̸⊥H [eν+1], if and only if [α′] ∼ [eν+1], if and only if a′1 , 0.
For j , 1, we prove the Lemma only for the case j = 2. Consider first the case a1 = 0, and then
a2 , 0 if and only if [α] ̸⊥H [eν+1 + eν+2], if and only if [α′] ̸⊥H [eν+1 + k2eν+2], if and only if a′2 , 0.
Similarly, when a1 = 0, we also have a j , 0 if and only if a′j , 0, j = 2, . . . , ν, ν + 2, . . . , 2ν. Now
assume a1 , 0. If a2 , 0, then [α] ⊥H [eν+1 − a2

−1a1eν+2], from which we deduce a′2 , 0. On the other

hand, if a2 = 0 but a′2 , 0, there is an element a ∈ C∗ such that σ([eν+1 + aeν+2]) = [eν+1 − a′2
−1

a′1eν+2].

But [α] ̸⊥H [eν+1 + aeν+2], while [α′] ⊥H [eν+1 − a′2
−1

a′1eν+2], which is a contradiction. Thus, a2 , 0 if
and only if a′2 , 0. □

Moreover, when δ ≥ 1, we have:

Lemma 2.2. Let ν ≥ 3, and suppose any one of the following two conditions is satisfied by [α] =
[a1, a2, . . . , a2ν+δ] ∈ Φi, i = 1, 2:
(1) a1 = a2aν+2 = · · · = aνa2ν = 0,
(2) [α] = [xe1 + ye j + eν+1 + zeν+ j], for some x, y, z ∈ C and 2 ≤ j ≤ ν.

Then, (a′2ν+1, . . . , a
′
2ν+δ) = (0, . . . , 0).
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Proof. When the condition (1) is satisfied, the conclusion is evident. When the condition (2) is satisfied,
first we prove this lemma for [α] = [ye j + eν+1 + zeν+ j] with y, z ∈ C. If not, there are some y, z ∈ C
and 2 ≤ j ≤ ν such that

σ([ye j + eν+1 + zeν+ j]) = [y′e j + eν+1 + z′eν+ j + t1e2ν+1 + · · · + tδe2ν+δ]

for some y′, z′ ∈ C, ts ∈ C
∗, 1 ≤ s ≤ δ. Since ts , 0, there is c ∈ C∗ such that 1 + tsc = 0. Let

[β] = [e1 + bek + eν+1 + eν+k + ce2ν+s], where 2 ≤ j , k ≤ ν and b ∈ C satisfying 2 + b + b + cc = 0.
Then [β] ∈ Φi, i = 1, 2, and [y′e j + eν+1 + z′eν+ j + t1e2ν+1 + · · ·+ tδe2ν+δ] ⊥H [β]. But the preimage [γ] of
[β] is of the form [γ] = [ae1 + b′ek + a′eν+1 + eν+k + t′1e2ν+1 + · · · + t′δe2ν+δ] with a ∈ C∗ by Lemma 2.1,
and clearly [γ] ̸⊥H [ye j + eν+1 + zeν+ j], which is a contradiction. Our claim is proved.

Now we prove this lemma for [α] = [xe1 + ye j + eν+1 + zeν+ j] with x ∈ C∗, y, z ∈ C. If not, there are
some x ∈ C∗, y, z ∈ C, and 2 ≤ j ≤ ν such that

σ([xe1 + ye j + eν+1 + zeν+ j]) = [x′e1 + y′e j + aeν+1 + z′eν+ j + t1e2ν+1 + · · · + tδe2ν+δ]

for some y′, a, z′ ∈ C, x′, ts ∈ C
∗, 1 ≤ s ≤ δ. Since ts , 0, there is c ∈ C∗ such that x′ + tsc = 0. Let

[β] = [bek + eν+1 + eν+k + ce2ν+s], where 2 ≤ j , k ≤ ν and b ∈ C satisfying b + b + cc = 0. Then
[β] ∈ Φi, i = 1, 2, and [x′e1 + y′e j + aeν+1 + z′eν+ j + t1e2ν+1 + · · · + tδe2ν+δ] ⊥H [β]. But the preimage
[γ] of [β] is of the form [γ] = [b′ek + a′eν+1 + eν+k + t′1e2ν+1 + · · · + t′δe2ν+δ] with a′ ∈ C∗, and clearly
[γ] ̸⊥H [xe1 + ye j + eν+1 + zeν+ j], which is a contradiction. Our claim is proved. □

3. H-orthogonal transformations of Φ0

In this section we will determine O(Φ0). By proposition 2.1, PUn(C) can be regarded as a subgroup
of O(Φ0). For more works on projective unitary groups refer to [11], in which Pankov explored
the interplay between semilinear embeddings (structure-preserving maps between vector spaces over
division rings) and their combinatorial applications. He investigated how these embeddings define
geometric constraints on incidence structures, such as graphs and codes, particularly in projective
and polar spaces. Key results include characterizing embeddings that preserve adjacency or distance
properties in graphs (e.g., Grassmann graphs) and their implications for constructing error-correcting
codes with optimal parameters.

Let EΦ0 be the subset of O(Φ0) which consists of those automorphisms σ satisfying σ([ei]) =
[ei], 1 ≤ i ≤ 2ν. In order to prove O(Φ0) = PUn(C) · Λ |Φ0 for ν ≥ 3 and δ ∈ N, we need only to prove:

Theorem 3.1. Let ν ≥ 3, and then O(Φ0) = PUn(C) · EΦ0 . Let σ ∈ EΦ0 , for any [α] =
[a1, a2, . . . , a2ν+δ] ∈ Φ0, and we have σ([α]) = [k1π(a1), . . . , kνπ(aν), k1

−1
π(aν+1), . . . , kν

−1
π(a2ν)], when δ = 0,

[k1π(a1), . . . , kνπ(aν), k1
−1
π(aν+1), . . . , kν

−1
π(a2ν), a′2ν+1, . . . , a

′
2ν+δ], when δ ≥ 1,

where k1, . . . , kν ∈ C∗, π ∈ Λ, (a′2ν+1, . . . , a
′
2ν+δ) = (π(a2ν+1), . . . , π(a2ν+δ))W, and W ∈ Uδ(C) such that

WW
t
= I(δ).

Proof. Suppose σ([a1, a2, . . . , a2ν+δ]) = [a′1, a
′
2, . . . , a

′
2ν+δ]. Since σ([ei]) = [ei], 1 ≤ i ≤ 2ν, we have

ai = 0 if and only if a′i = 0 for 1 ≤ i ≤ 2ν. Moreover, if a1aν+1 = a2aν+2 = · · · = aνa2ν = 0, we can
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deduce (a′2ν+1, . . . , a
′
2ν+δ) = (0, . . . , 0). Then, similar to the proof of Theorems 3.3 and 4.1 in [21], we

have O(Φ0) = PUn(C) · EΦ0 and σ([α]) = [k1π(a1), . . . , kνπ(aν), k1
−1
π(aν+1), . . . , kν

−1
π(a2ν)], when δ = 0,

[k1π(a1), . . . , kνπ(aν), k1
−1
π(aν+1), . . . , kν

−1
π(a2ν), a′2ν+1, . . . , a

′
2ν+δ], when δ ≥ 1,

where k1, . . . , kν ∈ C∗, π ∈ Λ. When δ ≥ 1, let λ ∈ C∗ such that λ + λ + 1 = 0. Then, [γi] =
[λe1+eν+1+e2ν+i] ∈ Φ0 and σ([γi]) = [k1π(λ)e1+k1

−1
eν+1+ωi1e2ν+1+ · · ·+ωiδe2ν+δ], where ωi j satisfies

π(λ) + π(λ) + Σδj=1ωi jωi j = 0, 1 ≤ i, j ≤ δ. By λ + λ + 1 = 0, we deduce Σδj=1ωi jωi j = 1, 1 ≤ i, j ≤ δ.

Lemma 3.1. Let [α] = [a1e1 + · · · + a2νe2ν + e2ν+i] ∈ Φ0, and [α] ⊥H [γi], 1 ≤ i ≤ δ. Suppose

σ([α]) = [k1π(a1), . . . , kνπ(aν), k1
−1
π(aν+1), . . . , kν

−1
π(a2ν), a′2ν+1, . . . , a

′
2ν+δ],

and then
(a′2ν+1, . . . , a

′
2ν+δ) = (ωi1, . . . , ωiδ), 1 ≤ i ≤ δ.

Proof. Since [α] ∈ Φ0 and [α] ⊥H [γi], 1 ≤ i ≤ δ, we have
∑ν

j=1(a jaν+ j + a jaν+ j) + 1 = 0 and
a1 + aν+1λ + 1 = 0. From σ([α]) ∈ Φ0, we have

[k1π(a1), . . . , kνπ(aν), k1
−1
π(aν+1), . . . , kν

−1
π(a2ν), a′2ν+1, . . . , a

′
2ν+δ] ∈ Φ0,

i.e.,
ν∑

j=1

[π(a j)π(aν+ j) + π(a j)π(aν+ j)] + a′2ν+1a′2ν+1 + · · · + a′2ν+δa
′
2ν+δ = 0.

Since π ∈ Λ, we deduce

ν∑
j=1

π(a jaν+ j + a jaν+ j) + a′2ν+1a′2ν+1 + · · · + a′2ν+δa
′
2ν+δ = 0.

Since σ([α]) ⊥H σ([γi]), 1 ≤ i ≤ δ, we have

π(a1) + π(aν+1)π(λ) + a′2ν+1ωi1 + · · · + a′2ν+δωiδ = 0, 1 ≤ i ≤ δ.

By the above equations, we obtain

a′2ν+1a′2ν+1 + · · · + a′2ν+δa
′
2ν+δ = 1

and a′2ν+1ωi1 + · · · + a′2ν+δωiδ = 1, 1 ≤ i ≤ δ. Moreover, since Σδj=1ωi jωi j = 1, 1 ≤ i, j ≤ δ, by the
Cauchy-Schwarz inequality, we deduce (a′2ν+1, . . . , a

′
2ν+δ) = (ωi1, . . . , ωiδ). □

Let W = (ωi j)δ×δ, and we have the following lemma.

Lemma 3.2. WW
t
= I(δ).
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Proof. When δ = 1, since ω11ω11 = 1, the result is clear. Now we consider the case when δ ≥ 2. For
any 1 ≤ s , t ≤ δ, let [α] = [λe1 + eν+1 + eν+2 + e2ν+s], [β] = [λe1 + e2 + eν+1 + ieν+2 + e2ν+t], where
i ∈ C such that i2 = −1. Then, we have [α], [β] ∈ Φ0, [α] ⊥H [γs], [β] ⊥H [γt], and [α] ⊥H [β]. Hence,
by Lemma 3.1 we obtain

σ([α]) = [k1π(λ)e1 + k1
−1

eν+1 + k2
−1

eν+2 + ωs1e2ν+1 + · · · + ωsδe2ν+δ]

and
σ([β]) = [k1π(λ)e1 + k2e2 + k1

−1
eν+1 + k2

−1
π(i)eν+2 + ωt1e2ν+1 + · · · + ωtδe2ν+δ].

Since σ([α]) ⊥H σ([β]), we deduce that Σδj=1ωs jωt j = 0. In combination with Σδj=1ωi jωi j = 1, we can

see that WW
t
= I(δ). □

By Lemmas 3.1 and 3.2, similar to the proof of Lemma 3.17 in [8], we have

Lemma 3.3. Let [α] = [a1e1 + · · · + a2νe2ν + e2ν+i] ∈ Φ0, 1 ≤ i ≤ δ. Suppose

σ([α]) = [k1π(a1), . . . , kνπ(aν), k1
−1
π(aν+1), . . . , kν

−1
π(a2ν), a′2ν+1, . . . , a

′
2ν+δ],

and then
(a′2ν+1, . . . , a

′
2ν+δ) = (ωi1, . . . , ωiδ), 1 ≤ i ≤ δ.

Proof. Consider the case [α] ⊥H [γi]. By Lemma 3.1, we have

(a′2ν+1, . . . , a
′
2ν+δ) = (ωi1, . . . , ωiδ), 1 ≤ i ≤ δ.

Then consider the case when [α] ̸⊥H [γi]. We distinguish the following three cases:
(1) There is some a j , 0 where 2 ≤ j ≤ ν. Pick

[β] = [(−λ − 1)e1 + eν+1 + ((λ + 1)aν+1 − a1 − 1)a−1
j eν+ j + e2ν+i].

Then [β] ∈ Φ0, [α] ⊥H [β], and [β] ⊥H [γi]. By Lemma 3.1, we have

σ([β]) = [k1π(−λ − 1)e1 + k1
−1

eν+1 + k j
−1
π(((λ + 1)aν+1 − a1 − 1)a−1

j )eν+ j + ωi1e2ν+1 + · · · + ωiδe2ν+δ].

From [α] ⊥H [β] we deduce σ([α]) ⊥H σ([β]). Thus

π(a1) + π((−λ − 1)aν+1) + π((λ + 1)aν+1 − a1 − 1) + a′2ν+1ωi1 + · · · + a′2ν+δωiδ = 0,

which implies a′2ν+1ωi1 + · · · + a′2ν+δωiδ = 1. Since [α] and σ([α]) ∈ Φ0, we deduce

a′2ν+1a′2ν+1 + · · · + a′2ν+δa
′
2ν+δ = 1.

Moreover, since
δ∑

k=1
ωikωik = 1, by the Cauchy-Schwarz inequality, we deduce that

(a′2ν+1, . . . , a
′
2ν+δ) = (ωi1, . . . , ωiδ).
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Note that, in this case, since [α] ̸⊥H [γi], we cannot use Lemma 3.1 directly. Hence we introduce the
third element [β] such that [α] ⊥H [β] and [β] ⊥H [γi], and then we can use Lemma 3.1 for [β] and
deduce the conclusion.

(2) There is some aν+ j , 0, where 2 ≤ j ≤ ν. Pick

[β] = [(−λ − 1)e1 + ((λ + 1)aν+1 − a1 − 1)a−1
ν+ je j + eν+1 + e2ν+i].

Then [β] ∈ Φ0, [α] ⊥H [β], and [β] ⊥H [γi]. As subcase (1), we still have

(a′2ν+1, . . . , a
′
2ν+δ) = (ωi1, . . . , ωiδ).

(3) Suppose [α] = [a1e1 + aν+1eν+1 + e2ν+i] ∈ Φ0, where a1aν+1 + a1aν+1 + 1 = 0. Pick [β] =
[a1e1+e2+aν+1eν+1+e2ν+i], and then [β] ∈ Φ0 and [α] ⊥H [β]. By case (1), we haveσ([β]) = [k1π(a1)e1+

k2e2 + k1
−1
π(aν+1)eν+1 +ωi1e2ν+1 + · · ·+ωiδe2ν+δ]. From [α] ⊥H [β] we deduce σ([α]) ⊥H σ([β]). Thus

a′2ν+1ωi1 + · · · + a′2ν+δωiδ = 1. Since [α] and σ([α]) ∈ Φ0, we deduce a′2ν+1a′2ν+1 + · · · + a′2ν+δa
′
2ν+δ = 1.

Moreover, since Σδk=1ωikωik = 1, by the Cauchy-Schwarz inequality, we deduce that (a′2ν+1, . . . , a
′
2ν+δ) =

(ωi1, . . . , ωiδ).
Hence in all cases (a′2ν+1, . . . , a

′
2ν+δ) = (ωi1, . . . , ωiδ), 1 ≤ i ≤ δ. □

Now we return to the proof of Theorem 3.1. For any 1 ≤ s ≤ δ, take [βs] = [bs1e1 + · · · + bs,2νe2ν +

e2ν+s] ∈ Φ0 such that [α] ⊥H [βs]. By Lemma 3.3, we have

σ([βs]) = [k1π(bs1), . . . , kνπ(bsν), k1
−1
π(bs,ν+1), . . . , kν

−1
π(bs,2ν), ωs1, . . . , ωsδ].

Since [α] ⊥H [βs] and σ([α]) ⊥H σ([βs]), we have

δ∑
j=1

(a jbs,ν+ j + aν+ jbs j) + a2ν+s = 0

and
δ∑

j=1

(π(a j)π(bs,ν+ j) + π(aν+ j)π(bs j)) + Σδj=1a′2ν+ jωs j = 0.

By the two equations above, we deduce

δ∑
j=1

a′2ν+ jωs j = π(a2ν+s), 1 ≤ s ≤ δ.

Hence (a′2ν+1, . . . , a
′
2ν+δ)W

t
= (π(a2ν+1), . . . , π(a2ν+δ)). By Lemma 3.2, Theorem 3.1 can be concluded.

□

4. H-orthogonal transformations of Φ1

In this section we will determine O(Φ1). By proposition 2.2, U (1)
n (C) can be regarded as a subgroup

of O(Φ1). First, let us write out some elements of EΦ1 .
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Case (1) δ = 0. Let π ∈ Λ and k ∈ R∗. Let σk,π be the map which takes any vertex
[a1, a2, . . . , aν, 1, aν+2, . . . , a2ν] of Φ1 to the vertex

[kπ(a1), π(a2), . . . , π(aν), 1, kπ(aν+2), . . . , kπ(a2ν)].

Then it is clear that σk,π is well defined and σk,π ∈ EΦ1 . Define a map from the direct product R∗×Λ
to EΦ1 by h : (k, π) 7−→ σk,π. Clearly, h is an injective map of sets. In order to prove EΦ1 is a group and
EΦ1 � R

∗ × Λ, it suffices to show that every elements σ of EΦ1 are of the form σk,π.
Case (2) δ ≥ 1. Denote σk,π,W as the map which takes any vertex [a1, . . . , aν, 1, aν+2, . . . , a2ν+1] of Φ1

to the vertex [kπ(a1), π(a2), . . . , π(aν), 1, kπ(aν+2), . . . , kπ(a2ν), a′2ν+1, . . . , a
′
2ν+δ], where k ∈ (R+)∗, π ∈ Λ,

(a′2ν+1, . . . , a
′
2ν+δ) = µk(π(a2ν+1), . . . , π(a2ν+δ))W, and W ∈ Uδ(C) such that WW

t
= I(δ). Then it is

clear that σk,π,W is well defined and σk,π,W ∈ EΦ1 . For any σk1,π1,W1 and σk2,π2,W2 , were k1, k2 ∈ (R+)∗,
π1, π2 ∈ Λ, and W1,W2 ∈ Uδ(C) such that WW

t
= I(δ), and we have σk1,π1,W1 , σk2,π2,W2 ∈ EΦ1 , and the

composition of them is σk1,π1,W1σk2,π2,W2 = σk1k2,π1π2,
µk1
µk1k2

π1(µk2 W2)W1
∈ EΦ1 . Define a mapping h : Ωδ −→

EΦ1 by (k, π,W) 7−→ σk,π,W . Clearly, h is an injective map of sets. In order to prove EΦ1 is a group and
EΦ1 � Ωδ, it suffices to show that every elements σ of EΦ1 are of the form σk,π,W .

Now, in order to prove (2) of Theorem 1.2, we need only to prove:

Theorem 4.1. Let ν ≥ 3, and then O(Φ1) = U (1)
n (C) · EΦ1 . Let σ ∈ EΦ1 , for any [α] =

[a1, . . . , aν, 1, aν+2, . . . , a2ν+δ] ∈ Φ1, and we have

(1) if δ = 0, then σ([α]) = [kπ(a1), π(a2), . . . , π(aν), 1, kπ(aν+2), . . . , kπ(a2ν)], where k ∈ R∗, π ∈ Λ;

(2) if δ ≥ 1, then

σ([α]) = [kπ(a1), π(a2), . . . , π(aν), 1, kπ(aν+2), . . . , kπ(a2ν), a′2ν+1, . . . , a
′
2ν+δ],

where k ∈ (R+)∗, π ∈ Λ, (a′2ν+1, . . . , a
′
2ν+δ) = µk(π(a2ν+1), . . . , π(a2ν+δ))W and W ∈ Uδ(C) such that

WW
t
= I(δ).

Proof. Similar to the proof of Theorem 3.3 in [8], we have O(Φ1) = U (1)
n (C) · EΦ1 . Let σ ∈

EΦ1 , ν ≥ 3, and [α] = [a1, . . . , aν, 1, aν+2, . . . , a2ν+δ] ∈ Φ1. Suppose σ([α]) = [α′] and write
[α′] = [a′1, . . . , a

′
ν, 1, a

′
ν+2, . . . , a

′
2ν+δ]. By Lemmas 2.1 and 2.2, as in the proof of Theorem 3.3 in [8], we

have

1) if δ = 0, then σ([α]) = [kπ(a1), π(a2), . . . , π(aν), 1, kπ(aν+2), . . . , kπ(a2ν)], where k ∈ R∗, π ∈ Λ;
2) if δ ≥ 1, then

σ([α]) = [kπ(a1), π(a2), . . . , π(aν), 1, kπ(aν+2), . . . , kπ(a2ν), a′2ν+1, . . . , a
′
2ν+δ],

where k ∈ (R+)∗, π ∈ Λ.

When δ ≥ 1, let λ ∈ C∗ such that λ + λ + 1 = 0. Then [γi] = [λe1 + eν+1 + e2ν+i] ∈ Φ1 and
σ([γi]) = [kπ(λ)e1 + eν+1 + µkωi1e2ν+1 + · · · + µkωiδe2ν+δ], where ωi j satisfies

kπ(λ) + kπ(λ) +
δ∑

j=1

kωi jωi j = 0, 1 ≤ i, j ≤ δ.

By λ + λ + 1 = 0, we deduce Σδj=1ωi jωi j = 1, 1 ≤ i, j ≤ δ. Let W = (ωi j)δ×δ, similar to the proof of

Theorem 3.1, and we have WW
t
= I(δ) and (a′2ν+1, . . . , a

′
2ν+δ) = µk(π(a2ν+1), . . . , π(a2ν+δ))W. □
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5. H-orthogonal transformations of Φ2

In this section we will determine O(Φ2). By proposition 2.2, U (2)
n (C) can be regarded as a subgroup

of O(Φ2). Let EΦ2 be the subset of E2 such that k2 = k3 = · · · = kν = 1. In order to prove O(Φ2) =
U (2)

n (C) · Λ |Φ2 for ν ≥ 3 and δ ∈ N, we need the following theorem.

Theorem 5.1. Let ν ≥ 3, and then O(Φ2) = U (2)
n (C)·EΦ2 . Letσ ∈ EΦ2 , for any [α] = [a1, a2, . . . , a2ν+δ] ∈

Φ2, and we have σ([α]) ={
[π(a1), π(a2), . . . , π(a2ν)], when δ = 0,
[π(a1), π(a2), . . . , π(a2ν), a′2ν+1, . . . , a

′
2ν+δ], when δ ≥ 1,

where π ∈ Λ, (a′2ν+1, . . . , a
′
2ν+δ) = (π(a2ν+1), . . . , π(a2ν+δ))W, and W ∈ Uδ(C) such that WW

t
= I(δ).

Proof. Let τ ∈ O(Φ2). To extend the domain of τ toΦ2∪{[e1+eν+1]}, we define τ([e1+eν+1]) = [e1+eν+1].
Suppose τ([eν+1]) = [e′ν+1] and τ([ei + eν+1]) = [e′i], i = 2, . . . , ν, ν + 2, . . . , 2ν. To be definite, we can
assume (e1 + eν+1)He′i

t
= 1, for i = 2, . . . , 2ν. Then e′i He′j

t
, 0 if i ≡ j(mod ν) and i , j; or it is 0

otherwise. Suppose e′i He′ν+i

t
= ki ∈ C

∗, 2 ≤ i ≤ ν.
Let A(A′, respectively) be the 2ν × (2ν + δ) matrix whose rows are e1 + eν+1, e2 + eν+1, . . . , eν +

eν+1, eν+1, eν+1 + eν+2, . . . , eν+1 + e2ν(e1 + eν+1, e′2, . . . , e
′
2ν, respectively) in order. Let

Q1 =



1 −1
1 −1
. . .

...

1 −1
1
−1 1
...

. . .

−1 1


2ν×2ν

and Q2 = diag(I(ν+1), k−1
2 , . . . , k

−1
ν )Q1. One can check that

Q1(AHA
t
)Q1

t
= Q2(A′HA′

t
)Q2

t
.

Then, by Theorem 2 on page 260 of [10], there is some matrix T ∈ U2ν+δ(C), such that A′T =
Q−1

2 Q1A = MA, where

M = Q−1
2 Q1 = Q−1

1 (diag(I(ν+1), k2, . . . , kν))Q1 =



I(ν)

1
1 − k2 k2
...

. . .

1 − kν kν


2ν×2ν

.

Comparing the first row of both sides of A′T = MA, we have (e1 + eν+1)T = e1 + eν+1, and thus
T ∈ U (2)

2ν+δ(C). Set τ1 = σTτ, and then τ1([ei+ eν+1]) = [ei+ eν+1], τ1([eν+1]) = [eν+1], τ1([eν+1+ eν+i]) =
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[eν+1 + kieν+i], i = 2, . . . , ν. Then τ1 ∈ E2. In the following, we will show that k2 = k3 = · · · = kν = 1,
i.e., E2 = EΦ2 . Thus τ = σ−1

T τ1 ∈ U (2)
2ν+δ(C) · EΦ2 , from which it follows that O(Φ2) = U (2)

2ν+δ(C) · EΦ2 .

By Lemma 2.1, we have that σ([e1]) = [e1] or σ([e1]) = [λ1e1 + eν+1] and σ([λ2e1 + eν+1]) = [e1],
where λ1, λ2 ∈ A\{0} and A ≜ {λ ∈ C|λ + λ = 0}. In the following we will show that the second case is
impossible.

Now we suppose σ([e1]) = [λ1e1 + eν+1] and σ([λ2e1 + eν+1]) = [e1], where λ1, λ2 ∈ A\{0}. When
a1 = λ2 and aν+1 = 1, since [α] ⊥H [λ2e1 + eν+1], we have

σ([α]) = [a′1, a
′
2, . . . , a

′
2ν+δ] ⊥H σ([λ2e1 + eν+1]) = [e1],

which implies a′ν+1 = 0.
By Lemmas 2.1 and Lemma 2.2, we have bijectives πi, i = 2, . . . , ν, ν+ 2, . . . , 2ν, of C such that for

a ∈ C, σ([aei + eν+1]) = [πi(a)ei + eν+1], πi(0) = 0, and by the definition of E′, π2(1) = · · · = πν(1) =
1, πν+2(1) = k2, . . . , π2ν(1) = kν.

By Lemmas 2.1 and 2.2, and our assumption, we have bijective τ fromA\{λ2} toA\{λ1} such that for
λ ∈ A\{λ2}, σ([λe1 + eν+1]) = [τ(λ)e1 + eν+1], where τ(λ) ∈ A\{λ1}, τ(0) = 0. Thus for any λ ∈ A\{λ2},
we have −λ = λ. Since τ(λ) ∈ A, τ(−λ) = τ(λ) = −τ(λ).

We proceed to prove π2 = · · · = πν and π2 is an automorphism of C. As a preparation we prove:

Lemma 5.1. For any λ ∈ A\{0, λ2}, a ∈ C∗, and i = 2, . . . , ν, we have

σ([λe1 + aei + eν+1]) = [τ(λ)e1 − τ(λ)πν+i(λa
−1)
−1

ei + eν+1]

and
σ([λe1 + eν+1 + aeν+i]) = [τ(λ)e1 + eν+1 − τ(λ)πi(λa

−1)
−1

eν+i].

For any a ∈ C∗ and i = 2, . . . , ν, we have σ([λ2e1 + aei + eν+1]) = [e1 − πν+i(λ2a−1)
−1

ei] and σ([λ2e1 +

eν+1 + aeν+i]) = [e1 − πi(λ2a−1)
−1

eν+i].

Proof. By Lemmas 2.1 and 2.2, when λ ∈ A\{0, λ2}, a ∈ C∗, we can assume σ([λe1 + aei + eν+1]) =
[λ′e1 + a′ei + eν+1]. Otherwise, if σ([λe1 + aei + eν+1]) = [λ′e1 + a′ei], then [λ′e1 + a′ei] ⊥H [e1],
hence [λe1 + aei + eν+1] ⊥H [λ2e1 + eν+1], which implies λ = λ2, which is a contradiction. From
[λe1 + aei + eν+1] ⊥H [−λe1 + eν+1], we deduce [λ′e1 + a′ei + eν+1] ⊥H [τ(−λ)e1 + eν+1], which
implies λ′ = −τ(−λ) = τ(λ). Similarly, from [λe1 + aei + eν+1] ⊥H [eν+1 − λa

−1eν+i], we deduce

a′ = −τ(λ)πν+i(λa
−1)
−1
.

By Lemmas 2.1 and 2.2, as above, we can assume σ([λe1 + eν+1 + aeν+i]) = [λ′e1 + eν+1 + a′eν+i].
From [λe1 + eν+1 + aeν+i] ⊥H [−λe1 + eν+1], we deduce [λ′e1 + eν+1 + a′eν+i] ⊥H [τ(−λ)e1 + eν+1],
which implies λ′ = −τ(−λ) = τ(λ). Similarly, from [λe1 + eν+1 + aeν+i] ⊥H [−λa−1ei + eν+1], we deduce

a′ = −τ(λ)πi(λa
−1)
−1
.

Since [λ2e1 + aei + eν+1] ⊥H [λ2e1 + eν+1], we have σ([λ2e1 + aei + eν+1]) ⊥H [e1], hence we can
assume σ([λ2e1 + aei + eν+1]) = [e1 + a′ei]. From [λ2e1 + aei + eν+1] ⊥H [eν+1 − λ2a−1eν+i], we deduce

a′ = −πν+i(λ2a−1)
−1
. Similarly we have

σ([λ2e1 + eν+1 + aeν+i]) = [e1 − πi(λ2a−1)
−1

eν+i].

□
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Lemma 5.2. Let 2 ≤ i, j ≤ ν, and i , j. For any a, b ∈ C, we have

σ([eν+1 + aeν+i + beν+ j]) = [eν+1 + πν+i(a)eν+i + πν+ j(b)eν+ j].

Similarly, σ([aei + eν+1 + beν+ j]) = [πi(a)ei + eν+1 + πν+ j(b)eν+ j] and σ([aei + be j + eν+1]) = [πi(a)ei +

π j(b)e j + eν+1].

Proof. It suffices to prove the lemma for a, b ∈ C∗. By Lemmas 2.1 and 2.2, we can assume σ([eν+1 +

aeν+i + beν+ j]) = [eν+1 + a′eν+i + b′eν+ j]. From [eν+1 + aeν+i + beν+ j] ⊥H [λe1 − λa
−1ei + eν+1], where

λ ∈ A\{0, λ2}, by Lemma 5.1 we deduce [eν+1 + a′eν+i + b′eν+ j] ⊥H [τ(λ)e1 − τ(λ)πν+i(a)
−1

ei + eν+1],
which implies a′ = πν+i(a). Similarly, we have b′ = πν+ j(b).

By Lemmas 2.1 and 2.2, we can assume σ([aei + eν+1 + beν+ j]) = [a′ei + eν+1 + b′eν+ j]. From
[aei + eν+1 + beν+ j] ⊥H [λe1 + eν+1 − λa

−1eν+i], where λ ∈ A\{0, λ2}, by Lemma 5.1 we deduce [a′ei +

eν+1 + b′eν+ j] ⊥H [τ(λ)e1 + eν+1 − τ(λ)πi(a)
−1

eν+i], and hence a′ = πi(a).
Similarly, we have b′ = πν+ j(b), and σ([aei + be j + eν+1]) = [πi(a)ei + π j(b)e j + eν+1]. □

Lemma 5.3. k2 = k3 = · · · = kν ∈ R∗. For any a ∈ C, πi(−a) = −πi(a), πν+i(−a)
= −πν+i(a), 2 ≤ i ≤ ν. Moreover, π2 = π3 = · · · = πν and πν+2 = πν+3 = · · · = π2ν = k2π2.

Proof. Let a, b ∈ C∗. For i = 3, . . . , ν, from [ae2 + eν+1 + beν+i] ⊥H [aei + eν+1 − beν+2], by Lemma 5.2
we deduce

[π2(a)e2 + eν+1 + πν+i(b)eν+i] ⊥H [πi(a)ei + eν+1 + πν+2(−b)eν+2]

which implies
π2(a)πν+2(−b) = −πi(a)πν+i(b).

Let b = −1 and a = 1, and we can get πν+i(−1) = −k2 from the above formula. Hence

πν+3(−1) = · · · = π2ν(−1) = −k2.

Let b = 1 and a = 1, and we have πν+2(−1) = −ki, hence k3 = · · · = kν, and

πν+2(−1) = −k3.

Let b = −a and a = −1, and we can get π2(−1)πν+2(−1) = −πi(−1)πν+i(1), where 3 ≤ i ≤ ν. Hence

π3(−1) = · · · = πν(−1).

Let 2 ≤ i ≤ ν − 1 and a ∈ C. It is easy to verify that

[aei + eν+1 + aeν+i+1] ⊥H [ei+1 + eν+1 − eν+i],

[aei + aei+1 + eν+1] ⊥H [eν+1 − eν+i + eν+i+1],

and
[eν+1 + aeν+i + aeν+i+1] ⊥H [−ei + ei+1 + eν+1].

Applying σ to the above non-adjacency relations and using Lemma 5.2, we obtain

[πi(a)ei + eν+1 + πν+i+1(a)eν+i+1] ⊥H [ei+1 + eν+1 + πν+i(−1)eν+i],
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[πi(a)ei + πi+1(a)ei+1 + eν+1] ⊥H [eν+1 + πν+i(−1)eν+i + ki+1eν+i+1],

and
[eν+1 + πν+i(a)eν+i + πν+i+1(a)eν+i+1] ⊥H [πi(−1)ei + ei+1 + eν+1],

respectively. From the above non-adjacency relations, we deduce πi(a)πν+i(−1) = −πν+i+1(a),
πi(a)πν+i(−1) = −πi+1(a)ki+1, and πν+i(a)πi(−1) = −πν+i+1(a). Therefore

−πi+1(a)ki+1 = πi(a)πν+i(−1) = −πν+i+1(a) = πν+i(a)πi(−1), (5.1)

where 2 ≤ i ≤ ν − 1. Substituting a = 1, i = 2, into (5.1), we have −k3 = πν+2(−1) = −k3 = k2π2(−1).
Hence k3 = k3.

Similarly, we have
[aei+1 + eν+1 + aeν+i] ⊥H [ei + eν+1 − eν+i+1],

[eν+1 + aeν+i + aeν+i+1] ⊥H [ei − ei+1 + eν+1],

and
[aei + aei+1 + eν+1] ⊥H [eν+1 + eν+i − eν+i+1].

Applying σ to the above non-adjacency relations and using Lemma 5.2, we obtain

[πi+1(a)ei+1 + eν+1 + πν+i(a)eν+i] ⊥H [ei + eν+1 + πν+i+1(−1)eν+i+1],

[eν+1 + πν+i(a)eν+i + πν+i+1(a)eν+i+1] ⊥H [ei + πi+1(−1)ei+1 + eν+1],

and
[πi(a)ei + πi+1(a)ei+1 + eν+1] ⊥H [eν+1 + kieν+i + πν+i+1(−1)eν+i+1],

respectively. From the above non-adjacency relations, we deduce πi+1(a)πν+i+1(−1) = −πν+i(a),
−πν+i(a) = πν+i+1(a)πi+1(−1), and −πi(a)ki = πi+1(a)πν+i+1(−1). Therefore

πν+i(a) = −πi+1(a)πν+i+1(−1) = πi(a)ki = −πν+i+1(a)πi+1(−1), (5.2)

where 2 ≤ i ≤ ν − 1. Substituting a = 1, i = 2, into (5.2), we have k2 = −πν+3(−1) = k2 = −k3π3(−1).
Hence k2 = k2.

From (5.1) we have −πi+1(a)ki+1 = πν+i(a)πi(−1), and from (5.2) we have πν+i(a) =

−πi+1(a)πν+i+1(−1). Substituting the last equation into the previous one we obtain

−πi+1(a)ki+1 = −πi+1(a)πν+i+1(−1)πi(−1).

Cancelling −πi+1(a) and then applying the involutive automorphism, we obtain

ki+1 = πν+i+1(−1)πi(−1), (5.3)

where 2 ≤ i ≤ ν − 1.
From (5.1) we have πi(a)πν+i(−1) = πν+i(a)πi(−1), and from (5.2) we have πν+i(a) = πi(a)ki.

Substituting the last equation into the previous one we obtain

πi(a)πν+i(−1) = πi(a)kiπi(−1).
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Cancelling πi(a) and then applying the involutive automorphism, we obtain

πν+i(−1) = kiπi(−1), (5.4)

where 2 ≤ i ≤ ν − 1.
From (5.1) we have also −πν+i+1(a) = πν+i(a)πi(−1), and from (5.2) we have πν+i(a) =

−πν+i+1(a)πi+1(−1). Substituting the last equation into the previous one we obtain

−πν+i+1(a) = −πν+i+1(a)πi+1(−1)πi(−1).

Cancelling −πν+i+1(a) and then applying the involutive automorphism, we obtain

πi+1(−1)πi(−1) = 1, (5.5)

where 2 ≤ i ≤ ν − 1.
Substituting i = 2 into (5.3) and (5.4), we have k3 = πν+3(−1)π2(−1) and πν+2(−1) = k2π2(−1),

respectively. Since πν+3(−1) = −k2, we obtain k3 = −k2π2(−1) and −k3 = k2π2(−1), respectively, hence
π2(−1) = π2(−1).

Since π2(−1)πν+2(−1) = −π3(−1)πν+3(1) and −π2(−1)k3 = −π3(−1)k3, hence π2(−1) = π3(−1).
Substituting i = 2 into (5.5), we have π3(−1)π2(−1) = 1. Moreover, from π2(−1) = π2(−1) and
π2(−1) = π3(−1) we deduce π2(−1)2 = 1 and π2(−1) = π3(−1).

Since π2 is a bijective of C and π2(1) = 1, we have π2(−1) = −1. Since π2(−1) = π3(−1), we have
π2(−1) = π3(−1) = · · · = πν(−1) = −1. Since k3 = −k2π2(−1), k3 = k2. From k2 = k2, we obtain
k2 = k3 ∈ R

∗. From k2 = k3 = · · · = kν ∈ R∗, πν+3(−1) = · · · = π2ν(−1) = −k2, and πν+2(−1) = −k3, we
obtain πν+2(−1) = · · · = π2ν(−1) = −k2.

Substituting ki+1 = k2 ∈ R
∗, πν+i(−1) = −k2, and πi(−1) = −1 into (5.1), we have

πi+1(a)k2 = πi(a)k2 = πν+i+1(a) = πν+i(a), (5.6)

where 2 ≤ i ≤ ν − 1, a ∈ C. By (5.6), we have π2 = π3 = · · · = πν, and πν+2 = πν+3 = · · · = π2ν =

k2π2. From [ae2 + eν+1 − aeν+3] ⊥H [e3 + eν+1 + eν+2], by Lemma 5.2, we deduce [π2(a)e2 + eν+1 +

πν+3(−a)eν+3] ⊥H [e3 + eν+1 + k2eν+2], which implies πν+3(−a) = −k2π2(a). By (5.6), π2(a)k2 = πν+3(a).
Thus πν+3(−a) = −πν+3(a). Writing a for −a in (5.6), we obtain π2(−a) = −k−1

2 πν+3(a) = −π2(a). In
virtue of (5.6) we also have πi(−a) = −πi(a), πν+i(−a) = −πν+i(a), 2 ≤ i ≤ ν. □

Lemma 5.4. For any a, b ∈ C∗ and 2 ≤ i ≤ ν, πi(a) = πi(a), πi(ab) = πi(a)πi(b), and πi(a−1) = πi(a)−1.

Proof. From [ae2 + eν+1 + abeν+3] ⊥H [e3 + eν+1 − beν+2], by Lemma 5.2, we deduce [π2(a)e2 + eν+1 +

πν+3(ab)eν+3] ⊥H [e3 + eν+1 + πν+2(−b)eν+2], which implies

πν+3(ab) = −π2(a)πν+2(−b) = π2(a)πν+2(b).

Substituting a = 1 into the above formula, we obtain πν+3(b) = πν+2(b). By Lemma 5.3 we have
πν+2(b) = πν+3(b). Thus

πν+2(b) = πν+2(b)
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and πν+2(b) = πν+2(b). Hence,
πν+3(ab) = π2(a)πν+2(b).

In Lemma 5.3 we have π2 = π3 = · · · = πν, πν+2 = πν+3 = · · · = π2ν, and πν+2 = k2π2. Therefore for
2 ≤ i ≤ ν,

πi(a) = k−1
2 πν+i(a) = k−1

2 πν+2(a) = k−1
2 πν+2(a) = k−1

2 πν+2(a) = π2(a) = πi(a),

and we have

πi(ab) = k−1
2 πν+i(ab) = k−1

2 πν+3(ab) = k−1
2 π2(a)πν+2(b) = π2(a)π2(b) = πi(a)πi(b).

Replacing b by a−1 in πi(ab) = πi(a)πi(b), we have πi(a−1) = πi(a)−1. □

Lemma 5.5. Let [α] = [a1, a2, . . . , a2ν+δ] ∈ Φ2 and a1 , 0. Suppose σ([α]) = [a′1, a
′
2, . . . , a

′
2ν+δ]. Then

a′j = a′1k−1
2 π2(a1)−1π2(a j) and a′ν+ j = a′1π2(a1)−1π2(aν+ j), where 2 ≤ j ≤ ν.

Proof. The case a j = 0 and aν+ j = 0 follows from Lemma 2.1. If a j , 0, 2 ≤ j ≤ ν, then
[a1, a2, . . . , a2ν+δ] ⊥H [eν+1 − a1a−1

j eν+ j], and by Lemmas 5.3 and 5.4, we deduce

[a′1, a
′
2, . . . , a

′
2ν+δ] ⊥H [eν+1 − k2πν+ j(a1)πν+ j(a j)−1eν+ j],

hence, a′1 = a′jk2πν+ j(a1)πν+ j(a j)−1. By Lemma 5.3 we have

a′j = a′1k−1
2 πν+ j(a1)−1πν+ j(a j) = a′1k−1

2 π j(a1)−1π j(a j) = a′1k−1
2 π2(a1)−1π2(a j).

Similarly, if aν+ j , 0, 2 ≤ j ≤ ν, then [a1, a2, . . . , a2ν+δ] ⊥H [−a1a−1
ν+ je j + eν+1], and by Lemmas 5.3 and

5.4, we deduce
[a′1, a

′
2, . . . , a

′
2ν+δ] ⊥H [−π j(a1)π j(aν+ j)−1e j + eν+1],

hence a′ν+ j = a′1π j(a1)−1π j(aν+ j) = a′1π2(a1)−1π2(aν+ j) by Lemma 5.3. □

Proposition 5.1. π2 is an identity mapping or conjugate mapping of C.

Proof. First, we prove π2 ∈ Aut(C), and by Lemma 5.4, it suffices to show that π2(a+b) = π2(a)+π2(b)
for a, b ∈ C∗.

Clearly [e1 + e2 + (a + b)e3 + eν+1 − eν+2] ∈ Φ2. By Lemma 5.5 we can assume

σ([e1 + e2 + (a + b)e3 + eν+1 − eν+2])

= [a′1e1 + a′1k−1
2 e2 + a′1k−1

2 π2((a + b))e3 + a′ν+1eν+1 − a′1eν+2 + a′2ν+1e2ν+1 + · · · + a′2ν+δe2ν+δ],

where a′1 ∈ C
∗, a′ν+1, a

′
2ν+1, . . . , a

′
2ν+δ ∈ C. From

[e1 + e2 + (a + b)e3 + eν+1 − eν+2] ⊥H [eν+1 + a−1beν+2 − a−1eν+3],

by Lemmas 2.2 and 5.2 we deduce

[a′1e1 + a′1k−1
2 e2 + a′1k−1

2 π2((a + b))e3 + a′ν+1eν+1 − a′1eν+2 + a′2ν+1e2ν+1 · · · + a′2ν+δe2ν+δ]
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⊥H [eν+1 + πν+2(a−1b)eν+2 + πν+3(−a−1)eν+3],

which implies
a′1 + a′1k−1

2 πν+2(a−1b) + a′1k−1
2 π2((a + b))πν+3(−a−1) = 0.

From Lemmas 5.3 and 5.4, we have π2(a + b) = π2(a) + π2(b). Hence π2 ∈ Aut(C).
Since π2 ∈ Aut(C) and π2(a) = π2(a) for any a ∈ C by Lemma 5.4, π2 is an identity mapping or

conjugate mapping of C.
□

Denote π2 ≜ π, k2 ≜ k, and then by Lemma 5.3, π2 = π3 = · · · = πν = π and πν+2 = πν+3 = · · · =

π2ν = kπ.
We deduce the following result immediately.

Lemma 5.6. For any a ∈ C and i = 2, . . . , ν, we have σ([λ2e1 + aei + eν+1]) = [e1 + k−1π(λ2)−1π(a)ei]
and σ([λ2e1 + eν+1 + aeν+i]) = [e1 + π(λ2)−1π(a)eν+i].
σ([e1 + ei + eν+1 − eν+i]) = [ke1 + ei + π(λ2−1

λ2
)eν+1 − keν+i], where i = 2, 3, . . . , ν.

Proof. By Lemmas 2.2 and 5.5, we have σ([e1 + ei + eν+1 − eν+i]) = [k′e1 + k′k−1ei + a′ν+1eν+1 − k′eν+i],
for some a′ν+1 ∈ C, k

′ ∈ C∗ and k′a′ν+1 + k′a′ν+1 − 2k′k′k−1 = 0, hence a′ν+1 , 0. By Lemma 5.1, we have

σ([λ2e1 + eν+1 + (−λ2 − 1)eν+i]) = [e1 + π(−1 − λ−1
2 )eν+i].

From [e1 + ei + eν+1 − eν+i] ⊥H [λ2e1 + eν+1 + (−λ2 − 1)eν+i], we deduce a′ν+1 = k′k−1π(1 − λ−1
2 ). Hence

σ([e1 + ei + eν+1 − eν+i]) = [k′e1 + k′k−1ei + k′k−1π(1 − λ−1
2 )eν+1 − k′eν+i]

= [ke1 + ei + π(
λ2 − 1
λ2

)eν+1 − keν+i].

□

Lemma 5.7. Let 2 ≤ i ≤ ν. For any λ ∈ A\{λ2}, a ∈ C, we have τ(λ) = kπ(λ)π(λ2)
π(λ2−λ)

and

σ([λe1 + eν+1 + aeν+i]) = [
kπ(λ)π(λ2)
π(λ2 − λ)

e1 + eν+1 +
kπ(λ2)π(a)
π(λ2 − λ)

eν+i].

Similarly, σ([λe1 + aei + eν+1]) = [ kπ(λ)π(λ2)
π(λ2−λ)

e1 +
π(λ2)π(a)
π(λ2−λ)

ei + eν+1].

Proof. Suppose λ ∈ A\{0, λ2}, by Lemmas 5.1 and 5.5, and we have

σ([λe1 + eν+1 + aeν+i]) = [τ(λ)e1 + eν+1 + τ(λ)π(λ)−1π(a)eν+i]

and
σ([λe1 + aei + eν+1]) = [τ(λ)e1 + τ(λ)k−1π(λ)−1π(a)ei + eν+1].

In particular, we have

σ([λe1 + eν+1 + (λ − 1)eν+i]) = [τ(λ)e1 + eν+1 + τ(λ)π(λ)−1π(λ − 1)eν+i].
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Since [e1 + ei + eν+1 − eν+i] ⊥H [λe1 + eν+1 + (λ − 1)eν+i], by Lemma 5.6, we deduce

[ke1 + ei + π(
λ2 − 1
λ2

)eν+1 − keν+i] ⊥H [τ(λ)e1 + eν+1 + τ(λ)π(λ)−1π(λ − 1)eν+i],

which implies k + τ(λ)(π(λ))−1π(λ − 1) + π(λ2−1
λ2

)τ(λ) = 0. Hence τ(λ) = kπ(λ)π(λ2)
π(λ2−λ)

and it follows that

σ([λe1 + eν+1 + aeν+i]) = [
kπ(λ)π(λ2)
π(λ2 − λ)

e1 + eν+1 +
kπ(λ2)π(a)
π(λ2 − λ)

eν+i]

and σ([λe1 + aei + eν+1]) = [ kπ(λ)π(λ2)
π(λ2−λ)

e1 +
π(λ2)π(a)
π(λ2−λ)

ei + eν+1]. □

Lemma 5.8. Let [α] = [a1, . . . , aν, 1, aν+2, . . . , a2ν+δ] ∈ Φ2,a1 , 0, and a1 , λ2. Suppose σ([α]) =
[a′1, . . . , a

′
ν, 1, a

′
ν+2, . . . , a

′
2ν+δ]. Then a′1 =

kπ(a1)π(λ2)
π(λ2−a1) , a′j =

π(a j)π(λ2)
π(λ2−a1) , a′ν+ j =

kπ(aν+ j)π(λ2)
π(λ2−a1) for 2 ≤ j ≤ ν.

Proof. We distinguish the following four cases:
(1) Suppose [α] = [a1e1 + eν+1], where a1 ∈ A\{0, λ2}. By Lemma 5.7 we have

a′1 =
kπ(a1)π(λ2)
π(λ2 − a1)

.

(2) There is some a j , 0 where 2 ≤ j ≤ ν. Let b ∈ A\{0, λ2}. From

[a1, . . . , aν, 1, aν+2, . . . , a2ν+δ] ⊥H [be1 + eν+1 − (a1 + b)a−1
j eν+ j],

by Lemma 5.7 we deduce

[a′1, . . . , a
′
ν, 1, a

′
ν+2, . . . , a

′
2ν+δ] ⊥H [

kπ(b)π(λ2)
π(λ2 − b)

e1 + eν+1 −
kπ(a1 + b)π(a j)

−1
π(λ2)

π(λ2 − b)
eν+ j],

which implies
π(λ2 − b)a′1 − a′jkπ(a1 + b)π(a j)−1π(λ2) + kπ(b)π(λ2) = 0.

By Lemma 5.5, we have a′j = a′1k−1π(a1)−1π(a j). Hence

a′1 =
kπ(a1)π(λ2)
π(λ2 − a1)

, a′j =
π(a j)π(λ2)
π(λ2 − a1)

.

(3) There is some aν+ j , 0 where 2 ≤ j ≤ ν. Let b ∈ A\{0, λ2}. From

[a1, . . . , aν, 1, aν+2, . . . , a2ν+δ] ⊥H [be1 − (a1 + b)a−1
ν+ je j + eν+1],

by Lemma 5.7, we have

[a′1, . . . , a
′
ν, 1, a

′
ν+2, . . . , a

′
2ν+δ] ⊥H [

kπ(b)π(λ2)
π(λ2 − b)

e1 −
π(λ2)π(a1 + b)π(aν+ j)

−1

π(λ2 − b)
e j + eν+1],

which implies
π(λ2 − b)a′1 − a′ν+ jπ(a1 + b)π(aν+ j)−1π(λ2) + kπ(b)π(λ2) = 0.
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By Lemma 5.5 we have a′ν+ j = a′1π(a1)−1π(aν+ j). Hence

a′1 =
kπ(a1)π(λ2)
π(λ2 − a1)

, a′ν+ j =
kπ(aν+ j)π(λ2)
π(λ2 − a1)

.

(4) When δ ≥ 1, suppose [α] = [ae1 + eν+1 + a2ν+1e2ν+1 + · · · + a2ν+δe2ν+δ] ∈ Φ2, where a ∈ C∗ and
a2ν+1, . . . , a2ν+δ ∈ C such that

a + a +
δ∑

j=1

a2ν+ ja2ν+ j = 0

and
δ∑

j=1

a2ν+ ja2ν+ j , 0.

Since [α] ∈ Φ2, a , 1, and a , λ2. We assume σ([α]) = [a′e1 + eν+1 + a′2ν+1e2ν+1 + · · · + a′2ν+δe2ν+δ].
By the cases (2) and (3) above, we have

σ([−ae1 + ae2 + eν+1 + eν+2]) = [−
kπ(a)π(λ2)
π(λ2 + a)

e1 +
π(a)π(λ2)
π(λ2 + a)

e2 + eν+1 +
kπ(λ2)
π(λ2 + a)

eν+2].

From
[ae1 + eν+1 + a2ν+1e2ν+1 + · · · + a2ν+δe2ν+δ] ⊥H [−ae1 + ae2 + eν+1 + eν+2],

we have
σ([α]) ⊥H [−

kπ(a)π(λ2)
π(λ2 + a)

e1 +
π(a)π(λ2)
π(λ2 + a)

e2 + eν+1 +
kπ(λ2)
π(λ2 + a)

eν+2],

which implies a′ = kπ(a)π(λ2)
π(λ2−a) . □

Lemma 5.9. Let [α] = [λ2, . . . , aν, 1, aν+2, . . . , a2ν+δ] ∈ Φ2. Suppose

σ([α]) = [1, . . . , a′ν, 0, a
′
ν+2, . . . , a

′
2ν+δ].

Then, a′j = k−1π(λ2)−1π(a j), a′ν+ j = π(λ2)−1π(aν+ j) for 2 ≤ j ≤ ν.

Proof. If we have some a j , 0 where 2 ≤ j ≤ ν, from

[λ2, . . . , aν, 1, aν+2, . . . , a2ν+δ] ⊥H [e1 + eν+1 − (λ2 + 1)a−1
j eν+ j],

by Lemma 5.7 we deduce

[1, . . . , a′ν, 0, a
′
ν+2, . . . , a

′
2ν+δ] ⊥H [

kπ(λ2)
π(λ2 − 1)

e1 + eν+1 −
kπ(λ2 + 1)π(a j)

−1
π(λ2)

π(λ2 − 1)
eν+ j],

which implies a′j = k−1π(λ2)−1π(a j).
If we have some aν+ j , 0 where 2 ≤ j ≤ ν, from

[λ2, . . . , aν, 1, aν+2, . . . , a2ν+δ] ⊥H [e1 − (λ2 + 1)a−1
ν+ je j + eν+1],

by Lemma 5.7, we have

[1, . . . , a′ν, 0, a
′
ν+2, . . . , a

′
2ν+δ] ⊥H [

kπ(λ2)
π(λ2 − 1)

e1 −
π(λ2)π(λ2 + 1)π(aν+ j)

−1

π(λ2 − 1)
e j + eν+1],

which implies a′ν+ j = π(λ2)−1π(aν+ j). □
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Lemma 5.10. Let [α] = [0, a2, . . . , aν, 1, aν+2, . . . , a2ν+δ] ∈ Φ2. Suppose

σ([α]) = [0, a′2, . . . , a
′
ν, 1, a

′
ν+2, . . . , a

′
2ν+δ].

Then, a′j = π(a j), a′ν+ j = kπ(aν+ j) for 2 ≤ j ≤ ν.

Proof. Let b ∈ A\{0, λ2}. If there is an a j , 0, 2 ≤ j ≤ ν, from

[0, a2, . . . , aν, 1, aν+2, . . . , a2ν+δ] ⊥H [be1 + eν+1 − ba−1
j eν+ j],

by Lemma 5.7, we deduce

[0, a′2, . . . , a
′
ν, 1, a

′
ν+2, . . . , a

′
2ν+δ] ⊥H [

kπ(b)π(λ2)
π(λ2 − b)

e1 + eν+1 −
kπ(λ2)π(b)π(a j)

−1

π(λ2 − b)
eν+ j],

which implies a′j = π(a j).
If there is an aν+ j , 0, 2 ≤ j ≤ ν, from

[0, a2, . . . , aν, 1, aν+2, . . . , a2ν+δ] ⊥H [be1 − ba−1
ν+ je j + eν+1],

by Lemma 5.7, we deduce

[0, a′2, . . . , a
′
ν, 1, a

′
ν+2, . . . , a

′
2ν+δ] ⊥H [

kπ(b)π(λ2)
π(λ2 − b)

e1 −
π(λ2)π(b)π(aν+ j)

−1

π(λ2 − b)
e j + eν+1],

which implies a′ν+ j = kπ(aν+ j). □

By Lemmas 5.8–5.10 we have:

Lemma 5.11. Let [α] = [a1, . . . , aν, 1, aν+2, . . . , a2ν+δ] ∈ Φ2. Suppose σ([α]) = [a′1, a
′
2, . . . , . . . , a

′
2ν+δ].

Then a′1 = kπ(a1), a′ν+1 = π(1 − a1λ
−1
2 ), a′j = π(a j), a′ν+ j = kπ(aν+ j) for 2 ≤ j ≤ ν.

Lemma 5.12. Let [α] = [1, a2, . . . , aν, 0, aν+2, . . . , a2ν+δ] ∈ Φ2. Suppose σ([α]) = [1, a′2, . . . , a
′
2ν+δ].

Then a′ν+1 = λ
−1
1 , a′j = (k−1π(λ−1

2 + 1) + λ−1
1 )π(a j), a′ν+ j = (π(λ−1

2 + 1) + kλ−1
1 )π(aν+ j) for 2 ≤ j ≤ ν.

Proof. From [α] ⊥H [e1], we deduce [1, a′2, . . . , a
′
2ν+δ] ⊥H [λ1e1 + eν+1], which implies a′ν+1 = λ

−1
1 .

If we have some a j , 0 where 2 ≤ j ≤ ν, from

[1, a2, . . . , aν, 0, aν+2, . . . , a2ν+δ] ⊥H [e1 + eν+1 − a−1
j eν+ j],

by Lemma 5.7 we deduce

[1, a′2, . . . , a
′
ν, λ
−1
1 , a

′
ν+2, . . . , a

′
2ν+δ] ⊥H [

kπ(λ2)
π(λ2 − 1)

e1 + eν+1 −
kπ(a j)

−1
π(λ2)

π(λ2 − 1)
eν+ j],

which implies a′j = (k−1π(λ−1
2 + 1) + λ−1

1 )π(a j).
If we have some aν+ j , 0 where 2 ≤ j ≤ ν, from

[1, a2, . . . , aν, 0, aν+2, . . . , a2ν+δ] ⊥H [e1 − a−1
ν+ je j + eν+1],

by Lemma 5.7, we have

[1, a′2, . . . , a
′
ν, λ
−1
1 , a

′
ν+2, . . . , a

′
2ν+δ] ⊥H [

kπ(λ2)
π(λ2 − 1)

e1 −
π(λ2)π(aν+ j)

−1

π(λ2 − 1)
e j + eν+1],

which implies a′ν+ j = (π(λ−1
2 + 1) + kλ−1

1 )π(aν+ j). □

AIMS Mathematics Volume 10, Issue 5, 11411–11434.



11432

Lemma 5.13. π(λ−1
2 ) + kλ−1

1 = 0.

Proof. For any a ∈ C\{−1}, let [α] = [ae1+e2−ae3+eν+1+eν+3], and then [α] ∈ Φ2 and [α] ⊥H [e1−eν+2].
By Lemmas 5.11 and 5.12, we have σ([α]) = [kπ(a)e1 + e2 − π(a)e3 + π(1 − aλ−1

2 )eν+1 + keν+3] and
σ([e1 − eν+2]) = [e1 + λ

−1
1 eν+1 − (π(λ−1

2 + 1) + kλ−1
1 )eν+2]. From σ([α]) ⊥H σ([e1 − eν+2]), we have

π(a)(π(λ−1
2 ) + kλ−1

1 ) = π(λ−1
2 ) + kλ−1

1 , which implies π(λ−1
2 ) + kλ−1

1 = 0. □

By Lemmas 5.12 and 5.13, we have:

Lemma 5.14. Let [α] = [1, a2, . . . , aν, 0, aν+2, . . . , a2ν+δ] ∈ Φ2. Suppose σ([α]) = [1, a′2, . . . , a
′
2ν+δ].

Then a′ν+1 = λ
−1
1 , a′j = k−1π(a j), a′ν+ j = π(aν+ j) for 2 ≤ j ≤ ν.

We can now complete the proof of Theorem 5.1. Let [α] ∈ Φ2 and write [α] = [a1, a2, . . . , a2ν+δ],
where aν+1 = 1 or aν+1 = 0 and a1 = 1, and by Lemmas 5.11, 5.13, and 5.14, we have

σ([α]) = [kπ(a1), π(a2), . . . , π(aν), δ1,aν+1 + kλ−1
1 π(a1), kπ(aν+2), . . . , kπ(a2ν), a′2ν+1, . . . , a

′
2ν+δ],

where δ1,aν+1 =

{
1, aν+1 , 0
0, aν+1 = 0

.

Since k ∈ R∗, λ1 ∈ A\{0}, we have λ1k−1

λ1+1 , 1. Let

[α] = [−π−1(
λ1k−1

λ1 + 1
)e1 + π

−1(
λ1k−1

λ1 + 1
)e2 + eν+1 + eν+2],

and then [α] ∈ Φ2 and σ([α]) ⊥H [e1 + eν+1], hence σ([α]) < Φ2, which is a contradiction. So
σ([e1]) = [λ1e1 + eν+1] is impossible.

Hence we have σ([e1]) = [e1]. By the proof of Theorem 3.1 in [8], similarly for any [α] =
[a1, . . . , aν, 1, aν+2, . . . , a2ν+δ] ∈ Φ2, we have

σ[α] = [kπ(a1), π(a2), . . . , π(aν), 1, kπ(aν+2), . . . , kπ(a2ν), a′2ν+1, . . . , a
′
2ν+δ].

Now we show k = 1. If k , 1, then π−1(k−1) , 1. Let

[α] = [−π−1(k−1)e1 + π
−1(k−1)e2 + eν+1 + eν+2],

and then [α] ∈ Φ2 and σ([α]) ⊥H [e1+eν+1], hence σ([α]) < Φ2, which is a contradiction. Hence k = 1.
For any [α] = [1, a2, . . . , aν, 0, aν+2, . . . , a2ν+δ] ∈ Φ2, since σ([e1]) = [e1] we can assume σ([α]) =

[1, a′2, . . . , a
′
ν, 0, a

′
ν+2, . . . , a

′
2ν+δ]. For any ai , 0, 2 ≤ i ≤ ν, from [α] ⊥H [eν+1 − ai

−1eν+i], we deduce
a′i = π(ai). For any aν+i , 0, 2 ≤ i ≤ ν, from [α] ⊥H [−aν+i

−1ei + eν+1], we deduce a′ν+i = π(aν+i). Hence
for any [α] = [1, a2, . . . , aν, 0, aν+2, . . . , a2ν+δ] ∈ Φ2, we have

σ[α] = [1, π(a2), . . . , π(aν), 0, π(aν+2), . . . , π(a2ν), a′2ν+1, . . . , a
′
2ν+δ].

Hence for any [α] = [a1, a2, . . . , a2ν+δ] ∈ Φ2, we have

σ[α] = [π(a1), . . . , π(aν), π(aν+1), π(aν+2), . . . , π(a2ν), a′2ν+1, . . . , a
′
2ν+δ].

Moreover we have E2 = EΦ2 , and Theorem 5.1 is proved for the case where δ = 0. Now we consider
the case where δ ≥ 1. Let λ ∈ C∗\{−1} such that λ + λ + 1 = 0. Then [γi] = [λe1 + eν+1 + e2ν+i] ∈ Φ2
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and σ([γi]) = [π(λ)e1 + eν+1 + ωi1e2ν+1 + · · · + ωiδe2ν+δ], where ωi j satisfies π(λ) + π(λ) + Σδj=1ωi jωi j =

0, 1 ≤ i, j ≤ δ. By λ + λ + 1 = 0 we deduce

δ∑
j=1

ωi jωi j = 1, 1 ≤ i, j ≤ δ.

Let W = (ωi j)δ×δ, and similar to the proof of Theorem 3.1, we have WW
t
= I(δ) and

(a′2ν+1, . . . , a
′
2ν+δ) = (π(a2ν+1), . . . , π(a2ν+δ))W. □
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