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Abstract: This study introduced a two-parameter zero-inflated discrete random variable distribution
designed to model failure profiles in zero-inflated, dispersed datasets, commonly found in biological
engineering and reliability analysis. The proposed distribution combined traditional count models,
such as Poisson, Lindley, or negative binomial, with a probability mass at zero, providing a robust
framework for addressing excess zeros and the underlying dispersion of data. The mathematical
foundation of the distribution was derived with an emphasis on its statistical and reliability properties.
The probability mass function was applicable to datasets with asymmetric dispersion and varying
kurtosis structures. In addition, the hazard rate function was used to analyze failure rate behaviors,
capturing patterns such as increasing, decreasing, and bathtub-shaped failure rates, often encountered
in real-world datasets. Also, characterization of the proposed distribution was explored based on
conditional expectation and the hazard rate function. Parameter estimation techniques were proposed,
alongside computational simulations, to identify the most consistent estimators for data modeling. The
goodness of fit of the proposed model was rigorously evaluated by comparing it with existing count
models, demonstrating its superior ability to model zero-inflated, overdispersed data. Finally, the
practical application of the new distribution was demonstrated using real-life biological engineering
datasets, highlighting its effectiveness and flexibility in modeling complex zero-inflated data across
various failure profiles and reliability contexts.
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1. Introduction

Poisson distribution serves as the ideal model for the analysis of count data, with its mean and
variance being equal. However, researchers very often come across data depicting a surplus number of
zeros, ones, twos, etc. This inflated data may sometimes lead to overdispersion, and a failure to take
note of these excessive counts may result in biased parameter estimates and inappropriate statistical
inference. This phenomenon has led to the development of models that could provide a good fit for
inflated datasets. In practice, one often comes across zero -inflated datasets. Zero inflation means
that the number of zero counts in the given data set exceeds the threshold limit of being accepted
by conventional discrete parametric family. Count data with excess zeros are frequently encountered
in various fields of study, such as ecology, medicine, public health, and insurance, leading to the
widespread application of zero-inflated models.

Neyman [1] and Feller [2] were among the first to introduce the theory of zero inflation to address
the issue of excess zeros. Cohen [3] and Yoneda [4] extended these initial studies to zero-inflated
Poisson (ZIP) models. Later, Lambert [5] studied the ZIP regression model using the expectation
maximization approach with an example of manufacturing defects. Gupta et al. [6] introduced zero-
inflated modified power series distributions (IMPSD) and explored their structural properties and
maximum likelihood estimates. Lin and Tsai [7] proposed a model that accommodates both excessive
zeros and ones, naming it the zero-one inflated Poisson (ZOIP) model. Arora and Chaganty [8]
investigated the distributional properties of zero- and k-inflated Poisson regression models, estimating
the parameters using the expectation-minimization (EM) algorithm. Sun et al. [9] introduced the zero-
one-two-inflated Poisson (ZOTIP) distribution, which encompasses the ZIP and ZOIP distributions
as special cases, and developed key distributional properties. Melkersson and Rooth [10] proposed
a zero-two-inflated Poisson distribution, and Begum et al. [11] extended the model to a zero-two-
three inflated Poisson (ZTTIP) distribution, applying it to model complete female fertility data.
Saboori and Doostparast [12] expanded the horizon of inflated distributions by proposing a zero to
k inflated Poisson regression model capable of accommodating any degree of inflation points and
thus making the entire family of Poisson-based inflated distributions accessible in a single model.
Famoye and Singh [13] proposed a zero-inflated generalized Poisson (ZIGP) regression model to
model domestic violence data with too many zeros. Hall [14] developed a zero-inflated binomial
(Z1B) model, also incorporating random effects to add flexibility to the model. Rahman et al. [15]
introduced a one-inflated binomial distribution (OIBD) and discussed its application. Two- inflated
binomial distribution was used by Singh et al. [16] for modeling the pattern of sex composition of
children in the state of Uttar Pradesh (India). A characterization of the ZIB model is presented
by Nanjundan and Pasha [17]. Heilbron [18] proposed the zero-inflated negative binomial (ZINB)
regression models and the statistical inferences were studied by Garay et al. [19]. Suresh et al. [20]
characterized the ZINB distribution through a linear differential equation satisfied by its probability

AIMS Mathematics Volume 10, Issue 5, 11382-11410.



11384

generating function. Furthermore, Alshkaki [21] proposed a zero-one inflated negative binomial
(ZOINB) distribution. Also, very recently, Serra and Polestico [22] discussed a zero- and k-inflated
negative binomial (ZkINB) distribution which is a mixture of a multinomial logistic and negative
binomial distribution. Johnson et al. [23] and Iwunor [24] proposed the zero-inflated geometric (ZIG)
distribution and derived the parameter estimators. Barriga and Louzada [25] proposed the zero-inflated
Conway—Maxwell-Poisson (ZICOM) distribution. Lemonte et al. [26] introduced a new inflated model
known as the zero-inflated Bell regression model. Rivas and Campos [27] proposed a model termed as
zero inflated Waring distribution. Ospina and Ferrari [28] developed inflated beta distributions. Ferreira
and Mazucheli [29] proposed the zero, one and zero-and-one-inflated new unit-Lindley distributions
as natural extensions of the new unit-Lindley distribution to model continuous responses measured at
the following intervals [0, 1), (0, 1] and [0, 1].

In statistical literature, we find a number of traditional count distributions. However, in the recent
past, an emergence of discrete analogue of continuous distributions has occurred. One such distribution
is the discrete Lindley distribution (Bakouch et al. [30]) which is the discrete analogue of continuous
Lindley distribution (Lindley [31]). The discrete Lindley distribution is based on a single-parameter,
making it a viable alternative to Poisson. The key advantage of this distribution is its over-dispersed
nature, which makes it more flexible as compared to traditional count models for modeling actuarial
data, and also in reliabilty and failure time analysis. Unlike many other discrete distributions, the
discrete Lindley distribution is capable of accurately modeling both times and counts, even though it is
defined by just one parameter. Thus, taking a cue from the positive aspects of this ditribution, here, we
propose to develop a zero inflated model for the count dataset built on the discrete Lindley distribution
reported by Bakouch et al. [30].

1.1. Limitations of existing models compared to the zero-inflated discrete Lindley distribution

Traditional zero-inflated count models have been instrumental in handling excess zeros across
various domains. However, they often fall short when dealing with complex data marked by
overdispersion, asymmetry, structural zeros, and non-standard hazard behaviors. Their rigid
distributional assumptions limit flexibility in capturing skewness, kurtosis, and tail behavior, while
their typically monotonic hazard functions hinder modeling intricate risk patterns. These models are
also sensitive to outliers and structural zeros, leading to biased estimates and poor fits in the presence
of rare but influential observations.

The zero-inflated discrete Lindley (ZIDL) distribution addresses these challenges by offering
enhanced flexibility in modeling various dispersion levels, skewness, and tail behaviors. It supports
a wide range of shapes of the risk rate, including increasing, decreasing and bathtub forms, which
makes it especially useful in survival and reliability studies. With closed-form expressions for key
measures and robustness to data irregularities, ZIDL ensures stable and accurate parameter estimation.
Moreover, ZIDL’s adaptable structure supports integration with covariate modeling, hybrid censoring,
and both frequentist and Bayesian frameworks, broadening its utility across scientific disciplines. In
sum, ZIDL provides a unified, robust framework for modeling complex zero-inflated count data beyond
the reach of traditional models.
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1.2. Key motivations

The proposed novel statistical distribution offers a flexible and robust framework for modeling
complex data. It effectively handles asymmetry, varying kurtosis, and both overdispersion and
equidispersion common challenges in real-world datasets. Its ability to model diverse hazard rate
shapes, such as increasing, decreasing, and bathtub-shaped patterns, makes it ideal for applications
in reliability and survival analysis. The model is also resilient to outliers and provides closed-form
expressions for key statistical properties, supporting both theoretical and computational efficiency. Its
adaptability allows for seamless integration into analytical frameworks, enhancing decision making
across fields such as engineering, healthcare, and finance.

1.3. Organization of the paper

Section 2 introduces the ZIDL and develops its mathematical formulation. This section defines the
distribution and derives its probability mass function (pmf), highlighting its flexibility in modeling
datasets with zero-inflation and various dispersion characteristics. It serves as the foundation for
understanding the key features of the proposed distribution. Section 3 explores the distributional
properties of the ZIDL, including the derivation of generating functions, moments (such as mean,
variance, and higher-order moments), and skewness. Additionally, reliability properties associated
with this distribution are discussed, providing a comprehensive overview of its behavior under different
parameter settings. These properties are essential for understanding the distribution’s performance
in real-world applications, particularly in fields such as survival analysis and reliability engineering.
Section 4 focuses on the characterization of the ZIDL. Detailed mathematical characterizations are
provided, including theorems that define the conditions under which the ZIDL can be effectively
applied. These characterizations play a crucial role in demonstrating the robustness and applicability
of the distribution, particularly in complex data scenarios involving asymmetric distributions and
varying failure rates. Section 5 investigates various estimation methods for the parameters of the
ZIDL. Techniques such as maximum likelihood estimation (MLE), method of moments estimation
(MoE), and proportional estimation (ProE) are presented. Each method is discussed in detail, with
strengths and weaknesses highlighted, offering a comprehensive guide for selecting the most suitable
estimation technique based on the dataset at hand. Section 6 is dedicated to a simulation study, testing
the consistency and efficiency of the proposed estimation methods. By generating simulated data with
known parameters, the performance of the estimators is evaluated in terms of bias, mean squared
error (MSE), and consistency across different sample sizes. The results from this study are crucial for
assessing the reliability of the proposed methods in practical applications. Section 7 applies the ZIDL
to two real-life datasets to demonstrate its practical applicability. These datasets are carefully selected
to illustrate the strengths of the distribution in modeling real-world phenomena, such as overdispersion
and zero-inflation, commonly encountered in fields like economics, healthcare, and engineering.
Finally, Section 8 concludes the paper by summarizing the key findings and discussing potential
future directions for research. The conclusion reflects on the strengths of the proposed distribution,
its applications, and the implications of the results for various fields of study. The significance of the
ZIDL as a versatile tool for statistical analysis and decision-making is emphasized.
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2. Zero-inflated discrete Lindley distribution: Mathematical Genesis

A random variable X is said to follow the discrete Lindley distribution [30] with parameter 6 if it
takes only nonnegative values, and its PMF is given by:

X

p
1+6

PriX =x] = {6(1 =2p)+ (1 = p)(1 + 6x)}, 2.1

where p = exp(—6), for6 >0and x =0, 1,2, ..... The cumulative distribution function and the survival
function are given respectively as

1+60+6
F(x;6,p) = 1—T0pr; x=0,1,2,3,... 2.2)
1+6+6x
S(x:0,p) = —— X pv v =20,1,2,3... 2.3
(x;6, p) T+9 7 7 (2.3)

Let U be a Bernoulli random variable with probability of success (1 — 7), X be a random variable
from the discrete Lindley distribution, and let Y be defined as follows

0, U=0,
Y =
X, U=1.

Then, the random variable Y is said to follow ZIDL distribution and its PMF is given as

(1-m) -0 _9
+ o1 -2 +(1 - , -0,
PF(Y =Yy, 9,71-) = {7( 1+6 { ( e ) ( e )} y

(1 -m) {01 =2 + (1 —e (A +6y), y=1,

(2.4)

where r is the inflation parameter (0 < < 1), O is the inflation point and 6 > 0. For the rest of the
article, the variable Y will be denoted by the notation Y ~ ZIDL(0, nr). The corresponding cumulative
distribution function (CDF) is given by

00+ D — 1){1 + (2 + y)O
Foom=1+4" & 11{9“ 0 01,23, 2.5)

Particular cases:

(1) When m — 0, ZIDL(0, m) reduces to discrete Lindley distribution with parameter 6.
(2) When m — 1, ZIDL(60, ) approaches a constant value 7.

Figure 1 represents the PMFs under a specific parameter value. It should be noted that the PMF of
the ZIDL model can be used to analyze heavy-tailed right skewed data.
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Figure 1. Plot of PMF of ZIDL(6, ) for different values of 6 and 7.

Remark 2.1. The survival function (SF) of Y ~ ZIDL(0, n) can be formulated as

e_g(y”){l + 2+ y)o)(1 - 7r)_
1+6 ’

S(y;0,m) = P(Y > y) = y=0,1,2,3,... (2.6)

“K_»

Remark 2.2. Let yy, y,, V3, ..., V. be a random sample from the ZIDL(60, ) distribution. Define “z” as
the number of Y!s taking the value 0. Then, Eq (2.4) can be expressed as

Pr(Y = y,) = O30}, (2.7)
where |
O, =1+ (1 ;g){e(l —2¢ %) +(1—e™), and
D, = (1 — e_6y91—2-9+1——91+9}
2 = ( 7T)1+9{( e’)+(I—e) )}

The hazard rate function (HRF) for ZIDL(0, rr) can be reported as

Pr(Y =y) (1 + )PP}~

M0 = By s T T e+ G r )

y=0,1,2,3,... (2.8)
Figure 2 represents some of the possible shapes of the HRF. It can be seen that the failure rate of
ZIDL(0, mr) displays increasing, decreasing and bathtub shapes, which makes the distribution flexible

enough to use in reliability analysis.
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Figure 2. Plots of HRF of ZIDL(6, x).

3. Statistics and reliability properties

In the study of discrete random zero-inflated models, various statistical and reliability properties
such as moments, index of dispersion, skewness, kurtosis, mean residual lifetime, mean in active time,
and insurance premiums are essential for a deeper understanding of the system’s behavior and risk
profile. These properties are particularly useful for analyzing data with excess zeros and dispersion,
which are commonly encountered in fields like engineering, medicine, and insurance. The moments
(mean, variance) provide crucial insights into the central tendency and variability of the data, while
the index of dispersion reveals whether the data exhibits overdispersion. Skewness and kurtosis offer
information on the symmetry and tail behavior of the distribution, which helps in identifying outliers
or extreme events. The mean residual lifetime and mean in active time are key reliability measures
that indicate the expected future behavior and performance of a system or process. Additionally,
from an insurance perspective, these properties are directly tied to risk assessment, influencing the
calculation of insurance premiums to reflect the potential for extreme losses or claims. Understanding
these properties in zero-inflated models enables more accurate modeling of failure profiles, leading
to better decision-making in diverse applications. This section serves as an introduction to discuss
these important statistical and reliability properties, laying the groundwork for their application in
complex, real-world datasets. Maple software has been used to derive closed-form expressions for
these properties.
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3.1. Probability generating function

The probability generating function (PGF) plays a fundamental role in the study of discrete
distributions. While the PMF provides direct probabilities and the mean gives a measure of central
tendency, the PGF offers a compact representation from which all moments of the distribution can
be derived systematically. It also facilitates the study of important theoretical properties, such as
dispersion, skewness, and recurrence relations. Moreover, the PGF is particularly useful in the context
of branching processes, queueing theory, and reliability modeling, where it allows for simplified
derivations and transformations. In addition to its theoretical value, including the PGF strengthens
the mathematical characterization of the ZIDL model and supports potential extensions or applications
in stochastic modeling frameworks.

Theorem 3.1. If Y ~ ZIDL(60, ), then the probability generating function is given as

G,(s) = [e*(1 +6) + (1 + (s — 1)s(1 +6)

(e? = 5)2(1+0)
— (1 + s+ 20+ (s — D(1 +20))]. (3.1)
Proof.

G,(s) = E(s")

= Z sPr(Y =y)
y=0

= p(0)+ ) 8P
y=1

= e S)12(1 70 [*(1 +60) + (1 + (s — 1)s(1 +60) — (1 + s + 20 + n(s — 1)(1 + 26))].

O
3.2. Moment generating function
Theorem 3.2. If Y ~ ZIDL(6, i), then the moment generating function is obtained as
My =1+ e f(m - 1)(1 +20) N -1 +30+e'(1+6)—e 1 +20)—e(1 + 29)). (32)
1+6 (e' —e)2(1 +0)
Proof.
My(t) = E(e”)
= Z e"Pr(Y =y)
y=0
14 e f(mr— 1)1 +260) N e(m—1)(1+30+e(1+0)—e (1 +20)— (1 +20))
B 1+6 (e — 9)2(1 + 6) '
O
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Remark 3.1. Replacing t by it in Eq (3.2), we get the characteristic function given as

= 1)1 +26) ¢"Gr— D(1+36+¢"(1+6) — (1 +26) — (1 +26))
1+6 (e — e®)2(1 + 6) '

Dy(r) = 1+ (3.3)

3.3. Moments

The rth order raw moment of Y ~ ZIDL(0, nr) can be obtained using the general expression as given
below

py= Dy PrY =y)
y=0
BCEEORS

1+6
y=1

Ve 01 =27 + (1 — e ) (1 + y). (3.4)

The explicit expressions of the first four moments are listed below

C (=’ +20) -0 1)

Hi= A+0)—17
(L= m)(e(1+20) + 3”0 — 6 1)

H2 = (1 +0)(e’ — 1) ’

(=m0 +20) + e¥(3 + 130) + (40— 3) — 0 — 1)
Hs = (1 +6)( — 1)t ’

. (1 =m(e”(1 +20) + (10 + 350) + 55¢*°0 + ¢°(50 — 10) — 6 — 1)
Ha = (1+6)(e — 1) '

(3.5)

(3.6)

(3.7)

(3.8)

Using the above expressions, the first four central moments can be derived as

=0, (3.9)
= _(1):(71 Ga(r= D01 +0- (1 +20))?
+ (e = D1 +6)(*(1 +20) +3"0-6- 1)), (3.10)
(1-m)
(e — 1)o(1 + )3
+ 3% = D= D+ 0)(°(1 + 20))(e® (1 +20) + 3¢°0—0— 1)
+ (= 1D’ +0% (0 +20) + 3 +130) + (40 -3) -0 - 1)), (3.11)
= _%)g(’li 77 G0 - D1 +6 - (1 +26))°*
+6(e’ — D(m = 1?1+ 0)(1 + 60— (1 + 20))*(e*(1 + 26) + 3¢%00 — 1)
+ (7 = 1)’ +0)°(e*(1 +260) + 5¢*(2 + 70) + 55¢°0 + 5¢°(0 —2) — 60— 1)
+4% — 1)°(r = DA + 0)*(e’(1 +20) — 6 — 1)(e*(1 + 20)

+e?(3+130) + (40 -3) -0 -1)). (3.12)

20 — 1?1 +20) =6 - 1)

M3 =
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According to the rth moment, the skewness and kurtosis coefficient can be, respectively, formulated
as follows:

a; +ax +as

= (1 =m){(r = DA +0—ag)?+ (e — DA +60) (=1 -0+ 3¢ + a3’ (3.13)
where
a; =2 — D*(-1 -0+ ¢€°(1 +20))°,
a, =3 = D= D1 +0)(=1 -0+ (1 +20) (=1 -0 + 30 + €2(1 + 20)),
az = (" — 1?1 + 0)*(=1 — 0+ €¥(1 + 20) + €°(40 — 3) + €*°(3 + 130)),
as = e'(1 + 26),
and
_ by + b, + b3 + by
P = (1 =) ((r = DA +0=bs)2+ (e = 1)1 + ) (=1 — 0 + 3¢ + ebs))?’ (3.14)
where

by =3 -1 +6-¢°(1 +20)),

by = 6(e? — 1)(m — D*(1 + 0)(1 + 6 — (1 + 20))*(—1 — 0 + 3¢°0 + €°°(1 + 20)),

by = (e’ = 1’ (1 + 0)°(=1 + 5¢%°(0 — 2) — 0 + 55¢*°0 + ¢**(1 + 20) + 5¢¥(2 + 70)),

by =4(=1 + ") (mr = 1)(1 + 0)*(=1 — 0 + bs)(—1 — 0 + e*bs + (40 — 3)e* (3 + 136)),
bs = €°(1 + 20).

Figures 3 and 4 show the plots of skewness and kurtosis coefficient based on the value of different
parameters. It should be noted that ZIDL(6, ) can be applied to analyze positively skewed data in
leptokurtic or platykurtic form.

— 9=1.2 =08 — 0=1 6=1.6 — 71=0.02 7t=0.04 — 757=0.06 7t=0.08
B B
a0l 3.0+
30l [
[ 251
20}
5
10 |- L L L L L 8
: 0.2 0.4 0.6 0.8 1.0
02 04 06 08 7o " 151

Figure 3. Skewness plot of ZIDL(6, ) for different values of 6 and .
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Figure 4. Kurtosis of ZIDL(6, nr) for different values of 8 and 7.

3.4. Index of dispersion

The index of dispersion gives an idea if a distribution is ideal for modeling an over-dispersed,
under-dispersed or equi-dispersed dataset. Let /, denote index of dispersion of the distribution of the
random variable Y. An over-dispersed dataset has I, > 1, an under-dispersed dataset has /, < 1, and an
equi-dispersed dataset has I, = 1.

The index of dispersion is given by

I =1 2+ 26 Or—1) 3+71+26(1+0)

. 1
YT T T 0-200 T (@12 T (40 -1 (3.15)

From Figure 5, we can easily see that the ZIDL(6, rr) distribution can accommodate both the equi-
dispersed and over-dispersed dataset.

6=05 — 6=1 — 6=1.5 — 6=2 =02 — =04 — 1=0.6 — 71=0.8
DI DI
5F 3.0F
250
4t F
20F
3t r
0z T o4 06— 10 " 1.5}
o0 r

Il Il T 9

1 2 3 4 5
s 05F
of o.of—

Figure 5. Index of dispersion of ZIDL(8, ) for different values of 6 and 7.

3.5. Mean active time and its residual coefficient of variation

The mean active time (MAT), which estimates the anticipated amount of time that a system or
component stays functional before breakdown, is an essential metric in reliability and survival study.
This measure is essential to evaluate the robustness and longevity of systems and products in a variety
of industries, including manufacturing, healthcare, and engineering. Remaining life of a system after
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it has lasted a particular period of time can be more reliably determined by calculating the residual
coeflicient of variation (RCOV), which is the ratio of the standard deviation to the mean of the residual
life. Considering F(.) as the CDF of an element with a finite first moment, where Y denotes the random
variable associated with F(.), in the discrete context, the MAT, say T'(k; 6, ), is defined as follows:

YT(k;0,7)=EY —-klY >k); k=1,2,3,....
For the ZIDL(6, ) random variable, the MAT can be listed as

Ok +20+ 1)’ — Ok — 60— 1
ck=1,2,3, ... 1
Ok +0+ 1) —1)2 23, (3.16)

The HRF and MAT function are related by

T(k; 0, m) =

[(6k + 20 + 1)e? — Ok — 6 — 1)p(k; 6, )

MO = Gl 1T+ 0+ D@ — 17+ @k + 11420+ e — 0k + 11— 01"

where
Ok + 1]+ 6+ 1)’ —1)?

Pk 6. = T 0t (e — 1

The HREF, the SF and MAT are related by

1—1 [(Ok + 26 + 1)e? — 0k — 6 — 1]p(k; 0, )
Ok+1]+0+ D) — 12+ @k +1]+20+ De? —Olk+1]-60-1"

O<i<k

S(k:6,7) =

where T(0;6,7) = E(Y). The function for the variance residual life (VRL), denoted as T,,(k), is
defined by

T,k 0,7) = E(Y*|Y > k) — [E(Y]Y > k)]
3 _(7r —De *[Ae* + Be’ + K0+ k — 60— 1]

- — . _ . 2
1+ 0@ — 1)1 = 2" + o) 2k - 1)Y(k;0,m) — [Y(k;0,m)], (3.17)

where
A = k*0+ 20k + k and B = —2k*0 — 20k — 2k + 30 + 1.

The random variable Y exhibits increasing (decreasing) VRL if
Ttk +1;0,m) < (2)Y(k;0,m)[1 +T(k+1;0,71)].
The RCOV, denoted as Z(k; 6, ), can be explicitly derived as:
B(k; 0,7) = \Yyre(k; 0,7/ C(k; 0,7); k=1,2,3, ....
The HRF, MAT, and VRL of the ZIDL(6, r) model are interconnected in the following manner
Tk +1;0,m) — C,(k; 8, 1) = hik; 0, )[ Y, (k + 1;0,7) — Y(k; 0, m)(1 + T(k + 1; 0, 7))].
Moreover, the HRF, MAT, VRL, and RCOV of the ZIDL(6, n) distribution are interconnected as

Torilk + 156,7) = Von(k; 6,7) = h(k; 6, D[V (k + 156, 1)) % {[E(k +1;6,m)]
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Tk 0.m)(1 + Tk + 1;9,n))} (3.18)

[Tk + 1;0,7)]?

When combined, HRF, MAT, VRL, and RCOV help determine the stability and dependability of
systems, optimize maintenance plans, improve product designs, and facilitate better resource allocation
and risk management decision-making. By taking these steps, engineers and analysts may create strong
plans that reduce downtime and increase the operational lifespan of vital systems.

3.6. Insurance premiums

Two essential techniques for figuring out insurance premiums are the expected value principle
(ExVP) and the exponential premium principle (EPP). The ExVP is a simple approach that does
not take loss fluctuation into consideration. It computes the premium as the total of the expected
loss plus a loading factor to cover profit and administrative expenses. On the other hand, the EPP
uses an exponential function of the loss distribution to account for the insurer’s risk aversion. This
approach uses a parameter to account for risk aversion when calculating the premium, which is based
on the expected value of the exponential loss. The EPP offers a premium that more accurately
represents the insurer’s preferred level of risk and the possibility of catastrophic losses, albeit being
more complicated. The ExVP can be expressed as

ExVP(w:.) = (1 + @) Z Pr(Z = z:.),
z=0

where ExXVP(w; .) is the insurance premium, @ is the risk loading factor, and the term (1+w@) represents
the risk loading. The ExVP of the ZIDL(8, nr) distribution, say, ExVP(6, r), is characterized by the
equation

ExVP(w; 6, n)

1+ w)ZzPr(Z = 7:0,7)
z=0

(1+ w)(l_— (1 +20) -0 — 1)

= 3.19
(1+0)(e? —1)? (3-19)
The EPP is calculated by solving for EPP in the equation
B(s — EPP(w;.)) = E(s — Z),
where s denotes the wealth of an individual and B(z) = —e @ represents the exponential utility
function. For the ZIDL(6, ) distribution, the EPP, say, EPP(0, ), can be listed as
1
EPP(w; 0, 1) =———(1 + 0+ (1 + 20)(m — 1)e”™*
(@:0.1) =— (14 0+ (14 20)(x = De
T —1)(1+30+e(1+6)—e® (1 +20)—e(1 +20
L €= 1)( (1+0) e (1 +20) A +20) o
(em _ 69)2

The ExVP and EPP are frequently used in a variety of insurance sectors, including health insurance,
liability insurance, and property insurance (e.g., coverage for high-risk activities, natural catastrophes,
and pre-existing medical problems). In these industries, to guarantee sufficient risk coverage, premiums
are frequently determined using intricate actuarial models that include the epp.

AIMS Mathematics Volume 10, Issue 5, 11382-11410.



11395

4. Characterization under conditional expectation and HRF

Characterizations of distributions are necessary and sufficient conditions for any statistical
phenomenon. Characterizations of distributions are important to many researchers in the applied fields.
An investigator will be vitally interested to know if their model fits the requirements of a particular
distribution. To this end, one will depend on the characterizations of this distribution which provide
conditions under which the underlying distribution is indeed that particular distribution. This section
is devoted to certain characterizations of ZIDL(6, ) in two directions: (i) based on an appropriate
function of the random variable; and (ii) in terms of the hazard function.

4.1. Characterizations based on conditional expectation

In this subsection, we present our first characterization of ZIDL in terms of the conditional
expectation of a certain function of the random variable. The choice of the function depends on the
form of the pmf.

Theorem 4.1. Let Y : Q — N* (N U {0}) be a random variable. The PMF of Y is Eq (2.4) if and only if

E{[(G(l ~2¢) +(1-e)1 +9Y))_1] Y > k}— ! @)

T (l=-eDU+Q2+k6)

Proof. If Y has PMF in Eq (2.4), then for k € N, the left-hand side of Eq (4.1), using the infinite
geometric sum formula, will be

o (1-n 1+6 kD) 1 —n\[e kD
1 - F (k)™ —|e® =
(1 =F®) y;l(ue)e (1—n)(1+(2+k)9)(1+9)(1—e—0)
1

Q1=-eDH1+Q2+k6)

Conversely, if Eq (4.1) holds, then

(o)

> Ale(-2¢)+ (1= v am) | r o)

y=k+1
1
:(1_F(k))((1—e—e)(1+(2+k)9))
1

:(1—F(k+1)+f(k+1))((1_6_9)(1+(2+k)9)). 4.2)
From Eq (4.2), we also have
N -0 0 -1 1 1
);2{[(9(1 2¢7) + (1 =) (1 + 6)) ]f(y)}_(l F(k+1))((1_e_6)(1+(3+k)9)). 4.3)

Now, subtracting Eq (4.3) from Eq (4.2), yields
{(9(1 ~2e)+(1-e) (1 +00k + 1)))_]}f(k +1)
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1
1 ((]—e*g)(l+(2+k)9)) - 1
=(1-Fk+1)) +) +f(k+1)((1—6‘9)(1+(2+k)0))'
(1-e70)(1+(3+k)0)

From the above equality, we have

fle+1) ((l—e*")(i+(2+k)6))) B ((1—e*9)(i+(3+k)0))

1-Fk+1) i _ I ’
0(1-2¢70)+(1-=0)(1+6(k+1)) (1-e=9)(1+@2+k)0)

and after some computations

Fle+1)  O(1-2e)+(1-e?)(1+0(Kk+1)
I-Fk+1) e (1+(B+k)0) ’

which is the HRF corresponding to the PMF in Eq (2.4). O

Remark 4.1. Theorem 3 is a characterization of pmf based on the conditional expectation of a function
of the random variable Y, which is chosen based on the nature of the given pmf. In general, it would
be as follows:

EW(Y)|Y > k] = ¢(k), keN".

One of the suitably chosen /(YY) , to make ¢(k) as simple as possible, in this case is

-1

w(¥) = (0(1-2¢7)+ (1 - ) (1 +6Y))

4.2. Characterizations of distributions based on HRF

This subsection deals with the characterization of the ZIDL(6, n) distribution in terms of the HRF.

Theorem 4.2. Let Y : Q — N* be a random variable. The PMF of Y is Eq (2.4) if and only if its HRF
satisfies the difference equation

_ [ 0(1-2e7)+(1-e7")(1+0(k+1)) 0(1-2¢7")+(1-e7%)(1+6(k))
he (k+ 1) = hp (k) = ( e (1+(3+k)0) ) B ( e (1+(2+k)0) (44

0(1-2¢7)+(1-¢7)(1+6)
e 0(1+30) :

Proof. If Y has PMF Eq (2.4), then clearly Eq (4.4) holds. Now, if Eq (4.4) holds, then for every y € N,
we have

where k € N, with the initial condition hr (1) =

1 o(1-2¢7)+(1-¢ ) (1+6(k+1) )

y—1 y

e~ 0(1+(3+k)6)
Z thr (k+ 1) = hr ()} = 0(1-2¢0)+(1-e=0)(1+0(0))
k=1 k=1 e 9(1+(2+k)6) )

_ (9(1—2e—9)+(1—e—9)(1+0(y))) o(1=2e)4(1-¢)

e~ (1+(2+y)6) e~ 9(1426) ’
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or

0(1-2¢7)+(1-e9)1+6(y) |  6(1-2¢7%)+(1-e7?)(1+6)
he ) = hr (1) = e I(1+(2+y)0) - e-0(1+30) :

or, in view of the initial condition

0(1-2¢7)+(1-e)(1+0y)
e?(1+2+y)6) ’

hF (y) = y € N7
which is the hazard function corresponding to the PMF in Eq (2.4). O

5. Estimation methods

5.1. Maximum likelihood method

Let Y ~ ZIDL(6,n) and let us take a random sample of size n, say, yi,y2,Vs,....y,, from this

distribution.
15 i = 05
A,’ = y
0, otherwise.

Then, the PMF of ZIDL(6, ) can be written as

— —0Oyi
PrY = y,) =[x + (1 - g) 101 =267 + (1 — N[0 = m) 16:9{6(1 —2¢7)
+ (1= +y))' . (5.1)

The likelihood function, say L = L(6, 7; y1, Y2, ...y»), can be formulated as

(1 _ﬂ.) ~ ~ o n e~ B
L=[r+ Y (01 =279 + (1 — )] 1;[[(1 —7r)1+9{9(1—2e %
+ (1= ™)1 + Oy}, (5.2)

where ny = I, A;, represents the number of zeros in the sample and (1 — A;) = a;. Therefore, the
log-likelihood function of the parameters 6 and 7 can be derived as

(1-m

log L =ng1 +
og L =nylog[n 79

(00 -2 + (1= e -0 a;
i=1
+ (n —np) log(1 — ) — (n — ny) log(1 + 6)

+ Z log{f(1 —2¢™%) + (1 — e %)(1 + Oy,)}. (5.3)
i=1
Differentiating Eq (5.3) with respect to parameters 7 and 6, we get the score functions as-

) Ef1+0) _, (n—ny
© logL = nofr— 1+ D41 _
or 0gL=molm =1+ === =

(5.4)
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J C (n—ny) <
2 togL = moci = Y ai - 55
50 og noCq ;ay (1+0)+;a62 (5.5)
where
(1 -m(3 +26)0
c| = ,
! (1 +6){e?(1 +6) + (mr— 1)(1 + 20)
e +20—-1+ (" +0-1y;
Cy =

e(1+6)—20—1+ (e — Dy

To derive the asymptotic confidence intervals for both parameters, the information matrix is needed.
The second-order partial derivatives of the log-likelihood are provided as follows:

5? f1+0) ., )
ﬁlogll:—l’lo{ﬂ'—l'Fm} —(n—=ny)(1 —n)",
5—210 L = nyc3 + (n — ng)(1 +0)_2+iac
50 gL = nocs3 0 L iC45
52 —npe’0(3 + 26)

——logL = ,

00on {e?(1 +0) + (m— 1)(1 +20)}?

where

(= DL =mB +40) + (1 + 0)(=3 + 62 + 6)(1 + 20))}

- (1 +60)%{e’(1 +6) + (r — 1)(1 + 20))2 ’

CQ+y )2 40— 15 +20) + yi(—6 + 02 + 30) + (67 - 2)y,) — (1 +y,)*)
- {?(1 + 6) + (m — 1)(1 + 26))?

C3

Cq

The Fisher’s information matrix for (rr, ) can be expressed as

2 2
I [_E({? log L) —E(ég?logL)].
—E(55logL) —E(5;logl)
This can be approximated by
6’ 6
P —@logL —@logL
0_Jog L o log L

T2

~ 86om l (7,0)=(Fpr.Omr)

Under some general regularity conditions, for large n, Vn(fy; — 7, Oy — ) is bivariate normal with
mean vector (0, 0) and the dispersion matrix

i—l — 1 [ 122 _112:| — [ Jl] _J12:|
Iy — Loy |- I —Jo In |

Thus, the asymptotic (1 — @) X 100% confidence interval for  and 6 are given, respectively, as

e = Zap NI11> e + Zap NI and By — Zajy Ni1s Our + Zajp 1)
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5.2. Proportion estimation method

Given a random sample of size n, denoted as Y, Y5, ..., Y, drawn from the ZIDL(6, ) distribution,
the estimation of the unknown parameters 6 and 7 can be obtained using the ProE method by solving
the following system of equations:

(r=1)(1+20) , O

1+
a+6 <

=0

and
(r—1)(1 + 36) 0 o+V

1
T a+e ¢ 7

0,

where O and V are the number of zeros and ones in the sample.

5.3. Moments estimation method

Suppose we have a random sample of size n, represented as Y, Y5, ..., ¥,,, drawn from the ZIDL(4, )
distribution. To estimate the unknown parameters 8 and 7 by using the MoE method, we can determine
their values by solving the following system of equations:

(1-m)((1+20)-6-1) = _
(1 + 0)(e? — 1)2 -Y =0

and

(1=m) | =11 +0 =1 +26))% + (¢ = D1+ O)(e(1 +20) + 3”0 — 6 - 1)
(e — D*(1 + 6)2

~-§%=0,

where Y and S? are the mean and variance of the sample.
6. Simulation study

In this section, the Markov chain Monte Carlo simulation technique is used to evaluate the
performance of MLE, ProE, and MoE. The ZIDL(6, ) distribution is analyzed in the simulation using
the R function optim() with the argument approach = “L-BFGS-B”. A total of N = 10000 samples are
created, divided into six distinct sizes (n = 20, 50, 100, 200, 300, 500). These samples are taken from
the ZIDL(6, ) distribution at various ZIDL(6, m) parameter values, as shown in Tables 1 and 2. The
simulation study demonstrates that the bias and MSE consistently decrease as the sample size increases,
confirming the consistency of the MLE, MoE, and ProE methods. This trend is clearly illustrated
through both graphical representations (Figures 6 and 7) and numerical results (Tables 1 and 2). The
behavior of the estimators under different sample sizes, particularly at the fixed parameter values,
highlights their robustness and efficiency. Among the three, the MLE method shows particularly
strong performance, establishing its reliability for accurately estimating the parameters of the proposed
distribution. These findings collectively underscore the practical value and statistical soundness of the
proposed estimation techniques.
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Table 1. Simulation results at & = 1.5 and 7 = 0.9.

MLE ProE MoE
Parameter n |Bias| MSE |Bias| MSE |Bias| MSE
0 20 0.204661 0.177394 0.237451 0.184962 0.243645 0.197493
50 0.162393 0.133270 0.180042 0.153746 0.196384 0.164837
100 0.120484 0.083891 0.143745 0.124847 0.139681 0.106452
200 0.029470 0.007386 0.094861 0.034810 0.074382 0.010348
300 0.000246 0.000083 0.001472 0.000648 0.000809 0.000249
500 0.000009 0.000000 0.000084  0.000008 0.000028 0.000007
m 20 0.374581 0.294763 0.422048 0.327534 0.404681 0.304681
50 0.319042 0.210374 0.349471 0.243638 0.358261 0.253846
100 0.204765 0.143783 0.239387 0.166396 0.220847 0.143854
200 0.130845 0.084652 0.164937 0.113876 0.153947 0.103771
300 0.007814 0.000543 0.063864 0.007458 0.032841 0.002374
500 0.000047 0.000002 0.000892  0.000032 0.000192  0.000009
Table 2. Simulation results at § = 2.5 and 7 = 0.9.
MLE ProE MoE
Parameter n |Bias| MSE |Bias| MSE |Bias| MSE
0 20 0.410473 0.284671 0.442738 0.343745 0.439471 0.320473
50 0.337365 0.204763 0.374946 0.255381 0.369461 0.242836
100 0.204731 0.139478 0.254375 0.164932 0.230768 0.149874
200 0.120487 0.079371 0.143843 0.110474 0.153874 0.120484
300 0.024978 0.000439 0.104735 0.008473 0.117451 0.019475
500 0.000847 0.000027 0.009461 0.000649 0.006093  0.000248
n 20  0.294749 0.243851 0.344384 (0.288497 0.312539 0.255484
50 0.255494 0.188439 0.274379 0.213535 0.264836 0.199473
100 0.219479 0.133854 0.243635 0.163851 0.220947 0.144376
200 0.143846 0.054731 0.144386 0.084734 0.146383 0.086357
300 0.084975 0.000745 0.094782 0.003647 0.103984 0.007453
500 0.000534 0.000008 0.000884 0.000017 0.000947 0.000057
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Figure 6. The simulation visualization plots corresponding to # = 1.5 and 7 = 0.9.
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Figure 7. The simulation visualization plots corresponding to 6 = 2.5 and r = 0.9.
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7. Biological engineering data analysis

In this section, the credibility of the ZIDL(6,r) distribution is put forward by taking into
consideration two real life datasets. We compare our proposed distribution with some of the well-
known and some of the novel discrete distributions used to model dispersed count data such as
the ZIP distribution, ZIB distribution, the Poisson-geometric distribution (POIG) distribution (Nandi
et al. [32]), the discrete Lindley (DL) distribution (Bakouch et al. [30]), the discrete modified Lindley
distribution (DML) (Tomy et al. [33]), the Poisson modified Lindley distribution (POIML) (Chesneau
et al. [34]), and the discrete gamma Lindley distribution (DGL) distribution (EI-Morshedy et al. [35]).
The expected frequencies for each of these models corresponding to the observed frequencies (OF) of
the given dataset are calculated. The comparison of the fitted distributions involves the evaluation of
certain criteria, specifically, the negative log-likelihood (—L) and the Chi-square (x?) test along with its
associated P-value.

7.1. Dataset I

The first dataset provides information on infection produced by the parasite Trypanosoma
murmanensis in cod. The response variable is the number of parasites found in the cods (Intensity).
The dataset was extracted from the package countreg of the R software [36]. Plotting nonparametric
information graphs allows one to discuss the behavior of the dataset (see, Figure 8). The data was
observed to be skewed to the right with outlier observations. In addition, the shape of the hazard rate
is decreasing.
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Figure 8. Nonparametric visualization plots for dataset 1.
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The ZIDL(0, ) model’s goodness-of-fit test and a few other well-known competitive models are
included in Table 3. Based on significance level 0.05, it was found that the ZIDL(6, ) performs the
best for this set of data out of all examined models. Figure 9 supports our empirical results. To prove
the unique property for each estimator, the contour plots and log-likelihood profiles are plotted in

Figure 10.
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Figure 9. The estimated PMF for the dataset I.
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Figure 10. Contour plots (left panel) and log-likelihood profiles (right panel) for dataset I.
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Table 3. The goodness-of-fit test for dataset I.

y OF Z1pP Z1B POIG DL DML POIML DGL ZIDL
0 654 654.01 65398 448.04 39474 406.48 42939 44798  653.96
1 108  44.15 28.19 255776 285.64 313.72 278.10 25575  92.94
2 71 76.14 68.76 14599 171.68 16649 158.38 146.01  79.76
3 52 87.53 99.36 83.34 94.41 81.12 85.29 83.36 62.72
4 44 75.46 94.22 47.57 49.27 38.94 44.75 47.59 46.85
5 31 52.05 61.27 27.15 24.84 18.84 23.21 27.17 33.82
6 22 29.92 27.66 15.50 12.22 9.23 11.99 15.51 23.82
7 16 14.74 8.56 8.85 5.90 4.57 6.19 8.86 16.48
8 21 6.36 1.74 5.05 2.81 2.28 3.21 5.06 11.25
9 10 244 0.20 2.88 1.32 1.15 1.67 2.89 7.59

10 15 1.21 0.01 3.83 1.15 1.18 1.82 3.82 14.78
Total 1044 1044 1044 1044 1044 1044 1044 1044 1044

—-L 1512.69 175297 1661.84 1762.18 1779.26 1717.24 1661.88 1512.68
A A A A A A A A
A=0.61 =062 ;00001 6=085  p=051  6=089  @=036  7=0.54
MLEs A=345  pe3ds  6=043 o057 6=049
Y’ 260.6 54297 339.74 699.77 68093 539.79 339.78 15.03
df 6 5 7 7 6 7 7 8
p.value [0.0001  {0.0001  0.0001  ;0.0001  ;0.0001  j0.0001  j0.0001  0.06

Table 4 shows different estimates based on the first dataset. It has been observed that the MLE
approach is the best among all the methods tested.

Table 4. Different estimators for dataset 1.

Technique 7 o X’ d.f P.value
MLE 0.54 0.49 15.03 8 0.06
ProE 0.52 0.56 34.16 8 < 0.0001
MoE 0.53 0.50 16.11 8 0.04

7.2. Dataset 11

The second dataset is related to mammalian cytogenetic dosimetry lesions in rabbit lymphoblast
induced by streptonigrin (NSC-45383), exposure —60u g/kg (Shanker et al. [37]). It is possible to
examine the dataset’s behavior by plotting nonparametric information graphs (see Figure 11). There
were outlier observations and a rightward skew in the data. Furthermore, the hazard rate is exhibiting
a decreasing form.

Table 5 contains the goodness-of-fit test results for the ZIDL(0, ) model along with a few other
popular competing models. Out of all the models that were looked at, it was discovered that the
ZIDL(6, nr) performs the best for this collection of data based on significance level 0.05. Our empirical

results are corroborated by Figure 12. To demonstrate the unique property of each estimator, contour
plots and log likelihood profiles are plotted in Figure 13.
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Figure 11. Nonparametric visualization plots for dataset II.
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Figure 12. The estimated PMF for the dataset II.
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Figure 13. Contour plots (left panel) and log-likelihood profiles (right panel) for dataset II.

Table 5. The goodness-of-fit test for dataset II.
OF ZIP ZIB POIG DL

DML POIML DGL  ZIDL
413 41299 413.02 407.67 396.71 39743 404.07 407.68

412.97
124 11598 121.16 131.14 14479 147.61 136.09 131.14 122.05
42.18 4448

15 15.14 15.70 13.57 11.91 11.11 12.87 13.57 1479
3.51 242 4.36 3.09 3.15 3.87 4.36 4.66

9]

y

0

1

2 42 52.14 57.48 42.18 43.48 40.42 42.44
3

4

5

0 0.63 0.20 1.40 0.77 0.91 1.16 1.40 1.42
6 2 0.61 0.00 0.68 0.25 0.37 0.50 0.67 0.63
Total 601 601 601 601 601 601 601 601 601
—-L 559.58 566.68 556.52 559.65 559.86 557.25 556.52 556.35
A A A
MLEs A=047 7=054 ;00001 =155 p=029 0=228 @=0.53 7=0.23
A A A
A=089 p=0.17  6=0.67 1=032  6=136
x? 2.75 6.15 0.66 5.93 7.13 2.02 0.66 0.186
d.f 1 1 2 2 2 3 2 2
p.value 0.10 0.01 0.72 0.05 0.03 0.57 0.72 091

Various estimates derived from the dataset II are displayed in Table 6. Among all the evaluated
strategies, the MLE strategy has been found to be the most effective.

Table 6. Various estimators for dataset I1.

Strategy T o x? d.f P.value
MLE 0.23 1.36 0.19 2 0.91
ProE 0.21 1.39 0.26 2 0.88
MoE 0.26 1.33 0.42 2 0.81
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8. Conclusions and future work

In this article, a new zero-inflated probability model was proposed for a discrete random variable,
and its distributional properties, including statistics, reliability and insurance properties, were extracted
and studied in detail. The PMF of the proposed model proved to be effective in modeling and analyzing
asymmetric data with varying forms of kurtosis, including leptokurtic and platykurtic. Additionally,
the proposed model was capable of handling different types of dispersion, such as underdispersion
and overdispersion. The reliability properties of the proposed model were explored, highlighting its
relevance in the insurance field. A characterization of the proposed model was derived, based on
the conditional distribution and the HRF, underscoring its significance in various applications. It was
reported that the HRF of the new model could effectively model increasing, decreasing, and bathtub
profiles. Various estimation techniques were used: MLE, MoE, and ProE to estimate the parameters of
the proposed model. A simulation study was conducted to assess the bias and variance of the estimators
under various schemes, revealing that all estimation methods performed well, with the maximum
likelihood technique yielding superior results. The practical applicability of the proposed model was
demonstrated using two real-life datasets, where the reported distribution provided a better fit to over-
dispersed data compared to other count probability models. Future research could expand this work
by exploring other inflated points, such as inflated one, inflated zero, and inflated twice. Furthermore,
the development of a regression model for the proposed model and the study of its properties and
applications remain potential areas for future investigation, although these were not addressed in this
study due to structural complexity.
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