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Abstract: We considered the general mixed linear model N subject to two competing stochastic
linear restrictions, M0 and M , where the restrictions M are the correct information whereas
restrictions M0 may be incorrect. Statistical inference conclusions of using the above two competing
restrictions are not necessarily the same, so it is prominent to discuss the relationships between
incorrect restrictions M0 and the corresponding correct restrictions M in the context of model N .
In this article, we first present some properties on the best linear unbiased predictors (BLUPs) under
model N with restrictions M . We then provide necessary and sufficient conditions under which the
BLUPs under N with the incorrect restrictions M0 continue to be BLUPs associated with correct
restrictions.
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1. Introduction

The general linear mixed model takes the form

N : y = Xβ + Zγ + ε, E
(
γ
ε

)
= 0, (1.1)

where y is a response vector, X ∈ Rn×p and Z ∈ Rn×q are both known matrices, β ∈ Rp×1 is an unknown
vector of fixed effects, γ ∈ Rq×1 is a vector of random effects, ε ∈ Rn×1 is a disturbance vector, and E(·)
represents the expectation.

In practice, in addition to the sample information (1.1), stochastic linear restrictions binding the
vector of fixed effects in (1.1) are often encountered, which may come from other studies or some
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relevant hypothesis testing, among others. In this situation, we must concentrate on handling these
restrictions producing higher accuracy for predictors and estimators (see [1, 2], among others).

Let stochastic linear restrictions be defined as

M0 : r = A0β + e0, E(e0) = 0, (1.2)

where r ∈ Rm×1 and A0 ∈ R
m×p are both given matrices with any rank, and e0 is a random error vector

with

Λ = D
(
γ̃
e0

)
=

(
V1 Λ2

Λ′2 Λ3

)
, γ̃ =

(
γ
ε

)
, (1.3)

where Λ is postulated as a known matrix of any rank, and D(·) refers to the dispersion matrix. Assume
that V3 ∈ R

m×m and A ∈ Rm×p are the proper forms of Λ3 and A0, respectively, on account of various
reasons. For instance, with the rapid development of the times and changes in the environment, the
former result cannot completely reconcile with the current situation. In addition, the restrictions (1.2)
are remarkably dependent on the knowledge of Λ3, the dispersion matrix of random error vector e0.

Unfortunately, in practice, the matrix Λ3 is seldom known, so an incorrect assumption on Λ3 is often
made. The matrix A0 may also be misspecified, such as in the data collection and aggregation, in
analysis of submodels, or in estimates of experts. In other words, corresponding to the restrictions (1.2),
the correct stochastic restrictions in the form

M : r = Aβ + e with E(e) = 0

and

D
(
γ̃
e

)
=

(
V1 V2

V′2 V3

)
= V, γ̃ =

(
γ
ε

)
, (1.4)

where A ∈ Rm×p and V are two given matrix of arbitrary rank.
Below, we give some notation utilized in this article. We write Q ∈ Rm×n if Q is a m× n real matrix.

(·)†, R(·), r(·), and (·)′ represent the Moore-Penrose generalized inverse, the column space, the rank,
and the transpose of a marix, respectively, and In the identity matrix and In ∈ R

n×n. In addition, we also
use Q⊥ and FQ to denote the orthogonal projectors produced by Q ∈ Rm×n, Im − QQ† and Im − Q†Q,
respectively.

Incorporating linear mixed model (1.1) with correct stochastic restrictions (1.4) and its incorrect
form (1.2), respectively, yields

Nr : ŷ = X̂β + Z0γ + Înε + Îme = X̂β + Ẑε̂, (1.5)

Nr0 : ŷ = X̂0β + Z0γ + Înε + Îme0 = X̂0β + Ẑε̂0, (1.6)

where

ŷ =

(
y
r

)
, X̂ =

(
X
A

)
, X̂0 =

(
X
A0

)
, Z0 =

(
Z
0

)
, În =

(
In

0

)
,

Îm =

(
0
Im

)
, Ẑ = (Z0, In+m) , ε̂ =

(
γ′, ε′, e′

)′ , ε̂0 =
(
γ′, ε′, e′0

)′ .
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As to model (1.5), core tasks of statistical inference are to estimate parameter functions of fixed
effects β and to predict functions of random vectors γ, ε, and e, separately or simultaneously. However,
because (1.2) is a misspecified form of (1.4), it is conceivable that the consequences of statistical
inference from these two models Nr0 and Nr may not be the same. Trivially, the findings from model
Nr0 are mostly incorrect, but we would be interested in acquiring valuable information from Nr0 .

Naturally, this motivates us to compare the two models, Nr0 and Nr, as well as their statistical inference
conclusions, particularly to establish the relations of estimators/predictors of unknown parameters
under Nr0 and Nr. To acquire more general conclusions, we take into account the function of fixed
effects β and random vector γ, ε, and e as follows

ξ = Kβ + B1γ + B2ε + B3e = Kβ + (B1,B2,B3)


γ
ε
e

 = Kβ + Bε̂, (1.7)

where K ∈ Rk×p, B1 ∈ R
k×q, B2 ∈ R

k×n, and B3 ∈ R
k×m are four known matrices. Some special

situations are given below:
(i) Let K = Ip and B = 0. Then, ξ turns into the unknown vector of fixed effects β.
(ii) Let K = 0 and B =

(
Iq, 0, 0

)
. Then, ξ turns into the vector of random effects γ.

(iii) Let K = X and B = (Z, In, 0). Then, ξ turns into the response vector y.
Corresponding to (1.7), we consider the parametric function involving the parameters β, γ, ε, and

e0, which is presented by

ξ0 = K0β + B1γ + B2ε + B3e0 = Kβ + (B1,B2,B3)


γ
ε
e0

 = K0β + Bε̂0, (1.8)

where K0 ∈ R
k×p is a given matrix. In what follows, we first give the definition of estimability and

predictability of ξ under Nr .

Definition 1.1. Assume that there is a matrix C satisfying E(Cŷ − ξ) = 0. Then, we say that ξ in (1.7)
is predictable under Nr. In this situation, when B = 0 in (1.7), ξ = Kβ is also known as estimable
under Nr.

From the above definition, the followings are direct:
(a) ξ in (1.7) is predictable under Nr if and only if R(K′) ⊆ R(X̂′).
(b) ε, γ and e in (1.7) are separately and jointly predictable under Nr.

(c) For any matrix B, Bε̂ in (1.7) must be predictable under Nr.

Definition 1.2. Let ξ in (1.7) be predictable under Nr. A linear statistic Cŷ fulfilling the condition
E(Cŷ − ξ) = 0 is called as the best linear unbiased predictor (BLUP) for ξ under Nr, denoted by
BLUP(ξ|Nr), if

D(Cŷ − ξ) ≤ D(L̂y − ξ) ∀ L : LX̂ = K,

where ≤ denotes the Löwner partial ordering, i.e., the difference

D(Lŷ − ξ) − D(Cŷ − ξ)
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is nonnegative definite. When B = 0 in (1.7), Cŷ becomes the best linear unbiased estimator (BLUE)
for Kβ expressed by BLUE(Kβ|Nr). Additionally,

Cŷ = BLUP(ξ|Nr)⇐⇒ C
(
X̂, ẐVẐ′X̂⊥

)
=

(
K,BVẐ′X̂⊥

)
, (1.9)

see [3].

As demonstrated by [4], when confronted with models Nr and Nr0 , people often consider the
following three questions:

(a) When is a particular expression for the BLUP of predictable ξ0 under Nr0 also a BLUP of
predictable ξ under Nr?

(b) When do the BLUPs of predictable ξ0 under Nr0 and BLUPs of predictable ξ under Nr have a
common predictor?

(c) When does every BLUP of predictable ξ0 under Nr0 remain the BLUP of predictable ξ under
Nr?

There are many researchers devoted to the investigations of estimators and predictors under correct
models and the corresponding incorrect models. For instance, the comparison problems of estimators
under two general linear models M : y = Xβ + ε with E(ε) = 0 and D(ε) = Ω and M0 : y = Xβ + ε0

with E(ε0) = 0 and D(ε0) = Ω0 were made by [4–8], etc. The equivalence of predictors/estimators
between the model M and its incorrect model M0 : y = X0β0 + ε0 with E(ε0) = 0 and D(ε0) = Ω0

was dealt with by [9, 10]. Furthermore, the researchers in [11] were concerned with the equivalence
of predictors/estimators under true and untrue multivariate general linear models. Alternatively, the
researchers in [12, 13] considered the relationships between estimators under the model M with an
exact restriction r = Aβ and its mis-specified restriction r0 = A0β, which were generalized by [14]. In
this paper, we mainly solve the three questions proposed above.

Finally, we provide some lemmas which can be of service to formation of theoretical system in this
paper.

Lemma 1.1. [15] Let P1 ∈ R
m×n, P2 ∈ R

m×k and P3 ∈ R
l×n. Then:

r (P1,P2) = r (P1) + r(P⊥1 P2) = r (P2) + r(P⊥2 P1), (1.10)

r
(
P1

P3

)
= r (P1) + r(P3FP1) = r (P3) + r(P1FP3). (1.11)

If R(Q′1) ⊆ R(P′1), R(O) ⊆ R(P1), R(O′) ⊆ R(P′2) and R(Q2) ⊆ R(P2), then

r
(
Q1P†1OP†2Q2

)
= r


0 P2 Q2

P1 O 0
Q1 0 0

 − r (P1) − r (P2) . (1.12)

Lemma 1.2. [16, 17] Let P1 ∈ R
n×m and P2 ∈ R

k×m. Then

min
X∈Rn×k

r(P1 − XP2) = r
(
P1

P2

)
− r (P2) , (1.13)

max
X∈Rn×k

r(P1 − XP2) = min
{

r
(
P1

P2

)
, n

}
. (1.14)
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Lemma 1.3. Assume that Q1 and Q2 are both collections of matrices of the same dimension. Then

Q1 ∩ Q2 , ∅ ⇔ min
Q1∈Q1,Q2∈Q2

r (Q1 −Q2) = 0, (1.15)

Q1 ⊆ Q2 ⇔ max
Q1∈Q1

min
Q2∈Q2

r (Q1 −Q2) = 0. (1.16)

Lemma 1.4. [8] Let P1 ∈ R
m×k, Q1 ∈ R

p×k, P2 ∈ R
m×l and Q2 ∈ R

p×l be known. Then every solution
of matrix equation XP1 = Q1 continues to be a solution of XP2 = Q2 if and only if

r
(
P1 P2

Q1 Q2

)
= r (P1) . (1.17)

Lemma 1.5. [18] Let 0 ≤ V ∈ Rn×n and X ∈ Rn×p. Then

R

(
V X
X′ 0

)
= R

(
V X 0
0 0 X′

)
. (1.18)

In particular,

r
(

V X
X′ 0

)
= r(V,X) + r(X). (1.19)

2. Some properties on BLUPs

Assume that there exists a matrix L satisfying K = LX̂, that is to say, ξ in (1.7) is predictable under
Nr. Noticing that R(X̂) ∩R(ẐVẐ′X̂⊥) = {0}, we have

r
X̂ ẐVẐ′X̂⊥

K BVẐ′X̂⊥

 = r
X̂ ẐVẐ′X̂⊥

0 BVẐ′X̂⊥ − LẐVẐ′X̂⊥

 = r
(
X̂, ẐVẐ′X̂⊥

)
,

implying that the Eq (1.9) is always consistent. Solving Eq (1.9) yields

C =
(
K,BVẐ′X̂⊥

) (
X̂, ẐVẐ′X̂⊥

)†
+ U

(
X̂, ẐVẐ′X̂⊥

)⊥
, (2.1)

and thus

BLUP(ξ|Nr) =

((
K,BVẐ′X̂⊥

) (
X̂, ẐVẐ′X̂⊥

)†
+ U

(
X̂, ẐVẐ′X̂⊥

)⊥)
ŷ, (2.2)

where U is an arbitrary matrix. From the exact algebraic expression (2.2), we immediately have

BLUE(Kβ|Nr) =

[
(K, 0)

(
X̂, ẐVẐ′X̂⊥

)†
+ U

(
X̂, ẐVẐ′X̂⊥

)⊥]
ŷ, (2.3)

BLUP(Bε̂|Nr) =

[(
0,BVẐ′X̂⊥

) (
X̂, ẐVẐ′X̂⊥

)†
+ U

(
X̂, ẐVẐ′X̂⊥

)⊥]
ŷ, (2.4)

BLUP(B1γ|Nr) =

[(
0, (B1, 0, 0) VẐ′X̂⊥

) (
X̂, ẐVẐ′X̂⊥

)†
+ U

(
X̂, ẐVẐ′X̂⊥

)⊥]
ŷ, (2.5)

BLUP(B2ε|Nr) =

[(
0, (0,B2, 0) VẐ′X̂⊥

) (
X̂, ẐVẐ′X̂⊥

)†
+ U

(
X̂, ẐVẐ′X̂⊥

)⊥]
ŷ, (2.6)

BLUP(B3e|Nr) =

[(
0, (0, 0,B3) VẐ′X̂⊥

) (
X̂, ẐVẐ′X̂⊥

)†
+ U

(
X̂, ẐVẐ′X̂⊥

)⊥]
ŷ, (2.7)

where U is an arbitrary matrix. Moreover,
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(a) R(X̂, ẐVẐ′X̂⊥)=R(X̂, ẐVẐ′) and r(X̂, ẐVẐ′X̂⊥)=r(X̂, ẐVẐ′) = r(X̂) + r(ẐVẐ′X̂⊥).
(b) D (BLUP(ξ|Nr))=

(
K,BVẐ′X̂⊥

)
Ω†ẐVẐ′

((
K,BVẐ′X̂⊥

)
Ω†

)′
with Ω=

(
X̂, ẐVẐ′X̂⊥

)
.

(c) BLUP(Hξ|Nr) = HBLUP(ξ|Nr) holds for any H ∈ Rp×k.
(d) BLUP(ξ|Nr) is unique with probability 1 if and only if ŷ ∈ R(X̂, ẐVẐ′) with probability 1. In the

case, the model Nr is said to be consistent (see [19]).
(e) C in (2.1) is unique if and only if r(X̂, ẐVẐ′) = n + m. Under the circumstance, one says that

BLUP(ξ|Nr) is definitely unique.
(f) The BLUP of ξ under Nr can be decomposed as the following sum

BLUP(ξ|Nr) = BLUE(Kβ|Nr) + BLUP(Bε̂|Nr)
= BLUE(Kβ|Nr) + BLUP(B1γ|Nr) + BLUP(B2ε|Nr) + BLUP(B3e|Nr)
= BLUE(Kβ|Nr) + B1BLUP(γ|Nr) + B2BLUP(ε|Nr) + B3BLUP(e|Nr).

Lemma 2.1. Assume that ξ in (1.7) is predictable under Nr. Then

D (BLUP(ξ|Nr)) = D (BLUE(Kβ|Nr)) + D
(
BLUP(Bε̂|Nr)

)
. (2.8)

Proof. From (2.3) and (2.4), we can write

Cov
{
BLUE(Kβ|Nr),BLUP(Bε̂|Nr)

}
= (K, 0)

(
X̂, ẐVẐ′X̂⊥

)†
ẐVẐ′

[(
X̂, ẐVẐ′X̂⊥

)′]† (
0,BVẐ′X̂⊥

)′
. (2.9)

Let us apply (1.12) to (2.9) and use r(X̂, ẐVẐ′X̂⊥)=r(X̂, ẐVẐ′). This gives

r
{
(K, 0)

(
X̂, ẐVẐ′X̂⊥

)†
ẐVẐ′

[(
X̂, ẐVẐ′X̂⊥

)′]† (
0,BVẐ′X̂⊥

)′}
= r


0

(
X̂, ẐVẐ′X̂⊥

)′ (
0,BVẐ′X̂⊥

)′(
X̂, ẐVẐ′X̂⊥

)
ẐVẐ′ 0

(K, 0) 0 0

 − 2r
(
X̂, ẐVẐ′X̂⊥

)

= r


0 0 X̂′ 0
0 0 X̂⊥ẐVẐ′ X̂⊥ẐVB′

X̂ ẐVẐ′X̂⊥ ẐVẐ′ 0
K 0 0 0

 − 2r
(
X̂, ẐVẐ′

)

= r


0 0 X̂′ 0
0 −X̂⊥ẐVẐ′X̂⊥ 0 X̂⊥ẐVB′

X̂ ẐVẐ′X̂⊥ ẐVẐ′ 0
K 0 0 0

 − 2r
(
X̂, ẐVẐ′

)

= r


0 0 X̂′ 0
0 −X̂⊥ẐVẐ′X̂⊥ 0 X̂⊥ẐVB′

X̂ 0 ẐVẐ′ 0
K 0 0 0

 − 2r
(
X̂, ẐVẐ′

)
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= r


0 0 X̂′

0 −X̂⊥ẐVẐ′X̂⊥ 0
X̂ 0 ẐVẐ′
K 0 0

 − 2r
(
X̂, ẐVẐ′

)

= r


0 X̂′

X̂ ẐVẐ′
K 0

 − 2r
(
X̂, ẐVẐ′

)
+ r

(
X̂⊥ẐVẐ′X̂⊥

)
. (2.10)

By virtue of (1.11), we conclude that (2.10) is

r
(
X̂ ẐVẐ′X̂⊥
K 0

)
− 2r

(
X̂, ẐVẐ′

)
+ r

(
X̂⊥ẐVẐ′

)
+ r

(
X̂
)
. (2.11)

Note that
R(X̂) ∩R(ẐVẐ′X̂⊥) = {0} .

Thereby, (2.11) is equal to zero. Now, the desired identity (2.8) follows. �

Lemma 2.2. Assume that ξ in (1.7) is predictable under Nr. Then,
(a) The dispersion matrix equality

D
(
BLUP(Bε̂|Nr)

)
= D (BLUP(B1γ|Nr)) + D (BLUP(B2ε + B3e|Nr))

holds if and only if

r


ẐVẐ′ X̂ ẐV (0,B2,B3)′

X̂′ 0 0
(B1, 0, 0) VẐ′ 0 0

 = r
(
X̂, ẐVẐ′

)
+ r

(
X̂
)
.

(b) The dispersion matrix equality

D (BLUP(B2ε + B3e|Nr)) = D (BLUP(B2ε|Nr)) + D (BLUP(B3e|Nr))

holds if and only if

r


ẐVẐ′ X̂ ẐV (0, 0,B3)′

X̂′ 0 0
(0,B2, 0) VẐ′ 0 0

 = r
(
X̂, ẐVẐ′

)
+ r

(
X̂
)
.

(c) The dispersion matrix equality

D (BLUP(ξ|Nr)) =D (BLUE(Kβ|Nr)) + D (BLUP(B1γ|Nr))

+ D (BLUP(B2ε|Nr)) + D (BLUP(B3e|Nr)) ,

holds if and only if

r


ẐVẐ′ X̂ ẐV (0, 0,B3)′

X̂′ 0 0
(0,B2, 0) VẐ′ 0 0

 = r
(
X̂, ẐVẐ′

)
+ r

(
X̂
)
,

AIMS Mathematics Volume 10, Issue 5, 11349–11368.



11356

and

r


ẐVẐ′ X̂ ẐV (0,B2,B3)′

X̂′ 0 0
(B1, 0, 0) VẐ′ 0 0

 = r
(
X̂, ẐVẐ′

)
+ r

(
X̂
)
.

Proof. Notice that

Cov {BLUP(B1γ|Nr),BLUP(B2ε + B3e|Nr)}

=
(
0, (B1, 0, 0) VẐ′X̂⊥

) (
X̂, ẐVẐ′X̂⊥

)†
ẐVẐ′

[(
X̂, ẐVẐ′X̂⊥

)′]† (
0, (0,B2,B3) VẐ′X̂⊥

)′
. (2.12)

Applying (1.12) to (2.12) and utilizing r(X̂, ẐVẐ′X̂⊥)=r(X̂, ẐVẐ′) provide

r (Cov {BLUP(B1γ|Nr),BLUP(B2ε + B3e|Nr)})

= r


0

(
X̂, ẐVẐ′X̂⊥

)′ (
0, (0,B2,B3) VẐ′X̂⊥

)′(
X̂, ẐVẐ′X̂⊥

)
ẐVẐ′ 0(

0, (B1, 0, 0) VẐ′X̂⊥
)

0 0

 − 2r
(
X̂, ẐVẐ′X̂⊥

)

= r


0 0 X̂′ 0
0 0 X̂⊥ẐVẐ′ X̂⊥ẐV (0,B2,B3)′

X̂ ẐVẐ′X̂⊥ ẐVẐ′ 0
0 (B1, 0, 0) VẐ′X̂⊥ 0 0

 − 2r
(
X̂, ẐVẐ′

)

= r


0 0 X̂′ 0
0 −X̂⊥ẐVẐ′X̂⊥ 0 X̂⊥ẐV (0,B2,B3)′

X̂ ẐVẐ′X̂⊥ ẐVẐ′ 0
0 (B1, 0, 0) VẐ′X̂⊥ 0 0

 − 2r
(
X̂, ẐVẐ′

)

= r


0 0 X̂′ 0
0 −X̂⊥ẐVẐ′X̂⊥ 0 X̂⊥ẐV (0,B2,B3)′

X̂ 0 ẐVẐ′ 0
0 (B1, 0, 0) VẐ′X̂⊥ 0 0

 − 2r
(
X̂, ẐVẐ′

)
,

which, by (1.19), (1.10) and (1.11), can be reduced to

r
 X̂⊥ẐVẐ′X̂⊥ X̂⊥ẐV (0,B2,B3)′

(B1, 0, 0) VẐ′X̂⊥ 0

 − r
(
X̂, ẐVẐ′

)
+ r

(
X̂
)

=r


ẐVẐ′ X̂ ẐV (0,B2,B3)′

X̂′ 0 0
(B1, 0, 0) VẐ′ 0 0

 − r
(
X̂, ẐVẐ′

)
− r

(
X̂
)
,

which indicates (a). Similar to proof of (a), we can derive (b). (a) together with (b) and (2.8) results
in (c). �

Corresponding to different choices of K and B in (1.7), we have the following results from the
previous lemmas:
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Corollary 2.1. Consider the model Nr. The following three assertions hold.
(a) The following decomposition holds on BLUPs

ŷ = BLUE(X̂β|Nr) + BLUP(Ẑε̂|Nr)

= BLUE(X̂β|Nr) + BLUP(Z0γ|Nr) + BLUP(̂Inε|Nr) + BLUP(̂Ime|Nr)

= BLUE(X̂β|Nr) + Z0BLUP(γ|Nr) + ÎnBLUP(ε|Nr) + ÎmBLUP(e|Nr).

(b) ŷ, BLUE(X̂β|Nr) and BLUP(Ẑε̂|Nr) satisfy

D
(̂
y
)

= D
(
BLUE(X̂β|Nr)

)
+ D

(
BLUP(Ẑε̂|Nr)

)
.

(c) The statement

D
(̂
y
)

=D
(
BLUE(X̂β|Nr)

)
+ D (BLUP(Z0γ|Nr))

+ D
(
BLUP(̂Inε|Nr)

)
+ D

(
BLUP(̂Ime|Nr)|Nr)

)
holds if and only if

r


ẐVẐ′ X̂ ẐV

(
0, 0, Îm

)′
X̂′ 0 0(

0, În, 0
)

VẐ′ 0 0

 = r
(
X̂, ẐVẐ′

)
+ r

(
X̂
)

and

r


ẐVẐ′ X̂ ẐV

(
0, În, Îm

)′
X̂′ 0 0

(Z0, 0, 0) VẐ′ 0 0

 = r
(
X̂, ẐVẐ′

)
+ r

(
X̂
)
.

Equation (2.2) indicates that the BLUP for ξ under Nr can be represented by an exact algebraic
expression involving some matrices and their Moore-Penrose generalized inverses. One significant
superiority of the exact algebraic expression is the accurate analysis of the relationships of relevant
statistics, as stated in the preceding part. All the results in the section give a unified theory regarding
BLUPs for functions of all unknown parameters, β, γ, ε, e, and their essential properties under Nr, and
can be approached as standard references in the statistical inference of BLUPs. Similar to (2.2), we
give an incorrect form of the BLUP of ξ0 in (1.8).

Corollary 2.2. Let ξ0 in (1.8) be predictable under Nr0 , i.e., R(K′0) ⊆ R(X̂′0). Then

C0̂y = BLUP(ξ0|Nr0)⇐⇒ C0

(
X̂0, ẐΛẐ′X̂⊥0

)
=

(
K0,BΛẐ′X̂⊥0

)
. (2.13)

The general solution of Eq (2.13) is

C0 =
(
K0,BΛẐ′X̂⊥0

) (
X̂0, ẐΛẐ′X̂⊥0

)†
+ U0

(
X̂0, ẐΛẐ′X̂⊥0

)⊥
, (2.14)

where U0 is an arbitrary matrix. Hence, the BLUP of ξ0 under Nr0 can be written as

BLUP(ξ0|Nr0) =

((
K0,BΛẐ′X̂⊥0

) (
X̂0, ẐΛẐ′X̂⊥0

)†
+ U0

(
X̂0, ẐΛẐ′X̂⊥0

)⊥)
ŷ, (2.15)

where U0 is an arbitrary matrix. From expression (2.15), BLUP(ξ0|Nr0) is unique if and only if ŷ ∈
R(X̂0, ẐΛẐ′). Additionally, under the assumption in (1.5),

E
[
BLUP(ξ0|Nr0)

]
= C0X̂β and D

[
BLUP(ξ0|Nr0)

]
= C0ẐVẐ′C′0.
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3. BLUPs under ξ and ξ0

In this section, we mainly solve the three questions stated in section one. Because BLUP(ξ|Nr)
in (2.2) and BLUP(ξ0|Nr0) in (2.15) are not always unique, we utilize {BLUP(ξ|Nr)} and{
BLUP(ξ0|Nr0)

}
to signify the corresponding sets, respectively. To establish the inclusion relations

between the preceding two sets, the following Lemma is essential.

Lemma 3.1. Assume that ŷ is given in (1.5) and C j, j = 1, 2, is a matrix of appropriate size. Then
C1̂y = C2̂y holds with probability 1 if and only if

(C1 − C2)
(
X̂, ẐVẐ′X̂⊥

)
= 0. (3.1)

Furthermore, let C1 and C2 be two sets comprised by the matrices of appropriate size. Then,
(a) For a specified C1 ∈ C1, C1̂y ∈

{
C2̂y

}
, C2 ∈ C2, holds with probability 1 if and only if

min
C2∈C2

r
(
(C1 − C2)

(
X̂, ẐVẐ′X̂⊥

))
= 0. (3.2)

(b)
{
C1̂y

}
∩

{
C2̂y

}
, ∅, C1 ∈ C1, C2 ∈ C2, holds with probability 1 if and only if

min
C1∈C1,C2∈C2

r
(
(C1 − C2)

(
X̂, ẐVẐ′X̂⊥

))
= 0. (3.3)

(c)
{
C1̂y

}
⊆

{
C2̂y

}
, C1 ∈ C1, C2 ∈ C2, holds with probability 1 if and only if

max
C1∈C1

min
C2∈C2

r
(
(C1 − C2)

(
X̂, ẐVẐ′X̂⊥

))
= 0. (3.4)

Proof. Observe that obviously C1̂y = C2̂y holds with probability 1 if and only if

(C1 − C2)
(
X̂, ẐVẐ′

)
= 0. (3.5)

Also notice that
R(X̂, ẐVẐ′X̂⊥) = R(X̂, ẐVẐ′).

Therefore, the equivalence in (3.1) is established. (3.1) together with Lemma 1.3 yields (a)-(c). �

Theorem 3.1. Consider Nr and Nr0 and define

M =


X̂ X̂0 ẐVẐ′ ẐΛẐ′

0 0 X̂′ 0
0 0 0 X̂′0

 and N =
(
K,K0,BVẐ′,BΛẐ′

)
. (3.6)

Then the following conclusions hold.
(a) For a specified BLUP(ξ0|Nr0) in (2.15), BLUP(ξ0|Nr0) ∈ {BLUP(ξ|Nr)} holds with probability 1

if and only if

R(N′) ⊆ R(M′) and U0 = GH† + FH⊥, (3.7)
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where F is a fixed matrix corresponding to BLUP(ξ0|Nr0) ,

H =
(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
,

G =
(
K,BVẐ′X̂⊥

)
−

(
K0,BΛẐ′X̂⊥0

) (
X̂0, ẐΛẐ′X̂⊥0

)† (
X̂, ẐVẐ′X̂⊥

)
.

(b)
{
BLUP(ξ0|Nr0)

}
∩ {BLUP(ξ|Nr)} , ∅ holds with probability 1 if and only if

R(N′) ⊆ R(M′). (3.8)

(c)
{
BLUP(ξ0|Nr0)

}
⊆ {BLUP(ξ|Nr)} holds with probability 1 if and only if

R(N′) ⊆ R(M′) and R
(
X̂, ẐVẐ′

)
⊆ R

(
X̂0, ẐΛẐ′

)
. (3.9)

Proof. With the notation

G =
(
K,BVẐ′X̂⊥

)
−

(
K0,BΛẐ′X̂⊥0

) (
X̂0, ẐΛẐ′X̂⊥0

)† (
X̂, ẐVẐ′X̂⊥

)
,

we note from (2.1) and (2.14) that

(C − C0)
(
X̂, ẐVẐ′X̂⊥

)
= G − U0

(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
. (3.10)

Set

G − U0

(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
= 0, (3.11)

which impled that the Eq (3.11) is solvable for U0 and

U0 = GH† + FH⊥, (3.12)

with H =
(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
and F being an any matrix, which means

r

 G(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

) = r
((

X̂0, ẐΛẐ′X̂⊥0
)⊥ (

X̂, ẐVẐ′X̂⊥
))
. (3.13)

Utilizing (1.10) and simplifying, the difference between both sides of the Eq (3.13) is

r
 G 0(

X̂, ẐVẐ′X̂⊥
) (

X̂0, ẐΛẐ′X̂⊥0
) − r

(
X̂, X̂0, ẐVẐ′X̂⊥, ẐΛẐ′X̂⊥0

)
= r


(
K,BVẐ′X̂⊥

) (
K0,BΛẐ′X̂⊥0

)(
X̂, ẐVẐ′X̂⊥

) (
X̂0, ẐΛẐ′X̂⊥0

) − r
(
X̂, X̂0, ẐVẐ′X̂⊥, ẐΛẐ′X̂⊥0

)

= r


K K0 BVẐ′ BΛẐ′

X̂ X̂0 ẐVẐ′ ẐΛẐ′

0 0 X̂′ 0
0 0 0 X̂′0

 − r


X̂ X̂0 ẐVẐ′ ẐΛẐ′

0 0 X̂′ 0
0 0 0 X̂′0

 . (3.14)
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Thus, (3.13) is equivalent to

r
(
M
N

)
= r(M), (3.15)

i.e.,

R(N′) ⊆ R(M′). (3.16)

With the help of (a) in Lemma 3.1, we arrive at (a). It follows from (3.10) that

min
C,C0

r
(
(C − C0)

(
X̂, ẐVẐ′X̂⊥

))
= min

U0
r
(
G − U0

(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

))
. (3.17)

The application of (1.13) to (3.17) gives

min
U0

r
(
G − U0

(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

))
=r

 G(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

) − r
((

X̂0, ẐΛẐ′X̂⊥0
)⊥ (

X̂, ẐVẐ′X̂⊥
))
. (3.18)

By (3.13) and (3.14), clearly, (3.18) equals to

r
(
M
N

)
− r(M), (3.19)

implying (b) from (b) in Lemma 3.1. Again using (3.10) and then applying (1.14), we have

max
C0

min
C

r
(
(C − C0)

(
X̂, ẐVẐ′X̂⊥

))
= max

U0
r
(
G − U0

(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

))
= min

r

 G(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

) , k
 . (3.20)

Analogous to (3.14), we obtain

r

 G(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
=r


K K0 BVẐ′ BΛẐ′

X̂ X̂0 ẐVẐ′ ẐΛẐ′

0 0 X̂′ 0
0 0 0 X̂′0

 − r
(
X̂0, ẐΛẐ′

)
− r

(
X̂0

)
− r

(
X̂
)
. (3.21)

In light of
R(X̂, ẐVẐ′X̂⊥) = R(X̂, ẐVẐ′) and R(X̂0, ẐΛẐ′X̂⊥0 ) = R(X̂0, ẐΛẐ′),
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it is readily seen that

r


X̂ X̂0 ẐVẐ′ ẐΛẐ′

0 0 X̂′ 0
0 0 0 X̂′0


= r


ẐVẐ′X̂⊥ X̂ X̂0 ẐVẐ′ ẐΛẐ′ ẐΛẐ′X̂⊥0

0 0 0 X̂′ 0 0
0 0 0 0 X̂′0 0


= r


ẐVẐ′ X̂ X̂0 ẐVẐ′ ẐΛẐ′ ẐΛẐ′

0 0 0 X̂′ 0 0
0 0 0 0 X̂′0 0


= r

(
X̂, X̂0, ẐVẐ′, ẐΛẐ′

)
+ r

(
X̂0

)
+ r

(
X̂
)
. (3.22)

Combining (3.21) with (3.22) leads to

r

 G(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
=r

(
M
N

)
− r (M) + r

(
X̂, X̂0, ẐVẐ′, ẐΛẐ′

)
− r

(
X̂0, ẐΛẐ′

)
. (3.23)

In view of (c) in Lemma 3.1, substituting (3.23) into (3.20) shows that
{
BLUP(ξ0|Nr0)

}
⊆

{BLUP(ξ|Nr)} holds with probability 1 if and only if

r
(
M
N

)
+ r

(
X̂, X̂0, ẐVẐ′, ẐΛẐ′

)
= r

(
X̂0, ẐΛẐ′

)
+ r (M) . (3.24)

Also observe that

r
(
M
N

)
≥ r (M) and r

(
X̂, X̂0, ẐVẐ′, ẐΛẐ′

)
≥ r

(
X̂0, ẐΛẐ′

)
, (3.25)

so that (3.24) is equivalent to

r
(
M
N

)
= r (M) and r

(
X̂, X̂0, ẐVẐ′, ẐΛẐ′

)
= r

(
X̂0, ẐΛẐ′

)
, (3.26)

i.e.,

R(N′) ⊆ R(M′) and R
(
X̂, ẐVẐ′

)
⊆ R

(
X̂0, ẐΛẐ′

)
. (3.27)

This completes the proof. �

Equations (3.7)–(3.9) establish a number of vital links between two sets composed by BLUPs
under Nr0 and Nr, which are utilized to uncover various new behaviors of BLUPs under different
assumptions. Due to no restrictions on the matrices K,K0,B,V,Λ,X,A,A0,Z in (3.6), the results in
Theorem 3.1 can be further simplify for special choices of these matrices. For these two collections,
{BLUP(ξ|Nr)} =

{
Cŷ

}
and

{
BLUP(ξ0|Nr0)

}
=

{
C0̂y

}
, people also make use of the subsequent criteria

describing inclusion relationships of two collections apart from Lemma 3.1.
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Definition 3.1. Suppose that ŷ is given in (1.5), and C1 and C2 are two sets composed by the matrices
of appropriate size. Then

(a) For a specified C1 ∈ C1 , the statement C1̂y ∈
{
C2̂y

}
, C2 ∈ C2 is defined to hold definitely if

C1 ∈ C2 holds.
(b)

{
C1̂y

}
∩

{
C2̂y

}
, ∅, C1 ∈ C1, C2 ∈ C2, is defined to hold definitely if C1 ∩ C2 , ∅.

(c)
{
C1̂y

}
⊆

{
C2̂y

}
, C1 ∈ C1, C2 ∈ C2, is defined to hold definitely if C1 ⊆ C2.

According to Definition 3.1, we intend to solve the three problems in Section 1.

Theorem 3.2. Consider Nr and Nr0 and define

M =


X̂ X̂0 ẐVẐ′ ẐΛẐ′

0 0 X̂′ 0
0 0 0 X̂′0

 and N =
(
K,K0,BVẐ′,BΛẐ′

)
. (3.28)

Then, the following three statements hold.
(a) For a specified BLUP(ξ0|Nr0) in (2.15), BLUP(ξ0|Nr0) ∈ {BLUP(ξ|Nr)} holds definitely if and

only if

R(N′) ⊆ R(M′) and U0 = GH† + FH⊥,

where F is a fixed matrix corresponding to BLUP(ξ0|Nr0),

H =
(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
,

G =
(
K,BVẐ′X̂⊥

)
−

(
K0,BΛẐ′X̂⊥0

) (
X̂0, ẐΛẐ′X̂⊥0

)† (
X̂, ẐVẐ′X̂⊥

)
.

(b)
{
BLUP(ξ0|Nr0)

}
∩ {BLUP(ξ|Nr)} , ∅ holds definitely if and only if

R(N′) ⊆ R(M′).

(c)
{
BLUP(ξ0|Nr0)

}
⊆ {BLUP(ξ|Nr)} holds definitely if and only if

R(N′) ⊆ R(M′) and R
(
X̂, ẐVẐ′

)
⊆ R

(
X̂0, ẐΛẐ′

)
.

Proof. According to (a) in Definition 3.1, from (1.9) and (2.14) we find that

BLUP(ξ0|Nr0) ∈ {BLUP(ξ|Nr)} ,

holds definitely if and only if

C0

(
X̂, ẐVẐ′X̂⊥

)
=

(
K,BVẐ′X̂⊥

)
, (3.29)

i.e.,

U0

(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
= G, (3.30)

with
G =

(
K,BVẐ′X̂⊥

)
−

(
K0,BΛẐ′X̂⊥0

) (
X̂0, ẐΛẐ′X̂⊥0

)† (
X̂, ẐVẐ′X̂⊥

)
.
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In terms of (3.11)–(3.16), (3.30) holds if and only if (3.12) and (3.16) hold, implying (a). Trivially,{
BLUP(ξ0|Nr0)

}
∩ {BLUP(ξ|Nr)} , ∅,

holds definitely if and only if there exists a BLUP(ξ0|Nr0), such that

BLUP(ξ0|Nr0) ∈ {BLUP(ξ|Nr)} ,

holds definitely, which is in turn equivalent to it, so that (3.30) is solvable for U0 by proof of (a). Again,
making use of (3.11)–(3.16), we derive that (3.30) is solvable for U0 if and only if

R(N′) ⊆ R(M′).

As for (c), notice these two expressions

Cŷ = BLUP(ξ|Nr) and C0̂y = BLUP(ξ0|Nr0), (3.31)

where C and C0 respectively satisfy

C
(
X̂, ẐVẐ′X̂⊥

)
=

(
K,BVẐ′X̂⊥

)
and C0

(
X̂0, ẐΛẐ′X̂⊥0

)
=

(
K0,BΛẐ′X̂⊥0

)
. (3.32)

Utilizing Lemma 1.4, any solution of the second equation in (3.32) is a solution of the first equation
in (3.32) if and only if

r
X̂ ẐVẐ′X̂⊥ X̂0 ẐΛẐ′X̂⊥0
K BVẐ′X̂⊥ K0 BΛẐ′X̂⊥0

 = r
(
X̂0, ẐΛẐ′X̂⊥0

)
, (3.33)

which by (1.11) becomes

r


K K0 BVẐ′ BΛẐ′

X̂ X̂0 ẐVẐ′ ẐΛẐ′

0 0 X̂′ 0
0 0 0 X̂′0

 = r
(
X̂0, ẐΛẐ′

)
+ r

(
X̂
)

+ r
(
X̂0

)
. (3.34)

From (3.21)–(3.27), the identity (3.34) holds if and only if

R(N′) ⊆ R(M′) and R
(
X̂, ẐVẐ′

)
⊆ R

(
X̂0, ẐΛẐ′

)
.

This completes the proof. �

It is amazing that the results of statistical inference are the same in Theorems 3.1 and 3.2 even
though the criteria introduced in Lemma 3.1 and Definiton 3.1 are different. In some usual assumptions,
the former conclusions can be further simplifed, for instance, if K = K0 = 0, B1 = Iq, B2 = 0, and
B3 = 0, then we have the following corollaries.

Corollary 3.1. Use the above notation and define

N1 =
(
0, 0, ÎqVẐ′, ÎqΛẐ′

)
,
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where Îq =
(
Iq, 0, 0

)
. Then

(a) The following results are equivalent:
(i) For a specified BLUP(γ|Nr0), BLUP(γ|Nr0) ∈ {BLUP(γ|Nr)} holds with probability 1.
(ii) For a specified BLUP(γ|Nr0), BLUP(γ|Nr0) ∈ {BLUP(γ|Nr)} holds definitely.
(iii) R(N′1) ⊆ R(M′) and U0 = GH† + FH⊥, where F is a fixed matrix corresponding to

BLUP(γ|Nr0),

H =
(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
,

G =
(
K, ÎqVẐ′X̂⊥

)
−

(
K0, ÎqΛẐ′X̂⊥0

) (
X̂0, ẐΛẐ′X̂⊥0

)† (
X̂, ẐVẐ′X̂⊥

)
.

(b) The following results are equivalent:
(i)

{
BLUP(γ|Nr0)

}
∩ {BLUP(γ|Nr)} , ∅ holds with probability 1.

(ii)
{
BLUP(γ|Nr0)

}
∩ {BLUP(γ|Nr)} , ∅ holds definitely.

(iii) R(N′1) ⊆ R(M′).
(c) The following results are equivalent:

(i)
{
BLUP(γ|Nr0)

}
⊆ {BLUP(γ|Nr)} holds with probability 1.

(ii)
{
BLUP(γ|Nr0)

}
⊆ {BLUP(γ|Nr)} holds definitely.

(iii) R(N′1) ⊆ R(M′) and R
(
X̂, ẐVẐ′

)
⊆ R

(
X̂0, ẐΛẐ′

)
.

Besides, it is interesting to consider the situation where the identity V3 = Λ3 = 0 is assumed,
i.e., M and M0 become the exact restrictions r = Aβ and r = A0β, respectively. In this situation,
the comparison problems of estimators were discussed by [13] under the assumption Z = 0 in (1.1)
associated with the dispersion matrix criterion, and extended by [14].

Corollary 3.2. Consider the set-up presented above and suppose that V3 = Λ3 = 0, R(X′) ∩R(A′) =

{0} and R(X′) ∩R(A′0) = {0}. Then,
(a) The following results are equivalent:

(i) For a specified BLUE(Xβ|Nr0), BLUE(Xβ|Nr0) ∈ {BLUE(Xβ|Nr)} holds with probability 1.
(ii) For a specified BLUE(Xβ|Nr0), BLUE(Xβ|Nr0) ∈ {BLUE(Xβ|Nr)} holds definitely.
(iii) U0 = GH† + FH⊥, where F is a fixed matrix corresponding to BLUE(Xβ|Nr0),

H =
(
X̂0, ẐΛẐ′X̂⊥0

)⊥ (
X̂, ẐVẐ′X̂⊥

)
,

G = (X, 0) − (X, 0)
(
X̂0, ẐΛẐ′X̂⊥0

)† (
X̂, ẐVẐ′X̂⊥

)
.

(b)
{
BLUE(Xβ|Nr0)

}
∩ {BLUE(Xβ|Nr)} , ∅ holds with probability 1.

(c)
{
BLUE(Xβ|Nr0)

}
∩ {BLUE(Xβ|Nr)} , ∅ holds definitely.

(d) The following results are equivalent:
(i)

{
BLUE(Xβ|Nr0)

}
⊆ {BLUE(Xβ|Nr)} holds with probability 1.

(ii)
{
BLUE(Xβ|Nr0)

}
⊆ {BLUE(Xβ|Nr)} holds definitely.

(iii) R(A) ⊆ R(A0).

From the derivation of the primary conclusions, it can be seen that matrix inertia and rank
methodology plays a crucial role in simplifying the complex matrix expressions, especially in removing
the Moore-Penrose generalized inverses. As is known, when making statistical inferences in the
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framework of a linear model, we would encounter complex calculations of matrices and their Moore-
Penrose generalized inverses. It has been challenging work, but maybe now one can manipulate them
with the development of the matrix theory in recent decades (see [1, 3, 8–11, 14, 20–22]).

4. Concluding remarks

We provide deep insights into the connections between BLUPs under Nr and Nr0 , which is a subject
of linear regression model. These kinds of connections help evaluate the performance of BLUPs
under Nr0 , or, more precisely, the necessary and sufficient conditions appearing in Section 3 give
the judgement of effectiveness of BLUPs under Nr0; for example, if the conditions of Corollary 3.2
and R(A) ⊆ R(A0) hold, then all BLUEs for Xβ under Nr0 remain BLUEs for Xβ under Nr, as stated
in Corollary 3.2.

It should be emphasized that the core findings in this article can be extensively applied to specific
statistical theory and practice and present a comprehensive picture of BLUPs under Nr0 by reason of
the generality of conclusions. Alternatively, when Λ is positive definite, or rather

r
(
X̂0, ẐΛẐ′

)
= n + m,

the BLUP of ξ0 under Nr0 has a unique expression. At this point, the three questions posed in section
one unite into one.

To explain the previous consequences, we present a real data example of model (1.1) utilized
by [23], and then by [24, 25]. The example comes from a study about the first lactation yields of
dairy cows with sire additive genetic merits and herd effects. The sire additive genetic merits are
regarded as random effects denoted by γi, i = 1, 2, 3, 4, which correspond to sires A1, A2, A3, and A4,

and herd effects are regarded as fixed effects denoted by β j, j = 1, 2, 3, where β j is the environmental
influence of the jth herd on the yields. Moreover, y ji is taken to be the yield of the dairy cow with the
ith sire and jth herd. Assume that the corresponding data is recorded in Table 1.

Table 1. The data of first lactation yields.

Herd 1 1 2 2 2 3 3 3 3
Sire A1 A4 A2 A4 A4 A3 A3 A4 A4

Yield 110 100 110 100 100 110 110 100 100

Now, we can give the mixed linear model

N : y = Xβ + Zγ + ε, (4.1)

AIMS Mathematics Volume 10, Issue 5, 11349–11368.



11366

where

X =



1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1


,Z =



1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


, y =



y11

y14

y22

y24

y24

y33

y33

y34

y34


=



110
100
110
100
100
110
110
100
100


,β =


β1

β2

β3

 ,γ =


γ1

γ2

γ3

γ4

 . (4.2)

Set

V1 =

(
0.1Iq 0

0 In

)
as in [23]. Two competing stochastic linear restrictions are given by

M0 : r = A0β + e0 and M : r = Aβ + e,

where A = (1, 0, 0),A0 = (0, 1, 0), V2 = Λ2 = 0, V3 and Λ3 are any two real numbers. The assumption
V2 = Λ2 = 0 emphasizes the extrinsic character of the stochastic linear restrictions. Also, suppose that
K = K0 = (1, 0, 0), B1 = (1, 0, 0, 0), B2 = (1, 0, 0, . . . , 0), and B3 = 0. Moreover, we wish to establish
the relationships of BLUP(ξ0|Nr0) and BLUP(ξ|Nr).Now, we can easily see that (3.9) holds. According
to (c) in Theorem 3.1, the set conclusion

{
BLUP(ξ0|Nr0)

}
⊆ {BLUP(ξ|Nr)} holds with probability 1,

i.e., although an incorrect stochastic restriction is used, the BLUP remains the correct BLUP.
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