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Abstract: The problem of stability and stabilization for a class of circuit systems with time-
varying delays via variable period sampled-data control was considered in this paper. First, the
unique boundary conditions were utilized to handle the conic-type nonlinear terms. A Lyapunov-
Krasovskii (L-K) functional, which can consider both time-varying delay and sampling time
information, was constructed. Then, based on the free-weighting matrices and the improved
reciprocally convex combination approach, sufficient conditions for system stabilization over a
wider sampling interval were obtained in terms of Linear Matrix Inequalities (LMI), enabling the
determination of controller gains. Finally, considering the impact of stable operation of the circuit
system on the energy consumption and life cycle of the building, a time-delayed circuit system
simulation verified our results, by assuming different upper bounds on time-delay and maximum
sampling intervals and designing a modal-related sampled-data controller corresponding to them. The
results showed the successful application of this method in the building circuit system, which provides
theoretical support for the optimization of building energy consumption and the stable operation of the
circuit system.
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1. Introduction

With the rapid development of today’s society, the construction industry is facing unprecedented
opportunities and challenges driven by the urbanization process and population growth [1, 2]. The
energy consumption of buildings [3] not only affects its life cycle, but also has a profound impact
on social, economic development and the life of people [4]. The factors that affect the energy
consumption of buildings include the use of fossil fuels, the consumption of building materials and
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the stable operation of the power system [5]. With the significant increase in the power load [6],
the stable operation of the circuit system becomes crucial. However, the circuit system is inevitably
affected by the time-delay [7] phenomenon during operation, which leads to system oscillation and
instability [8]. In addition, such systems often exhibit complex nonlinear dynamic characteristics [9],
and their modeling requires only dynamic boundary consideration than accurate dynamic models [10].
These factors make the life distribution [11] and reliability analysis [12] of building circuit systems
a scientific problem to be solved urgently. Combined with modern statistical methods, the existing
circuit model is used to analyze the various influences of its stable operation on the life distribution
and reliability analysis of the building circuit system [13], and the LMI toolbox is used to analyze the
system [14].

This kind of nonlinear system has been studied by more and more scholars because of its unique
dynamic boundary characteristics [15]. In [16, 17], the authors discuss the existence, uniqueness,
and trajectory controllability for solutions about two different stochastic differential systems. The
stabilization problem of discrete nonlinear systems with perturbations is studied using the state
feedback controller in [18]. The stabilization problem is studied using the sliding mode controller
in [19]. The above studies provide a new idea for the stabilization of such nonlinear systems. However,
it should not be ignored that the controllers used in these studies are all periodic, and few scholars
use sampled-data controllers to study such nonlinear systems. The sampled-data control [20, 21]
has been given more and more attention with the development of the computer hardware. Different
from the traditional periodic sampling control [22], the sampled-data control adopts a non-periodic
method considering the fault and jitter of the sensor [23]. In this process, many new methods have
emerged, including input delay [24, 25], discrete-time model [26], and aperiodic sampled delayed
measurement [27, 28]. The stability and stabilization of Markov chaotic system under fuzzy control
are researched using the input delay method in [29]. The establishment of augmented functional [30]
and product functional in the input delay method can consider more sampling state information and
coupling relations. The synchronization problem of chaotic Lur’e systems with delay is studied using
the discrete-time model method in [31]. The establishment of two-side functional [32] in the discrete-
time model can consider more information of sampling time. The researchers in [33] propose a
novel sampled data neural network observer to solve the problem of sampled and delayed sensor
data measurements and unknown modeling uncertainties. The above different model reconstruction
methods have respectively brought rich research results for sampled-data control [34]. In this research,
the crossover form of these methods should be considered. Using the above ideas, it is one of our
motives to explore the relationship between the maximum sampling interval and the biggest delay
when the system is stabilized and to reduce conservatism.

Based on this, in this paper, the stabilization problem of time-delay nonlinear systems under
sampled-data control is studied. First, the unique boundary conditions of nonlinear systems are
considered to deal with nonlinear terms better; Second, a sampled-data controller is introduced to use
the characteristics of time-delay systems, and a cross-type functional is constructed, which considers
not only time-varying delay information, but also sampling state information and two-side sampling
time information. Then, based on L-K functional [35, 36], the conditions for system stabilization are
obtained, and the controller is given to obtain a big sampling interval. Finally, the simulation results
show the successful application of the model in the building circuit system, which provides theoretical
support for the optimization of building energy consumption and the stable operation of the circuit
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system.
Notations: In this paper, Rn and Rm×n denote n-dimensional vectors and m × n-dimensional real

matrices, respectively.

2. Problem formulation and preliminaries

Consider the nonlinear systems:{
ς̇ (t) = Aς (t) + Adς (t − d (t)) + Bu (t)+g,
ς (t) = v (t) ,−τ ≤ t ≤ 0,

(2.1)

where ς (t) ∈ Rn, u (t) ∈ Rl and v (t) are the state, the controlled input, and initial condition; d (t)
satisfies 0 < d (t) < τ, which is differentiable and satisfying ḋ (t) ≤ µ ≤ 1, and A, Ad, B, τ and µ are
known. g is a nonlinear term satisfying:

∥g∥2 ≤ ∥Lς (t) + Ldς (t − d (t))∥2, (2.2)

where L and Ld are known constant matrices.
By setting 0 = t0 < t1 < · · · < tr < · · · , we know that lim

r→∞
tr = +∞. Then, let q (t) = t − tr, thus

0 < q̂ ≤ q (t) ≤ qr = tr+1 − tr ≤ q̄, q̂ and q̄ denote the minimum and maximum sampling intervals,
respectively.

For the system (2.1), the controller of sampled-data is shown as:

u (t) = Kς (tr) , tr ≤ t < tr+1. (2.3)

Therefore, we obtain the final system:{
ς̇ (t) = Aς (t) + Adς (t − d (t)) + BKς (tr) + g,
ς (t) = v (t) , t ∈ [−τ, 0] .

(2.4)

The stable analysis and the controller design for the nonlinear system are considered in this paper.

3. Major results

To simplify representations of vectors and matrices, we define the following notations:

ξ (t) =
[
ςT (t) ςT (t − d (t)) ςT (t − τ) gT vT

1 vT
2 ς̇T (t) ςT (tr) ςT (tr+1)

]T
,

v1 =

∫ t

t−d(t)

ς (s)
d (t)

ds, v2 =

∫ t−d(t)

t−τ

ς(s)
τ − d (t)

ds, ei =
[
0n×(i−1)n, In, 0n×(9−i)n

]
(i = 1, 2, . . . , 9) . (3.1)

Next, we give the conditions that ensure that system (2.4) is stable for the known controller gains.

Theorem 1. For known constants τ, µ, q̂, and q̄, matrix K ∈ Rl×n, the system (2.4) is stable for matrices
V, S ∈ R2n×2n,W1,W2, ,N1,N2 ∈ R

n×n and positive definite matrices U, F1, F2,R ∈ Rn×n, which satisfies
the following LMIs for q0 ∈ {q̂, q̄} , k = 2, 3:[

Ω1 + q0Ωk|d(t)=0 ET
1 S

∗ −R̃

]
< 0, (3.2)
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Ω1 + q0Ωk|d(t)=τ ET

2 S T

∗ −R̃

]
< 0, (3.3)

where

Ω1 = Φ1 + Φ2 + Φ3 + Φ5 + Φ6 + Υ1 + Υ2,

Φ1=sym
{
eT

1 Ue7

}
,Φ2 = eT

1 (F1 + F2) e1 − (1 − µ)eT
2 F1e2 − eT

3 F2e3,

Φ3 = τ
2eT

7 Re7 −

[
E1

E2

]T [2τ−d(t)
τ

R̃ S
∗

τ+d(t)
τ

R̃

] [
E1

E2

]
,

Φ5= − (e1 − e8)T W1 (e1 − e8) ,Φ6=(e9 − e1)T W2 (e9 − e1) ,

Υ1=(Le1 + Lde2)T (Le1 + Lde2) − eT
4 e4,Υ2 = sym

{[
eT

7 NT
1 + eT

1 NT
2

]
[−e7 + Ae1 + Ade2 + e4 + BKe8]

}
,

Ω2 = ET
3 VE3 + sym

{
(e1 − e8)T W1e7

}
,Ω3 = −ET

3 VE3 − sym
{
(e9 − e1)T W2e7

}
,

Ei =
[
eT

i − eT
i+1 eT

i + eT
i+1 − 2eT

i+4

]
, i = 1, 2, E3 =

[
eT

8 eT
9

]
. (3.4)

Proof. Let the L-K functional as follows:

V (ςt) =
6∑

i=1

Vi (ςt) , tr ≤ t < tr+1, (3.5)

where

V1 (ςt) = ςT (t) Uς (t) ,

V2 (ςt) =
∫ t

t−d(t)
ςT (s) F1ς (s) ds +

∫ t

t−τ
ςT (s) F2ς (s) ds,

V3 (ςt) = τ
∫ 0

−τ

∫ t

t+u
ς̇T (s) Rς̇ (s) dsdu,

V4 (ςt) = (tr+1 − t) (t − tr) ηT (t) Vη (t) ,
V5 (ςt) = (tr+1 − t) (ς (t) − ς (tr))T W1 (ς (t) − ς (tr)) ,
V6 (ςt) = (t − tr) (ς (tr+1) − ς (t))T W2 (ς (tr+1) − ς (t)) ,

where η (t) =
[
ςT (tr) ςT (tr+1)

]T
.

Let L be the weak-infinitesimal generator of (ςt, t ≥ 0). Through calculation, we yield:

LV1 (ςt) = 2ςT (t) Uς̇ (t)=ξT (t)Φ1ξ (t) , (3.6)

LV2 (ςt) = ςT (t) F1ς (t) −
(
1 − ḋ (t)

)
ςT (t − d (t)) F1ς (t − d (t)) + ςT (t) F2ς (t) − ςT (t − τ) F2ς (t − τ)

≤ ξT (t)Φ2ξ (t) , (3.7)

where ξ (t) and Φ1 are given in (3.1) and (3.4).
Through some simple calculation to V3 (ςt), we have:

LV3 (ςt) = τ2ς̇T (t) Rς̇ (t) − τ
∫ t

t−τ
ς̇T (u) Rς̇ (u) du. (3.8)
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Refer to Corollary 5 in [37]. The Wirtinger Integral Inequality is used to calculate the integral term
of (3.8), which can be obtained as follows:

−τ

∫ t

t−τ
ς̇T (u) Rς̇ (u) du ≤ −

τ

d (t)
κT1 (t) R̃κ1 (t) −

τ

τ − d (t)
κT2 (t) R̃κ2 (t) , (3.9)

where

κ1 (t) =
[
ςT (t) − ςT (t − d (t)) ςT (t) + ςT (t − d (t)) − 2v1 (t)

]T
,

κ2 (t) =
[
ςT (t − d (t)) − ςT (t − τ) ςT (t − d (t)) + ςT (t − τ) − 2v2 (t)

]
.

Then, by applying Lemma 3 in [38], the Extended Reciprocally Convex Matrix Inequality is used
to estimate (3.9), as follows:

−
τ

d (t)
κT1 (t) R̃κ1 (t) −

τ

τ − d (t)
κT2 (t) R̃κ2 (t) ≤ −

[
κ1 (t)
κ2 (t)

]T [2τ−d(t)
τ

R̃ S
∗

τ+d(t)
τ

R̃

] [
κ1 (t)
κ2 (t)

]
+
τ − d (t)
τ
κT1 (t) S R̃−1S Tκ1 (t) +

d (t)
τ
κT2 (t) S T R̃−1S κ2 (t) . (3.10)

Combining (3.8)–(3.10) leads to

LV3 (ςt) ≤ ξT (t)
(
Φ3 + Φ̃3

)
ξ (t) , (3.11)

where Φ̃3 =
τ−d(t)
τ

ET
1 S R̃−1S T E1 +

d(t)
τ

ET
2 S T R̃−1S E2 and Φ3 is given in (3.4).

Through some simple calculation to V4 (ςt) ,V5 (ςt) and V6 (ςt), we have:

LV4 (ςt)= (tr+1 − t) ηT (t) Vη (t) − (t − tr) ηT (t) Vη (t)=ξT (t) (Φ41 + Φ42) ξ (t) , (3.12)
LV5 (ςt) = −(ς (t) − ς (tr))T W1 (ς (t) − ς (tr)) + 2 (tr+1 − t) (ς (t) − ς (tr))T W1ς̇ (t)

= ξT (t) (Φ5 + Φ51) ξ (t) , (3.13)
LV6 (ςt) = (ς (tr+1) − ς (t))T W2 (ς (tr+1) − ς (t)) − 2 (t − tr) (ς (tr+1) − ς (t))T W2ς̇ (t)

= ξT (t) (Φ6 + Φ62) ξ (t) , (3.14)

where Φ5, Φ6, Φ41 = (tr+1 − t) ET
3 VE3, Φ42 = − (t − tr) ET

3 VE3, Φ51 = sym
{
(tr+1 − t) (e1 − e8)T W1e7

}
and Φ62 = −sym

{
(t − tr) (e9 − e1)T W2e7

}
are given in (3.4).

By considering the condition of nonlinearity (2.2), we can obtain:

0 ≤ [Lς (t) + Ldς (t − d (t))]T [Lς (t) + Ldς (t − d (t))] − gT g. (3.15)

For any n × n matrices NT
1 ,N

T
2 and from the closed-loop system (2.4), we know that:

2
[
ς̇T (t) NT

1 + ς
T (t) NT

2

] [
−ς̇ (t) + Aς (t) + Adς (t − d (t)) + BKς (tr)+g

]
= 0. (3.16)

With the help of (3.5)–(3.16), it can be derived that:

LV (ςt) ≤ ξT (t)Ψξ (t) , (3.17)
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where

Ψ = Φ1 + Φ2 + Φ3 + Φ̃3 + Φ41 + Φ42 + Φ5 + Φ51 + Φ6 + Φ62 + Υ1 + Υ2

=
(tr+1 − t)

qr

(
Ω′1 + qrΩ2

)
+

(t − tr)
qr

(
Ω′1 + qrΩ3

)
,

Ω′1 = Φ1 + Φ2 + Φ3 + Φ̃3 + Φ5 + Φ6 + Υ1 + Υ2.

Since Ψ is linear with respect to t, it can be seen from the convex combination technique that Ψ < 0
is obtained if and only if Ψ|t=tk < 0 and Ψ|t=tk+1 < 0, that is:

Ω′1 + qrΩ2 < 0, (3.18)
Ω′1 + qrΩ3 < 0. (3.19)

Equations (3.18) and (3.19) are linear with respect to d (t) and qr, respectively. Based on the convex
combination technique and Schur complement, if Eqs (3.2) and (3.3) are true, then we have:

Ψ < 0, (3.20)

thus,

LV (ςt) < 0. (3.21)

Next, we show V (ςt) is continuous and positive definite in time.
From (3.5), one can derive:

lim
t→tr

Vi (ςt) = Vi
(
ςtr
)
≥ 0, i = 1, 2, 3, (3.22)

lim
t→t−r

Vi (ςt) = lim
t→t+r

Vi (ςt) = Vi
(
ςtr
)
= 0, i = 4, 5, 6. (3.23)

From (3.22) and (3.23), one has:

lim
t→tr

V (ςt) = V
(
ςtr
)
≥ 0. (3.24)

Therefore, V (ςt) is continuous in time.
Moreover, from (3.21) and (3.24), we have:

V (ςt) > V
(
ςtr+1

)
≥ 0, tr ≤ t < tr+1, r = 0, 1, 2, · · · (3.25)

which means that V (ςt) is positive definite. This completes the proof. □

Remark 1. A set of stabilization conditions of a nonlinear system is obtained in the paper. The
information of the biggest time delay and its derivatives, and the information of sampled-data and
sampling time are fully considered, which reduce the conservatism greatly. Time delay d (t) and its
upper bound τ are added in V2 and V3, and the time delay information can be taken into account more
fully after derivation. The information of sampling state and two-side sampling instant is taken into
account in V4 to V6, and the integral term of sampling correlation is added. Thus the conservatism of
sampling interval correlation is greatly reduced, and a larger sampling interval can be obtained.
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Next, the control gain value K can be obtained for the nonlinear system (2.4) based on Theorem 1.

Theorem 2. For known constants τ, µ, q̂, q̄ and λ, the system (2.4) is stable for matrices V̄ , S̄ ∈
R2n×2n, W̄1, W̄2,Y ∈ Rn×n,Z ∈ Rl×n, and positive definite matrices Ū, F̄1, F̄2, R̄ ∈ Rn×n, it makes the
following LMIs satisfied for q0 ∈ {q̂, q̄} , k = 2, 3

Ω̄1 + q0Ω̄k

∣∣∣
d(t)=0

Ῡ1 ET
1 S̄

∗ −In×n 0
∗ ∗ −R̂

 < 0, (3.26)


Ω̄1 + q0Ω̄k

∣∣∣
d(t)=τ

Ῡ1 ET
2 S̄ T

∗ −In×n 0
∗ ∗ −R̂

 < 0, (3.27)

where

Ω̄1 = Φ̄1 + Φ̄2 + Φ̄3 + Φ̄5 + Φ̄6 + Ῡ2 − eT
4 e4,

Φ̄1=sym
{
eT

1 Ūe7

}
, Φ̄2 = eT

1

(
F̄1 + F̄2

)
e1 − (1 − µ)eT

2 F̄1e2 − eT
3 F̄2e3,

Φ̄3 = τ
2eT

7 R̄e7 −

[
E1

E2

]T [2τ−d(t)
τ

R̂ S
∗

τ+d(t)
τ

R̂

] [
E1

E2

]
, R̂ =

[
R̄ 0
0 3R̄

]
,

Φ̄5= − (e1 − e8)T W̄1 (e1 − e8) , Φ̄6=(e9 − e1)T W̄2 (e9 − e1) ,

Ῡ1=LYe1 + LdYe2, Ῡ2 = sym
{[

eT
7 + λe

T
1

]
[−Ye7 + AYe1 + AdYe2 + e4 + BZe8]

}
,

Ω̄2 = ET
3 V̄E3 + sym

{
(e1 − e8)T W̄1e7

}
, Ω̄3 = −ET

3 V̄E3 − sym
{
(e9 − e1)T W̄2e7

}
. (3.28)

Moreover, we can obtain K = ZY−1.

Proof. Define N1 = Y−1,N2 = λY−1,Z = KY, Ū = YT UY, F̄1 = YT F1Y, F̄2 = YT F2Y, R̄ = YT RY, W̄1 =

YT W1Y, W̄2 = YT W2Y, R̂ = YT
2 R̃Y2, S̄ = YT

2 S Y2, V̄ = YT
2 VY2, Y = diag

{
YT

3 , I,Y
T
2 ,Y

T
3 ,Y

T
2

}
, where

Y2 = diag {Y,Y} ,Y3 = diag {Y,Y,Y}.
Now, pre and post multiplying (3.2)-(3.3) with its transpose, yields the following inequation:[

Ω̄1 + q0Ω̄k

∣∣∣
d(t)=0

+ ῩT
1 Ῡ1 ET

1 S̄
∗ −R̂

]
< 0, (3.29)[

Ω̄1 + q0Ω̄k

∣∣∣
d(t)=τ
+ ῩT

1 Ῡ1 ET
2 S̄ T

∗ −R̂

]
< 0. (3.30)

Based on the Schur complement, if (3.26)-(3.27) are satisfied, (3.29)-(3.30) are satisfied too. This
completes the proof. □

Remark 2. To verify the effect of adding two-side sampling time information for reducing the
correlation conservatism of the sampling interval, on the basis of Theorem 1 and 2, the functional
is removed, and we get Corollary 1.

Corollary 1. For known constants τ, µ, q̂, q̄, and λ, the system (2.4) is stable for matrices W̄1, W̄2,Y ∈
Rn×n, S̄ ∈ R2n×2n,Z ∈ Rl×n, and positive definite matrices Ū, F̄1, F̄2, R̄ ∈ Rn×n, satisfying the following
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LMIs for q0 ∈ {q̂, q̄} , k = 2, 3: 
Ω̄1 + q0Ω̃k

∣∣∣
d(t)=0

Ῡ1 ET
1 S̄

∗ −In×n 0
∗ ∗ −R̂

 < 0, (3.31)


Ω̄1 + q0Ω̃k

∣∣∣
d(t)=τ

Ῡ1 ET
2 S̄ T

∗ −In×n 0
∗ ∗ −R̂

 < 0, (3.32)

where

Ω̃2 = sym
{
(e1 − e8)T W̄1e7

}
, Ω̃3 = −sym

{
(e9 − e1)T W̄2e7

}
. (3.33)

4. A numerical example

Consider a circuit system (2.4) with the following parameters [19]:

A =


−8.36 6.5 0

1 −1 1
0 −11.75 0

 , Ad =


−0.5 0 0
−0.5 0 0

1 0 −0.5

 ,D =

6.5 0 0
0 0 0
0 0 0

 , L =

0.43 0 0

0 0 0
0 0 0

 ,
Ld = 0, g =

[
f T (ς1 (t)) 0 0

]T
, B =

[
−0.72 −1.5 0.1

]T
.

where f (ς1 (t))=0.43 [|ς1 + E| − |ς1 − E|] /2.
For given λ = 3.3, q̂ = 10−4, various µ and τ, the q̄ is obtained by Theorem 2 and Corollary 1 in

Table 1. The following conclusions can be drawn: When µ = 0, τ ≥ 0.64, with the increase of τ, the
value of q̄ hardly changes anymore, indicating that no matter how large the time delay is, an appropriate
sampled-data controller gain and the value of q̄ always can be found to stabilize the system. When
µ = 1, with the increase of τ, the value of q̄ gradually decreases until there is no solution, indicating
that there is an upper limit of τ that can stabilize the nonlinear system. When τ is less than this critical
value, the controller can stabilize the nonlinear system.

Table 1. The maximum sampling interval q̄.

q̂ = 10−4, µ = 0 q̂ = 10−4, µ = 1
τ 0.3 0.31 0.45 0.64 100 0.3 0.31 1.5 3.7

Theorem 2 q̄ – 0.3564 0.2610 0.2199 0.2187 – 0.5565 0.1245 0.0015
Corollary 1 q̄ – 0.2870 0.2292 0.1960 0.1945 – 0.2870 0.1108 0.0013

On this basis, the biggest time-delay τ, for various µ and q̄ is obtained by Theorem 2 in Table 2.
The data in Table 2 also verifies the accuracy of the conclusions obtained in Table 1.

Table 2. The upper bounds on time-delay τ.

q̂ = 10−4, µ = 0 q̂ = 10−4, µ = 1
q̄ 0.21 0.22 0.3 0.36 100 10−4 0.22 0.36 100

Theorem 2 τ – 0.6381 0.3724 0.3082 0.3014 3.7343 0.5893 0.3082 0.3015
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Remark 3. Both Theorem and Corollary are given in the form of LMI. Considering that it is difficult
to solve the uncertain scalar polarity when solving LMI, in order to accurately solve the two values of
τ and q̄, one parameter is fixed first, and then dichotomy is used to solve quickly. For details about the
value selection rule, see Remark 4.

Remark 4. In Table 1, when τ ≤ 0.3, the value of q̄ is very large, so 0.3 and 0.31 are selected for the
first and second value; as τ increases, the value of q̄ hardly changes, so the fifth value is 100. Similarly
in Table 2, 0.21 and 0.22 are selected for the first and second value, and the fifth value is 100. The
fourth value in Table 1 corresponds to the value of τ when q̄ = 0.22 in Table 2; furthermore, the fourth
value in Table 2 corresponds to the value when τ = 0.31 in Table 1. These two values represent the
limit value under this condition and are representative. The third values in Tables 1 and 2 are the
intermediate values in this case.

Remark 5. In addition to that, according to Table 1, under the same conditions, the data obtained
from Theorem 2 are always bigger than the data obtained from Corollary 1, indicating that Theorem 2
exhibits lower conservatism and demonstrates the superiority of the two-sided looped L-K functional.

Given the initial value ς (0) =
[
0.5 0.3 0.1

]T
, sampling and time-delay related parameters

q̄ = 0.2, d (t) = 1, λ = 1.7, by solving the LMIs (3.26)-(3.27), the gain is K =[
−0.3312 −1.5488 −0.3585

]
. The state trajectories with and without controller and the controller

trajectories are shown in Figures 1–3.

0 1 2 3 4 5 6 7 8 9 10

Time(second)
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state trajectory(without controller) d(t)=1 q=0.2

y(1)

y(2)

y(3)

Figure 1. The state trajectories without the controller.
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Figure 2. The state trajectories with the controller.
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Figure 3. The controller trajectories.

5. Conclusions

The stabilization problem of a nonlinear system with time delay has been discussed by employing
the L-K functional method. By designing sampled-data controller, we establish a delay-dependent and
sampled-data-dependent L-K functional, whose derivative is handled by integral inequality and matrix
inequality. Then, a sufficient criterion for the stabilization of nonlinear system and the controller gain
has been obtained in terms of LMIs. Finally, considering the problem that the unstable operation of the
circuit system has an adverse effect on the energy consumption and life cycle of the building, a circuit
system example is selected and used to verify that the proposed method can make the circuit system
in the building run stably and make a favorable contribution to the energy consumption and life cycle
of the building. In the future, we plan to address the design problem of sampled-data controller for
nonlinear systems with time-varying delays.
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