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Abstract: To study the projective Ricci curvature (PRic-curvature) in Finsler geometry is interesting
because it reflects the geometric properties that are invariant under the projective transformation. In
this paper, we firstly derived an expression of S-curvature for the cubic Finsler metric and proved
that this S-curvature vanishes if and only if S is a constant Killing form. Next, we obtain an explicit
expression of projective Ricci curvature for the cubic metric. We also proved that for the projective
Ricci-flat Finsler space, the 1-form S is closed, and then the Riemannian metric of « is also Ricci-flat.
Finally, we show that the cubic Finsler metric is of weak projective Ricci curvature if and only if it is
projectively Ricci-flat.
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1. Introduction

Finsler geometry extends the classical Riemannian geometry by considering more general metric
structures. A very important class of Finsler metrics is known as (a, §)-metrics, which were introduced
by M. Matsumoto in 1972. An (a, 8)-metric can be expressed as F' = a¢(s), where « is a Riemannian
metric and § = g B is a 1-form. Randers metric, Kropina metric, exponential metric, Matsumoto
metric, and cubic metric are important classes of (a, 8)-metric [9].

To study the curvature characteristics is a central problem in Finsler geometry. The Ricci curvature
and S-curvature are very important non-Riemannian quantities in the Finslerian manifold [2]. The
Ricci curvature in Finsler geometry is a natural extension of the Ricci curvature in Riemannian
geometry and is defined as the trace of the Riemann curvature [5]. The S-curvature is a mathematical
quantity and measures the rate of change of volume form of a Finsler space along the geodesics.
Recent studies in differential geometry, such as those on Ricci solitons and conformal structures, have
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highlighted the importance of Ricci-type curvatures in understanding the geometric flow and structure
of manifolds [6-8]. In Finsler geometry, the study of curvature involves understanding the deviation
from flatness. The projective Ricci curvature is one aspect of this analysis. The concept of projective
Ricci curvature in Finsler geometry is introduced by X. Cheng [1] in 2017. Projective geometry deals
with the properties that are invariant under projective transformations. The projective Ricci curvature
measures the deviation of the Finsler metric from being projectively flat. Projective Ricci curvature has
applications in various areas of mathematics and physics. It plays a crucial role in understanding the
geometry of Finsler manifolds and connects to the problems in the calculus of variations, differential
equations, and geometric optics.

In 2020, H. Zhu [15] gave an expression of projective Ricci curvature for an («, §)-metric. Later on,
many geometers [4, 12, 13] have studied the geometric properties of projective Ricci curvature. In this
article, we obtain the geometric properties and flatness condition of projective Ricci curvature for the
cubic Finsler metric, which is defined as F' = a¢(s) with

¢ =(1+s), (1.1)

ie., F = (apy Cubic metric is Finsler metric for b* < 1 [14]
L, =05 4 .
The following notations will be used to state our main result:

ol _ _ k _ ik _ ik _ 1 _ k
rj—brlj—bkr];, Fio =Ty s Top =Ty, r—rjkbb—brj, Sjo = SpY s (1.2)

_ Jo_ il j_ ol K
kij> 2rjk—bj;k+bk;j, s, =a’sy, rno=a'ry, sj—bslj—bksj,

so=spys ro=ryl b =d"b, tp=susl =0, =5
where ““;”” denotes the covariant derivative with respect to the Levi-Civita connection of the Riemannian
metric a.
A 1-form f is said to be a Killing form if r, = 0. The 1-form g is said to be a constant Killing form
if it is a Killing form and constant length concerning «, equivalently r,; = 0 and s, = 0.

In this paper we will use the following lemma:
Lemma 1.1. If o* = 0(modp), that is, a;jy'y’ contains b(x)y' as a factor, then the dimension is equal
to two and b® vanishes. In this case, we have § = d(x)y' satisfying o? = BS and db' =2.

We first prove the following result:

Theorem 1.1. For the cubic Finsler metric F = m:;—f)z on an n-dimensional (n > 2) Finsler manifold

M, the S-curvature vanishes if and only if 8 is a constant Killing form.

Next, we obtain the flatness condition for the projective Ricci curvature as

3
Theorem 1.2. If the n-dimensional (n > 2) Finsler space with cubic metric F = % is projective
Ricci-flat (PRic = 0), then B is parallel with respect to the Riemannian metric a.
In view of the above result, we obtain
(a+B)?

Corollary 1.1. If the n-dimensional (n > 2) Finsler space with cubic metric F' = =3~ is projective
Ricci flat then, it vanishes the S-curvature. Therefore, the Riemannian metric of « is Ricci flat (Ric*=0).

We also prove the following result:

Theorem 1.3. The n-dimensional (n > 2) Finsler space with cubic metric F = (“;—f)} is weak PRic-

curvature if and only if it is a PRic-flat metric.
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2. Preliminaries

Let F be an n-dimensional Finsler manifold, and let G’ be the geodesic coeflicients of F, which are

defined as

1 0M(F?) I(F?)
G == Jjl k ,
4g [0x"6y’y ox! ]

The geodesic coeflicients of an («, 8)-metric are given as [3]

yel' M.

, . , . Oy
G/ =Gl + Qs + (ry — 20Qs,) (Wb + %)’

where G!, denotes the geodesic coefficients of the Riemannian metric @ and

oo - ¢ oo 08— +¢9)
¢—s¢” 2¢(¢p — s¢ + (B~ s2)¢")’ 2¢(p — s¢' + (B —5%)¢)
For any xeM and yeT , M\{0}, the Riemann curvature R, is defined as
; 0 .0
_pigaan gk 9 O
R,(v) = R,(y)v (')xf’v = vj(')xf’
where oG/ 0*G/ 0*G/ 0G’ 0G'
. G/ 892G/ G’ . 8G!OG!
R =2— +2G'—— — — .
k Ox* +26 ayioyk  Oxioyk Y ay' dyk

2.1

(2.2)

The trace of Riemann curvature is called Ricci curvature Ric = R!, which is a mathematical object that
regulates the rate at which a metric ball’s volume in a manifold grows. A Finsler metric F is called
an Einstein metric if Ricci curvature satisfies the equation Ric(x,y) = (n — 1)yF?, where y = y(x) is a

scalar function.

In 1997, Z. Shen [11] discussed S-curvature, which measures the average rate of change of

(TyM; F,) in the direction yeT .M and is defined as

oG™ oy d(logo )

SUL) = G xm

where o . is defined as
Vol(B™)

~ Vol[yeR'[F(x,y) < 1}’
and Vol denotes the Euclidean volume, and B"(1) denotes the unit ball in R".
The expression of S-curvature for an (a, 8)-metric is given as [10]

OF

()
S =(so+r) Yy —T)—a @(i’oo —2a0s),
where

f b
II1=<2-—2

bf(b)
®=—(Q~-50,)nA+1+50)—(B-s)(1+s50)Q,,.

A=1+sQ+(B-s)Q, B=10b,

(2.3)

(2.4)
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The projective Ricci curvature is first defined by X. Cheng [1] as

PRic=Ric+ " Lg gy 1 oo
ic = Ric ,
T 12

n+l (2)

where “|” denotes the horizontal covariant derivative with respect to the Berwald connections of F. A
Finsler space F is called weak projective Ricci curvature if

PRic = (n - 1)[% +7]F2, (2.6)

where ¥ = y(x) is a scalar function and § = 6,(x)y’ is a 1-form. If y = constant, then F is called
constant projective Ricci curvature. If § = 0, then F is called isotropic projective Ricci curvature
PRic=(n — 1)yF>.
In 2020, H. Zhu [15] gave an expression of the projective Ricci curvature for the («, 8)-metrics as
: : 1 (75 "0050 "00”0 Tool0 2 2
Pch:ch"+?[—2V1 - Vo — Vi + —Vy + 55Vs + rggrVe — 4rygVs + 2r0s0V8]
n a a a
+(r00rf+r00|b—birl.Olo—rot.rf))V9+r0isf)Vlo+ Sop V11 +50;50Via+ars,Vi3 +ozsjséV14

i i i il i 2o ol 2.0
+a/[mriso—2s0|h—2ris0+3r0,-s +b le]V15 +asyVieta s;s' Viz+a’s;s;Vis (2.7)

2(n—1)
n+1

\PS
+ 7o Vio + [;(roo = 2a050)(B - 5%) + 2%(ry + 59)|py + (n = D] = 2¥(ry,

— 2a0sy)p, — 200p; st + 5 + Py -
where

241
Vi = 4sP, + (4PY,, — P2)(B - 5°)* - 2(P,, + 6sPY¥)(B — s*) — " 3
n

Vy = 42¥(YQ,, +20%,, + Q,F,) — O(F,)*|(B — s*)* + 4[2(Q — sQ,)(¥,)* — (1 + 10sQ)P¥,
—2¥Q, —20%,, — Q¥ + Wg5|(B — s*) +20,, + 8¥, — 4Q¥ + 45¥Q; + 205Q¥,
+(n— D[4(P)* Qs — QF)))(B - 5°)* +4((Q - sQ)(P)?) + Y(¥, — Qs)(B - 5°)

+25(Q,F + Q¥,) — 20 + Q| + %‘I’S[‘I’ — Q¥,(B - sH)|(B - %),

4
Vi = 2%, — 239Y, — P5,)(B — s*) — (n — 1)(1 —2¥(B — s*))¥, + ?‘P‘PS(B - %),
n

YiB - 5°),

Vi = —2¥,(B - s°),
Vs =(n- 1){4[2Q‘I’2st - Y0, - *(¥)’1(B - ) + 420¥(QY - 25Q,¥ — Oy, + V)
+¥(0,)* + O, P51(B — 5*) —4Q¥(s*Q¥ — 350, +20) + 45s0(Q¥, + ¥p) + 80,
+200,, - (Q,)" + 4‘1’3} +4[40¥ (YO, + QY + Q) — 2Q)°Y? — O*(¥,)°](B - 5°)°
+ 8[QW(-450,¥ — 45Q¥, + 20V — 20, — ¥,) + (Q)’Y — O°V,, — QO ¥, + QW
+ O, ¥;3](B - s%) +2450°¥, — 8QF¥(s*QF — 350, + 20) + 85Q¥ + 4P(¥ + 4Q,) + 400,

+160%, — 2(0,)* - ——[¥ - Q¥,(B - )%,

n+1
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2
2
Vo =4[(n+ W5+ 297,  Vy=_1F2 +f1+

n

Ve =(n— 1)[2(2Q;1'2 + 209, + Q,¥5)(B — ) + 25s02¥2 + W) — 209, + 2\113]
+4[20,97 - 30V, + Q¥ + Q,P5](B — 5°) + 45s0QQP? + Pp) + 49 + 40P,

¥2 429,

8
—4¥; — ——P[¥ - Q¥,(B - 5%)],
n+1

4
Vo = 2%, Vio=2[-20,¥(B - s*) —25Q¥ - ¥ + Q, + — 1Q‘I’S(B - 5],
n

(2.8)
4
Vi =20%(B = 5°) + 2%(1 +20) = 0, + ——[Q¥,(B - 5") - V],
n
2
Via =20, -20(0 - 50y), Vi3 = -80[¥p + m‘lﬂ],
Vig = n_?Q[(n )W +4Q¥(B-sD)],  Vis=20¥,  Vie =20,
2n—-1) In%e .
= —40*¥ = —0? = Y -_C =0 V.
V17 Q ’ VlS Q s V19 N+ 1 ’ p n+ 17 p() px:y
3. S-curvature of cubic metrics
For Eq (1.1), we obtain the following values:
3 6 24 3
=15y &7 (1-25)2 Qs = (1-25)% V= Ty 6B-s—85
y, = 3 +48s v, = 18(3 + 16B + 85 + 645?) B -18
T (+6B-s—8s22 7" (1+6B-s5-8523 = U7 (1+6B—s—8s)
36 + 576s 3(1 - 4s)) 9 + 72B — 485 + 965>
ly[/BS: 229 = 2 ) S:_ 22’ (3'1)
(1+6B—-s5—28s?) 2(1+ 6B —s5—8s?) 2(1+ 6B —s5s—8s?)
O, = 9(—1 + 4s) _1+6B—s—852
B2 +6B-5s-8s22 T (1-2s2
® = —(3(1 =55 — 65> + B(8 + 6n + 85 — 24ns) + n(1 — 55 — 45> + 325°)
B (1-2s)* '
By using Egs (2.1) and (3.1), we obtain the spray coefficient G’ for the cubic metric as
. . 1 .
G' =G+ |(6+36B — 65 — 485%)a’ s} + [18arsy(4s — 1)

2a(1 —25)(1 + 6B — s — 852) (3.2)
+3r40(1 — 65 + 85y — 6ab’[65, + (25 — 1)r00]].
In view of Egs (2.5) and (3.1) and using Mathematica program, we obtain the S-curvature for the cubic

Finsler metric as

= 1 _ _ 2 QR Q2
> = 2~ 260" + 6Ba” — ap - 8ﬁ2)2[ 2ro(@ = 2)(1 + 6B)a” — af — 867)[~apIl - 8571
+ (=6 + I+ 6BID] — 250[3a((1 +3n + 6B(2 + 3n)a’ —3(3 + 5n + 8B(=2+ 3n)a’B (33,
— 6(1+2m)af’+32(=1+3m)B°) +(a~2B)(~(1+6B)a’ +af+84°) "I+ 3ryy(@—2p)[(1 +n

+ B(8 + 6n))a’ — (5 — 8B + 5n + 24Bn)a’B — 2(3 + 2n)af’* + 32nﬁ3]].
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Now, we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. First we prove the converse part.

Let us assume that § is a constant Killing form i.e., so = 0 and r,, = O; putting this in Eq (3.3)
vanishes the S-curvature.

For the if part, let us take S = 0; then Eq (3.3) becomes

to+ La +,a” + ta’ + 1,0t +150° = 0, (3.4)

where
t, = 643 (4B10r, + 4B11s, — 3nry)),  t, = 4B°(=168I1r, — 168I1s, + 3(3 + 10n)ry,),
t, = (1928° — 928°T1 — 384BB°T)r, + (1928° — 57613 — 92384BB°T)s,
+ (1287 — 48BB* + 18nB” + 144BnS?)r,,,
ty = (=727 + 22B°T1 + 144BB°T)r, + (368 + 72np* + 226°T1 + 144BB°T)s,
+ (=218 - 24BB — 21nB — 108BnB)ry,,
t, = (=368 — 144BB + 8BT1 + 72BAI1 + 144B*B)r, + (543 — 288Bp
+ 90nB + 432Bng + 8BI1 + 72BBI1 + 14432,81'1)s0 + (3 +24B + 3n + 18Bn)r,y,
ts = (12 + 72B — 211 — 24BI1 — 72B°T)r, + (=6 — 72B — 18n — 108Bn — 2I1 — 24BI1 — 72B)s,.
Taking the rational and irrational parts of Eq (3.4), we obtain

to + a*(t, + a’t,) = 0, (3.5)

t, +a*(t, + a’ty) = 0. (3.6)

From Egs (3.5) and (3.6), we can say that o will divide 7, as well as ;. In view of Lemma 1.1, o is
coprime with g for n > 2. Solving Egs (3.5) and (3.6), we get, respectively,

4B11(ry + so) — 3nry = i az, for y; =yi1(x),

and
168I(ro + So) — 3(10n + 3)rgy = yoa°, for v, = yo(x).

From the above equations, we obtain
roo = ca®, and then 71, = ¢, (3.7)

for some scalar function ¢ = ¢(x) on M.
Putting the above values in Eq (3.4) and simplifying, we get

256I18°(cB + sy) = @ (....),

where (...) denotes the polynomial term in @ and 5. Here also o does not divide 3° and (¢ + 50)-
Therefore, ¢+ s, = 0. Differentiating it with respect to y’, we obtain cb,+s, = 0, which, on contracting
by b', gives ¢ = 0, implying s, = 0 and r,,, = 0. Which means f3 is a constant Killing form.

This completes, the proof of Theorem 1.1. O
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4. Ricci curvature of cubic metric

In this section we obtain the projective Ricci curvature for the aforesaid metric.

Proof of Theorem 1.2. For this, we first obtain all the values of Eq (2.8) by using Eq (3.1) and the
Mathematica program as

-1
V, = 31 —6B+s3852) [3(6B(6(1 +n) + 8(1 + n)s + (36 — (=37 + nn)s’
— 4(45 + n(37 + 8n))s® — 256(4 + n(3 + n))s*) + s(=4(1 + n) — 92(1 + n)s + 92(1 + n)s*
+ (=238 + n(=241 + 3n))s’ + 32(23 + n(20 + 3n))s* + 256(14 + n(11 + 3n))s°)

+ 3B%(66 + 24s(1 + 325) + (n + 16ns)* + n(65 + 8s(—1 + 645))))],

-1
= 6(-=5 + 192B + 1224B> — 6n + 186Bn + 12068
V= AT 721 6B s s 8 l0 * o 1ohBn "

—n® — 18Bn* — 54B*n* — 6(3(5 + 61 + n®) + 12B*(=10 + n + 9n*) + B(16 + 41n + 51n°))s
+3(=99 — 104n — n* = 36B(—12 — 5n + n?) + 384B*(8 + n + 3n?))s* + 2(508 + 675n + 245n°
+ 12B(=244 — 1251 + 1051%))s> — 6(330 + 183n — 45n° + 64B(70 + 23n + 151%))s*
—96(=36 — 11n + 23n%)s> + 2048(8 + 3n + n*)s%)],

3(1 + 165)(6B3 + 5n) + n(=2 + 25 — 265%) + 3(=1 + 5 — 45%) — n* (=1 + s + 25?))

V., =
3 (1 +n)(=1—-6B+ s + 852)3
Vo= 6(1 + 165)(—=B + 5?)
4T (=1 = 6B+ s+ 852
1
V. = 36(-6 -7 2 _ (63 82 + 35 15(8
S T 12971 —6B 13 1852y 0% n+n = (63 +n(82 + 35m)s+15(
+3n(3 +n))s* + (849 + n(1354 + 785n))s> — (2562 + n(2351 + 1123n))s* — 6(—=398 + 495n
+ 771028 + 64(45 + n(=7 + 100n))s® + 2048(=3 + n(7 + 2n))s’ — 216B>(1 + n)*(—1 + 8s)
+9B%(74 + 9n(9 + n) — 144s — 6n(47 + 37n)s + 48(1 + n(~11 + 8n))s>
+160(2 + 3n(5 + n))s*) + 6B(13 + 13n + 2n* — (70 + n(109 + 89n))s + (151 + 55n(1 + 2n))s>
+2(=178 + n(317 + 505n))s” — 8(47 + n(=136 + 199n))s* — 1024(=1 + n(5 + n))s°))],
Vv - —72n B 9(-2 -3n+n?
®" (1+6B-s—8s2)% T (1 +n)(1 +6B—s5—8s2)?
1

Vg = (=13 25)(11 6B — 5 — 857 [18(=7+n(—8+3n)—33s +3n(—4+3n)s

+6(10+(7=5n)n)s*=256(1+2n)s> — 6B(1+ n— 2n* +4(=14+(=23 + n)n)s))|,
6
Vo= 1+6B—s—8s2
vo- —6(1 +n+6B3 +n)) + 18(1 + 4B(—=15 + n) + n)s + 36(3 + n)s*> — 96(-11 + n)s*
10— (1 +n)(=1+2s)(—1 - 6B+ s + 852)?

b
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_12(1 + 3B - 35— 60Bs — 35° + 645°) _6(1-8s)
U7 A +n)(~1+2s)(~1 — 6B + s + 852)2’ 27 (-1+29)%
B —432n
Vis = (1 +n)(—1+2s)(—1 — 6B + 5 + 852)2’
4.1)
_ 183 +6B—n—6Bn+3(-3+4B(-19 +n) + n)s + 6(~1 + n)s> — 16(—15 + n)s*)
4 (1 +n)(—=1 +25)2(=1 — 6B + 5 + 852)? ’
18 6
Vis = T2 (c1—6B+528) "~ T-2y
108 -9 6(—1 + n)

Vi, = , Vg=———, V= .

U (-14292(-1-6B+s+8s)" " (-1+252 ¥ (1+n)(1+6B-s-8s2)
Plugging all the values of the above Eq (4.1) into Eq (2.7) and simplifying by the using Mathematica
program, we obtain the projective Ricci curvature for the aforesaid metric as

i=13

. 1 i/
PRie = (1 +n)2(a = 2B)*(=(1 + 6B)a? + aff + 862)* Z @l

i=0
where
ty = —2048°(=3r5(14 + n(11 + 3n)) + 8(1 + n)B(3ryyq + 2(1 + N)Ric"p)
+8B(2(=1 + m)(1 + nY’B(og + poo)) = 3(=1 + n*)poryy),
1, = 2568°(=3r3y(145 + n(112 + 33n)) + 4(1 + n)B(57rygq + 32(1 + MRic’B)
+4B32(=1 + n)(1 + n)°B(pg + poo)) = ST(=1 + n*)pory),

4.2)
f13 = =91 + 6B)* (125 5" + sisk + 6Bs s¥)(1 + n)?.
Next, we obtain the flatness condition under which the projective Ricci curvature vanishes.
Let the projective Ricci curvature PRic = 0, which implies U(a, 8) = 0, where
U,B) =ty + at, + @ty + ... + @15 (4.3)

Using Mathematica, we can see that

1
U(a,pB) = Z(—6—7n+n2)(a—2ﬁ)3(a +8) (@ +16B)* (ry(a@—28) —65,a”)* mod[(1+6B)a*—af—8B].
Therefore

2 2 1 2 3 2 2 2,2

(.)I(1 +6B)a” —aB — 8B7]) — Z(_6 —Tn+n")a-2B) (a+ ) (a+ 168) (ry(a — 2B) — 6s,a”)” =0,
where (....) are polynomial in @ and 8. As B < 1, therefore ((1 + 6B)a* — a8 — 83%) does not divide
(@—2pB)* or (@ +B)* or (@ + 16B)*. Therefore ((1 + 6B)a* — o — 83%) will divide (ry,(a —2B) — 65,°)%;
then ((1 + 6B)a? — af — 86%) will also divide (roola = 2B) — 6s0a/2), ie.,

(roola — 2B) — 655%) = (¢, + acy)(1 + 6B)a” — af — 86%),

AIMS Mathematics Volume 10, Issue 5, 11305-11315.
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where ¢, is a 1-form and c is a scalar. Taking the rational and irrational parts of the above equation,
we obtain

— 2Bry, — 60°s, = ¢,@*(1 + 6B) — 86%c, — c,a’B, (4.4)
and
Foo = Co@”(1 + 6B) — Be, — 8¢, B°. (4.5)
Solving the above equations, we get ¢, = —%ﬂco, and then (4.5) gives
2 32
Too = Cola(1 + 6B) — ?,8 ]. (4.6)

Substituting the above values into Eq (4.4), we obtain
(4B - 1)cB + 10s, = 0. 4.7)

Differentiating the above equation with respect to y' gives (4B — 1)c b, + s; = 0, which, on contracting
by b’, we obtain ¢, = 0. Then from Egs (4.6) and (4.7), we obtain

Too =0, 5o = 0. 4.8)
In view of (4.8), Eq (4.3) becomes

3a*(—2soesg(@ — 8B) + (=3sjsta® + 255, (a — 2B))(@ — 2B)) + Ric*(a — 2B)°
— (n = (@ = 28 (~(a = 2B)p;, + 6a° spp1 = (@ = 2B)pop) = 0,

which can be rewritten as

(a — 2,8){6a2s0ks15 + 9a4s§<sf - 6a2sl(§;k(oz —2B) — Ric%(a — 2B)*
+ (n— D)(a - 2B)[6a”sgox — (@ — 2B)p5 — (@ — 2ﬁ)p0|0]} = 365y, 550°B.

Since (@ — 283) does not divide @ or B, therefore (o — 28) will divide s, si. Thus
sus6 = (dy + ady)(@ = 2B),

where d| is a 1-form and d,, is a scalar. Taking the rational and irrational parts of the above equation
and solving, we obtain
SOkSIS = do(a2 —4p%). 4.9)

If d, # O then one can conclude by the above equation that a is not positive definite, which is not
possible. Therefore, d; = 0. This implies that

5, =0, (4.10)

1.e., B is closed. In view of Egs (4.8) and (4.10), we obtain bi;k = 0, then 1-form g is parallel with
respect to a.
This completes the proof of Theorem 1.2. O
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Now, we obtain the condition for the weak projective Ricci curvature of a cubic Finsler metric.

Proof of Theorem 1.3. Let F be a cubic Finsler metric with weak projective Ricci curvature. Then
from Eq (2.6) we obtain

32 61 _ ' - i
(n—=D[30(a+B)’a@” +y(a+p)°] = T+ @25 (1 16B)a—ap -85 ;a t;. 4.11)

For the cubic metric, we have B < 1, which implies that o does not divide (@—28)* or ((1+6B)a’ -
af—8p%)* or 36(a+B)>a*. Consequently, it follows that @® must divide y(a+3)%. However, such division
is only possible if y = 0. Combining this result with Eq (4.11), then we deduce that 30(a+0)* is divided
by a@?. This is impossible unless # = 0. Then F reduces to a projective Ricci-flat metric.

The converse is obvious. This completes the proof. m|

Example 4.1. The Finsler metric |y%(lyl+ <a,y> )3 for a =constant is projectively Ricci flat.
5. Conclusions

Projective Ricci curvature is a concept in differential geometry that generalizes the notion of Ricci
curvature. It has various applications in the fields of general relativity, optimal transformation theory,
complex geometry, Weyl geometry, Einstein metrics, and many more. In this article, we have proved

3

that if the cubic metric F = % is projective Ricci flat (PRic = 0), then S is parallel with respect to
Riemannian metric @, and then from Eq (2.3), the S-curvature vanishes. Therefore, from Eq (2.5), we
obtain that the Riemannian metric « is also Ricci-flat, which is Corollary 1.1.
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