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Abstract: To study the projective Ricci curvature (PRic-curvature) in Finsler geometry is interesting
because it reflects the geometric properties that are invariant under the projective transformation. In
this paper, we firstly derived an expression of S-curvature for the cubic Finsler metric and proved
that this S-curvature vanishes if and only if β is a constant Killing form. Next, we obtain an explicit
expression of projective Ricci curvature for the cubic metric. We also proved that for the projective
Ricci-flat Finsler space, the 1-form β is closed, and then the Riemannian metric of α is also Ricci-flat.
Finally, we show that the cubic Finsler metric is of weak projective Ricci curvature if and only if it is
projectively Ricci-flat.
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1. Introduction

Finsler geometry extends the classical Riemannian geometry by considering more general metric
structures. A very important class of Finsler metrics is known as (α, β)-metrics, which were introduced
by M. Matsumoto in 1972. An (α, β)-metric can be expressed as F = αφ(s), where α is a Riemannian
metric and s =

β

α
, β is a 1-form. Randers metric, Kropina metric, exponential metric, Matsumoto

metric, and cubic metric are important classes of (α, β)-metric [9].
To study the curvature characteristics is a central problem in Finsler geometry. The Ricci curvature

and S-curvature are very important non-Riemannian quantities in the Finslerian manifold [2]. The
Ricci curvature in Finsler geometry is a natural extension of the Ricci curvature in Riemannian
geometry and is defined as the trace of the Riemann curvature [5]. The S-curvature is a mathematical
quantity and measures the rate of change of volume form of a Finsler space along the geodesics.
Recent studies in differential geometry, such as those on Ricci solitons and conformal structures, have
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highlighted the importance of Ricci-type curvatures in understanding the geometric flow and structure
of manifolds [6–8]. In Finsler geometry, the study of curvature involves understanding the deviation
from flatness. The projective Ricci curvature is one aspect of this analysis. The concept of projective
Ricci curvature in Finsler geometry is introduced by X. Cheng [1] in 2017. Projective geometry deals
with the properties that are invariant under projective transformations. The projective Ricci curvature
measures the deviation of the Finsler metric from being projectively flat. Projective Ricci curvature has
applications in various areas of mathematics and physics. It plays a crucial role in understanding the
geometry of Finsler manifolds and connects to the problems in the calculus of variations, differential
equations, and geometric optics.

In 2020, H. Zhu [15] gave an expression of projective Ricci curvature for an (α, β)-metric. Later on,
many geometers [4, 12, 13] have studied the geometric properties of projective Ricci curvature. In this
article, we obtain the geometric properties and flatness condition of projective Ricci curvature for the
cubic Finsler metric, which is defined as F = αφ(s) with

φ = (1 + s)3, (1.1)

i.e., F =
(α+β)3

α2 . Cubic metric is Finsler metric for b2 < 1
4 [14].

The following notations will be used to state our main result:

2s jk = b j;k −bk; j, 2r jk = b j;k+bk; j, s j
k = a jlskl, r j

k = a jlrkl, s j = blsl j = bksk
j,

r j = blrl j = bkr
k
j , r j0 = r jky

k, r00 = r jky
jyk, r = r jkb

jbk = b jr j, s j0 = s jky
k,

s0 = s jy
j, r0 = r jy

j, b j = a jkbk, t jk = s jmsm
k , t j = bmtm j = sisi

j,

(1.2)

where “; ” denotes the covariant derivative with respect to the Levi-Civita connection of the Riemannian
metric α.

A 1-form β is said to be a Killing form if ri j = 0. The 1-form β is said to be a constant Killing form
if it is a Killing form and constant length concerning α, equivalently ri j = 0 and si = 0.

In this paper we will use the following lemma:

Lemma 1.1. If α2 = 0(modβ), that is, ai jyiy j contains bi(x)yi as a factor, then the dimension is equal
to two and b2 vanishes. In this case, we have δ = di(x)yi satisfying α2 = βδ and dib

i = 2.

We first prove the following result:

Theorem 1.1. For the cubic Finsler metric F =
(α+β)3

α2 on an n-dimensional (n > 2) Finsler manifold
M, the S-curvature vanishes if and only if β is a constant Killing form.

Next, we obtain the flatness condition for the projective Ricci curvature as

Theorem 1.2. If the n-dimensional (n > 2) Finsler space with cubic metric F =
(α+β)3

α2 is projective
Ricci-flat (PRic = 0), then β is parallel with respect to the Riemannian metric α.

In view of the above result, we obtain

Corollary 1.1. If the n-dimensional (n > 2) Finsler space with cubic metric F =
(α+β)3

α2 is projective
Ricci flat then, it vanishes the S-curvature. Therefore, the Riemannian metric of α is Ricci flat (Ricα=0).

We also prove the following result:

Theorem 1.3. The n-dimensional (n > 2) Finsler space with cubic metric F =
(α+β)3

α2 is weak PRic-
curvature if and only if it is a PRic-flat metric.
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2. Preliminaries

Let F be an n-dimensional Finsler manifold, and let G j be the geodesic coefficients of F, which are
defined as

G j =
1
4

g jl
[∂2(F2)
∂xk∂yl yk −

∂(F2)
∂xl

]
, yεTxM.

The geodesic coefficients of an (α, β)-metric are given as [3]

G j = G j
α + αQs j

0 + (r00 − 2αQs0)(Ψb j +
Θy j

α
), (2.1)

where Gi
α denotes the geodesic coefficients of the Riemannian metric α and

Q =
φ
′

φ − sφ′
, ψ =

φ”

2φ(φ − sφ′ + (B − s2)φ”)
, Θ =

φφ
′

− s(φφ” + φ
′

φ
′

)
2φ(φ − sφ′ + (B − s2)φ”)

. (2.2)

For any xεM and yεTxM\{0}, the Riemann curvature Ry is defined as

Ry(v) = R j
k(y)vk ∂

∂x j , v = v j ∂

∂x j ,

where

R j
k = 2

∂G j

∂xk + 2Gi ∂
2G j

∂yi∂yk −
∂2G j

∂xi∂yk yi −
∂G j

∂yi

∂Gi

∂yk .

The trace of Riemann curvature is called Ricci curvature Ric = Rm
m, which is a mathematical object that

regulates the rate at which a metric ball’s volume in a manifold grows. A Finsler metric F is called
an Einstein metric if Ricci curvature satisfies the equation Ric(x, y) = (n − 1)γF2, where γ = γ(x) is a
scalar function.

In 1997, Z. Shen [11] discussed S-curvature, which measures the average rate of change of
(TxM; Fx) in the direction yεTxM and is defined as

S (x, y) =
∂Gm

∂ym − ym∂(logσF)
∂xm ,

where σF is defined as

σF =
Vol(Bn)

Vol{yiεRn|F(x, y) < 1}
,

and Vol denotes the Euclidean volume, and Bn(1) denotes the unit ball in Rn.
The expression of S-curvature for an (α, β)-metric is given as [10]

S = (s0 + r0) (2ψ − Π) − α−1 Φ

2∆2 (r00 − 2αQs0), (2.3)

where

Π =
f
′

(b)
b f (b)

, ∆ = 1 + sQ + (B − s2)Qs, B = b2,

Φ = −(Q − sQs)(n∆ + 1 + sQ) − (B − s2)(1 + sQ)Qss.

(2.4)
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The projective Ricci curvature is first defined by X. Cheng [1] as

PRic = Ric +
n − 1
n + 1

S |mym +
n − 1

(n + 1)2 S 2, (2.5)

where “|” denotes the horizontal covariant derivative with respect to the Berwald connections of F. A
Finsler space F is called weak projective Ricci curvature if

PRic = (n − 1)
[3θ

F
+ γ

]
F2, (2.6)

where γ = γ(x) is a scalar function and θ = θi(x)yi is a 1-form. If γ = constant, then F is called
constant projective Ricci curvature. If θ = 0, then F is called isotropic projective Ricci curvature
PRic=(n − 1)γF2.

In 2020, H. Zhu [15] gave an expression of the projective Ricci curvature for the (α, β)-metrics as

PRic=Ricα+
1

n+1

[r2
00

α2 V1 −
r00s0

α
V2 −

r00r0

α
V3 +

r00|0

α
V4 + s2

0V5 + r00rV6 − 4r2
0V7 + 2r0s0V8

]
+(r00ri

i +r00|b−biri0|0−r0ir
i
0)V9+r0is

i
0V10+s0|0V11+s0is

i
0V12+αrs0V13+αs js

j
0V14

+α
[ 4
n+1

ris
i
0−2s0|b−2ri

i s0+3r0is
i+bisi

|0

]
V15+αsi

0|iV16+α2sis
iV17+α2si

js
j
i V18

+ r0|0V19 +
2(n − 1)

n + 1

[Ψs

α
(r00 − 2αQs0)(B − s2) + 2Ψ(r0 + s0)

]
ρ0 + (n − 1)

[
− 2Ψ(r00

− 2αQs0)ρb − 2αQρksk
0 + ρ2

0 + ρ0|0

]
,

(2.7)

where

V1 = 4sΨs + (4ΨΨss − Ψ2
s)(B − s2)2 − 2(Ψss + 6sΨΨs)(B − s2) −

n2 + 1
n + 1

Ψ2
s(B − s2)2,

V2 = 4
[
2Ψ(ΨQss + 2QΨss + QsΨs) − Q(Ψs)

2](B − s2)2 + 4
[
2(Q − sQs)(Ψs)

2 − (1 + 10sQ)ΨΨs

− 2ΨQss − 2QΨss − QsΨs + ΨBs
]
(B − s2) + 2Qss + 8Ψs − 4QΨ + 4sΨQs + 20sQΨs

+ (n − 1)
[
4((Ψ)2Qss − Q(Ψs)2)(B − s2)2 + 4((Q − sQs)(Ψ)2) + Ψ(Ψs − Qss)(B − s2)

+ 2s(QsΨ + QΨs) − 2QΨ + Qss
]
+

8
n + 1

Ψs
[
Ψ − QΨs(B − s2)

]
(B − s2),

V3 = 2Ψs − 2(3ΨΨs − ΨBs)(B − s2) − (n − 1)(1 − 2Ψ(B − s2))Ψs +
4

n + 1
ΨΨs(B − s2),

V4 = −2Ψs(B − s2),

V5 = (n − 1)
{
4
[
2QΨ2Qss − Ψ2(Qs)2 − Q2(Ψs)2](B − s2)2 + 4[2QΨ(QΨ − 2sQsΨ − Qss + Ψs)

+ Ψ(Qs)2 + QsΨB](B − s2) − 4QΨ(s2QΨ − 3sQs + 2Q) + 4sQ(QΨs + ΨB) + 8QsΨ

+ 2QQss − (Qs)2 + 4ΨB

}
+ 4

[
4QΨ(ΨQss + QΨss + QsΨs) − 2(Qs)2Ψ2 − Q2(Ψs)2](B − s2)2

+ 8
[
QΨ(−4sQsΨ − 4sQΨs + 2QΨ − 2Qss − Ψs) + (Qs)2Ψ − Q2Ψss − QQsΨs + QΨBs

+ QsΨB
]
(B − s2) + 24sQ2Ψs − 8QΨ(s2QΨ − 3sQs + 2Q) + 8sQΨB + 4Ψ(Ψ + 4Qs) + 4QQss

+ 16QΨs − 2(Qs)2 −
8

n + 1
[
Ψ − QΨs(B − s2)

]2
,

AIMS Mathematics Volume 10, Issue 5, 11305–11315.



11309

V6 = 4
[
(n + 1)ΨB + 2(Ψ)2], V7 =

n2 + n + 2
n + 1

Ψ2 + 2ΨB,

V8 = (n − 1)
[
2(2QsΨ

2 + 2QΨΨs + QsΨB)(B − s2) + 2sQ(2Ψ2 + ΨB) − 2QΨs + 2ΨB

]
+ 4

[
2QsΨ

2 − 3QΨΨs + QΨBs + QsΨB
]
(B − s2) + 4sQ(2Ψ2 + ΨB) + 4Ψ2 + 4QΨs

− 4ΨB −
8

n + 1
Ψ
[
Ψ − QΨs(B − s2)

]
,

V9 = 2Ψ, V10 = 2
[
− 2QsΨ(B − s2) − 2sQΨ − Ψ + Qs +

4
n + 1

QΨs(B − s2)
]
,

V11 = 2QsΨ(B − s2) + 2Ψ(1 + 2Q) − Qs +
4

n + 1
[
QΨs(B − s2) − Ψ

]
,

V12 = 2Qs − 2Q(Q − sQs), V13 = −8Q[ΨB +
2

n + 1
Ψ2],

V14 =
−2

n + 1
Q
[
(n − 3)Ψ + 4QΨs(B − s2)

]
, V15 = 2QΨ, V16 = 2Q,

V17 = −4Q2Ψ, V18 = −Q2, V19 =
2(n − 1)

n + 1
Ψ, ρ =

lnσα
σ

n + 1
, ρ0 = ρxiyi.

(2.8)

3. S-curvature of cubic metrics

For Eq (1.1), we obtain the following values:

Q =
3

1 − 2s
, Qs =

6
(1 − 2s)2 , Qss =

24
(1 − 2s)3 , ψ =

3
1 + 6B − s − 8s2 ,

ψs =
3 + 48s

(1 + 6B − s − 8s2)2 , ψss =
18(3 + 16B + 8s + 64s2)

(1 + 6B − s − 8s2)3 , ψB =
−18

(1 + 6B − s − 8s2)2 ,

ψBs =
36 + 576s

(1 + 6B − s − 8s2)2 , Θ =
3(1 − 4s))

2(1 + 6B − s − 8s2)
, Θs = −

9 + 72B − 48s + 96s2

2(1 + 6B − s − 8s2)2 ,

ΘB =
9(−1 + 4s)

2(1 + 6B − s − 8s2)2 , ∆ =
1 + 6B − s − 8s2

(1 − 2s)2 ,

Φ =
−(3(1 − 5s − 6s2 + B(8 + 6n + 8s − 24ns) + n(1 − 5s − 4s2 + 32s3)

(1 − 2s)4 .

(3.1)

By using Eqs (2.1) and (3.1), we obtain the spray coefficient G j for the cubic metric as

G j = G j
α +

1
2α(1 − 2s)(1 + 6B − s − 8s2)

[
(6 + 36B − 6s − 48s2)α2s j

0 + [18αs0(4s − 1)

+ 3r00(1 − 6s + 8s2)]y j − 6αb j[6s0 + (2s − 1)r00]
]
.

(3.2)

In view of Eqs (2.5) and (3.1) and using Mathematica program, we obtain the S-curvature for the cubic
Finsler metric as

S =
1

2(α − 2β)(α2 + 6Bα2 − αβ − 8β2)2

[
− 2r0(α − 2β)((1 + 6B)α2 − αβ − 8β2)[−αβΠ − 8β2Π

+ α2(−6 + Π + 6BΠ)] − 2s0[3α2((1 + 3n + 6B(2 + 3n))α3 − 3(3 + 5n + 8B(−2 + 3n))α2β

− 6(1+2n)αβ2+32(−1+3n)β3)+(α−2β)(−(1+6B)α2+αβ+8β2)2Π]+ 3r00(α−2β)[(1+n

+ B(8 + 6n))α3 − (5 − 8B + 5n + 24Bn)α2β − 2(3 + 2n)αβ2 + 32nβ3]
]
.

(3.3)
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Now, we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. First we prove the converse part.
Let us assume that β is a constant Killing form i.e., s0 = 0 and r00 = 0; putting this in Eq (3.3)

vanishes the S-curvature.
For the if part, let us take S = 0; then Eq (3.3) becomes

t0 + t1α + t2α
2 + t3α

3 + t4α
4 + t5α

5 = 0, (3.4)

where

t0 = 64β4(4βΠr0 + 4βΠs0 − 3nr00), t1 = 4β3(−16βΠr0 − 16βΠs0 + 3(3 + 10n)r00),
t2 = (192β3 − 92β3Π − 384Bβ3Π)r0 + (192β3 − 576nβ3 − 92384Bβ3Π)s0

+ (12β2 − 48Bβ2 + 18nβ2 + 144Bnβ2)r00,

t3 = (−72β2 + 22β2Π + 144Bβ2Π)r0 + (36β2 + 72nβ2 + 22β2Π + 144Bβ2Π)s0

+ (−21β − 24Bβ − 21nβ − 108Bnβ)r00,

t4 = (−36β − 144Bβ + 8βΠ + 72BβΠ + 144B2βΠ)r0 + (54β − 288Bβ

+ 90nβ + 432Bnβ + 8βΠ + 72BβΠ + 144B2βΠ)s0 + (3 + 24B + 3n + 18Bn)r00,

t5 = (12 + 72B − 2Π − 24BΠ − 72B2Π)r0 + (−6 − 72B − 18n − 108Bn − 2Π − 24BΠ − 72B2Π)s0.

Taking the rational and irrational parts of Eq (3.4), we obtain

t0 + α2(t2 + α2t4) = 0, (3.5)

t1 + α2(t3 + α2t5) = 0. (3.6)

From Eqs (3.5) and (3.6), we can say that α2 will divide t0 as well as t1. In view of Lemma 1.1, α2 is
coprime with β for n > 2. Solving Eqs (3.5) and (3.6), we get, respectively,

4βΠ(r0 + s0) − 3nr00 = γ1α
2, for γ1 = γ1(x),

and
16βΠ(r0 + s0) − 3(10n + 3)r00 = γ2α

2, for γ2 = γ2(x).

From the above equations, we obtain

r00 = cα2, and then r0 = cβ, (3.7)

for some scalar function c = c(x) on M.
Putting the above values in Eq (3.4) and simplifying, we get

256Πβ5(cβ + s0) = α2 (....),

where (...) denotes the polynomial term in α and β. Here also α2 does not divide β5 and (cβ + s0).
Therefore, cβ+ s0 = 0. Differentiating it with respect to yi, we obtain cbi + si = 0, which, on contracting
by bi, gives c = 0, implying s0 = 0 and r00 = 0. Which means β is a constant Killing form.

This completes, the proof of Theorem 1.1. �
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4. Ricci curvature of cubic metric

In this section we obtain the projective Ricci curvature for the aforesaid metric.

Proof of Theorem 1.2. For this, we first obtain all the values of Eq (2.8) by using Eq (3.1) and the
Mathematica program as

V1 =
−1

(1 + n)(−1 − 6B + s + 8s2)4

[
3(6B(6(1 + n) + 8(1 + n)s + (36 − (−37 + n)n)s2

− 4(45 + n(37 + 8n))s3 − 256(4 + n(3 + n))s4) + s(−4(1 + n) − 92(1 + n)s + 92(1 + n)s2

+ (−238 + n(−241 + 3n))s3 + 32(23 + n(20 + 3n))s4 + 256(14 + n(11 + 3n))s5)
+ 3B2(66 + 24s(1 + 32s) + (n + 16ns)2 + n(65 + 8s(−1 + 64s))))

]
,

V2 =
−1

(1 + n)(−1 + 2s)(−1 − 6B + s + 8s2)4

[
6(−5 + 192B + 1224B2 − 6n + 186Bn + 1206B2n

− n2 − 18Bn2 − 54B2n2 − 6(3(5 + 6n + n2) + 12B2(−10 + n + 9n2) + B(16 + 41n + 51n2))s

+ 3(−99 − 104n − n2 − 36B(−12 − 5n + n2) + 384B2(8 + n + 3n2))s2 + 2(508 + 675n + 245n2

+ 12B(−244 − 125n + 105n2))s3 − 6(330 + 183n − 45n2 + 64B(70 + 23n + 15n2))s4

− 96(−36 − 11n + 23n2)s5 + 2048(8 + 3n + n2)s6)
]
,

V3 =
3(1 + 16s)(6B(3 + 5n) + n(−2 + 2s − 26s2) + 3(−1 + s − 4s2) − n2(−1 + s + 2s2))

(1 + n)(−1 − 6B + s + 8s2)3 ,

V4 =
6(1 + 16s)(−B + s2)
(−1 − 6B + s + 8s2)2 ,

V5 =
1

(1 + n)(−1 + 2s)3(−1 − 6B + s + 8s2)4

[
36(−6 − 7n + n2 − (63 + n(82 + 35n))s+15(8

+ 3n(3 + n))s2 + (849 + n(1354 + 785n))s3 − (2562 + n(2351 + 1123n))s4 − 6(−398 + 495n

+ 771n2)s5 + 64(45 + n(−7 + 100n))s6 + 2048(−3 + n(7 + 2n))s7 − 216B3(1 + n)2(−1 + 8s)
+ 9B2(74 + 9n(9 + n) − 144s − 6n(47 + 37n)s + 48(1 + n(−11 + 8n))s2

+ 160(2 + 3n(5 + n))s3) + 6B(13 + 13n + 2n2 − (70 + n(109 + 89n))s + (151 + 55n(1 + 2n))s2

+ 2(−178 + n(317 + 505n))s3 − 8(47 + n(−136 + 199n))s4 − 1024(−1 + n(5 + n))s5))
]
,

V6 =
−72n

(1 + 6B − s − 8s2)2 , V7 =
9(−2 − 3n + n2)

(1 + n)(1 + 6B − s − 8s2)2 ,

V8 =
1

(1+n)(−1+2s)(1+ 6B − s − 8s2)3

[
18(−7+n(−8+3n)−33s +3n(−4+3n)s

+6(10+(7−5n)n)s2−256(1+2n)s3 − 6B(1+ n− 2n2+4(−14+(−23 + n)n)s))
]
,

V9 =
6

1 + 6B − s − 8s2 ,

V10 =
−6(1 + n + 6B(3 + n)) + 18(1 + 4B(−15 + n) + n)s + 36(3 + n)s2 − 96(−11 + n)s3

(1 + n)(−1 + 2s)(−1 − 6B + s + 8s2)2 ,

AIMS Mathematics Volume 10, Issue 5, 11305–11315.
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V11 =
12(1 + 3B − 3s − 60Bs − 3s2 + 64s3)
(1 + n)(−1 + 2s)(−1 − 6B + s + 8s2)2 , V12 =

6(1 − 8s)
(−1 + 2s)3 ,

V13 =
−432n

(1 + n)(−1 + 2s)(−1 − 6B + s + 8s2)2 ,

(4.1)

V14 =
18(3 + 6B − n − 6Bn + 3(−3 + 4B(−19 + n) + n)s + 6(−1 + n)s2 − 16(−15 + n)s3)

(1 + n)(−1 + 2s)2(−1 − 6B + s + 8s2)2 ,

V15 =
18

(−1 + 2s)(−1 − 6B + s + 8s2)
, V16 =

6
1 − 2s

,

V17 =
108

(−1 + 2s)2(−1 − 6B + s + 8s2)
, V18 =

−9
(−1 + 2s)2 , V19 =

6(−1 + n)
(1 + n)(1 + 6B − s − 8s2)

.

Plugging all the values of the above Eq (4.1) into Eq (2.7) and simplifying by the using Mathematica
program, we obtain the projective Ricci curvature for the aforesaid metric as

PRic =
1

(1 + n)2(α − 2β)3(−(1 + 6B)α2 + αβ + 8β2)4

i=13∑
i=0

αit
′

i ,

where

t
′

0 = −2048β9(−3r2
00(14 + n(11 + 3n)) + 8(1 + n)β(3r00|0 + 2(1 + n)Ricαβ)

+ 8β(2(−1 + n)(1 + n)2β(ρ2
0 + ρ0|0)) − 3(−1 + n2)ρ0r00),

t
′

1 = 256β8(−3r2
00(145 + n(112 + 33n)) + 4(1 + n)β(57r00|0 + 32(1 + n)Ricαβ)

+ 4β(32(−1 + n)(1 + n)2β(ρ2
0 + ρ0|0)) − 57(−1 + n2)ρ0r00),

...

t
′

13 = −9(1 + 6B)3(12sksk + si
ksk

i + 6Bsi
ksk

i )(1 + n)2.

(4.2)

Next, we obtain the flatness condition under which the projective Ricci curvature vanishes.
Let the projective Ricci curvature PRic = 0, which implies U(α, β) = 0, where

U(α, β) = t
′

0 + αt
′

1 + α2t
′

2 + ...... + α13t
′

13. (4.3)

Using Mathematica, we can see that

U(α, β) =
1
4

(−6−7n+n2)(α−2β)3(α+β)2(α+16β)2(r00(α−2β)−6s0α
2)2 mod[(1+6B)α2−αβ−8β2].

Therefore

(...)[(1 + 6B)α2 − αβ − 8β2]) −
1
4

(−6 − 7n + n2)(α − 2β)3(α + β)2(α + 16β)2(r00(α − 2β) − 6s0α
2)2 = 0,

where (....) are polynomial in α and β. As B < 1
4 , therefore ((1 + 6B)α2 − αβ − 8β2) does not divide

(α−2β)3 or (α+β)2 or (α+ 16β)2. Therefore ((1 + 6B)α2−αβ−8β2) will divide (r00(α−2β)−6s0α
2)2;

then ((1 + 6B)α2 − αβ − 8β2) will also divide (r00(α − 2β) − 6s0α
2), i.e.,

(r00(α − 2β) − 6s0α
2) = (c1 + αc0)((1 + 6B)α2 − αβ − 8β2),

AIMS Mathematics Volume 10, Issue 5, 11305–11315.
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where c1 is a 1-form and c0 is a scalar. Taking the rational and irrational parts of the above equation,
we obtain

− 2βr00 − 6α2s0 = c1α
2(1 + 6B) − 8β2c1 − c0α

2β, (4.4)

and
r00 = c0α

2(1 + 6B) − βc1 − 8c0β
2. (4.5)

Solving the above equations, we get c1 = −8
5βc0, and then (4.5) gives

r00 = c0[α2(1 + 6B) −
32
5
β2]. (4.6)

Substituting the above values into Eq (4.4), we obtain

(4B − 1)c0β + 10s0 = 0. (4.7)

Differentiating the above equation with respect to yi gives (4B − 1)c0bi + si = 0, which, on contracting
by bi, we obtain c0 = 0. Then from Eqs (4.6) and (4.7), we obtain

r00 = 0, s0 = 0. (4.8)

In view of (4.8), Eq (4.3) becomes

3α2(−2s0ksk
0(α − 8β) + (−3si

ksk
iα

2 + 2sk
0;k(α − 2β))(α − 2β)) + Ricα(α − 2β)3

− (n − 1)(α − 2β)2(−(α − 2β)ρ2
0 + 6α2sk

0ρk − (α − 2β)ρ0|0) = 0,

which can be rewritten as

(α − 2β)
{

6α2s0ksk
0 + 9α4si

ksk
i − 6α2sk

0;k(α − 2β) − Ricα(α − 2β)2

+ (n − 1)(α − 2β)
[
6α2sk

0ρk − (α − 2β)ρ2
0 − (α − 2β)ρ0|0

]}
= 36s0ksk

0α
2β.

Since (α − 2β) does not divide α2 or β, therefore (α − 2β) will divide s0ksk
0. Thus

s0ksk
0 = (d1 + αd0)(α − 2β),

where d1 is a 1-form and d0 is a scalar. Taking the rational and irrational parts of the above equation
and solving, we obtain

s0ksk
0 = d0(α2 − 4β2). (4.9)

If d0 , 0 then one can conclude by the above equation that α is not positive definite, which is not
possible. Therefore, d0 = 0. This implies that

sik = 0, (4.10)

i.e., β is closed. In view of Eqs (4.8) and (4.10), we obtain bi;k = 0, then 1-form β is parallel with
respect to α.

This completes the proof of Theorem 1.2. �
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Now, we obtain the condition for the weak projective Ricci curvature of a cubic Finsler metric.

Proof of Theorem 1.3. Let F be a cubic Finsler metric with weak projective Ricci curvature. Then
from Eq (2.6) we obtain

(n−1)
[
3θ(α+β)3α2 +γ(α+β)6] =

α4

(1+ n)2(α−2β)3((1+6B)α2−αβ−8β2)4

i=13∑
i=0

αit
′

i . (4.11)

For the cubic metric, we have B < 1
4 , which implies that α4 does not divide (α−2β)3 or ((1+6B)α2−

αβ−8β2)4 or 3θ(α+β)3α2. Consequently, it follows that α2 must divide γ(α+β)6. However, such division
is only possible if γ = 0. Combining this result with Eq (4.11), then we deduce that 3θ(α+β)3 is divided
by α2. This is impossible unless θ = 0. Then F reduces to a projective Ricci-flat metric.

The converse is obvious. This completes the proof. �

Example 4.1. The Finsler metric 1
|y|2

(
|y|+ < a, y >

)3 for a =constant is projectively Ricci flat.

5. Conclusions

Projective Ricci curvature is a concept in differential geometry that generalizes the notion of Ricci
curvature. It has various applications in the fields of general relativity, optimal transformation theory,
complex geometry, Weyl geometry, Einstein metrics, and many more. In this article, we have proved
that if the cubic metric F =

(α+β)3

α2 is projective Ricci flat (PRic = 0), then β is parallel with respect to
Riemannian metric α, and then from Eq (2.3), the S-curvature vanishes. Therefore, from Eq (2.5), we
obtain that the Riemannian metric α is also Ricci-flat, which is Corollary 1.1.
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