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Abstract: The study extends the classical SIR epidemic model by incorporating a hearing impairment
(H) compartment, which accounts for individuals who suffer from long-term auditory complications
due to infection. The proposed SIR-H model includes one more H compartment to study the effect
of infectious diseases on long-term disability. The model is expressed in terms of fractional-order
differential equations to better capture the memory and hereditary nature of disease processes. A
stability analysis is conducted to find the equilibrium points along with the basic reproduction number
R0 that governs the disease spread. Numerical solutions are derived using the Laplace Residual Power
Series (LRPS) approach, and a comparative analysis with the Runge-Kutta method guarantees accuracy
and efficiency. The Simulation results demonstrate how different values for the fractional order α
influence the disease dynamics, with smaller values reflecting higher memory effects. Additionally,
machine learning algorithms such as Sequential Neural Networks are used to enhance the predictive
capability and identify long-term epidemiological trends. The findings highlight the importance of
incorporating disability-related compartments into epidemic models in order to aid public health
strategies and policy formation.
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1. Introduction

Mathematical modeling is the core of the understanding of infectious disease transmission and
the formulation of effective disease control policies. As early as the first attempts of Daniel
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Bernoulli (1760) in smallpox model building and the SIR model of Kermack and McKendrick [1,
2], mathematical models have developed to cope with real-world epidemiological problems. The
SIR model, which categorizes populations into Susceptible (S), Infected (I), and Recovered (R)
compartments, has been widely used to analyze disease transmission dynamics. However, traditional
SIR models fail to account for long-term health complications which arise from infections, particularly
those that lead to permanent disabilities, such as hearing impairment.

Recent studies have highlighted the necessity of incorporating post-infection complications into
infectious disease models [3–6]. Several infectious diseases, including measles, meningitis, rubella,
cytomegalovirus (CMV), and severe viral infections, have been linked to being hearing impaired as a
lasting consequence. Unlike conventional recovery scenarios where individuals regain full health, some
infections result in irreversible auditory damage. To address this gap, we propose an SIR-H model,
where a fraction of the recovered population transitions into a Hearing Impairment (H) compartment,
thus representing individuals who suffer from permanent auditory complications post-infection.

The significance of infectious disease modeling was especially highlighted by the COVID-19
pandemic, when numerous mathematical and computational methods were used to forecast outbreak
behaviors and evaluate intervention measures [7]. For instance, the Monte Carlo methods have been
used to calculate peak infection times, infection rate parameters, and the effects of public health
interventions [8]. These methods had given insight into the strategies of flattening the epidemic curve
and comparing various levels of quarantine measures. Additionally, statistical modeling has played a
crucial role in sharpening forecasts and disease control optimization [9].

Besides epidemiology, other advanced numerical and fractional-order modeling methods have also
become increasingly and centrally involved in disease modeling [10, 11]. Fractional derivatives [12–
15], are more advanced methods to simulate memory and long-range correlations in disease evolution.
Several analytical and numerical methods, including the Residual Power Series (RPS) approach,
Laplace transform, and differential transform approaches, have been employed to solve intricate
fractional differential equations (FDEs) in infectious disease models [16]. For instance, the Laplace
Residual Power Series (LRPS) technique was found to be more accurate and computationally efficient
than conventional techniques, such as the fourth-order Runge-Kutta (RK) method.

In [17–19], neural networks and machine learning were demonstrated to be strong approaches to
model the spread of diseases and to predict long-term health effects. Additionally, sequential Neural
Networks (SNNs) have been used to estimate differential equations used to model disease dynamics
to achieve real-time prediction and adaptive modeling [20]. The incorporation of machine learning-
based approaches has strengthened the prediction of epidemics and explored non-linear interactions in
epidemiological data [21].

In [22–24], the chaotic behavior of a piecewise unimodal smooth map using symbolic dynamics
showed that crisis types are determined by knead sequences. In the period-3 window, we prove
that the system has a positive topological entropy via a sub-shift of finite type, thus indicating the
presence of chaotic horseshoe-type sets. Though demonstrated for a specific map, the methods can be
applied to other unimodal systems. A delayed SIR model was analyzed with generalized incidence,
where the delay reflected the incubation time [25, 26]. Using Lyapunov functionals, we established a
global stability of disease-free and endemic equilibria, with a threshold R0(τ) determining the disease
persistence [27, 28].

This study introduces the SIR-H model, which is a refined compartmental model that extends
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the classical SIR framework by incorporating hearing impairment as a post-infection outcome. We
emphasize that fractional order differential equations (FDEs) offer a powerful generalization of
classical integer-order models by incorporating memory and hereditary properties, which are often
inherent in biological systems. The Caputo fractional derivative employed in our model is indeed a
particular case of the more general Hattaf mixed fractional derivative, as previously introduced in [27].
Unlike integer-order models, fractional-order models are capable of capturing long-term dependencies
and non-local interactions that are biologically realistic in systems, such as genetic regulation, disease
progression, and population dynamics. This memory effect is especially relevant in our context, where
the dynamics of hearing impairment may depend not only on the current state of individuals but also on
their past health status, genetic predisposition, and environmental exposures. Thus, fractional calculus
provides a more faithful and flexible framework to describe these biologically motivated processes,
leading to an improved accuracy and deeper insights into the system’s behavior.

In this study, we analyze the impact of infectious diseases on long-term auditory health, examine
stability properties and equilibrium points, compare numerical solutions using LRPS and RK methods,
and explore machine learning techniques to solve and visualize the model behavior. By integrating
traditional epidemiological modeling, fractional-order analyses, and machine learning techniques, the
proposed SIR-H model provides a comprehensive framework to understand both the disease spread and
post-infection disabilities. The insights derived from this model can help public health officials design
better strategies to prevent long-term complications and improve healthcare responses to infectious
diseases.

2. Background on Caputo’s fractional derivative

A Caputo fractional derivative is another general definition of fractional derivatives that has found
popularity in applications involving initial value problems in physics, engineering, and biology [29–
32]. It was originally defined by Italian mathematician Michele Caputo in 1967 and can be stated as
follows:

For a function f (t) and a fractional order α (where n − 1 < α < n and n ∈ N), the Caputo fractional
derivative of order α is given by the following:

DαC f (t) =
1

Γ(n − α)

∫ t

0

f (n)(τ)
(t − τ)α+1−n dτ,

where:

• Γ(·) is the Gamma function, which generalizes the factorial function to non-integer values,
• f (n)(τ) is the n-th derivative of f (τ), and
• The integral is taken from 0 to t, making it a non-local operator that depends on the history of

the function.

2.1. Key properties of Caputo’s derivative

1) Initial conditions: One of the main advantages of the Caputo derivative is that it allows for the
use of traditional initial conditions of the form f (0), f ′(0), . . . , f (n−1)(0). This makes it more convenient
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to solve initial value problems compared to other fractional derivatives such as the Riemann-Liouville
derivative.

2) Memory effect: The Caputo derivative incorporates a memory effect, meaning that the derivative
at a point t depends on the entire history of the function from 0 to t. This property is useful to model
systems with hereditary or long-term dependencies.

3) Relation to integer-order derivatives: When α is an integer, the Caputo derivative reduces to the
standard integer-order derivative. For example, if α = 1, then it becomes the first derivative f ′(t).

2.2. Comparison with other fractional derivatives

The Caputo derivative differs from the Riemann-Liouville derivative in how it handles the initial
conditions. While the Riemann-Liouville derivative requires fractional initial conditions, the Caputo
derivative uses standard integer-order initial conditions, thus making it more practical for real-world
applications.

3. Mathematical model

The SIR-H model introduces a Hearing Impaired (H) compartment to account for individuals who
have recovered but developed hearing impairment as a result of infection. The system of fractional-
order differential equations governing the model is as follows:

DαS = −βS I, (3.1)
(the susceptible population decreases due to infection at rate β);

DαI = βS I − (γ + η)I, (3.2)
(the infected population increases due to infection and decreases due
to recovery (γ) and impairment (η));

DαR = γI, (3.3)
(the recovered population increases at recovery rate γ);

DαH = ηI, (3.4)
(the hearing-impaired population increases at impairment rate η);

where

• α is the fractional order parameter,
• β is the transmission rate,
• γ is the recovery rate (without hearing impairment), and
• η is the hearing impairment-inducing rate among infected individuals.

4. Stability analysis and equilibrium points

To analyze the stability of the system, we first determine the equilibrium points. At equilibrium, we
set all derivatives to zero as follows:

0 = −βS I,
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0 = βS I − (γ + η)I,
0 = γI,
0 = ηI.

From the above equations, we conclude that the disease-free state occurs when I = 0. Assuming
a normalized total population, such that S + I + R + H = 1, and using I = 0, R = 0, and H = 0, we
obtain: S = 1. Therefore, the disease-free equilibrium (DFE) is given by the following:

E0 = (S ∗, I∗,R∗,H∗) = (1, 0, 0, 0). (4.1)

4.1. Basic reproduction number

We can use a next generation Matrix approach in order to find the reproductive number R0.
From the given systems of equations

F =
[
βS ∗I∗

0

]
and V =

[
(γ + η)I∗

0

]
,

then,

F =
[

0 β

0 0

]
; V =

[
(γ + η) 0

0 0

]
,

The dominant eigenvalue is the R0 at the following disease free point:

K = FV−1 =
β

γ + η
.

The basic reproduction number R0 is defined as the spectral radius of the next generation matrix:

R0 = ρ(K) =
β

γ + η
.

4.2. Stability analysis at the DFE

To examine the local stability of the DFE, we linearize the system around the point

E0 = (S ∗, I∗,R∗,H∗) = (1, 0, 0, 0).

The Jacobian matrix J of the system at any point is given by the following:

J =


−βI −βS 0 0
βI βS − (γ + η) 0 0
0 γ 0 0
0 η 0 0

 .
By evaluating the Jacobian at the DFE E0 = (1, 0, 0, 0), we obtain the following:

J(E0) =


0 −β 0 0
0 β − (γ + η) 0 0
0 γ 0 0
0 η 0 0

 .
AIMS Mathematics Volume 10, Issue 5, 11290–11304.
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The characteristic equation of this matrix is obtained by solving the following:

det(J(E0) − λI) = 0.

The eigenvalues of this matrix are as follows:

λ1 = 0, λ2 = β − (γ + η), λ3 = 0, λ4 = 0.

For the fractional-order system of order 0 < α ≤ 1, the DFE is locally asymptotically stable if all
eigenvalues λi of the Jacobian satisfy the following:

| arg(λi)| >
απ

2
.

This condition is fulfilled if and only if: ℜ(λi) < 0. Hence, the key condition is β − (γ + η) < 0, or
equivalently:

R0 =
β

γ + η
< 1.

Therefore, the DFE is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. This result
confirms that controlling the transmission rate relative to the recovery and impairment rates ensures a
disease eradication in the population.

5. LRPS series solution

To solve the fractional-order system, we apply the LRPS method. We begin by taking the Laplace
transform of the fractional derivatives as follows:

L{Dαt y(t)} = sαỸ(s) − sα−1y(0),

where Ỹ(s) is the Laplace transform of y(t). Then, we apply this to each equation of the SIR-H model
as follows:

L{DαS (t)} = sαS̃ (s) − sα−1S (0),
L{DαI(t)} = sα Ĩ(s) − sα−1I(0),
L{DαR(t)} = sαR̃(s) − sα−1R(0),
L{DαH(t)} = sαH̃(s) − sα−1H(0).

By applying Laplace transforms to all equations and solving for S̃ (s), Ĩ(s), R̃(s), and H̃(s), we
expand these in a power series using a residue analysis, and obtain the following:

S (t) =
∞∑

n=0

an

Γ(nα + 1)
tnα,

I(t) =
∞∑

n=0

bn

Γ(nα + 1)
tnα,

R(t) =
∞∑

n=0

cn

Γ(nα + 1)
tnα,
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H(t) =
∞∑

n=0

dn

Γ(nα + 1)
tnα,

where the coefficients can be computed as follows:

a0 = S 0,

b0 = I0,

c0 = R0,

d0 = H0.

a1 = −βS 0I0 · Γ(α + 1),
b1 = (βS 0I0 − (γ + η)I0) · Γ(α + 1),
c1 = γI0 · Γ(α + 1),
d1 = ηI0 · Γ(α + 1).

a2 = −βΓ(2α + 1)
(
S 0b1 + a1I0

Γ(α + 1)

)
,

b2 = Γ(2α + 1)
(
β ·

S 0b1 + a1I0

Γ(α + 1)
− (γ + η) ·

b1

Γ(α + 1)

)
,

c2 = γb1 ·
Γ(2α + 1)
Γ(α + 1)

,

d2 = ηb1 ·
Γ(2α + 1)
Γ(α + 1)

,

a3 = −βΓ(3α + 1)
2∑

k=0

akb2−k

Γ(kα + 1)Γ((2 − k)α + 1)
,

b3 = Γ(3α + 1)

β 2∑
k=0

akb2−k

Γ(kα + 1)Γ((2 − k)α + 1)
− (γ + η) ·

b2

Γ(2α + 1)

 ,
c3 = γb2 ·

Γ(3α + 1)
Γ(2α + 1)

,

d3 = ηb2 ·
Γ(3α + 1)
Γ(2α + 1)

.

Substituting these values, we obtain the following power series solution:

S (t) = S 0 −
βS 0I0

Γ(1 + α)
tα +

(
β2S 0I2

0 + β
2S 2

0I0 − β(γ + η)S 0I0

)
Γ(1 + 2α)

t2α

+
a3

Γ(1 + 3α)
t3α + ...

I(t) = I0 +
(βS 0I0 − (γ + η)I0)

Γ(1 + α)
tα
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+

[
β(γ + η)S 0I0 − β

2S 0I2
0 − β

2S 2
0I0 + (γ + η)2I0

]
Γ(1 + 2α)

t2α +
b3

Γ(1 + 3α)
t3α + ...

R(t) = R0 +
γI0

Γ(1 + α)
tα −
γ (βS 0I0 − (γ + η)I0)

Γ(1 + 2α)
t2α +

c3

Γ(1 + 3α)
t3α + ...

H(t) = H0 +
ηI0

Γ(1 + α)
tα −
η (βS 0I0 − (γ + η)I0)

Γ(1 + 2α)
t2α +

d3

Γ(1 + 3α)
t3α + ...

5.1. Runge-Kutta method

By applying the fourth-order Runge-Kutta method with a step size h, the next time-step value S n+1

is computed as follows:

S n+1 = S n +
1
6

(k1 + 2k2 + 2k3 + k4),

where

k1 = h · f (tn, S n, In),

k2 = h · f
(
tn +

h
2
, S n +

k1

2
, In +

kI
1

2

)
,

k3 = h · f
(
tn +

h
2
, S n +

k2

2
, In +

kI
2

2

)
,

k4 = h · f (tn + h, S n + k3, In + kI
3),

and similar expressions hold for I, R, and H, alongside their corresponding derivatives.

6. Comparison table

The parameter values used for the simulations in the SIR-H model are presented in Table 1. Table
2, compares the numerical results obtained using the Runge-Kutta (RK-4) and LRPS methods to solve
the SIR-H model.

Table 1. Updated parameter values used in the SIR-H model.

Parameter Value
Transmission rate (β) 0.4
Recovery rate without hearing impairment (γ) 0.15
Hearing impairment-inducing rate (η) 0.07
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Table 2. Comparison of RK-4 and LRPS methods with absolute errors for the SIR-H model.

t S (RK) S (LRPS) Abs Err S I (RK) I (LRPS) Abs Err I R (RK) R (LRPS) Abs Err R H (RK) H (LRPS) Abs Err H

0 0.9500 0.9500 0.0000 0.0300 0.0300 0.0000 0.0100 0.0100 0.0000 0.0100 0.0100 0.0000

5 0.8001 0.7989 0.0012 0.0805 0.0810 0.0005 0.0600 0.0603 0.0003 0.0594 0.0595 0.0001

10 0.7102 0.7088 0.0014 0.0702 0.0704 0.0002 0.1203 0.1206 0.0003 0.0993 0.0994 0.0001

15 0.6353 0.6341 0.0012 0.0504 0.0505 0.0001 0.1706 0.1709 0.0003 0.1437 0.1438 0.0001

20 0.5785 0.5776 0.0009 0.0352 0.0353 0.0001 0.2108 0.2111 0.0003 0.1755 0.1756 0.0001

25 0.5341 0.5334 0.0007 0.0228 0.0229 0.0001 0.2434 0.2437 0.0003 0.1997 0.1998 0.0001

30 0.4987 0.4981 0.0006 0.0141 0.0142 0.0001 0.2701 0.2704 0.0003 0.2171 0.2172 0.0001

35 0.4701 0.4696 0.0005 0.0086 0.0087 0.0001 0.2913 0.2916 0.0003 0.2299 0.2300 0.0001

40 0.4472 0.4468 0.0004 0.0052 0.0052 0.0000 0.3081 0.3084 0.0003 0.2395 0.2396 0.0001

45 0.4289 0.4286 0.0003 0.0030 0.0030 0.0000 0.3214 0.3217 0.0003 0.2467 0.2468 0.0001

50 0.4141 0.4139 0.0002 0.0017 0.0017 0.0000 0.3321 0.3324 0.0003 0.2521 0.2522 0.0001

7. Results and discussion

The numerical simulation of the SIR-H model was performed using both the RK-4 and the LRPS
method, thereby analyzing the impact of hearing impairment as a long-term consequence of infection.
The graphical results in Figure 1, which illustrate the behavior of the Susceptible (S), Infected (I),
Recovered (R), and Hearing Impaired (H) populations over time. The susceptible population gradually
declines as individuals contract the infection, thus showing an effective transmission rate (β = 0.3).
Both RK-4 and LRPS methods produce similar trends, with slight variations, thus indicating that LRPS
provides an accurate alternative solution.
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Figure 1. Plot for different values of γ.
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The infected population initially increases, reaching a peak, before declining as individuals either
recover or develop hearing impairment. In Table 1, the rate of decline depends on the recovery rate
(γ = 0.1) and the hearing impairment rate (η = 0.05), which together influence the overall disease
dynamics. A higher value of η results in a faster reduction of infected individuals, but at the cost of
an increased number of hearing-impaired individuals. The recovered population steadily increases as
the infected individuals transition into this compartment, thus indicating that recovery dominates over
infection in the later stages of the outbreak. Both the RK-4 and LRPS solutions closely align, thus
confirming the accuracy of the proposed approach.

A critical aspect of the model is the hearing-impaired population, which grows as a fraction of
infected individuals suffer from being permanently hearing impaired. The rate of increase in this
population is directly influenced by the severity of the disease and it’s complications. Higher values
of η correspond to a significant rise in hearing impairment cases, thus demonstrating the long-term
impact of certain infections. This finding highlights the necessity of public health interventions aimed
at reducing post-infection disabilities through early treatments and preventive measures.

The impact of different values of γ on the hearing-impaired population is depicted in Figure 2. The
key observations are as follows:

• For lower values of γ (e.g., γ = 0.0, 0.2), the hearing-impaired population grows more
significantly due to a prolonged infection duration.
• As γ increases towards 1, individuals recover faster, thus leading to a reduced number of hearing-

impaired individuals.
• The trend highlights the importance of a timely medical intervention and treatment in minimizing

post-infection complications.
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Figure 2. Effect of different recovery rates (γ) on the hearing-impaired population in the
SIR-H model.

The plot in Figure 3 illustrates the evolution of the population fraction over time for different values
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of the fractional order parameter α (0.2, 0.5, 0.8, and 1). The results show that as α decreases from 1
to 0.2, the population fraction curve becomes less steep, thus indicating a slower rate of change. For
α = 1, the curve likely represents a standard exponential growth or decay, depending on the model
context. In contrast, fractional values of α introduce more gradual dynamics, with α = 0.2 showing
the slowest change and α = 0.8 exhibiting a behavior closer to, but still distinct from, the integer-order
case. This suggests that the fractional order α significantly influences the system’s dynamics, with
smaller values of α leading to either delayed or stretched responses over time.
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Figure 3. Effect of different fractional order α on population dynamics.

In health terms, the study points to the need to deal with long-term health outcomes of infectious
illnesses, especially those that were proved to lead to permanent disabilities such as deafness.
Meningitis, measles, and mumps have been implicated in causing deafness after contracting the
diseases, thus highlighting the need to employ preventive healthcare measures. A public health policy
needs to aim at strengthening immunization programs in order to avert infections from leading to
deafness, early diagnoses and treatments of infections in order to reduce the complications, and public
education campaigns to make people aware about the dangers of neglected infections.

8. Observations

• LRPS provides more accurate and stable results for the fractional-order system compared to RK-
4.
• RK-4 accumulates numerical errors over time, especially in longer simulations.
• The number of hearing-impaired individuals (H(t)) estimated by LRPS is slightly higher, thus

indicating it’s superior capability to capture long-term effects.
• LRPS is computationally more efficient than RK-4 for fractional differential equations.
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9. Conclusions

An analysis of the SIR-H model indicated that a higher recovery rate γ produced fewer hearing
impaired cases amongst recovered persons. Therefore, this suggests that medical treatments that seek
to expedite recovery will reduce the long-term health impacts of infectious diseases. Furthermore, the
results highlight the preventive interventions which play a vital role in minimizing the overall public
health impact of infections. Future studies may investigate the impact of vaccination strategies and
improve health policies to assess and reduce the impact of infectious diseases on sensory loss. Our
analytical method provides a useful technique to approximate solutions in epidemiology and other
fields, and is a useful tool for the study of complicated epidemic models. In addition, this research
invites further investigations of non-linear models in many fields, thus opening the door to wider
applications as research continues. In future work, we plan to explore the application of the SIR-H
model to additional infectious diseases with long-term complications, such as tuberculosis and COVID-
19, to evaluate it’s generalizability. Additionally, we aim to integrate more advanced machine learning
techniques, such as deep learning, to improve the model’s predictive capabilities. Moreover, a further
refinement of the model will focus on incorporating more complex interactions between genetic factors
and environmental influences on hearing impairment, as well as conducting sensitivity analyses to
better understand the model’s robustness across different parameter values. These efforts will enhance
the applicability of the model to real-world epidemiological and healthcare scenarios.
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