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1. Introduction

For real numbers a, b, c with −c < N ∪ {0}, the Gaussian hypergeometric function is defined by

F(a, b; c; x) =

∞∑
n=0

(a, n)(b, n)
(c, n)

xn

n!
, |x| < 1,

where (a, 0) = 1 for a , 0 and (a, n) is the shifted factorial function given by

(a, n) = a(a + 1)(a + 2) · · · (a + n − 1)

for n ∈ N. It is well known that the Gaussian hypergeometric function, F(a, b; c; x), has a broad range
of applications, including in geometric function theory, the theory of mean values, and numerous
other areas within mathematics and related disciplines. Many elementary and special functions in
mathematical physics are either particular cases or limiting cases. Specifically, F(a, b; c; x) is said to
be zero-balanced if c = a + b. For the case of c = a + b, as x → 1, Ramanujan’s asymptotic formula
satisfies

F(a, b; a + b, x) =
R(a, b) − ln(1 − x)

B(a, b)
+ O((1 − x) ln(1 − x)), (1.1)
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where
B(a, b) =

Γ(a)Γ(b)
Γ(a + b)

is the classical beta function [1] and

R(a, b) = −2γ − Ψ(a) − Ψ(b),

here Ψ(z) = Γ′(z)/Γ(z), Re(x) > 0 is the psi function, and γ is the Euler–Mascheroni constant [1].
Throughout this paper, let a ∈ [1

2 , 1), and we denote r′ =
√

1 − r2 for r ∈ (0, 1). The generalized
elliptic integrals of the first and second kind are defined on (0, 1) as follows [2]:

Ka = Ka(r) =
π

2
F(a, 1 − a; 1, r2), Ka(0) =

π

2
, Ka(1) = ∞, (1.2)

and

Ea = Ea(r) =
π

2
F(a − 1, 1 − a; 1, r2), Ea(0) =

π

2
, Ea(1) =

sin(πa)
2(1 − a)

. (1.3)

Set K ′a(r) = Ka(r′), E′a(r) = Ea(r′). Note that when a = 1
2 , Ka(r) and Ea(r) reduce to the classical

complete elliptic integrals K(r) and E(r) of the first and second kind, respectively

K(r) =
π

2
F

(
1
2
,

1
2

; 1; r2
)
, E(r) =

π

2
F

(
−

1
2
,

1
2

; 1; r2
)
.

It is well known that complete elliptic integrals play a crucial role in various areas of mathematics and
physics. In particular, these integrals provide a foundation for investigating numerous special functions
within conformal and quasiconformal mappings, including the Grötzsch ring function, Hübner’s upper
bound function, and the Hersch–Pfluger distortion function [3, 4]. In 2000, Anderson, et al. [5]
reintroduced the generalized elliptic integrals in geometric function theory. They discovered that the
generalized elliptic integral of the first kind, denoted as Ka, originates from the Schwarz–Christoffel
transformation [3] of the upper half–plane onto a parallelogram and established several monotonicity
theorems for Ka and Ea. The generalized Grötzsch ring function in generalized modular equations
and the generalized Hübner upper bound function can also be expressed in terms of generalized
elliptic integrals [6]. Recently, generalized elliptic integrals have garnered significant attention from
mathematicians. A wealth of properties and inequalities for these integrals can be found in the
literature. Specifically, various properties of elliptic integrals and hypergeometric functions, including
monotonicity, approximation, and discrete approximation, have been investigated in [7–9], with
sharp inequalities derived for elliptic integrals. Additionally, studies in [10, 11] primarily focus on
inequalities between different means, such as the Toader mean, and Hölder mean, as well as their
applications in elliptic integrals.

For r ∈ (0, 1), r′ =
√

1 − r2, it is known that the arc-length of an ellipse with semiaxes 1 and r,
denoted as L(1, r), is given by L(1, r) = 4E(r′). Muir indicated that L(1, r) can be approximated by

2π{
(

1+r
3
2

2

) 2
3

. Later, Vuorinen conjectured the following inequality for r ∈ (0, 1):

π

2

1 + r′
3
2

2

 2
3

< E(r),
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which was subsequently proven by Barnard et al. [12].
The Hölder mean of positive numbers x, y > 0 with order s ∈ R, is defined as

Hs(x, y) =


(

xs+ys

2

) 1
s
, s , 0,

√
xy, s = 0.

It is easy to see Hs(x, y) is strictly increasing with respect to s. Alzer and Qiu [13] established the
following inequalities:

π

2
Hs1(1, r

′) < E(r) <
π

2
Hs2(1, r

′) (1.4)

with the best constants s1 = 3/2 and s2 = log 2/ log(π/2) = 1.5349 . . . , see [13, 14] for details.
The generalized weighted Hölder mean of positive numbers x, y, with weight ω and order s, is

defined as [14]:

Hs(x, y;ω) =


[
ωxs + (1 − ω)ys] 1

s , s , 0,
xωy1−ω, s = 0.

(1.5)

Wang et al. [15] proved that for r ∈ (0, 1), the following inequality holds:

π

2
Hs1(1, r

′;α) < E(r) <
π

2
Hs2(1, r

′; β), (1.6)

and the best parameters α = α(s), β = β(s) satisfy

α(s) =


1
2 , s ∈ (∞, 3

2 ],
1 − η, s ∈ ( 3

2 , 2),
( 2
π
)s, s ∈ [2,∞),

β(s) =


1, s ∈ (∞, 0],
( 2
π
)s, s ∈ (0, s0),

1
2 , s ∈ [s0,∞),

where s0 =
log 2

log(2/π) = 1.5349 . . . , η = Fs(r0) > 1
2 , Fs =

1−[2E(r)/π]s

1−r′s , and r0 = r0(s) ∈ (0, 1) is the value
such that Fs(r) is strictly increasing on (0, r0) and strictly decreasing on (r0, 1)) for s ∈ (3

2 , 2).
The extension of the inequality (1.6) to the second kind of generalized elliptic integral Ea, where

a ∈ [1
2 , 1), is a natural inquiry. This paper aims to address this question. One might wonder why

the parameter a is restricted to the interval
[

1
2 , 1

)
rather than (0, 1). For a ∈ (0, 1

2 ), our analysis has
revealed a lack of the expected monotonicity in the function Fa,p(x), as defined in Theorem 3.1. This
monotonicity is crucial for establishing the desired inequalities.

To achieve our purpose, we require some more properties of generalized elliptic integrals of the first
and second kind. Therefore, Section 2 will introduce several lemmas that establish these properties.
Section 3 will present our main results along with their corresponding proofs. In Section 4, we establish
several functional inequalities involving Ea as applications. Finally, we give the conclusion of this
article.

2. Lemmas

In this section, several key formulas and lemmas are presented to support the proof of the main
results. The derivative formulas of the generalized elliptic integrals are given.
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Lemma 2.1 ([5]). For a ∈ (0, 1) and r ∈ (0, 1), we have

dKa

dr
=

2(1 − a)(Ea − r′2Ka)
rr′2

,
dEa

dr
= −

2(1 − a)(Ka − Ea)
r

,

d
dr

(Ka − Ea) =
2(1 − a)rEa

r′2
,

d
dr

(Ea − r′2Ka) = 2arKa.

The following lemma provides the monotonicity of some generalized elliptic integrals with respect
to r, which can be found in [16].

Lemma 2.2. Let a ∈ (0, 1). Then the following function:
(1) r 7→ Ea−r′2Ka

r2 is increasing from (0, 1) to (πa
2 ,

sin(πa)
2(1−a) );

(2) r 7→ Ea−r′2Ka
r2Ka

is decreasing from (0, 1) to (0, a);

(3) r 7→ r′2(Ka−Ea)
r2Ea

is decreasing from (0, 1) to (0, 1 − a);
(4) r 7→ Ka−Ea)

r2Ka
is increasing from (0, 1) to (1 − a, 1);

(5) r 7→ r′c(Ka−Ea)
r2 is decreasing on (0, 1) if and only if c ≥ a(2 − a).

Lemmas 2.3 and 2.4 are important tools for proving the monotonicity of the related functions.

Lemma 2.3 ( [17]). Let α(x) =
∑∞

n=0 anxn and β(x) =
∑∞

n=o bnxn be real power series that converge on
(−r, r)(r > 0), and bn > 0 for all n. If the sequence { an

bn
}n≥0 is increasing (or decreasing) on (0, r), then

so is α(x)
β(x) .

Lemma 2.4 ([3]). For a, b ∈ (−∞,∞) and a < b, let f , g : [a, b] be continuous on [a, b] and be
differentiable on (a, b), and g′(x) , 0 for all x ∈ (a, b). If f ′(x)

g′(x) is increasing (or decreasing) on (a, b),
then so are

f (x) − f (a)
g(x) − g(a)

and
f (x) − f (b)
g(x) − g(b)

.

In particular, if f (a) = g(a) = 0(or f (b) = g(b) = 0), then the monotonicity of f (x)
g(x) is the same as f ′(x)

g′(x) .

However, f ′(x)
g′(x) is not always monotonic; it is sometimes piecewise monotonic. An auxiliary function

H f ,g [8] is defined as

H f ,g :=
f ′

g′
g − f , (2.1)

where f and g are differentiable on (a, b) and g′ , 0 on (a, b) for −∞ < a < b < ∞. If f and g are
twice differentiable on (a, b), the function H f ,g satisfies the following identities:(

f
g

)′
=

f ′g − f g′

g2 =
g′

g2

(
f ′

g′
g − f

)
=

g′

g2 H f ,g, (2.2)

H′f ,g =

(
f ′

g′

)′
g. (2.3)

Here, H f ,g establishes a connection between f
g and f ′

g′ .

Lemma 2.5. Define the function f1(x) on [ 1
2 , 1) by

f1(x) =
2(1 − x) log x

log(sin(πx)/(π(1 − x)))
.

Then 2 − x < f1(x) < 2.
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Proof. To establish the right-hand side of the inequality, it suffices to prove that

(1 − x) log x − log
sin(πx)
π(1 − x)

> 0.

Denote
g1(x) = (1 − x) log x − log

sin(πx)
π(1 − x)

.

By differentiation, we obtain

g′1(x) = − log x +
1 − x

x
−
π cos(πx)
sin(πx)

−
1

1 − x
,

g′′1 (x) = −
1
x
−

1
x2 +

π2

sin2(πx)
−

1
(1 − x)2 .

Observe that g′′1 (1
2 ) = π2 − 10 = −0.130... < 0, and lim

x→1−
g′′1 (x) = +∞. This implies that there exists

x0 ∈ [ 1
2 , 1) such that g′1(x) is decreasing on [ 1

2 , x0) and increasing on (x0, 1). Since g′1( 1
2 ) = log 2 − 1 =

−0.306 . . . , and g′1(1−) = 0, it is clear that

g′1(x) ≤ max
{

g′1

(
1
2

)
, g′1(1−)

}
= 0,

which implies that g1(x) is decreasing on [ 1
2 , 1). Consequently,

g1(x) > g1(1−) = 0.

In order to establish the left-hand side of the inequality, we define

g2(x) = 2(1 − x) log x − (2 − x) log
sin(πx)
π(1 − x)

.

Note

g2

(
1
2

)
= log

1
2
−

3
2

log
2
π

= −0.015..., g2(1−) = 0. (2.4)

Differentiating g2(x) yields

g′2(x) = −2 log x +
2(1 − x)

x
−

(2 − x)π cos(πx)
sin(πx)

−
2 − x
1 − x

+ log
sin(πx)
π(1 − x)

.

Observe that

g′2

(
1
2

)
= log

8
π
− 1 = −0.065... < 0, g′2

(
3
4

)
= log

32
√

2
9π

+
5π
4
−

13
3

= 4.166... > 0.

Based on these observations and the intermediate value theorem, there exists x2 ∈ [ 1
2 , 1) such that

g′2(x2) = 0 and g2(x) is decreasing on [1
2 , x2) and increasing on (x2, 1). Therefore, together with (2.4),

we conclude that
g2(x) < 0.

This completes the proof. �
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Lemma 2.6. For each a ∈ [ 1
2 , 1), the function

f2(r) =
r′2−a(2−a)[a(Ka − Ea) − (1 − a)(Ea − r′2Ka)]

Ea − r′2Ka − ar2Ea

is decreasing from (0, 1) to
(
0, a

2−a

)
.

Proof. Following from (1.2) and (1.3), we deduce that

a(Ka − Ea) − (1 − a)(Ea − r′2Ka) =
π

4
a2(1 − a)r4F(a + 1, 2 − a; 3; r2),

Ea − r′2Ka − ar2Ea =
a(1 − a)(2 − a)π

4
r4F(a, 2 − a; 3; r2).

To establish the desired monotonicity of f2(r), it suffices to prove that the function f3(x), defined on
(0,1) by

f3(x) =
(1 − x)p(a)F(a + 1, 2 − a; 3; x)

F(a, 2 − a; 3; x)
,

is decreasing on (0, 1), where p(a) =
2−a(2−a)

2 . Using the power series expansion, the function can be
expressed as

x 7→
∑∞

n=1 Unxn∑∞
n=1 Vnxn ,

where the coefficients Un and Vn satisfy the recursive relations, as detailed in [18]:

U0 =1, V0 = 1,

Un+1 =anUn − bnUn−1, Vn =
(a)n(2 − a)n

(3)nn!
, (2.5)

with

an =
4n2 + 2(3 − a2 + 2a)n + (−5a2 + 8a − 2)

2(n + 1)(n + 3)
,

bn =
(2n + 4a − 2 − a2)(2n − a2)

4(n + 1)(n + 3)
.

By Lemma 2.3, we aim to prove that the sequence
{

Un
Vn

}
n≥0

is decreasing. Note that

Un > 0, Vn > 0,

and
U0

V0
= 1,

U1

V1
=
−5a2 + 8a + 2

2a(2 − a)
,

U2

V2
=
−8a3 + 10a2 + a − 2

a(3 − a)(1 + a)
.

Observe that
U0

V0
>

U1

V1
>

U2

V2
,

which implies

U1 −
V1

V0
U0 < 0, U2 −

V2

V1
U1 < 0.
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Assuming that Uk −
Vk

Vk−1
Uk−1 < 0 for all 1 ≤ k ≤ n, we prove by induction that Un+1 −

Vn+1
Vn

Un < 0.
According to (2.5), we have

Un+1 −
Vn+1

Vn
Un = (anUn − bnUn−1) −

Vn+1

Vn
Un

=

(
an −

Vn+1

Vn

)
Un +

(
an −

Vn+1

Vn

)
Vn

Vn−1
Un−1 −

(
an −

Vn+1

Vn

)
Vn

Vn−1
Un−1 − bnUn−1

=

(
an −

Vn+1

Vn

) (
Un −

Vn

Vn−1
Un−1

)
+

[(
an −

Vn+1

Vn

)
Vn

Vn−1
− bn

]
Un−1.

Since a ∈ [ 1
2 , 1), it is easy to know that

6 + 4a − 2a2 = −2(1 − a)2 + 8 ≥
15
2
, − 5a2 + 8a + 2 = −5(a − 4/5)2 + 26/5 ≥

19
4
,

and

an −
Vn+1

Vn
=

2(n − 1)2 + (6 + 4a − 2a2)(n − 1) + (−5a2 + 8a + 2)
2(n + 1)(n + 3)

is positive for a ∈ [ 1
2 , 1) when n ≥ 1. For a ∈ [1

2 , 1) and n ≥ 1, we have that(
an −

Vn+1

Vn

)
Vn

Vn−1
− bn =

δ(n)
4n(n + 1)(n + 2)(n + 3)

< 0,

where

δ(n) = −a2(a − 2)2n2 + 2(a4 − 4a3 + 6a2 − 2)n + 2(1 − a)2(3a2 − 4a + 2).

In fact, δ(n) is a quadratic function of n and is decreasing on (1,∞), it follows that

−
2(a4 − 4a3 + 6a2 − 2)

2(−a2(a − 2)2)
= 1 +

2a2 − 2
a2(a − 2)2 < 1,

δ(n) ≤ δ(2) = 2(a − 1)(3a3 − 7a2 + 10a + 2) < 0 for n ≥ 2,
(2.6)

which implies that (
an −

Vn+1

Vn
Un

)
Vn

Vn−1
− bn < 0.

By induction, we conclude that Un+1 −
Vn+1
Vn

Un < 0 for all n ≥ 1. Therefore, the sequence
{

Un
Vn

}
n≥0

is
decreasing. Consequently, the function f2(r) is decreasing on (0, 1). Moreover,

lim
r→0+

f2(r) =
a

2 − a
, lim

r→1−
f2(r) = 0.

This completes the proof. �

Lemma 2.7. For each a ∈ [ 1
2 , 1), we define the function h(r) on (0, 1) by

h(r) =
2Ea(Ka − Ea) − 2(1 − a)r2E2

a − 2(1 − a)r′2(Ka − Ea)2

(Ka − Ea)(Ea − r′2Ka)
.

Then, 2 − a < h(r) < 2.

AIMS Mathematics Volume 10, Issue 5, 11271–11289.



11278

Proof. First of all, we prove the right-hand side inequality. To establish the desired result, we need to
show the following inequality:

2Ea(Ka − Ea) − 2(1 − a)r2E2
a − 2(1 − a)r′2(Ka − Ea)2 < 2(Ka − Ea)(Ea − r′2Ka),

which is equivalent to

− 2(1 − a)Ea(Ea − r′2Ka) + 2ar′2Ka(Ka − Ea) < 0.

Denote that
h1(r) = −2(1 − a)Ea(Ea − r′2Ka) + 2ar′2Ka(Ka − Ea).

By differentiation, we obtain

h′1(r) = − 2(1 − a)
[
2(1 − a)(Ea − Ka)

r
(Ea − r′2Ka) + 2arEaKa

]
+ 2a

[
−2rKa(Ka − Ea) +

2(1 − a)(Ea − r′2Ka)
r

(Ka − Ea) + 2(1 − a)rEaKa

]
=
Ka − Ea

r

[
4(1 − a)(Ea − Ka) + (4 − 8a)r2Ka

]
< 0.

Therefore, h1(r) is decreasing on (0, 1) and

h1(r) < lim
r→0+

h(r) = 0,

which implies h(r) < 2.
Next, we prove h(r) > 2 − a. This is equivalent to the following inequality.

Ea[a(Ka − Ea) − (1 − a)(Ea − r′2Ka)] − [(1 − a)(Ea − r′2Ka) − ar′2Ka(Ka − Ea)] > 0.

Denote

F(r) = Ea[a(Ka − Ea) − (1 − a)(Ea − r′2Ka)] − [(1 − a)(Ea − r′2Ka) − ar′2Ka(Ka − Ea)].

The derivative of F(r) yields

F′(r) = −2(1 − a)
Ka − Ea

r

[
a(Ka − Ea) − (1 − a)(Ea − r′2Ka)

]
+ Ea

[
2a(1 − a)

r(Ea − r′2Ka)
r′2

]
− 2r(Ka − Ea)

[
a(Ka − Ea) − (1 − a)(Ea − r′2Ka)

r2 + a
Ea − r′2Ka

r2

]
=

r(Ea − r′2Ka − ar2Ea)
r′2

[
2a
Ea − r′2Ka

r
− 2(2 − a)

r′2(Ka − Ea)
r2 ·

a(Ka − Ea) − (1 − a)(Ea − r′2Ka)
Ea − r′2Ka − ar2Ea

]
.

Note that (Ea−r′2Ka−ar2Ea)/r′2 is increasing from (0,1) to (0,∞). In fact, by differentiation, we know(
Ea − r′2Ka − ar2Ea

r′2

)′
=

2a(2 − a)r(Ka − Ea)
r′4

> 0.

According to Lemma 2.2(1)(5) and Lemma 2.6, we have that F′(r) is increasing on (0,1) and F′(r) >
lim
r→0+

F′(r) = 0, which implies that F(r) is increasing on (0, 1). Moreover,

F(r) > lim
r→0+

F(r) = 0.

Thus, h(r) > 2 − a. The proof is completed. �
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For a ∈
[

1
2 , 1

)
, it is also found that h(r) is strictly increasing on (0, 1).

Lemma 2.8. For each a ∈ [ 1
2 , 1), r ∈ (0, 1), we define the function f4(r) by

f4(r) =
r′2a(Ka − Ea)2

2Ea − 2ar2Ea − 2r′2Ka
.

Then f4(r) is strictly decreasing from (0, 1) to
(
0, (1−a)π

2a(2−a)

)
.

Proof. Let
f41(r) = r′2a(Ka − Ea)2, f42(r) = 2Ea − 2ar2Ea − 2r′2Ka.

With Lemma 2.4 and f41(0+) = f42(0+) = 0, we only prove the monotonicity of f ′41(r)/ f ′42(r). Then we
have

f ′41(r) =
r

r′2−2a (Ka − Ea)[(4 − 2a)Ea − 2aKa],

f ′42(r) = 4a(2 − a)r(Ka − Ea),

4a(2 − a)
f ′41(r)
f ′42(r)

=
(4 − 2a)Ea − Ka

r′2−2a ≡ f43(r).

By differentiation, we see

f ′43(r) = 2(1 − a)
rKa

r′4−2a

[
(4 − 4a)

Ea − r′2Ka

r2Ka
− 2a

]
.

With Lemma 2.2(2), we obtain

(4 − 4a)
Ea − r′2Ka

r2Ka
− 2a < a(4 − 4a) − 2a = 2a(1 − 2a) ≤ 0.

Thus, f43(r) is strictly decreasing on (0, 1), which shows f4(r) is strictly decreasing. And

lim
r→0+

f4(r) = lim
r→0+

f ′41(r)
f ′42(r)

=
(1 − a)π
2a(2 − a)

, lim
r→1−

f4(r) = 0.

The proof is completed. �

Lemma 2.9. For each a ∈ [ 1
2 , 1), r ∈ (0, 1), we define the function f5(r) by

f5(r) =
Ea(Ea − r′2Ka) + r′2Ka(Ka − Ea)

r2r′2−2aKa
.

Then f5(r) is strictly increasing from (0, 1) to
(
π
2 ,+∞

)
.

Proof. Let
f51(r) = Ea(Ea − r′2Ka) + r′2Ka(Ka − Ea), f52(r) = r2r′2−2aKa.

Taking the derivative, we have

f ′51(r) = 2rKa(2Ea − Ka), f ′52(r) =
r

r′2a [2r′2Ka − 2(1 − a)(Ka − Ea)],
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f ′5(r) =
f ′51(r) f52(r) − f51(r) f ′52(r)

f 2
52(r)

=
f53(r)

r3r′4−2aK2
a
,

where
f53(r) = (Ka − Ea)

[
2a(E2

a − r′2K2
a ) − (4a − 2)Ea(Ea − r′2Ka)

]
.

In fact, we see

(2a(E2
a − r′2K2

a ) − (4a − 2)Ea(Ea − r′2Ka))′ =
Ka − Ea

r
[4a(Ka − Ea) + 2(4a − 2)(Ea − r′2Ka)] > 0,

which demonstrates f ′5(r) > 0 for r ∈ (0, 1) and f5(r) is increasing on (0, 1). Moreover,

lim
r→0+

f5(r) =
Ea(Ea − r′2Ka)/r2 + r′2Ka(Ka − Ea)/r2

r′2−2aKa
=
π

2
, lim

r→1−
f5(r) = +∞.

The proof is completed. �

Lemma 2.10. For each, a ∈ [1
2 , 1), r ∈ (0, 1), h(r) is given as in Lemma 2.7. Then, h(r) is strictly

increasing from (0, 1) to (2 − a, 2).

Proof. Let

h2(r) =
2Ea(Ka − Ea) − 2(1 − a)r2E2

a − 2(1 − a)r′2(Ka − Ea)2

Ka − Ea
, h3(r) = Ea − r′2Ka.

Clearly, h(r) =
h2(r)
h3(r) and h2(0+) = h3(0+) = 0. By differentiations,

h′2(r) = 2(1 − a)
2r′2(Ka − Ea)2(Ea − r′2Ka) + r2Ea[2(1 − a)Ea

2 + (4a − 2)r′2EaKa − 2ar′2K2
a ]

rr′2(Ka − Ea)2 ,

h′3(r) = 2arKa.

Then,

h′2(r)
h′3(r)

=
2(1 − a)

2a
2r′2(Ka − Ea)2(Ea − r′2Ka) + r2Ea[2(1 − a)Ea

2 + (4a − 2)r′2EaKa − 2ar′2K2
a ]

r2r′2Ka(Ka − Ea)2

=
1 − a

a

[
2Ea − 2ar2Ea − 2r′2Ka

r′2a(Ka − Ea)2

] [
Ea(Ea − r′2Ka) + r′2Ka(Ka − Ea)

r2r′2−2aKa

]
=

1 − a
a

f5(r)
f4(r)

.

With Lemmas 2.8 and 2.9, we obtain that h(r) is strictly increasing on (0, 1). Furthermore,

lim
r→0+

h(r) = 2 − a, lim
r→1−

h(r) = 2.

This completes the proof. �

AIMS Mathematics Volume 10, Issue 5, 11271–11289.



11281

3. Main results

In this section, we present some of the main results of Ea(r).

Theorem 3.1. Let a ∈
[

1
2 , 1

)
, p ∈ R \ {0}, and for r ∈ (0, 1), define

Fa,p(r) =
1 − [2Ea(r)/π]

p
2(1−a)

1 − r′p
.

The monotonicity of Fa,p(r) is as follows:

(1) Fa,p(r) is strictly increasing from (0, 1) to (1 − a, 1 − b) if and only if p ≥ 2, where

b =

(
sin(πa)
(1 − a)π

) p
2(1−a)

.

(2) Fa,p(r) is strictly decreasing on (0, 1) if and only if p ≤ 2 − a. Moreover, if p ∈ (0, 2 − a], the
range of Fa,p(r) is (1 − b, 1 − a), and the range is (0, 1 − a) if p ∈ (−∞, 0).

(3) If p ∈ (2 − a, 2), Fa,p(r) is piecewise monotonic. To be precise, there exsists r0 = r0(a, p) ∈ (0, 1)
such that Fa,p(r) is strictly increasing on (0, r0) and strictly decreasing on (r0, 1). Furthermore,
for r ∈ (0, 1), if p ∈ (2 − a, p0), the range of Fa,p(r) satisifies

1 − b < Fa,p(r) ≤ σ0, (3.1)

while
1 − a < Fa,p(r) ≤ σ0, (3.2)

if p ∈ [p0, 2), where

p0 =
2(1 − a) log a

log(sin(πa)/(1 − a)π)
∈ (2 − a, 2), σ0 = Fa,p(r0) > 1 − a.

Proof. For r ∈ (0, 1),

Fa,p(r) =
1 − [2Ea(r)/π]

p
2(1−a)

1 − r′p
=:

ϕ1(r)
ϕ2(r)

.

Clearly, we have ϕ1(0) = ϕ2(0) = 0. By differentiation,

ϕ′1(r) =
p

2(1 − a)

(
2
π

) p
2(1−a)

E
p

2(1−a)−1
a

2(1 − a)(Ka − Ea)
r

,

ϕ′2(r) = prr′p−2,

and

ϕ′1(r)
ϕ′2(r)

=

(
2
π

) p
2(1−a) E

p
2(1−a)−1
a (Ka − Ea)

r2r′p−2 =: ϕ3(r).

By differentiating logϕ3(r), we obtain
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ϕ′3(r)
ϕ3(r)

=
p

2(1 − a)
2(a − 1)(Ka − Ea)

rEa
+ p

r
r′2
−

2
r

+
2(1 − a)rEa

r′2(Ka − Ea)
+

2(1 − a)(Ka − Ea)
rEa

−
2r
r′2

= p
Ea − r′2Ka

rr′2Ea
+

2(1 − a)r2E2
a − 2Ea(Ka − Ea) + 2(1 − a)r′2(Ka − Ea)2

rr′2Ea(Ka − Ea)

=
Ea − r′2Ka

rr′2Ea

[
p −

2Ea(Ka − Ea) − 2(1 − a)r2E2
a − 2(1 − a)r′2(Ka − Ea)2

(Ka − Ea)(Ea − r′2Ka)

]
=
Ea − r′2Ka

rr′2Ea
(p − h(r)), (3.3)

where h(r) is defined as in Lemma 2.7. By Lemmas 2.2(2), 2.7, and 2.10, there are three cases to
consider.

(i) If p ≥ 2. It follows from (3.3) that ϕ3(r) is strictly increasing on (0, 1), and so is Fa,p(r).
Furthermore, in this case,

Fa,p(0+) = lim
r→0+

ϕ′1(r)
ϕ′2(r)

= 1 − a, Fa,p(1−) = 1 −
(

sin(πa)
(1 − a)π

) p
2(1−a)

.

(ii) If p ≤ 2 − a, as in the proof of case (i), we know that ϕ3(r) is strictly decreasing on (0, 1), and
so is Fa,p(r). Also, Fa,p(0+) = 1 − a, and

Fa,p(1−) =

0, for p < 0,

1 −
(

sin(πa)
(1−a)π

) p
2(1−a)

, for 0 < p ≤ 2 − a.

(iii) If 2 − a < p < 2. According to Ramanujan’s approximation (1.1), it shows that r′cKa → 0
(r → 1−) if c ≥ 0. With Lemma 2.2(4) and the equation

Hϕ1,ϕ2(r) =
ϕ′1
ϕ′2
ϕ2 − ϕ1 = ϕ2ϕ3 − ϕ1,

we obtain

lim
r→0+

Hϕ1,ϕ2(r) = 0, lim
r→1−

Hϕ1,ϕ2(r) =

(
sin(πa)
(1 − a)π

) p
2(1−a)

− 1 < 0. (3.4)

Together with (3.3), (3.4), Lemmas 2.7 and 2.10, and the formulas

F ′a,p(r) =

(
ϕ1

ϕ2

)′
=
ϕ′2
ϕ2

2

Hϕ1,ϕ2(r),

H′ϕ1,ϕ2
(r) =

(
ϕ′1
ϕ′2

)′
ϕ2 = ϕ′3(r)ϕ2(r),

which follows from (2.2) and (2.3), it shows that there exists r0 ∈ (0, 1) such that Hϕ1,ϕ2(r) > 0 for
r ∈ (0, r0) and Hϕ1,ϕ2(r) < 0 for r ∈ (r0, 1). Thus, Fa,p(r) is strictly increasing on (0, r0) and strictly
decreasing on (r0, 1). Therefore, for all r ∈ (0, 1), we get

Fa,p(r) ≤ Fa,p(r0) = σ0.
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In fact, Fa,p(r0) ≥ Fa,p(r) > max
{
Fa,p(0+),Fa,p(1−)

}
. It follows from Lemma 2.5 that

p0 =
2(1 − a) log a

log(sin(πa)/(1 − a)π)
∈ (2 − a, 2),

which makes p0 the unique root of

1 −
(

sin(πa)
(1 − a)π

) p
2(1−a)

= 1 − a

on (2 − a, 2) and p 7→ 1 −
(

sin(πa)
(1−a)π

) p
2(1−a) is strictly increasing on (−∞,∞). Hence we have Fa,p(0+) ≥

Fa,p(1−) if p ∈ (2 − a, p0] and Fa,p(0+) < Fa,p(1−) if p ∈ (p0, 2). Consequently, the range of Fa,p(r) in
case 3 is valid. The proof is completed. �

Figure 1 shows the monotonicity of Fa,p with a = 0.7 as an example.

Figure 1. Monotonicity of Fa,p with a = 0.7 as an example.

Applying the property of Fa,p(r) from Theorem 3.1, we obtain our main result.

Theorem 3.2. For a ∈ [1
2 , 1), let µ, ν ∈ [0, 1] and p0, σ0 be given as in Theorem 3.1. Then for any fixed

p ∈ R, the double inequality

π

2
H2(1−a)

p (1, r′; µ) ≤ Ea ≤
π

2
H2(1−a)

p (1, r′; ν) (3.5)

holds for all r ∈ (0, 1) with the equality only for certain values of r if and only if µ ≤ µ(a, p) and
ν ≥ ν(a, p), where µ(a, p) and ν(a, p) satisfy

µ(a, p) =


a, p ∈ (−∞, 0) ∪ (0, 2 − a],
1 − σ0, p ∈ (2 − a, 2),
b, p ∈ [2,+∞),

ν(a, p) =


1, p ∈ (−∞, 0),
b, p ∈ (0, p0),
a, p ∈ [p0,+∞),

(3.6)
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where

b =

(
sin(πa)
(1 − a)π

) p
2(1−a)

.

Particularly, for p = 0, (3.5) holds if and only if µ ≤ 1 − 2(1 − a)2 and ν ≥ 1.

Proof. First we consider the case of p , 0, by (1.5), the inequality (3.5) is equivalent to

µ < 1 − Fa,p(r) < ν, (3.7)

where Fa,p(r) is defined as in Theorem 3.1. It follows from Theorem 3.1 that we immediately conclude
the best possible constants µ = µ(a, p) and ν = ν(a, p) in (3.6).

For p = 0, we define the function T (r) on (0,1) by

T (r) =
log(2Ea/π)

log r′
=:

T1(r)
T2(r)

.

Obviously, we see that T1(0+) = T2(0+) = 0. By differentiation, we have
T ′1(r)
T ′2(r)

= 2(1 − a)
r′2(Ka − Ea)

r2Ea
.

Together with Lemma 2.2(3), this implies T ′1(r)
T ′2(r) is strictly decreasing on (0,1), and by Lemma 2.4, T (r)

shares the same monotonicity. Clearly, T (1−) = 0 and

T (0+) = lim
r→0+

T ′1(r)
T ′2(r)

= 2(1 − a)2,

which indicates 1 − 2(1 − a)2 < 1 − T (r) < 1 for r ∈ (0, 1). As a result, Eq (1.5) demonstrates that the
inequality

π

2
H2(1−a)

p (1, r′; µ) < Ea(r) <
π

2
H2(1−a)

p (1, r′; ν)

holds for all r ∈ (0, 1) if and only if µ ≤ 1 − 2(1 − a)2 and ν ≥ 1.
This completes the proof. �

Figure 2 shows the sharpness of the bound with a = 0.7 as an example.

(a) For p=1.3. (b) For p=1.6.

Figure 2. Sharp bound for Ea with a = 0.7 as an example.
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Remark 3.1. For a = 1
2 , we see that (3.5) holds if the parameters satisfy the conditions given in

Theorem 3.2. This conclusion has been proved in [15].

4. Applications

In this section, by applying Theorem 3.2, we present several sharp bounds of weighted Hölder mean
for Ea.

Note that for the case of µ(a, p) = ν(a, p) = a, the best bounds of Ea are attained at p = 2 − a and
p = p0, which will be proved in the following corollary.

Corollary 4.1. Let a ∈ [1
2 , 1) and p1, p2 ∈ R. Then the inequality

π

2
H2(1−a)

p1
(1, r′; a) < Ea(r) <

π

2
H2(1−a)

p2
(1, r′; a) (4.1)

holds for all r ∈ (0, 1) with the best possible constants p1 = 2 − a and p2 = p0, where p0 is given as in
Theorem 3.1.

Proof. For a ∈ [1
2 , 1), we consider (µ, p) = (a, 2 − a) and (ν, p) = (a, p0) satisfying (3.6), which

yields (4.1) upon substitution into (3.5).
To establish that a and p0 are the best possible constants, we observe that the Hölder mean is

monotonically increasing with respect to p. Consequently, it suffices to analyze the case of 2−a < p <
p0.

According to Theorem 3.2, the inequality

π

2
H2(1−a)

p (1, r′; 1 − σ0) ≤ Ea ≤
π

2
H2(1−a)

p (1, r′; b) (4.2)

holds for all r ∈ (0, 1), where 1−σ0 and b are sharp, with b given as in Theorem 3.2. From Theorem 3.1,
together with the monotonicity ofω 7→ Hp(1, r′;ω), we have 1−σ0 < a < b for p ∈ (2−a, p0), implying

π

2
H2(1−a)

p (1, r′; 1 − σ0) ≤
π

2
H2(1−a)

p (1, r′; a) ≤
π

2
H2(1−a)

p (1, r′; b).

Therefore, considering the sharpness of 1 − σ0 and b in inequality (4.2), we conclude that there exist
two numbers r1, r2 ∈ (0, 1) such that

π

2
H2(1−a)

p (1, r′1; a) > Ea(r1),
π

2
H2(1−a)

p (1, r′2; a) < Ea(r2).

Thus, the proof is completed. �

Figure 3 demonstrates that the sharp bounds of Ea are attained at p1 = 2 − a and p2 = p0 with
a = 0.7 as an example.

Furthermore, it is observed that computing the lower bound in (3.6) for the case µ(a, p) = 1 − σ0

is challenging, while the case ν(a, p) = 1 is trivial. Thus, we propose using µ(a, p) = b for p ∈ [2,∞)
and ν(a, p) = b for p ∈ (0, p0) to establish new bounds. The specific inequality is as follows.
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Figure 3. Best constants for (4.1) with a = 0.7 as an example.

Corollary 4.2. Inequality

π

2


(

sin(πa)
(1 − a)π

) 1
1−a

+

1 − (
sin(πa)
(1 − a)π

) 1
1−a

 r′2


1−a

(4.3)

<Ea <
π

2


(

sin(πa)
(1 − a)π

) p0
2(1−a)

+

1 − (
sin(πa)
(1 − a)π

) p0
2(1−a)

 r′p0


2(1−a)

p0

holds for r ∈ (0, 1).

Lemma 4.3. Let a ∈ [1
2 , 1),

∆(p, r) = H2(1−a)
p (1, r′; b)

=


(

sin(πa)
(1 − a)π

) p
2(1−a)

+

1 − (
sin(πa)
(1 − a)π

) p
2(1−a)

 r′p


2(1−a)
p

.

Then, the function ∆(p, r) with respect to p is strictly decreasing on (0,∞) for r ∈ (0, 1).

Proof. By differentiating log ∆(p, r):

1
∆(p, r)

∂∆(p, r)
∂p

= −
∆̃(p, r′p)

p2ψ(p, r′p)
, (4.4)

where

ψ(p, x) =

(
sin(πa)
(1 − a)π

) p
2(1−a)

+

1 − (
sin(πa)
(1 − a)π

) p
2(1−a)

 x,
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and

∆̃(p, x) = 2(1 − a)ψ(p, x) log(ψ(p, x)) − p(1 − x)
(

sin(πa)
(1 − a)π

) p
2(1−a)

log
(

sin(πa)
(1 − a)π

)
− 2(1 − a)

1 − (
sin(πa)
(1 − a)π

) p
2(1−a)

 x log x.

Differentiating ∆̃(p, x) with respect to x yields

∂∆̃(p, x)
∂x

= 2(1 − a)

1 − (
sin(πa)
(1 − a)π

) p
2(1−a)

 log
ψ(p, x)

x

+ p
(

sin(πa)
(1 − a)π

) p
2(1−a)

log
(

sin(πa)
(1 − a)π

)
, ∆0(p, x).

Give the observation that ∆0(p, x) is strictly decreasing for x ∈ (0, 1). In fact,

∂∆0(p, x)
∂x

= −2(1 − a)

[
1 −

(
sin(πa)
(1−a)π

) p
2(1−a)

] (
sin(πa)
(1−a)π

) p
2(1−a)

xψ(p, x)
< 0.

And

∆0(p, 0+) = ∞, ∆0(p, 1−) = p
(

sin(πa)
(1 − a)π

) p
2(1−a)

log
(

sin(πa)
(1 − a)π

)
< 0

indicate that ∆̃(p, x) first strictly increases on (0, x0) and then strictly decreases on (x0, 1) for some
x0 ∈ (0, 1). Note that for p > 0, it is observed that

∆̃(p, 0+) = ∆̃(p, 1−) = 0. (4.5)

Hence, ∆̃(p, x) > 0 for x ∈ (0, 1).
Consequently, monotonicity of ∆(p, r) with respect to p follows from (4.4). �

Remark 4.1. Following Lemma 4.3 and inequality (3.5), we observe thatEa >
π
2 H2(1−a)

2 (1, r′; b
1

1−a
1 ) ≥ π

2 H2(1−a)
p (1, r′; b

p
2(1−a)

1 ), if p ∈ [2,∞),

Ea <
π
2 H2(1−a)

p0 (1, r′; b
p0

2(1−a)

1 ) ≤ π
2 H2(1−a)

p (1, r′; b
p

2(1−a)

1 ), if p ∈ (0, p0],
(4.6)

where
b1 =

sin(πa)
(1 − a)π

.

According to the proof of (3.2), if p ∈ (p0, 2), it follows that

1 − σ0 < b < a.

Therefore, it results in

π

2
H2(1−a)

p (1, r′; 1 − σ0) <
π

2
H2(1−a)

p (1, r′; b) <
π

2
H2(1−a)

p (1, r′; a)
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by the monotonicity of H2(1−a)
p (1, r′; ζ) with respect to ζ.Theorem 3.2 presents that, for p ∈ (p0, 2),

1−σ0 is sharp weight of H2(1−a)
p (1, r′; ζ) as the lower bound of Ea, while a is sharp weight as the upper

bound of Ea.
Hence, as a bound of Ea, H2(1−a)

p (1, r′; b) can attain the best upper bound at p = p0 and the best
lower bound at p = 2 by (4.6).

5. Conclusions

In this article, we have proved the monotonicity of Fa,p(r), where Fa,p(r) is given as in Theorem 3.1.
Moreover, we find the sharp weighted Hölder mean approximating Ea:

π

2
H2(1−a)

p (1, r′; µ) ≤ Ea ≤
π

2
H2(1−a)

p (1, r′; ν)

holds for all r ∈ (0, 1) if and only if µ ≤ µ(a, p) and ν ≥ ν(a, p), where µ(a, p) and ν(a, p) are given
as in (3.6). Besides, we derive several bounds of Ea in terms of weights and power, which are given
by Corollary 4.1, Corollary 4.2, and Remark 4.1. These conclusions provide an extension of the work
of [15].
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