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1. Introduction

For real numbers a, b, ¢ with —c ¢ N U {0}, the Gaussian hypergeometric function is defined by

= (a,n)(b,n) ﬁ

F(a,b;c;x) = en nl

x| <1,
n=0

where (a,0) = 1 for a # 0 and (a, n) is the shifted factorial function given by
(a,n)=ala+1)a+2)---(a+n-1)

for n € N. It is well known that the Gaussian hypergeometric function, F(a, b; c; x), has a broad range
of applications, including in geometric function theory, the theory of mean values, and numerous
other areas within mathematics and related disciplines. Many elementary and special functions in
mathematical physics are either particular cases or limiting cases. Specifically, F(a, b; c; x) is said to
be zero-balanced if ¢ = a + b. For the case of ¢ = a + b, as x — 1, Ramanujan’s asymptotic formula

satisfies Reab) — n(l
Fa.bia+b,x) = & ;(_a I;() = 4 0((1 - (1 - ). (1.1)
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where
[(@)T'(b)

Ba.b) = Fav

is the classical beta function [1] and
R(a,b) = =2y - ¥(a) - ¥Y(D),

here W(z) = I"(2)/T'(z), Re(x) > 0O is the psi function, and vy is the Euler—Mascheroni constant [1].
Throughout this paper, let a € [%, 1), and we denote ' = V1 —r2 for r € (0,1). The generalized
elliptic integrals of the first and second kind are defined on (0, 1) as follows [2]:

Ka = Ka(r) = gF(a, 1-a;1,7%),  K.(0) = g Ka(1) = o0, (1.2)

and

sin(rra)
2(1 —a)’

Eu = E4u(r) = gF(a -1L1-a;1,r7), &(0) = g Eu(1) = (1.3)
Set K/ (r) = K,(r'), E(r) = E,(r). Note that when a = % ¥,(r) and E,(r) reduce to the classical
complete elliptic integrals K(r) and E(r) of the first and second kind, respectively

11
1;r2), S(r):gF( - 1;r2).

11 )
2’2’

/s

K@) = EF(E’ 2
It is well known that complete elliptic integrals play a crucial role in various areas of mathematics and
physics. In particular, these integrals provide a foundation for investigating numerous special functions
within conformal and quasiconformal mappings, including the Grétzsch ring function, Hiibner’s upper
bound function, and the Hersch—Pfluger distortion function [3,4]. In 2000, Anderson, et al. [5]
reintroduced the generalized elliptic integrals in geometric function theory. They discovered that the
generalized elliptic integral of the first kind, denoted as K, originates from the Schwarz—Christoffel
transformation [3] of the upper half—plane onto a parallelogram and established several monotonicity
theorems for K, and &,. The generalized Grotzsch ring function in generalized modular equations
and the generalized Hiibner upper bound function can also be expressed in terms of generalized
elliptic integrals [6]. Recently, generalized elliptic integrals have garnered significant attention from
mathematicians. A wealth of properties and inequalities for these integrals can be found in the
literature. Specifically, various properties of elliptic integrals and hypergeometric functions, including
monotonicity, approximation, and discrete approximation, have been investigated in [7-9], with
sharp inequalities derived for elliptic integrals. Additionally, studies in [10, 11] primarily focus on
inequalities between different means, such as the Toader mean, and Holder mean, as well as their
applications in elliptic integrals.

For r € (0,1), ¥ = V1 —r2, it is known that the arc-length of an ellipse with semiaxes 1 and r,
denoted azs L(1,r), is given by L(1,r) = 4E(r"). Muir indicated that L(1, r) can be approximated by

N
27{ (“7”2)3 Later, Vuorinen conjectured the following inequality for r € (0, 1):

TRCAL
T +r2Y
5( 2 ) <8(r),
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which was subsequently proven by Barnard et al. [12].
The Holder mean of positive numbers x,y > 0 with order s € R, is defined as

Hy(x,y) = {(XS?S)S , s#0,
VX,  s=0.

It is easy to see H,(x,y) is strictly increasing with respect to s. Alzer and Qiu [13] established the
following inequalities:
T
2
with the best constants s; = 3/2 and s, = log2/log(n/2) = 1.5349 ..., see [13, 14] for details.
The generalized weighted Holder mean of positive numbers x,y, with weight w and order s, is
defined as [14]:

H,(1,7) < &) < gHSz(l, - (1.4)

sy (l—wy' ], s#0,
HGoysw) = {00 HA e s (1.5)
xeyl=e, s=0.
Wang et al. [15] proved that for r € (0, 1), the following inequality holds:
n T
EHS,(I,r’;a) < &(r) < EHSZ(I, r';B), (1.6)

and the best parameters a = a(s), § = B(s) satisfy

%, s € (oo, %], 1, s € (00,0],
a(s)={1-n, se2), B)=1{2F, se(s5)
(%)S’ s € [2’ OO), %’ s € [SO, OO),

where s) = o575 = 1.5349..., 7 = Fy(rg) > 3, Fy = =227 and ry = ro(s) € (0, 1) is the value
such that Fi(r) is strictly increasing on (0, () and strictly decreasing on (ry, 1)) for s € (,2).
The extension of the inequality (1.6) to the second kind of generalized elliptic integral &,, where

a e [%, 1), is a natural inquiry. This paper aims to address this question. One might wonder why

the parameter a is restricted to the interval [%, 1) rather than (0, 1). For a € (0, %), our analysis has
revealed a lack of the expected monotonicity in the function %, ,(x), as defined in Theorem 3.1. This
monotonicity is crucial for establishing the desired inequalities.

To achieve our purpose, we require some more properties of generalized elliptic integrals of the first
and second kind. Therefore, Section 2 will introduce several lemmas that establish these properties.
Section 3 will present our main results along with their corresponding proofs. In Section 4, we establish
several functional inequalities involving &, as applications. Finally, we give the conclusion of this
article.

2. Lemmas

In this section, several key formulas and lemmas are presented to support the proof of the main
results. The derivative formulas of the generalized elliptic integrals are given.
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Lemma 2.1 ([5]). Fora € (0,1) and r € (0, 1), we have
d¥K, 2(1 —a)(&, - K ) d&, _2(1 -a) (K, - &)
dr rr'? dr r ’

21 —
g —gy= =8 d o ngey k.
dr dr

72 ’

The following lemma provides the monotonicity of some generalized elliptic integrals with respect
to r, which can be found in [16].

Lemma 2.2. Let a € (0, 1). Then the following function:
72 -
(1) r— &% is increasing from (0, 1) ro (%2, S804 .

P 2 2(1-a)”
(2)r— 8”;2;?7(” is decreasing from (0, 1) to (0, a);
(3)r— ’(35—88“ is decreasing from (0, 1) to (0,1 — a);
(4)r— 7(;’—7‘?) is increasing from (0,1) to (1 — a, 1);

(5)re M is decreasing on (0, 1) if and only if ¢ > a(2 — a).
Lemmas 2.3 and 2.4 are important tools for proving the monotonicity of the related functions.

Lemma 2.3 ([17]). Let a(x) = 3,7, a,x" and B(x) = Y7 b,x" be real power series that converge on
(=r,r)(r > 0), and b, > 0 for all n. If the sequence { }n>0 is increasing (or decreasing) on (0, r), then
a(x)

SOlSM

Lemma 2.4 ([3]). For a,b € (—co,0) and a < b, let f,g : [a,b] be continuous on [a,b] and be

differentiable on (a,b), and g'(x) # 0 for all x € (a,b). If g,’gjg '

f) - fla) and f) = f(b)
g(x) — g(a) g(x) — g(b)

In particular, if f(a) = g(a) = 0(or f(b) = g(b) = 0), then the monotonicity of i 83 is the same as ; Ex;

then so are

However, L& ((x; is not always monotonic; it is sometimes piecewise monotonic. An auxiliary function
Hy, [8]1s deﬁned as
fl
Hpg = g—g f, (2.1)

where f and g are differentiable on (a,b) and g’ # 0 on (a,b) for —c0 < a < b < co. If f and g are
twice differentiable on (a, b), the function H, satisfies the following identities:

(J_") il g_’(ﬂ - f) 8 Hye 22)
8 8 g \g
H,, :(’gi,) g. (2.3)

Here, Hy, establishes a connection between and f

Lemma 2.5. Define the function fi(x) on [5, 1) by
2(1 — x)logx
log(sin(zx)/(x(1 = x)))

filkx) =

Then?2 — x < fi(x) < 2.
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Proof. To establish the right-hand side of the inequality, it suffices to prove that

sin(7rx)

1-x)1 -1 0.
(1 -x)logx Ogﬂ(l—x) >
Denote )
210 = (1 — 1) log x — log S0
(1l — x)
By differentiation, we obtain
1—-x mcos(mx) 1
! = -] — —
8§10 ogxT sin(rx) 1-x’
1 1 n? 1

(X)) = —— — = + - :
&1 () x  x% sin’(rx) (1 —x)?

Observe that g’l’(%) =nx>-10 = -0.130... < 0, and lir?_ g7 (x) = +oco. This implies that there exists

Xo € [%, 1) such that g/ (x) is decreasing on [%, Xp) and increasing on (xy, 1). Since g’l(%) =log2-1=
—0.306..., and g{(17) = 0, it is clear that

’ /7 1 7 —
g1(x) < max {81 (5) ,8,(1 )} =0,
which implies that g;(x) is decreasing on [%, 1). Consequently,

gi1(x)>gi(17) =0.

In order to establish the left-hand side of the inequality, we define

22(x) = 2(1 — 1) log 1 — (2 — x) log 270
(1l — x)
Note . L3 5
“)=1og = - Zlog = = —0.015... 1) = 0. 2.4
82(2) ogy —5log— 0.015..., &07)=0 (2.4)

Differentiating g,(x) yields

24(x) = —2log x + 2(1-x) @2-xmcos(mx) 2-x o sin(7rx)

sin(mx) 1-x (1l =x)
Observe that
1 8 3 32V2 57 13
[=]=1log—-—-1=-0.065... [=]=1log —— + — — — =4.166... .
g2(2) og 0.065... <0, g (4) 0g 5~ + 13 66... >0

Based on these observations and the intermediate value theorem, there exists x, € [%, 1) such that
g,(x2) = 0 and g»(x) is decreasing on [%, X») and increasing on (x,, 1). Therefore, together with (2.4),
we conclude that

82(x) <0.

This completes the proof. O
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Lemma 2.6. For each a € [%, 1), the function

p/2-a2-a) [a((](a _ 8(1) — (1 — a)(ga — r’2(}<‘a)]
E,— 1K, —ar’&,

fa(r) =
is decreasing from (0, 1) to (0, ﬁ)
Proof. Following from (1.2) and (1.3), we deduce that
a(K, - &) — (1 - a)(Eq — 17K, = ;—Taz(l — )P Fa+ 1,2 - a; 317,

1-a)2-
Eo— 1K, —ar*&, = i 61)4( a)ﬂr4F(a,2 —a;3;r%).

To establish the desired monotonicity of f,(r), it suffices to prove that the function f;(x), defined on
(0,1) by

(1 -x)9Fa+1,2-a;3;x)

Jatn) = F(a,2 - a;3: ) ’

is decreasing on (0, 1), where p(a) = —2_a(22_a)

expressed as

. Using the power series expansion, the function can be

ZZO:] Unxn
220:1 ann ’

where the coeflicients U, and V,, satisfy the recursive relations, as detailed in [18]:

X =

U() :1, VO = 1,

_ (@2 -a)y

Uni1 =a,U, = b,U,_,, V.= > 2.5
+1 =d 1 G (2.5)

with
_4n? +2(3 - a® + 2an + (=54 + 8a - 2)

n 2+ 1)(n+3) .
_(2n+4a-2- a®)(2n — a?)
B 4(n+ 1)(n +3) ‘

by

By Lemma 2.3, we aim to prove that the sequence {%}po is decreasing. Note that
u,>0, V,>0,
and
Uy | U -5a*+8a+2 U, B -84 +10a®> +a -2
Vo 7 Vi 2a-a) " Vo  aB-a)l+a)
Observe that
Uy U _ U
— > — > —,
Voo i W,
which implies
Vi Vs

U -—Uy<0, U,—-—=U;<0.
1 Vo 0 2 v, 1
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Assuming that U — %Uk_l < Oforall 1 < k < n, we prove by induction that U, — V";;‘ U, <O.
According to (2.5), we have

V, Vi
Uns1 — V:l U, = (anUn - ann—l) - V:;I U,

Vn n Vn Vn Vn

=\an — _+1 Un +|an — + _Un—l — |4 — + _Un—l - ann—l
Vn Vn Vn—l Vn Vn—l
VIH—] Vn Vn+] Vn

= n Un_ Un— + n _bn Un—-

(a Vn ) ( Vn—l 1) (a Vn ) Vn—l ] !

Since a € [1, 1), it is easy to know that

15 19
6+4a—2a2:—2(1—a)2+827, —5a2+8a+2:—5(a—4/5)2+26/52Z,

and
Visi 2(m=12+(6+4a—-2a*)(n—1)+ (=5a> + 8a + 2)
a, — =

v, 2(n+ 1)(n+3)
is positive for a € [%, 1) whenn > 1. Fora € [%, 1) and n > 1, we have that

a, — Vn+1 Vn —b, = 6(”) < 0’

V., | Vaii dn(n+ D(n +2)(n + 3)

where

5(n) = —d*(a - 2)*n® + 2(a* — 4a® + 6a* = 2)n + 2(1 — a)*(3a* — 4a + 2).

In fact, 6(n) is a quadratic function of n and is decreasing on (1, ), it follows that

2a* — 4a® + 6a* - 2) 2a* -2
- =1+ —""<1,
2(—a%(a - 2)?) a*(a—-2)* (2.6)
8(n) <6(2) =2(a—-1)3d® -7a*> +10a+2) <0 forn > 2,

which implies that

Vn+1 Vn
= U,|— -b, <0.
(a Vn ) Vn—l

By induction, we conclude that U, — V"’;‘

decreasing. Consequently, the function f,(r) is decreasing on (0, 1). Moreover,

U, < 0 for all n > 1. Therefore, the sequence {%}n>0 is

. a .
rlg(l)l Sa(r) = T }g{l fa(r) = 0.
This completes the proof. O

Lemma 2.7. For each a € [%, 1), we define the function h(r) on (0, 1) by

28K, — &) — 2(1 — a)r*E2 = 2(1 — a)r (K, — E,)*

hlr) = K —E)Eu— 7K

Then, 2 —a < h(r) < 2.

AIMS Mathematics Volume 10, Issue 5, 11271-11289.
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Proof. First of all, we prove the right-hand side inequality. To establish the desired result, we need to
show the following inequality:

268K, — &) — 2(1 — a)r* &2 — 2(1 — a)r'*(K, — E)* < 2K, — EN(E, — 1r*K,),
which is equivalent to
—2(1 = )E,(E, = 1*K,) + 2ar* K (K, — E,) < 0.

Denote that
hi(r) = =2(1 — @)Eu(Ey — 1K) + 2ar* K (K, — E,).
By differentiation, we obtain

Hi(r) = - 2(1 - a) [2(1 — “)(ra” ~ %)

(&, — 1K) + 2ar8a7(a]
21 —a)(&, — r'*K,)

7

(K, - &) +2(1 —a)yr&E,K,

+ 2a [—Zﬂ(a(?(a -&E) +

X ; Eu (41 - a)(&,4 - o) + (4 = 8a)r* K| < 0.

Therefore, h(r) is decreasing on (0, 1) and
hi(r) < lil(l)l+ h(r) =0,

which implies A(r) < 2.
Next, we prove h(r) > 2 — a. This is equivalent to the following inequality.
Eula(Ky = Ea) = (1 = )&y = 1K) = [(1 = a)(E, — r?Ke) — ar* Ko (Ku = E4)] > 0.
Denote
F(r) = Ea(K, = E4) = (1 = a) (&4 — 1K) = [(1 = a)(E, — r?Ke) — ar* Ko (Ku — Ea)].
The derivative of F(r) yields

F'(r)=-2(1- a)@ [a(K, - &) - (1 = )&, - K| + &,

_ 2
2a(1 — ) G %) W“)]

72

_ — _ _ 2 _ 2
—2r(Wa—Sa)[a(7<a )= (1= )& =r"K) _ Eu=r 7<]

72 72

— r(aa — r/zq(ﬂ - ar28a) 2 Sa - r/2(](a _ 2(2 _ )rlz(q(a - Sa) . a(q(a - 8(1) - (1 - a)(sa - r/Z(](a)
B 2 a r a4 r2 E,— 1K, — ar’&, '
Note that (&, —r?K, —ar*E,)/r’? is increasing from (0,1) to (0, co). In fact, by differentiation, we know

(Sa — 1K, — ar’&, )I _ 242 - a)r(K, — &) >

2 74 0.

r r

According to Lemma 2.2(1)(5) and Lemma 2.6, we have that F’(r) is increasing on (0,1) and F’(r) >
lirgl+ F’(r) = 0, which implies that F(r) is increasing on (0, 1). Moreover,

F(r) > lim F(r) = 0.

Thus, h(r) > 2 — a. The proof is completed. O
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Fora € [%, 1), it is also found that A(r) is strictly increasing on (0, 1).

Lemma 2.8. For each a € [%, 1), r € (0, 1), we define the function fi(r) by

f (7’) _ r/2a(7(a - 8(4)2
T8, a8, — 2/ K,

Then fi(r) is strictly decreasing from (0, 1) to (O, z(,i(_za—)Z))

Proof. Let
fu () =K = &) farlr) = 28, - 2ar°E, - 2r°K,.

With Lemma 2.4 and f;;(0%) = f4,(0") = 0, we only prove the monotonicity of f,(r)/f,,(r). Then we
have -
Ju(r) = E(Wa — &4 = 2a)8, — 2a'K,],
Ji(r) = 4a2 — a)r(K, — Ea),
fu( @4 -2a0)8, - K,

4a(2 - = = .
a2-a7 s . fuar)
By differentiation, we see
) rK, &, - 1K,
fiz(r) =201 - a)r/4_20 4 - 4a)r2—(Ka -2al.

With Lemma 2.2(2), we obtain

K

Sa_ a
(4 —4a)~*———" - 2a < a(4 - 4a) — 2a = 2a(1 - 2a) < 0.
r*K,

Thus, fy3(r) is strictly decreasing on (0, 1), which shows f4(r) is strictly decreasing. And

. BT f;{](r)_ (1—a)7r
lim fa(r) = lim () 2a2-a)’

lim f,(r) = 0.

The proof is completed. m|

Lemma 2.9. For each a € [%, 1), r € (0, 1), we define the function fs(r) by

_ aa(ga B r/27<u) + r’27(a(7(a B 8(1)
f5() = 222, :

Then fs5(r) is strictly increasing from (0, 1) to (g, +00).

Proof. Let
f51(}’) = 8a(aa - r’Z(](a) + r/27<'a(7<a — 8a), fSZ(r) — 7'21’"2_2a7<a,

Taking the derivative, we have

£ = 2K, 28, - K, folr) = ——[27°K, - 2(1 = a)(K, - &),
r

AIMS Mathematics Volume 10, Issue 5, 11271-11289.
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Fsif52(r) = fsi(Nf, (1) fs3(r)

f522( 7’) - 73 ,,./4—2a7<‘uZ ’

fs(r) =

where
fa(r) = (Ko = &) |2a(E] - 1°K) = (da - DEL(Eq - 17K,

In fact, we see

K. — &

Qa(E? — r*K?) — (4a - 2)E,(E, — r*K)) = [4a(K, — E,) + 2(4a — 2)(E, — r*K,)] > 0,

which demonstrates f;(r) > 0 for r € (0, 1) and f5(r) is increasing on (0, 1). Moreover,

EfEy— 1K)+ ?*K (K, - E)r* =

rlg(lgrfS(r) - r2-2a9¢, - 5’ rlgfl* J5(r) = +oo.
The proof is completed. O

Lemma 2.10. For each, a € [%, 1), r € (0,1), h(r) is given as in Lemma 2.7. Then, h(r) is strictly
increasing from (0, 1) to (2 — a, 2).

Proof. Let

28,(K, — E) —2(1 —a)yr*E* = 2(1 — a)yr'*(K, — E.)*

h(r) = e

, h3(r) = 811 - r/27(a~

Clearly, h(r) = ’,gg; and h,(0*) = h3(0*) = 0. By differentiations,

22K, — )% (Eq — 1K) + 1PE[2(1 — a)E,* + (4a — 2)r*E, K, — 2arK?]
(K, — E,)> ’

hy(r) =2(1 - a)
hy(r) = 2arK,.
Then,

hy(r) 2(1 - a) 2FA(K, — ENHE, — K + rPEJ2(1 — a)E,% + (4a = 2)r'*E,K, — 2ar*K?]

Ryr)  2a 22K (K, — E,)?
1—al28,-2ar2&, = 2r*K, | [ E,(Es — 12K + K (K, — E,)
= a 724(K, — &) ] [ 222,
_1-afs(@)
G

With Lemmas 2.8 and 2.9, we obtain that A(r) is strictly increasing on (0, 1). Furthermore,
lirgl+ h(r)=2-a, lir{; h(r) = 2.
This completes the proof. O
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3. Main results

In this section, we present some of the main results of &,(r).
Theorem 3.1. Leta € [%, 1), p € R\ {0}, and for r € (0, 1), define

1 - [28,(r)/n]7=

1-r7

Fap(r) =

The monotonicity of ¥, ,(r) is as follows:

(1) Fap(r) is strictly increasing from (0, 1) to (1 —a, 1 — b) if and only if p > 2, where

_( sin(ra) \ T
b= ((1 - a)ﬂ) '

(2) Fap(r) is strictly decreasing on (0, 1) if and only if p < 2 — a. Moreover, if p € (0,2 — al, the
range of o p(r) is (1 — b, 1 — a), and the range is (0,1 — a) if p € (—00,0).

(3) If p € 2 - a,2), F,,(r) is piecewise monotonic. To be precise, there exsists ry = ro(a, p) € (0, 1)
such that F,,(r) is strictly increasing on (0, ry) and strictly decreasing on (ry, 1). Furthermore,
forre(0,1), if p € (2 - a, po), the range of F,,(r) satisifies

1-b < F,,(r) < oo, (3.1)
while
1 —a<F,,r) <o, (3.2)
if p € [po,2), where
2(1 —a)loga

Po €(2-a2), o9=Fup(ro) >1-a.

" Tog(sin(ra)/(1 — a)r)

Proof. Forre (0,1),

1= 28,()/m175 _ oi(r)
L—r» o)’

Clearly, we have ¢,(0) = ¢,(0) = 0. By differentiation,

Fap(r) =

)= P (2)“"’-”82“"_@—12(1—a)m—aa)
1 - a B

21-a)\n r
@) = prr”?,

and

g 2\ &5 %, — &)
= =: p3(7).

ey \m P

By differentiating log ¢5(r), we obtain

T
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o) p o 2a- 1)K, - E) r 2 2 -arE, 20 -a)(Ki-8)  2r

() 20 —a) s, TP T ok, —ey T s, 2
Eu= K | 21 = PEL = 26,0, — E) + 21 — (K, = E.F
rr'2&, 1" E(Ky — &,)
8- rK, | 28K, - E) - 21— )rPE — 2(1 - a)rH(K, - E,)°
B rr’28a P= (7<a - 8a)(aa - r/27(a)
72
- ‘%Trg{“@ ~ h(r). (3.3)

where h(r) is defined as in Lemma 2.7. By Lemmas 2.2(2), 2.7, and 2.10, there are three cases to
consider.
(@) If p > 2. It follows from (3.3) that ¢3(r) is strictly increasing on (0, 1), and so is %, ,(r).

Furthermore, in this case,

Fopl0) = lim £

r=0% @5 (r)

sin(rra) ey
(1-ar

=1-a, 7—;,,,(1-):1—(

(i) If p < 2 — a, as in the proof of case (i), we know that ¢3(r) is strictly decreasing on (0, 1), and
so0 is F, p(r). Also, ¥, ,(07) = 1 — a, and

for p <0,

P
sin(rra) \ 2(0-a)
_((l—_a)ﬂ) s forO<pS2—a.

— O’
Fap(17) = |

(@#ii) If 2 —a < p < 2. According to Ramanujan’s approximation (1.1), it shows that K, — 0
(r —» 17)if ¢ > 0. With Lemma 2.2(4) and the equation

’

7
Hy, (1) = Qo—fwz — Q1 = P23 — P15

2

we obtain

: =)
sin(ra) ) ~1<0. (3.4)

(1-ar
Together with (3.3), (3.4), Lemmas 2.7 and 2.10, and the formulas

lirg Hy, ., (r) =0, 1i1}1 Hy, (1) = (

o\ ¢
Tu, (r):(_) :_H R (r)’
P © 90% 1,92

’

, oY )
le,wz(r) = ((,0_’]) 2 = @3(Npa(r),
2

which follows from (2.2) and (2.3), it shows that there exists ry € (0, 1) such that H, ,,(r) > 0 for
r € (0,r9) and H,, ,,,(r) < O for r € (r9,1). Thus, F,,(r) is strictly increasing on (0, rp) and strictly
decreasing on (ry, 1). Therefore, for all r € (0, 1), we get

Fap(r) < Faup(ro) = 0.
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In fact, F,,p(ro) = Fup(r) > max{F,,,(0"), Fa,(17)}. It follows from Lemma 2.5 that

B 2(1 —a)loga
Po = Jog(sin(ra)/(1 - aym)

€ (2 —a, 2),

which makes p, the unique root of

sin(rra) ey B
1_((1—a)71) =1-a

. _P
on(2-a,2)and p — 1 — (%)2("‘” is strictly increasing on (—co, 00). Hence we have %, ,(0") >

Fap(17)if p € (2= a, po] and F, ,(0%) < F,,(17) if p € (po,2). Consequently, the range of ¥, ,(r) in
case 3 is valid. The proof is completed. O

Figure 1 shows the monotonicity of ¥, , with a = 0.7 as an example.

0.6

0.5
0.6 -

/ 0.4

0.4

0.3

.}_,,-“-.,[?‘]

0.2

0.2

3 0.1

Figure 1. Monotonicity of ¥, , with a = 0.7 as an example.

Applying the property of ¥, ,(r) from Theorem 3.1, we obtain our main result.
Theorem 3.2. Fora € [%, 1), let u,v € [0, 1] and py, oy be given as in Theorem 3.1. Then for any fixed
p € R, the double inequality

u —a / T —a /
§H§<1 (1,7 5u) <&, < EH,%“ (1,75 v) (3.5)
holds for all r € (0, 1) with the equality only for certain values of r if and only if u < u(a, p) and
v > v(a, p), where u(a, p) and v(a, p) satisfy

a, pE€(=,00U (0,2 —d], I, pe(=,0),
/’l(a’ p) = 1 — 0y, p € (2 —a, 2)’ V(aa p) = b, p € (Oa p())’ (36)
ba )4 € [2, +OO), a, p € [pOa +OO),
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where

[ sin(ra) \ @
b_((l—a)ﬂ) '

Particularly, for p = 0, (3.5) holds if and only ifu < 1 —2(1 —a)* and v > 1.
Proof. First we consider the case of p # 0, by (1.5), the inequality (3.5) is equivalent to
u<1=F,,(r)<v, 3.7

where F, ,(r) is defined as in Theorem 3.1. It follows from Theorem 3.1 that we immediately conclude
the best possible constants y = u(a, p) and v = v(a, p) in (3.6).
For p = 0, we define the function 7'(r) on (0,1) by

_ 1og284/7) _ T1(r)

T(r)

logrr Tu(r)

Obviously, we see that 7,(07) = T»(0") = 0. By differentiation, we have

T (r 2(K, - &,

ﬁ —2(1 - a)¥'

T:(r) r’&,
Together with Lemma 2.2(3), this implies ;‘—Eg is strictly decreasing on (0,1), and by Lemma 2.4, T(r)

2
shares the same monotonicity. Clearly, 7(17) = 0 and
T/(r
T(0%) = lim ) 2(1 - a)?,

r—0* Té(r)
which indicates 1 — 2(1 —a)?> < 1 = T(r) < 1 for r € (0, 1). As a result, Eq (1.5) demonstrates that the
inequality

SH (L) < E4) < SHY (L 1)

holds for all » € (0, 1) if and only if u < 1 —2(1 — a)* and v > 1.
This completes the proof. m|

Figure 2 shows the sharpness of the bound with a = 0.7 as an example.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T T

(a) For p=1.3. (b) For p=1.6.
Figure 2. Sharp bound for &, with a = 0.7 as an example.
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Remark 3.1. For a = % we see that (3.5) holds if the parameters satisfy the conditions given in

Theorem 3.2. This conclusion has been proved in [15].

4. Applications

In this section, by applying Theorem 3.2, we present several sharp bounds of weighted Holder mean
for &,.

Note that for the case of u(a, p) = v(a, p) = a, the best bounds of &, are attained at p = 2 — a and
P = po, which will be proved in the following corollary.

Corollary 4.1. Leta € [%, 1) and p,, p, € R. Then the inequality

' —a / T —a /

§H§§‘ '(1,750) < Eu(r) < EH,’ig‘ ‘(1,7 a) (4.1)
holds for all r € (0, 1) with the best possible constants p; = 2 — a and p, = po, where py is given as in
Theorem 3.1.

Proof. For a € [%, 1), we consider (i, p) = (a,2 — a) and (v, p) = (a, po) satisfying (3.6), which
yields (4.1) upon substitution into (3.5).

To establish that @ and p, are the best possible constants, we observe that the Holder mean is
monotonically increasing with respect to p. Consequently, it suffices to analyze the case of 2—a < p <

Po.
According to Theorem 3.2, the inequality

ngz,(l_a)(l, I’/; 1— 0_0) < Sa < gHIZ)(l—a)(l’ I’/;b) (42)

holds for all r € (0, 1), where 1—-0 and b are sharp, with b given as in Theorem 3.2. From Theorem 3.1,
together with the monotonicity of w — H,(1,r’; w), we have 1-0 < a < b for p € (2—a, p), implying

SHYO(L 1 = 00) < SHL @) < SH (D).

Therefore, considering the sharpness of 1 — 0y and b in inequality (4.2), we conclude that there exist
two numbers 7y, r, € (0, 1) such that

n / n —a /
EH,Z,“_“)(l,rl;a) > &(r1), EH,Z,“ (1, 753a) < Ey(ro).

Thus, the proof is completed. O

Figure 3 demonstrates that the sharp bounds of &, are attained at p; = 2 — a and p, = py with
a = 0.7 as an example.

Furthermore, it is observed that computing the lower bound in (3.6) for the case u(a, p) = 1 — oy
is challenging, while the case v(a, p) = 1 is trivial. Thus, we propose using u(a, p) = b for p € [2, c0)
and v(a, p) = b for p € (0, py) to establish new bounds. The specific inequality is as follows.
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- = =L a)m =2 - a) %l
1.25 'H-ji'l ”“-’JZFJ](P& =1pe) "|_
i o HE N1 s a)(pyy = 15 — a) "
' Hy ™ (Lia) (o = po +05) i
1.15 =e=e= Hyly “(L7'52)(pr2 = 1 - a) p
= H2 (1,75 a) (o2 = o + 1)
1.1

0 0.1 02 03 04 05 06 07 08 0.9 1
r

Figure 3. Best constants for (4.1) with a = 0.7 as an example.

Corollary 4.2. Inequality
1 1 1-a
n sin(rra) \™ B sin(ra) \™| ,,
2“0—@J +P &me)}r} “

70 70 2(1-a)
<&, < n sin(rra) s sin(rra)
2 |\ —a)n (I -a)

)
Lemma 4.3. Leta € [3, 1),

r'Po

-

holds for r € (0, 1).

A(p.r) = H'"(1,r';b)

p p g
_|{ sin(za) \* _(sin(ma) \ | |
- {((1 —a)n) +[1 ((l—a)n) ]rp}

Then, the function A(p, r) with respect to p is strictly decreasing on (0, co) for r € (0, 1).

Proof. By differentiating log A(p, r):

1 0Ap,r) _ Ap,r?)

== ; 4.4
Alp.r)  op P (p,r7) “44)
where
_( sin(na) D _ [ sin(ma) RiED
¥(p,x) —((1 _a)n) +[1 ((1 _a)ﬂ) ,
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and

sin(ra) )2“["‘” { ( sin(ra) )
d-ax) B\U-an

A(p, x) = 2(1 = ayp(p, x) logW(p, x)) = p(1 — X)(

—-2(1 —a) [1 - ((slln_(z;c;zr)”‘)] xlog x.

Differentiating A(p, x) with respect to x yields

dA(p, x)
ox

sin(ra) \ ™2 RO
(1-ar 8 X

N sin(7ra) ey 1 sin(7ra)
P\a—ax) B\a<anx

:2(1—a)[1—(

) = Ao(p, X).

Give the observation that Ay(p, x) is strictly decreasing for x € (0, 1). In fact,

1— ( sin(ra) ) bl lp—a) ( sin(ra) ) ﬁ
(1-a)r (1-a)r

Mo(px) _
o - -9 xy(p, x)
And ,
N — oo o sin(rra) |9 sin(rra)
Ao(p,07) =00, Ag(p, 1 )—p((l _a)ﬂ) log((1 _a)ﬂ)<0

indicate that A(p, x) first strictly increases on (0, xy) and then strictly decreases on (xy, 1) for some
xo € (0, 1). Note that for p > 0, it is observed that

A(p,0%) = A(p,17) = 0. 4.5)

Hence, A(p, x) > 0 for x € (0, 1).
Consequently, monotonicity of A(p, r) with respect to p follows from (4.4). O

Remark 4.1. Following Lemma 4.3 and inequality (3.5), we observe that

)4

{8 > T, T > THX O, b, if p e [2,00)
a 2 2 2 2 1 _ 2 P 2 2 1 2 p b 2

8 EHZ(I—&) 1 /. b% < EHZ(l—a) l ’. bz(lp—a) . 0 (4.6)
a<2 Po (9r,1 )—2 p (,r,l ), lf‘pe(,po]’

where .
sin(ma)

b] = .
(1-ar

According to the proof of (3.2), if p € (po, 2), it follows that
l1-09g<b<a.
Therefore, it results in

SH (L1 = 00) < SHY (L r'5b) < SH (1,1 0)
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by the monotonicity of Hz(l_“)(l, r'; ) with respect to {.Theorem 3.2 presents that, for p € (po,2),
1 — o is sharp weight of Hi(l_“)(l, r'; () as the lower bound of &,, while a is sharp weight as the upper
bound of &,.

Hence, as a bound of &,, H;(l_a)(l, r’; b) can attain the best upper bound at p = po and the best
lower bound at p = 2 by (4.6).

5. Conclusions

In this article, we have proved the monotonicity of %, ,(r), where ¥, ,(r) is given as in Theorem 3.1.
Moreover, we find the sharp weighted Holder mean approximating &,:

T T
SH T ) < 8 < SHTO(1L 1Y)

holds for all » € (0, 1) if and only if u < u(a, p) and v > v(a, p), where u(a, p) and v(a, p) are given
as in (3.6). Besides, we derive several bounds of &, in terms of weights and power, which are given
by Corollary 4.1, Corollary 4.2, and Remark 4.1. These conclusions provide an extension of the work
of [15].
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