
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(5): 11260–11270.
DOI:10.3934/math.2025510
Received: 30 December 2024
Revised: 28 April 2025
Accepted: 06 May 2025
Published: 19 May 2025

Research article

On paranormed sequence space arising from Riesz Euler Totient matrix

Pınar Zengin Alp*

Department of Mathematics, Duzce University, Duzce, Turkey

* Correspondence: Email: pinarzenginalp@gmail.com.

Abstract: In this paper, we introduce a novel paranormed sequence space l(RΦ, p) constructed through
the application of the Riesz Euler Totient matrix. We demonstrate that the spaces l(RΦ, p) and l(p) are
linearly isomorphic. In addition, we identify the dual spaces associated with this sequence space and
establish its Schauder basis.

Keywords: α-, β-, γ-duals; paranormed sequence space; Riesz matrix; Euler Totient function
Mathematics Subject Classification: 46B45, 47B06, 47H08

1. Introduction

Let ω represent the set of all real sequences; within this context, a linear subspace of ω is termed a
sequence space. In the present study, we denote the null, convergent, and bounded sequence spaces by
c0, c, and l∞, respectively. Additionally, we utilize the notations bs, cs, l1, and lp (1 < p < ∞),to refer
to the spaces of all bounded, convergent, absolutely convergent, and p− absolutely convergent series,
respectively.

The set of real numbers is denoted by R, and the set of natural numbers is denoted by N =
{1, 2, 3, . . . }. For ease of writing, we use limn,

∑
n , supn, and infn instead of limn→∞,

∑∞
n=1, supn∈N,

and infn∈N, respectively. Throughout the paper, pn > 0, and (pn) is a bounded sequence in R, where
supn∈Npn = P and S = max{1, P}. For any ζ ∈ R and n ∈ N

|ζ |pn ≤ max
{
1, |ζ |S

}
(1.1)

is satisfied (see [1]). This is an important inequality that can be used to show that a space is paranormed.
Further, the equality p−1

n + (p′n)−1 = 1 is valid for 1 < infn∈N pn ≤ P. The set of all finite subsets of N is
denoted by ℵ.

Let X be a real linear space, and let σ be a function from X to R. Then, the pair (X, σ) is called a
paranormed space over R if the following axioms are satisfied:

i) σ is sub-additive,
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ii) σ (θ) = 0 (θ is the zero of X),
iii) σ (x) = σ(−x) ∀x ∈ U,
iv) |ζn − ζ | → 0, σ(xn − x)→ 0 imply σ(ζnxn − ζx)→ 0 for every sequence (ζn) and (xn) with ζ ∈ R

and x ∈ X.
Complete paranormed sequence space l(p) is introduced by Maddox [1] (see also [2, 3]) as:

l (p) =

x = (xn) ∈ ω :
∑

n

|xn|
pn < ∞


with

σp (x) =

∑
n

|xn|
pn

1/S

.

Let T = (tmn) be an infinite matrix of real numbers tmn, and let χ and Υ be any two sequence spaces.
T : χ→ Υ is called a matrix mapping, if T x = (Tm (x)) ∈ Υ for all x = (xn) ∈ χ. Here

Tm (x) =
∑

n

tmnxn (1.2)

for every m∈N. The T-transform of x is shown by Tx, which is a sequence. (χ : Υ) is the notation of
the set of all matrices from χ to Υ. T is an element of (χ : Υ) if and only if

∑
n tmnxn converges for all

m ∈ N and x ∈ χ; additionally, T x is an element of Υ.
The set S (χ,Υ) is defined as

S (χ,Υ) = {s = (sn) ∈ ω : xs = (xnsn) ∈ Υ, ∀x = (xn) ∈ χ} .

Then, α-dual, β-dual, and γ-dual of a sequence space χ are denoted by χα = S (χ, l1), χβ = S (χ, cs),
and χγ = S (χ, bs), respectively.

Articles [4–6] are about summability and matrix transformations. Also, for more information
related to normed sequence spaces obtained by infinite matrix domains, one can see [7–9]. We refer
to [10–12] for detailed information about paranormed Riesz sequence spaces, and [13–15] for more
information about different paranormed sequence spaces. These studies have contributed significantly
to the ongoing exploration of paranormed sequence spaces within the broader mathematical landscape.

In this study, the Euler Totient function is represented by φ, and the Möbius function is represented
by µ. In the following definitions, φ(n) and µ (n) are defined for all n∈N with n > 1. φ(n) counts the
positive integers up to a given integer n that are relatively prime to n, and φ (1) = 1. In the sequel some
properties of function φ are listed:

i) If the prime factorization of n is pα1
1 pα2

2 . . . p
αl
l , then,

φ (n) = n
(
1 −

1
p1

) (
1 −

1
p2

)
. . .

(
1 −

1
pl

)
.

ii) For all n∈N, the equation
n =

∑
m|n

φ (m)

is valid.
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iii) If two natural numbers n1 and n2 are relatively prime, then φ (n1n2) = φ(n1)φ(n2) is satisfied [16].
Möbius function µ is defined as:

µ (n) =
{

(−1)l, if n = p1 p2 . . . pl, where p1, p2, . . . , pl are distinct prime numbers,
0, if p2|n for some prime numbers p,

and µ (1) = 1. If the prime factorization of n is pα1
1 pα2

2 . . . p
αl
l , then,∑

m|n

mµ (n) = (1 − p1) (1 − p2) . . . (1 − pl) .

Additionally, the equation ∑
m|n

µ (m) = 0 (1.3)

is satisfied excluding n = 1. Also, µ (n1n2) = µ(n1)µ(n2), where n1, n2∈N are coprime [16]. [17] is
referred for more information about Euler’s totient and Möbius functions.

Although in most cases the new sequence space XA generated by the triangle matrix A from a
sequence space X is the expansion or the contraction of the original space X, it may be observed in
some cases that those spaces overlap.

The Euler’s totient matrix Φ = (ϕnm) is defined as:

ϕnm =

{
φ(m)

n , if m|n,
0, m ̸ |n,

and the inverse of matrix Φ, Φ−1 = (ϕ−1
nm), is obtained [18] as

ϕ−1
nm =

 µ( n
m )
φ(n) m, if m|n,

0, m ̸ |n,

for all n,m ∈ N. Lately, in [19], two new Banach sequence spaces are obtained via Euler’s totient
matrix, namely, lp (Φ) (1 ≤ p < ∞) and l∞(Φ) as

lp (Φ) =

u = (un) ∈ω:
∑

m

∣∣∣∣∣∣∣ 1
m

∑
n|m

φ(n)un

∣∣∣∣∣∣∣
p

<∞

 (1 ≤ p < ∞),

and

l∞ (Φ) =

u = (un) ∈ω: sup
m

∣∣∣∣∣∣∣ 1
m

∑
n|m

φ(n)un

∣∣∣∣∣∣∣ <∞
 .

In 2021, İlkhan and Bayraktar [20] introduced the sequence space lp(RΦ) by using the matrix RΦ,
where 1 ≤ p < ∞.

The matrix RΦ = (rnk), which is called the Riesz Euler Totient matrix operator, is defined as:

rkn =

{ qnφ(n)
Qk
, if n | k,

0, if n ∤ k,

where Qk = q1 + q2 + ... + qk.
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The inverse matrix of RΦ, R−1
Φ
= (r−1

kn ), is found as

r−1
kn =

 µ( k
n )
φ(k)

Qn
qk
, if n | k,

0, if n ∤ k,

for all k, n ∈ N.
Then, they introduce the sequence space lp(RΦ) by

lp(RΦ) =

x = (xn) ∈ ω :
∑

n

∣∣∣∣∣∣∣ 1
Qn

∑
k|n

qkφ(k)xk

∣∣∣∣∣∣∣
p

< ∞

 (1 ≤ p < ∞).

In some cases, the most general linear operator between two sequence spaces is given by an
infinite matrix. So, the theory of matrix transformations has always been of great interest in the study
of sequence spaces. The study of the general theory of matrix transformations was motivated by
special results in summability theory. The theory of sequence spaces is fundamental to summability.
Summability is a wide field of mathematics, mainly in analysis and functional analysis, and has many
applications, for instance, in numerical analysis to speed up the rate of convergence, in operator theory,
in the theory of orthogonal series, and in approximation theory. The classical summability theory deals
with the generalization of the convergence of sequences or series of real or complex numbers. The
idea is to assign a limit of some sort to divergent sequences or series by considering a transform of
a sequence or series rather than the original sequence or series. The reference [13] is a recent study
in the field of sequence spaces. They have become the starting point of our study to construct a new
paranormed sequence space. By the concept of matrix domain, we have aimed to introduce complete
paranormed sequence space l (RΦ, p).

The paranormed spaces have more general properties than normed spaces. In this paper, the normed
sequence space lp (RΦ) (1 ≤ p < ∞) is generalized to a new paranormed space l (RΦ, p). Also,
completeness, α-, β-, γ-duals of this space and the Schauder basis of the space l (RΦ, p) are investigated.

2. Materials and methods

2.1. The Paranormed sequence space l (RΦ, p)

In this section, the paranormed sequence space l (RΦ, p) is defined by using the Riesz Euler Totient
matrix RΦ. Then, it is shown that, given paranormed space is complete. Also, the Schauder basis of
this space is given.

Throughout the paper, RΦ-transform of u = (un) is denoted by v = (vn), that is,

vm =
1

Qm

∑
n|m

qnφ(n)un, (∀m∈N).

l(RΦ, p) sequence space is given by

l(RΦ, p) =

u = (un) ∈ ω :
∑

m

|
1

Qm

∑
n|m

qnφ(n)un|
pm < ∞

 .
l(RΦ, p) space can be represented by l(RΦ, p) = (l (p))RΦ according to the definition of matrix

domain.
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Theorem 2.1. With the paranorm given by

σRΦ (u) = (
∑

m

|
1

Qm

∑
n|m

qnφ(n)un|
pm)1/S,

l (RΦ, p) is a complete paranormed space for all u = (un) ∈l (RΦ, p).

Proof. Let u = (un) , s = (sn) ∈ l (RΦ, p). According to [21] (p.30), we can write

(
∑

m

|
1

Qm

∑
n|m

qnφ(n)(un + sn)|pm)1/S ≤ (
∑

m

|
1

Qm

∑
n|m

qnφ(n)un|
pm)1/S

+ (
∑

m

|
1

Qm

∑
n|m

qnφ(n)sn|
pm)1/S.

(2.1)

The linearity of l (RΦ, p) relative to scalar multiplication and co-ordinate-wise addition comes from
(1.1) and (2.1).

It is trivial that σRΦ (θ) = 0 and σRΦ (u) = σRΦ (−u) for all u ∈ l (RΦ, p). Also, by using (1.1) and
(2.1), it is obvious that σRΦ is subadditive and σRΦ (ζu) ≤ max {1, |ζ |} σRΦ (u) for any ζ ∈ R.

Let us consider {um} any sequence in l (RΦ, p) satisfyingσRΦ (um − u)→ 0, and let (ζm) be a sequence
in R with ζm → ζ. Because σRΦ is subadditive, we have

σRΦ (um) ≤ σRΦ (u)+σRΦ (um − u) .

So,
{
σRΦ (um)

}
is bounded, and we can obtain:

σRΦ (ζmum − ζu) =

∑
m

∣∣∣∣∣∣∣ 1
Qm

∑
n|m

qnφ(n)
(
ζmum

n − ζun
)∣∣∣∣∣∣∣

pm


1/S

≤ |ζm − ζ |σRΦ (um) + |ζ |σRΦ (um − u)→ 0 (m→ ∞).

Scalar multiplication is hence continuous. So, σRΦ is a paranorm on l (RΦ, p).
Now, it is time to show that l (RΦ, p) space is complete. Let

{
ui
}

be any Cauchy sequence in l (RΦ, p),

where ui =
{
u(i)

1 , u
(i)
2 , u

(i)
3 , . . .

}
for each i ∈ N. For a given ε > 0, there exists an integer n0(ε) ∈ N such

that
σRΦ

(
ui − u j

)
< ε (2.2)

for every i, j ≥ n0(ζ). For every fixed k∈N, we can determine via the definition of σRΦ that

∣∣∣∣RΦk

(
ui
)
− RΦk(u j)

∣∣∣∣ ≤ ∑
k

∣∣∣∣RΦk

(
ui
)
− RΦk(u j)

∣∣∣∣pk

1/S

< ε

for all i, j ≥ n0(ε). This indicates that the sequence
{
RΦk

(
u1

)
,RΦk

(
u2

)
, RΦk

(
u3

)
, . . .

}
is Cauchy in

R for each fixed k∈N. Because R is complete, it is convergent, say RΦk

(
ui
)
→ RΦk (u) as i → ∞
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for every fixed k∈N. By using these infinitely many limits RΦ1 (u), RΦ2 (u), RΦ3 (u),. . . , the sequence
{RΦ1 (u) , RΦ2 (u) , RΦ3 (u) , . . . } is defined. Then, by using (2.2) for all fixed m∈N and i, j ≥ n0(ε)

m∑
k=1

∣∣∣∣RΦk

(
ui
)
− RΦk(u j)

∣∣∣∣pk
≤ gRΦ

(
ui − u j

)S
< εS (2.3)

can be written. Let n0(ζ) ≤ i and m → ∞ , j → ∞, respectively. If the limit of (2.3) is taken, then
we obtain σRΦ

(
ui − u

)
≤ ζ. Finally, if we assume ε = 1 in (2.3) and let i ≥ n0 (1.1), by the use of

Minkowski’s inequality m∑
k=1

|RΦk (u)|pk

1/S

≤ σRΦ

(
ui − u

)
+ σRΦ

(
ui
)
≤ 1 + σRΦ

(
ui
)

is obtained for every fixed m∈N. This means that u ∈ l (RΦ, p). Since σRΦ

(
ui − u

)
≤ ζ for each

i ≥ n0(ζ), we get that ui → u as i→ ∞. Due to this, l (RΦ, p) is complete.
It should be noted that the absolute property on l (RΦ, p) is not satisfied since there can be a sequence

u in l (RΦ, p) such that σRΦ (u) , σRΦ (|u|), where |u| = (|un|). So, l (RΦ, p) is a sequence space of non-
absolute type. □

Theorem 2.2. The sequence space l (RΦ, p) is linearly isomorphic to the space l (p).

Proof. For this proof, it should be shown that there is a linear bijection L between l (RΦ, p) and l (p).
To show this, take the mapping L : l (RΦ, p)→ l (p) which is given as u→ v = Lu = RΦu. The linearity
of L is trivial. Also, L is injective because u = θ, where Lu = θ.

Let us define a sequence u = (un) by any v = (vn) ∈ l (p):

un =
1

qnφ(n)

∑
k/n

µ
(n
k

)
Qkvk (∀n∈N).

Then, we have that

σRΦ(u) =

∑
m

∣∣∣∣∣∣∣ 1
Qm

∑
n/m

qnφ(n)un

∣∣∣∣∣∣∣
pm


1/S

=

∑
m

∣∣∣∣∣∣∣ 1
Qm

∑
n/m

qnφ(n)
1

qnφ(n)

∑
k/n

µ
(n
k

)
Qkvk

∣∣∣∣∣∣∣
pm


1/S

=

∑
m

∣∣∣∣∣∣∣ 1
Qm

∑
n/m

∑
k/n

µ
(n
k

)
Qkvk

∣∣∣∣∣∣∣
pm


1/S

=

∑
m

∣∣∣∣∣∣∣ 1
Qm

∑
n/m

∑
k/n

µ (k)

 Q m
n
v m

n

∣∣∣∣∣∣∣
pm


1/S

=

∑
m

∣∣∣∣∣ 1
Qm
µ (1) Qmvm

∣∣∣∣∣pm
1/S
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=

∑
m

|vm|
pm


1
S

= hRΦ (v) < ∞.

This proves that u ∈ l (RΦ, p). So, L preserves the paranorm, and L is surjective. As a result, there
is a linear bijection L between the spaces l (RΦ, p), and l (p) and these spaces are linearly isomorphic.

It is a well-known fact that for every n∈N if 1 < pn ≤ sn, then l (p) ⊆ l (s). As a consequence,
l (RΦ, p) ⊆ l (RΦ, s). □

A sequence (bk) of the elements from the paranormed space X, paranormed by p, is known as a
Schauder basis of the space X if and only if there exists a sequence (αk) of scalars such that

lim
n→∞

p

u − n∑
k=0

αkbk

 = 0 (2.4)

holds true for all u ∈ X. Furthermore, it is established that the domain XT of the matrix T in the space
X possesses a Schauder basis if and only if both X possesses a Schauder basis and T is triangular (refer
to [22], Theorem 2.3). In light of this observation, we present the Schauder basis for the space l (RΦ, p).

Theorem 2.3. Let b(m) =
{
b(m)

n

}
n∈N

be a sequence in l (RΦ, p) given by

b(m)
n =


1

qnφ(n)
µ
(n
k

)
Qk, if n|m,

0 , n ̸ |m,

where m is a fixed natural number. Then,
{
b(m)

}
m∈N

is a Schauder basis of the space l (RΦ, p) and any
u ∈ l (RΦ, p) is uniquely represented in the form

u =
∑

m

γmb(m),

where γm = RΦm (u) ∀m ∈ N.

Proof. The previous proof showed the surjectivity of the isomorphism L : l (RΦ, p)→ l (p). Therefore,
the inverse image of the Schauder basis of the space l (p) is a Schauder basis of the space l (RΦ, p).
This ends the proof. □

2.2. Dual spaces of l (RΦ, p)

In this section, dual spaces of the space l (RΦ, p) are given. In the sequel, there are some lemmas
that are essential for proving dual spaces in the following proofs.

Lemma 2.4. [23]

(i) Let 1 < pn ≤ P < ∞ for all n ∈ N. Then, T = (tmn) ∈ (l (p) : l1) if and only if there exists an integer
K > 1 such that

sup
N∈ℵ

∑
n

∣∣∣∣∣∣∣∑m∈N tmnK−1

∣∣∣∣∣∣∣
p′n

< ∞. (2.5)

(ii) Let 0 < pn ≤ 1 for all n ∈ N. Then, T = (tmn) ∈ (l (p) : l1) if and only if

sup
N∈ℵ

sup
n

∣∣∣∣∣∣∣∑m∈N tmn

∣∣∣∣∣∣∣
pn

< ∞. (2.6)
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Lemma 2.5. [23]

(i) Let 1 < pn ≤ P < ∞ for all n ∈ N. Then, T = (tmn) ∈ (l (p) : l∞) if and only if there exists an integer
K > 1 such that

sup
m

∑
n

∣∣∣tmnK−1
∣∣∣p′n < ∞. (2.7)

(ii) Let 0 < pn ≤ 1 for all n ∈ N. Then, T = (tmn) ∈ (l (p) : l∞) if and only if

sup
m,n∈N
|tmn|

pn < ∞. (2.8)

Lemma 2.6. [23]

Let 0 < pn ≤ P < ∞ for all n ∈ N. Then, T = (tmn) ∈ (l (p) : c) if and only if (2.7) and (2.8) hold, and

lim
m

tmn = cn, (n ∈ N) (2.9)

also holds.

Theorem 2.7. Let N ∈ ℵ and K > 1. The sets Dα1 and Dα2 are defined as:

Dα1 =

s = (sn) ∈ ω : sup
N∈ℵ

sup
n

∣∣∣∣∣∣∣ 1
qmφ(m)

∑
n/m

µ
(m

n

)
Qnsm

∣∣∣∣∣∣∣
pn

< ∞

 ,
and

Dα2 =
⋃
K>1

s = (sn) ∈ ω : sup
N∈ℵ

∑
n

∣∣∣∣∣∣∣ 1
qmφ(m)

∑
n/m

µ
(m

n

)
QnsmK−1

∣∣∣∣∣∣∣
p′n

< ∞

.
{l (RΦ, p)}α =


Dα1 , if 0 < pn ≤ 1 for all n ∈ N;

Dα2 , if 1 < pn ≤ P < ∞ for all n ∈ N.

Proof. Only the second case has been proved since the proof of the first case is similar. Take any
s = (sn) ∈ ω. It is trivial from the relation between u = (un) and v = (vn),

smum = sm
1

qmφ(m)
∑

n/m µ
(m

n

)
Qnvn

=

(
1

qmφ(m)
∑

n/m µ
(m

n

)
Qnsm

)
vn

= Bm (v) , (m ∈ N) , (2.10)

where B is a matrix defined as:

B = bmn =


1

qmφ(m)
µ
(m

n

)
Qnsm, i f n|m;

0, otherwise, (∀n,m ∈ N).

We obtain that su = (snun) ∈ l1, where u = (un) ∈ l (RΦ, p) if and only if Bv ∈ l1, where v = (vn) ∈
l (p). This gives us s = (sn) ∈ {l (RΦ, p)}α if and only if B ∈ (l (p) : l1). Hence, from Eq (7) of Lemma
2.4 (i), we obtain {l (RΦ, p)}α = Dα2 . □
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Theorem 2.8. Let us define the sets Dβ1,D
β
2, and Dβ3 as follows:

Dβ1 =
⋃
K>1

s = (sn) ∈ ω : sup
m

m∑
n=1

∣∣∣∣∣∣∣ 1
qkφ(k)

m∑
k=n,n/k

µ

(
k
n

)
QnskK−1

∣∣∣∣∣∣∣
p′n

 ,
Dβ2 =

s = (sn) ∈ ω : sup
m,n∈N

∣∣∣∣∣∣∣ 1
qkφ(k)

m∑
k=n,n/k

µ

(
k
n

)
Qnsk

∣∣∣∣∣∣∣
pn ,

and

Dβ3 =

s = (sn) ∈ ω : lim
m

1
qkφ(k)

m∑
k=n,n/k

µ

(
k
n

)
Qnsk exists for n ∈ N

 .
Then, {l (RΦ, p)}β = Dβ1 ∪ Dβ2 ∪ Dβ3.

Proof. Choose any s = (sn) ∈ ω. Since v = (vn) is the RΦ-transform of the sequence u = (un), we write

m∑
n=1

snun =

m∑
n=1

sn

 1
qkφ(k)

∑
n/k

µ

(
k
n

)
Qnvk

 (2.11)

=

m∑
n=1

 1
qkφ(k)

m∑
k=n,n/k

µ

(
k
n

)
Qnsk

 vk = Dm(v), (2.12)

where the matrix D is a matrix defined as:

D = dmn =


1

qkφ(k)
∑m

k=n,n/k µ

(
k
n

)
Qnsk, 1 ≤ n ≤ m,

0, n > m,

for all n,m ∈ N. From Lemma 2.6 with (2.11), it follows that su = (snun) ∈ cs, where u = (un) ∈
l (RΦ, p) if and only if Dv ∈ c, where v = (vn) ∈ l (p). This gives us s = (sn) ∈ {l (RΦ, p)}β if and only if
D ∈ (l (p) : c). Hence, from (2.7)–(2.9), we conclude that

{l (RΦ, p)}β = Dβ1 ∪ Dβ2 ∪ Dβ3.

□

Theorem 2.9.

{l (RΦ, p)}γ =
{

Dβ2, 0 < pn ≤ 1, ∀n ∈ N;
Dβ1, 1 < pn ≤ P < ∞, ∀n ∈ N.

Proof. If we use Lemma 2.5 instead of Lemma 2.6 in the proof of Theorem 2.8, we obtain the result.
So, we omit the details. □
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3. Conclusions

In continuation of the work presented by l̇lkhan and Bayrakdar [20], our focus centered on an
extensive exploration of the domains governed by the Riesz-Euler totient matrix RΦ. In this article,
we introduce a novel paranormed sequence space l(RΦ, p) constructed through the application of the
Riesz-Euler totient matrix. We show that the spaces l(RΦ, p) and l(p) are linearly isomorphic. Further,
we identify the dual spaces associated with this sequence space and establish its Schauder basis.

Let p ∈ [1,+∞). l (RΦ, p) is a generalization of the spaces lp (RΦ) and lp (Φ). In special cases, for
all m and n in N:

i) if pm = p, l (RΦ, p) is reduced to lp (RΦ);
ii) if pm = p and qn = 1, l (RΦ, p) is reduced to lp (Φ).
In the future, studies can be done on the geometric properties of these spaces. Also, a more general

space can be obtained by using the Jordan totient matrix instead of Riesz-Euler totient matrix.
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