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Abstract: In recent years, the study of variability in uncertainty measures has gained significant
interest in information theory. In this context, the concept of varextropy has been introduced
and investigated by several researchers. This paper focuses on the study of weighted varextropy
and introduces weighted residual varextropy, presenting a thorough examination of their theoretical
properties. Specifically, we investigate the impact of monotonic transformations on these measures
and derive various bounds. Additionally, we analyze the application of weighted varextropy within
coherent systems and proportional hazard rates models. A non-parametric kernel-based method is
introduced to estimate weighted (residual) varextropy, and the estimators’ consistency and asymptotic
normality are given. Finally, the effectiveness of this estimation method is demonstrated through
simulations as well as analysis of a real-world data set, illustrating its potential applications in
uncertainty analysis.
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1. Introduction

Quantifying the uncertainty tied to random variables is a fundamental task in various disciplines,
including lifetime data analysis, experimental physics, and demography. To address this, a variety of
information measures have been developed. Shannon [1] laid the foundation for information theory
by introducing the concept of differential entropy for random variable X with probability density
function (PDF) f (x). The entropy H(X) is given by

H(X) = −E
(

log( f (X))
)
= −

∫ ∞

0
f (x) log f (x)dx. (1.1)
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Here, the natural logarithm is used with the convention 0 log 0 = 0. As noted by [2], entropy alone does
not comprehensively capture the information within a distribution. As an alternative, they introduced
extropy, a complementary measure of uncertainty, which is

J(X) = E
(
−

1
2

f (X)
)
= −

1
2

∫ ∞

0
f 2(x)dx.

Extropy, J(X), is particularly useful for quantifying uncertainty related to the lifetime of systems.
However, for certain scenarios, such as when the current age of a system is known, extropy alone may
be insufficient to assess the remaining uncertainty. Specifically, for a unit that has survived up to a
given time t, it becomes essential to consider residual extropy as an appropriate measure. Qiu and
Jia [3] formalized the residual extropy, which is defined as

J(X; t) = −
1
2

∫ ∞

t

(
f (x)
F̄(t)

)2

dx, (1.2)

where fXt(x) = f (x)/F̄(t) denotes the PDF of Xt = [X − t|X > t], and F̄(t) is the survival function
of X. The measures J(X) and J(X; t) defined here give equal importance to each event and depend
solely on the probability, regardless of the values of random variables, ensuring the measure that
remains shift-independent. Nevertheless, in practical applications, such as reliability analysis or
mathematical neurobiology, addressing shift-dependent information measures becomes essential. To
tackle this challenge, researchers have introduced weighted information measures, which can account
for specific contexts. Sathar and Nair [4] developed weighted variants of extropy measures to address
these concerns. Specifically, they defined the weighted extropy (WEx) and the weighted residual
extropy (WREX) as

Jw(X) = −
1
2

∫ ∞

0
w(x) f 2(x)dx (1.3)

and

Jw(X; t) = −
1
2

∫ ∞

t
w(x)

(
f (x)
F̄(t)

)2

dx, (1.4)

respectively, where the weighting function w(x) represents the variability of the weighted information
content associated with X. It is worth mentioning that as t approaches zero, Jw(X; t) converges to Jw(X).
Various authors have explored measures of extropy measures and their practical uses. Qiu [5] analyzed
characterization properties, monotonic behavior, and lower bounds of extropy for order statistics and
record values. Krishnan et al. [6] and Nair and Sathar [7] investigated interrelations among extropy
and derived results linking them to L-moments. For additional research on extropy and its application,
please refer to [8–10].

The concept of varextropy has been introduced as a complementary measure to Shannon entropy
for quantifying uncertainty. The varextropy of X is (see [11])

V J(X) = Var
(
−

1
2

f (X)
)
=

1
4

E
(

f 2(X)
)
− J2(X) =

1
4

∫ ∞

0
f 3(x)dx −

(∫ ∞

0
f 2(x)dx

)2 .
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As noted by the authors, when two variables share the same extropy, varextropy provides a valuable tool
for determining which extropy is more appropriate for measuring uncertainty. Moreover, it has been
argued that varextropy is often more adaptable than varentropy, as it does not rely on distributional
parameters in specific models. Vaselabadi et al. [11] extended these concepts to study the residual
varextropy of X at time t, given by

V J(X; t) =
1
4

E
(

f 2
t (Xt)

)
− (J(X; t))2 . (1.5)

Recently, Chaudhary and Gupta [12] introduced the notion of weighted varextropy (WVEx), given by

V Jw(X) = Var
(
−

1
2

w(X) f (X)
)

=
1
4

(
E

(
w2(X) f 2(X)

)
− E2 (w(X) f (X))

)
=

1
4

∫ ∞

0
w2(x) f 3(x)dx −

(∫ ∞

0
w(x) f 2(x)dx

)2 . (1.6)

Saha and Kayal [13] introduced weighted varentropy (WVE) and weighted residual
varentropy (WRVE) for random variables and examined their theoretical properties.
Vaselabadi et al. [11] highlighted an important distinction: WVE lacks affine invariance, whereas
varentropy retains this property. This limitation arises because varentropy and varextropy are
sometimes unable to capture the variability in the information content of a random process across
different time points. To address this shortcoming, measures such as WVE and WVEx have been
proposed.

The most existing research has primarily focused on the properties of WVEx and residual
varextropy. In this paper, we further explore some properties of WVEx. As noted by Asadi et al. [14],
if X represents the lifetime of a new unit, the classical entropy H(X) may not adequately capture
the uncertainty regarding the unit’s residual lifetime. In such cases, it becomes essential to consider
residual varextropy. In practical applications such as lifetime analysis, classical entropy or extropy
provides a global perspective on uncertainty, treating all values of the random variable equally.
However, in many real-world contexts, particularly in reliability and survival analysis, the uncertainty
associated with the residual life beyond a certain threshold is of greater relevance. In engineering
systems, once a system has operated up to time t, understanding the variability and uncertainty of its
remaining lifetime becomes crucial for maintenance planning and risk assessment. Weighted residual
varextropy (WRVEx) offers a localized measure specifically tailored to the residual distribution,
providing more actionable insights. In medical applications, patients who have survived beyond a
critical period often present different risk profiles. Weighted measures such as WVEx and WRVEx
enable emphasis on particular survival times (e.g., long-term survivors), delivering more clinically
meaningful evaluations compared to uniform entropy-based measures.

The paper is structured as follows: Section 2 explores several properties of WVEx, including
closed-form expressions for WVEx in specific distributions. We also derive the WVEx under affine
transformations and explore its various bounds. Section 3 proposes WRVEx and presents several
findings, including bounds for WRVEx. Additionally, we investigate WRVEx under general monotonic
transformations and the proportional hazard rates (PHR) model. In Section 4, we examine the WVEx of
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coherent systems and present several proposed bounds. Section 5 provides insights into non-parametric
estimation of both WVEx and WRVEx using real and simulated datasets. Section 6 presents an analysis
of a real dataset to illustrate the proposed methods. Finally, Section 7 summarizes this paper.

Throughout this work, it is assumed that all random variables are absolutely continuous and non-
negative. Furthermore, the terms “increasing” and “decreasing” are used to refer to functions that are
non-decreasing and non-increasing, respectively.

2. Weighted varextropy

It is often challenging to obtain an explicit closed-form expression for the WVEx. In such situations,
transformations can be utilized to determine the WVEx of a transformed random variable by leveraging
the WVEx of a known distribution. Theorem 2.1 provides a practical solution in this regard.

Theorem 2.1. Let X be a random variable with PDF f (x), and consider the affine-transformed variable
Y = aX + b, where a > 0 and b ≥ 0. The WVEx of Y is given by

V Jy(Y) = V Jx(X) +
(
b
a

)2

V J(X) +
b

2a

(
E

(
X f 2(X)

)
− 4Jx(X)J(X)

)
,

where V Jx(X) denotes the WVEx of X with w(x) = x.

Proof. Let Y = aX + b, where a > 0. Then the PDF of Y is given by the standard transformation
formula

g(y) =
1
a

f
(
y − b

a

)
, y > b.

By (1.6), it follows that

V Jy(Y) =
1
4

∫ ∞

0
y2g3(y)dy − (Jy(Y))2 , (2.1)

where

Jy(Y) = −
1
2

∫ ∞

0
yg2(y) dy = −

1
2

∫ ∞

b
y
(
1
a

f
(
y − b

a

))2

dy = −
1

2a2

∫ ∞

b
y f 2

(
y − b

a

)
dy. (2.2)

Now, perform the change of variable x = y−b
a , which implies y = ax + b, and dy = adx. Substituting

into (2.2), we have

Jy(Y) = −
1

2a2

∫ ∞

0
(ax + b) f 2(x) · adx

= −
1

2a

∫ ∞

0
(ax + b) f 2(x)dx

= −
1
2

∫ ∞

0
x f 2(x)dx −

b
2a

∫ ∞

0
f 2(x)dx

= Jx(X) +
b
a

J(X). (2.3)
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Note that ∫ ∞

0
y2g3(y)dy =

∫ ∞

0

(
ax + b

a

)2

f 3(x)dx (2.4)

=

∫ ∞

0
x2 f 3(x)dx +

2b
a

∫ ∞

0
x f 3(x)dx +

(
b
a

)2 ∫ ∞

0
f 3(x)dx. (2.5)

Substituting Eqs (2.3) and (2.4) into (2.1) yields the required result, completing the proof.

Remark 2.1. According to [4], X and X+b possess different weighted extropy despite having identical
extropy. For Y = aX + b, J(Y) = 1

a J(X) and Jw(Y) = Jw(X) + b
a J(X); thus, when a = 1, J(Y) = J(X)

while Jw(Y) , Jw(X). They also show that X and aX have identical weighted extropy, but their extropies
differ. As discussed in [11], V J(Y) = 1

a2 V J(X), Theorem 2.1 also highlights cases where, for b = 0, X
and X + b have distinct WVEx even though their varextropy remains identical.

In the following, we compute WVEx defined in (1.6) with w(x) = x for some continuous
distributions, which are derived under the assumption that the underlying random variables are
absolutely continuous and possess finite moments required for the existence of the weighted
expectations. Table 1 presents the WVEx values for several widely used distributions.

Table 1. WVEx for various distributions.

Distribution f (z) V Jw(X)

Uniform (a, b) 1
(b−a) , a < z < b 1

48

Exponential (θ) θe−θz, 0 < z < ∞ 5
1728

Gamma (α, β) e−βzzα−1βα

Γ(α) , 0 < z < ∞ 1
4

[
Γ(3α)

33αΓ(α)3 −
Γ(2α)2

24αΓ(α)4

]
Beta (α, θ) zα−1(1−z)θ−1

B(α,θ) , 0 < z < 1 1
4

[
B(3α,3θ−2)

B(α,θ)3 −
B(2α,2θ−1)2

B(α,θ)4

]
Power (α, λ) αλαzα−1, 0 < z ≤ 1

λ
1
48α

2

Rayleigh (σ) z
σ2 e−

z2

2σ2 , 0 < z < ∞ 5
432

Here, we provide detailed derivations of WVEx for the Gamma, Beta and Power distributions.
(i) Let X follow Gamma (α, β), then, we have

V Jw(X) =
1
4

∫ ∞

0
w2(x) f 3(x)dx −

(∫ ∞

0
w(x) f 2(x)dx

)2
=

1
4

∫ ∞

0
x2

(e−βzxα−1βα

Γ(α)

)3

dx −
(∫ ∞

0
x
(e−βxxα−1βα

Γ(α)

)2

dx
)2

=
3−3αΓ(α)Γ(3α) − 4−2αΓ(2α)2

4Γ(α)4
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=
1
4

(3−3αΓ(α)Γ(3α)
Γ(α)4 −

4−2αΓ(2α)2

Γ(α)4

)
=

1
4

(
Γ(3α)

33αΓ(α)3 −
Γ(2α)2

24αΓ(α)4

)
.

(ii) Let X follow Beta (α, θ); then, we have

V Jw(X) =
1
4

∫ 1

0
w2(x) f 3(x)dx −

(∫ 1

0
w(x) f 2(x)dx

)2
=

1
4

∫ 1

0
x2

( xα−1(1 − x)θ−1

B(α, θ)

)3

dx −
(∫ 1

0
x
( xα−1(1 − x)θ−1

B(α, θ)

)2

dx
)2

=

B(α, θ)Γ(3α)Γ(3θ − 2)
Γ(3α + 3θ − 2)

−
Γ(2α)2Γ(2θ − 1)2

Γ(2α + 2θ − 1)2

4B(α, θ)4

=
B(α, θ)B(3α, 3θ − 2) − B(2α, 2θ − 1)2

4B(α, θ)4 .

Note that
B(α, θ) =

Γ(α)Γ(θ)
Γ(α + θ)

,

then we have
Γ(2α)2Γ(2θ − 1)2

Γ(2α + 2θ − 1)2 = B(2α, 2θ − 1)2,

and
Γ(3α)Γ(3θ − 2)
Γ(3α + 3θ − 2)

= B(3α, 3θ − 2).

Thus,

B(α, θ)Γ(3α)Γ(3θ − 2)
Γ(3α + 3θ − 2)

−
Γ(2α)2Γ(2θ − 1)2

Γ(2α + 2θ − 1)2

4B(α, θ)4 =
B(α, θ)B(3α, 3θ − 2) − B(2α, 2θ − 1)2

4B(α, θ)4

=
1
4

(B(α, θ)B(3α, 3θ − 2)
B(α, θ)4 −

B(2α, 2θ − 1)2

B(α, θ)4

)
=

1
4

(
B(3α, 3θ − 2)

B(α, θ)3 −
B(2α, 2θ − 1)2

B(α, θ)4

)
.

(iii) Let X follow Power (α, λ), then we have

V Jw(X) =
1
4

∫ 1
λ

0
w2(x) f 3(x)dx −

∫ 1
λ

0
w(x) f 2(x)dx

2
=

1
4

∫ 1
λ

0
x2

(
αλαzα−1

)3

dx −

∫ 1
λ

0
x
(
αλαzα−1

)2

dx

2
=

α2

48
.
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Example 2.1. Let X follow Gamma and Beta distribution, respectively. Figures 1 and 2 depict the
variation of V Jw(X) concerning distribution parameters.

Figure 1 indicates that V Jw(X) varies with α; as α increases, V Jw(X) also increases steadily.

0 2 4 6 8 10

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

VJ
w
(X

)

Figure 1. Plots of V Jw(X) for Gamma distribution.

(a) V Jw(X) with respect to θ for α = 1, 2, 3. (b) V Jw(X) with respect to α for θ = 1, 2, 3.

Figure 2. Plots of V Jw(X) for Beta distribution with different shape parameters α and θ.

From Figure 2, it is evident that V Jw(X) depends on both α and θ. As θ increases, V Jw(X) decreases
more sharply, with higher α values causing steeper declines. Conversely, increasing α leads to an
increase in V Jw(X), and V Jw(X) shows stronger sensitivity to α for larger θ. The effect of α is more
pronounced for larger θ, while smaller θ results in a more gradual change of V Jw(X) as α varies.

Sometimes, obtaining the closed-form expression of WVEx is not feasible. In such instances,
bounds can provide valuable insight into the variability measure. The next theorem establishes bounds
for the WVEx with w(x) = x. The proof is straightforward and hence omitted.

AIMS Mathematics Volume 10, Issue 5, 11234–11259.
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Theorem 2.2. Let X be a random variable with PDF f (x), such that

1
x3 + 3

≤ f (x) ≤ 1,

then
1
4

(
(E

(
w2(X) f 2(X)

)
− (E(X))2

)
≤ V Jw(X) ≤ −

1
2

Jw1(X) −
1
4

(
E
( X
X3 + 3

))2

,

where Jw1(X) is the WEx with w1(x) = x2.

Proof. According to Eq (1.6), for w(x) = x, we have

V Jw(X) =
1
4

∫ ∞

0
x2 f 3(x)dx −

(∫ ∞

0
x f 2(x)dx

)2 .
For the first integral, we obtain that∫ ∞

0
x2 f 3(x)dx ≤

∫ ∞

0
x2 f (x)dx = E(X2) = Jw1(X),

where w1(x) = x2, and thus ∫ ∞

0
x2 f 3(x)dx ≤ Jw1(X).

Moreover, since f (x) ≥ 1
x3+3 , we obtain∫ ∞

0
x f 2(x)dx ≥

∫ ∞

0
x
(

1
x3 + 3

)2

dx = E
(

X
(X3 + 3)2

)
,

then (∫ ∞

0
x f 2(x)dx

)2

≥

(
E

(
X

(X3 + 3)2

))2

.

We then obtain the upper bound

V Jw(X) ≤ −
1
2

Jw1(X) −
1
4

(
E

( X
X3 + 3

))2

.

On the other hand, using the upper bound f (x) ≤ 1, we obtain∫ ∞

0
x2 f 3(x)dx ≥

∫ ∞

0
x2

(
1

x3 + 3

)3

dx,

and ∫ ∞

0
x f 2(x)dx ≤

∫ ∞

0
x · 12dx = E(X).

Thus,

V Jw(X) ≥
1
4

(
E

(
x2 f 3(x)

)
− (E(X))2

)
.

Combining the two bounds yields the desired result. □
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The condition 1
x3+3 ≤ f (x) ≤ 1 assumed in Theorem 2.2 ensures that the probability density function

f (x) is bounded above and below in a controlled manner. In particular, the upper bound restricts the
distribution from having excessively sharp peaks, while the lower bound guarantees that the density
does not decay too quickly at infinity. This condition is satisfied by a variety of distributions with
moderately heavy tails; the following remark is presented to illustrate the condition in Theorem 2.2.

Remark 2.2. (i) Let X follow a Lomax distribution with CDF F(x) = 1 −
(
1 +

x
a

)−b
, a > 0, b > 0.

Figure 3(a) illustrates that the condition

1
x3 + 3

≤ f (x) ≤ 1

holds for a = 2 and b = 1.5.
(ii) Let X follow a Pareto distribution with PDF

f (x) = babx−b−1.

Figure 3(b) illustrates that the condition in Theorem 2.2 also holds for a = 0.4 and b = 0.5.

(a) Lomax PDF and 1/(x3 + 3). (b) Pareto PDF and 1/(x3 + 3).

Figure 3. Illustrate the condition 1/(x3 + 3) ≤ f (x) ≤ 1.

In the following, we examine the WVEx under monotonic transformations and explore its
fundamental properties.

Theorem 2.3. Let Y = φ(X), where φ(x) be a strictly monotone, continuous, and differentiable
function. Then, the WVEx of Y is

V Jy(Y) =


V J

φ
φ′ (X), if φ is strictly increasing;

−
1
4

E
(
φ2(X)
φ′(X)2 f 2(X)

)
− J

φ
φ′ (X), if φ is strictly decreasing,

where J
φ
φ′ (X) and V J

φ
φ′ (X) with w(x) = φ(x)/φ′(x) are defined as (1.3) and (1.6), respectively.

Proof. Consider the first case where φ(x) is strictly increasing. By (1.6), the WVEx of Y = φ(X) is
given by

V Jy(Y) =
1
4

∫ ∞

0
y2 f 3(φ−1(y))(

φ′(φ−1(y))
)3 dy −

∫ ∞

0
y

f 2(φ−1(y))(
φ′(φ−1(y))

)2 dy
2 . (2.6)
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Substituting y = φ(x) into the above expression simplifies the right-hand side, yielding the desired
result.

When φ is strictly decreasing, the transformation Y = φ(X) implies that

FY(y) = P(Y ≤ y) = P(φ(X) ≤ y) = P(X ≥ φ−1(y)) = 1 − FX(φ−1(y)).

Thus, the PDF of Y is

fY(y) =
∣∣∣∣∣ d
dy

FY(y)
∣∣∣∣∣ = ∣∣∣∣∣− fX(φ−1(y)) ·

d
dy
φ−1(y)

∣∣∣∣∣ = fX(φ−1(y))
∣∣∣∣∣ d
dy
φ−1(y)

∣∣∣∣∣ .
Since φ is strictly decreasing, we have φ′(x) < 0 for all x, and thus

d
dy
φ−1(y) =

1
φ′(φ−1(y))

< 0.

Therefore,

fY(y) =
fX(φ−1(y))
|φ′(φ−1(y))|

.

Note that y = φ(x); we have

fY(φ(x)) =
fX(x)
|φ′(x)|

.

Thus, ∫ ∞

0
y2 f 3

Y (y)dy =
∫ ∞

0
φ2(x)

(
fX(x)
|φ′(x)|

)3

|φ′(x)|dx =
∫ ∞

0

φ2(x)
|φ′(x)|2

f 3
X(x)dx,

and (∫ ∞

0
y f 2

Y (y)dy
)2

=

∫ ∞

0
φ(x)

(
fX(x)
|φ′(x)|

)2

|φ′(x)|dx
2

=

(∫ ∞

0

φ(x)
|φ′(x)|

f 2
X(x)dx

)2

.

Therefore,

V Jy(Y) =
1
4

∫ ∞

0

φ2(x)
(φ′(x))2 f 3

X(x)dx −
(∫ ∞

0

φ(x)
φ′(x)

f 2
X(x)dx

)2 .
By simplifying, we finally obtain

V Jy(Y) = −
1
4

E
(
φ2(X)

(φ′(X))2 f 2(X)
)
− J

φ
φ′ (X).

The next remark demonstrates how WVEx behaves under scale and location transformations.

Remark 2.3. (a) If Y = aX, a > 0, then

VEax(aX) = V J
φ
φ′ (X) = V Jx(X).

(b) If Y = X + b,, then

V Jφ(X + b) = V J
φ
φ′ (X) = V Jx(X) + b2V J(X) +

b
2

(
E

(
X f 2(X)

)
− 4Jx(X)J(X)

)
, b ≥ 0.
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3. Weighted residual varextropy

Inspired by [12], this section introduces the WRVEx as a natural generalization of the residual
varextropy (RVEx), aiming to provide a more flexible tool for measuring uncertainty in the residual
lifetime of random variable X. By introducing a weight function w(x), we allow differential emphasis
across the support of X, thereby enabling a more nuanced quantification of residual uncertainty. For a
weight function w(x), the WRVEx of X can be expressed as

V Jw(X; t) =
1
4

( ∫ ∞

t
w2(x)

(
f (x)
F̄(t)

)3

dx −
( ∫ ∞

t
w(x)

(
f (x)
F̄(t)

)2

dx
)2)
. (3.1)

Moreover, as t → 0, the WRVEx converges to the weighted varextropy, i.e., V Jw(X; t) → V Jw(X),
reflecting the global weighted uncertainty of X. The weighted varextropy measures the overall
uncertainty of X under a weight function w(x), while WRVEx focuses on the residual distribution
beyond a specified threshold t.

Next, we present the WRVEx given by (3.1) with w(x) = x for various commonly used distributions.

Example 3.1. (i) Suppose X is uniformly distributed over the interval (a, b). In this case, we have
V Jw(X; t) = 1/48, which matches the WVEx of U(a, b).
(ii) Suppose X follows an exponential distribution with parameter λ. Then, the WRVEx is

V Jw(X; t) =
12λt(3λt − 1) + 5

1728
.

(iii) Let X follow a Rayleigh distribution with PDF

f (x) =
x
σ2 e−

x2

2σ2 , 0 < x < ∞.

Then, we have

V Jw(X; t) =
5σ4 + 9t4 − 6σ2t2

432σ4 .

Figure 4 illustrates how the variation of V Jw(X; t) depends on t and parameters of exponential and
Rayleigh distributions. The plots demonstrate that V Jw(X; t) increases sharply as t increases. Larger
values of λ and σ result in a slower increase of V Jw(X; t) as t grows.
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(a) Exponential distribution (b) Rayleigh distribution

Figure 4. Plots of V Jw(X; t) for two distributions.

The result below presents a clear expression for the derivative of WRVEx with respect to t.

Theorem 3.1. For any t > 0, it holds that

d
dt

V Jw(X; t) =
1
4

(
w2(t)r3(t) + w(t)r2(t)

)
+

3
4

r(t)
F̄2(t)

E
(
w2(X) f (X)|X > t

)
−

1
2

r(t)
F̄(t)

E(w(X)|X > t).

Proof. Based on (3.1), we can obtain that

d
dt

V Jw(X; t) =
d
dt

1
4

∫ ∞

t
w2(x)

(
f (x)
F̄(t)

)3

dx − (Jw(X; t))2


=

1
4

w2(t)
(

f (t)
F̄(t)

)3

+
3
4

f (t)
F̄(t)

∫ ∞

t
w2(x)

(
f (x)
F̄(t)

)2

dx + w(t)
(

f (t)
F̄(t)

)2

−2
f (t)
F̄(t)

∫ ∞

t
w(x)

(
f (x)
F̄(t)

)2

dx −
1
2

∫ ∞

t
w(x)

(
f (x)
F̄(t)

)2

dx

=
1
4

w2(t)r3(t) +
3
4

r(t)
F̄2(t)

∫ ∞

t
w2(x) f 2(x)dx +

1
4

w(t)r2(t)

−
1
2

r(t)
F̄(t)

∫ ∞

t
w(x) f (x)dx −

1
2

∫ ∞

t
w(x)

(
f (x)
F̄(t)

)2

dx

=
1
4

w2(t)r3(t) +
3
4

r(t)
F̄2(t)

E
(
w2(X) f (X)|X > t

)
+

1
4

w(t)r2(t)

−
1
2

r(t)
F̄(t)

E(w(X)|X > t) −
1
2

1
F̄2(t)

E
(
w(X) f 2(X)|X > t

)
.

The following theorem establishes bounds for the WRVEx.

Theorem 3.2. If the PDF f (x) of X satisfies

1
x3 + 3

≤ f (x) ≤ 1,
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then

−
1

2F̄(t)
Jw2(X; t) − (Jx(X; t))2 ≤ V Jx(X; t) ≤ −

1
2F̄(t)

Jw1(X; t) −
1

4F̄4(t)

(
E
( X
X3 + 3

∣∣∣∣X > t
))2

,

where Jw1(X; t) and Jw2(X; t) are defined with w1(x) = x2 and w2(x) = x2/(x3 + 3) as in (1.4).

Example 3.2. Suppose X follows the Lomax distribution with CDF

F(x) = 1 −
(
1 +

x
a

)−b
.

For a = 4 and b = 2, the condition specified in Theorem 3.2 is satisfied. Figure 5 displays V Jx(X; t)
and its two bounds, illustrating the result in Theorem 3.2.

Lower bound

VJx(X;t)

Upper bound

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

Figure 5. Graph of WRVEx and its bounds.

Theorem 3.3. For a random variable X, the following holds:

t
4F̄3(t)

E(X f 2(X)|X > t) − (Jx(X; t))2
≤ V Jx(X; t) ≤

1
4F̄3(t)

E
(
X2 f 2(X)|X > t

)
− tJ(X; t)Jx(X; t),

where J(X; t) is defined in (1.2), and Jx(X; t) is defined in (1.4) with w(x) = x.

Proof. According to Lemma 2 of [13], Jx(X; t) ≤ tJ(X; t). The remainder of the proof follows from
simple transformations and is omitted for brevity.

We now present a lower bound for the WRVEx, expressed using the variance of the residual
life (VRL), denoted as σ2(t), is defined as

σ2(t) = Var(X − t|X > t) =
2

F̄(t)

∫ ∞

t
dν

∫ ∞

ν

F̄(u)du − µ2(t),

where

µ(t) = E(X − t|X > t) =
∫ ∞

t

F̄(x)
F̄(t)

dx

represents the mean residual lifetime (MRL).
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Theorem 3.4. Let Xt be the residual lifetime of X, assuming a finite µ(t) and e σ2(t). Then, the lower
bound of V Jx(X; t) is given by

V Jx(X; t) ≥
σ2(t)

4
{
E(−ηt(Xt) ft(Xt)) − E

(
ηt(Xt)Xt f ′t (Xt)

)}2 ,

where ηt(x) satisfies

σ2(t)ηt(x) ft(x) =
∫ x

0
(µ(t) − u) ft(u)du.

Proof. According to [15], the next inequality holds:

Var(h(X)) ≥ σ2(E(ξ(X)h′(X)))2,

where ξ(x) is defined as

σ2ξ(x) f (x) =
∫ x

0
(µ(t) − u) f (u)du.

Let Xt denote a reference random variable satisfying h(x) = −(x f (x))/2. Consequently,

V Jx(X; t) = Var
(
−

1
2

Xt ft(Xt)
)
≥

σ2(t)
4
{E(ηt(Xt)(Xt ft(Xt))′)}

2

=
σ2(t)

4
{
E(−ηt(Xt) ft(Xt)) − E

(
ηt(Xt)Xt f ′t (Xt)

)}2 ,

This completes the proof.

Example 3.3. Consider a random variable X ∼ N(0, 1). Let Xt denote the residual lifetime given
that X > t, with conditional PDF ft(x). For illustration, we numerically compute and plot ηt(x) for
several fixed values of t. The resulting curves are shown in Figure 6. As observed, ηt(x) behaves as a
monotonic function with respect to x, and its shape systematically varies with t. This behavior reflects
the cumulative imbalance between the conditional mean and the observed residual lifetime values up
to x.

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
x

0.0

0.5

1.0

1.5

2.0

2.5

t(x
)

1e9
t = 0.5
t = 1
t = 1.5

Figure 6. Variation of ηt(x) under standard normal distribution.
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Remark 3.1. (i) If η1(t) is an increasing function of t, then

V J
x
(X; t) ≥

σ2(t)
4
{E(η1(Xt) ft(Xt))}2, t ≥ 0.

(ii) If ft(x) ≥ 1
x3+1 , then

V J
x
(X; t) ≥

σ2(t)
4

{
E

(
η1(Xt)
X3 + 1

)
+ E

(
ηt(Xt)Xt f ′t (Xt)

)}2

, t ≥ 0.

In the following, we investigate the behavior of WRVEx under arbitrary monotonic transformations.

Theorem 3.5. Assume that ϕ(x) is a strictly monotonic, continuous, and differentiable function, and
let Y = ϕ(X); then

V J
y
(Y; t) =


V J

φ
φ′ (X;φ−1(t)), if φ is strictly increasing;

−
1
4

E
(
φ2(Xt)
φ′(Xt)2 f 2

t (Xt)
)
− J

φ
φ′ (X;φ−1(t)), if φ is strictly decreasing,

where J
φ
φ′ (X;φ−1(t)) and V J

φ
φ′ (X;φ−1(t)) with w(x) = φ(x)/φ′(x) are defined as in (1.4) and (3.1),

respectively.

Proof. Suppose φ(x) is strictly increasing. According to (3.1), the WRVEx of Y = φ(X) can be
expressed as

V Jy(Y; t) =
1
4

∫ ∞

t
y2 f 3(φ−1(y))(

φ′(φ−1(y))
)3 F̄3(φ(t))

dy −
∫ ∞

t
y

f 2(φ−1(y))(
φ′(φ−1(y))

)2 F̄2(φ(t))
dy

2 . (3.2)

Substituting y = φ(x) into the right-hand side of equation (3.2) and simplifying yields the result. The
case where φ(x) is strictly decreasing can be handled in a similar manner and is omitted here. □

Example 3.4. It is a well-established result that F(X) follows a uniform distribution on (0, 1) for any
continuous random variable X. Consequently, if we define Y = F(X), V Jw(Y; t) equals the WRVEx of
U(0, 1). Thus, we have

V Jw(Y; t) = V J
F
F′ (X; F−1(t)). (3.3)

Suppose that X follows an exponential distribution with CDF F(x) = 1 − e−θx, θ > 0. Then, F−1(t) =
−

log(1−t)
θ

. By (3.3), we obtain that V Jw(Y; t) = 1
48 , which is the WRVEx of U(0, 1).

Next, we examine the WRVEx for the PHR model. A random variable X follows the PHR model if
its survival function takes the form F̄X(x) = F̄λ(x) for λ > 0. The PDF of X is

g(x) = λF̄λ−1(x) f (x) = λF̄λ(x)r(x), λ > 0, (3.4)

where λ is the proportional parameter, F̄(x) represents the baseline survival distribution, f (x) is the
baseline PDF, and r(x) = f (x)/F̄(x) is the baseline hazard rate function, which is well-defined on
the support where F̄(x) > 0. The PHR model is a highly flexible family of distributions that has
found extensive use in reliability and survival analysis. It includes well-known distributions such as
the exponential, Weibull, and Pareto distributions as special cases. For more applications of the PHR
model, see [16–18].
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Theorem 3.6. Let Y have the PDF given by (3.4); then the WRVEx of Y is

V Jx(Y; t) =
λ4

4F̄3λ(t)

∫ F̄λ(t)

0

(
F̄−1(y

1
λ )
)2
(
yr

(
F̄−1(y

1
λ )
))4

dy

−
λ6

4F̄4λ(t)

( ∫ F̄λ(t)

0
F̄−1(y

1
λ )
(
yr

(
F̄−1(y

1
λ )
))3

dy
)2

,

where y = F̄λ(x), and F̄−1
(
y

1
λ

)
= sup

{
x : F̄(x) ≥ y

1
λ

}
is the quantile function of F̄(x).

Proof. From (3.1), the WRVEx of Y is

V Jx(Y; t) =
1
4

( ∫ ∞

t
x2

(
g(x)
Ḡ(t)

)3

dx −
( ∫ ∞

t
x
(
g(x)
Ḡ(t)

)2

dx
)2)
.

Since y = F̄λ(x), we have

V Jx(Y; t) =
1

4F̄3λ(t)

∫ F̄λ(t)

0

(
F̄−1(y

1
λ )
)2

(
λy1− 1

λ f
(
F̄−1(y

1
λ )
))4

dy

−
1

4F̄4λ(t)

( ∫ F̄λ(t)

0
F̄−1(y

1
λ )
(
λy1− 1

λ f
(
F̄−1(y

1
λ )
))3

dy
)2

=
λ4

4F̄3λ(t)

∫ F̄λ(t)

0

(
F̄−1(y

1
λ )
)2
(
yr

(
F̄−1(y

1
λ )
))4

dy

−
λ6

4F̄4λ(t)

( ∫ F̄λ(t)

0
F̄−1(y

1
λ )
(
yr

(
F̄−1(y

1
λ )
))3

dy
)2

.

This completes the proof.

4. WVEx of coherent systems

This section focuses on analyzing the WVEx of coherent systems. A system is considered coherent
if its structure function τ increases with respect to each component, and all components are essential.
In other words, improving the performance of any individual component cannot reduce the overall
lifetime of the system. Coherent systems play a crucial role in various real-world applications, such as
industrial machinery, telecommunications networks, and oil pipeline infrastructures. Let T represent
the lifetime of a coherent system whose components have dependent, identically distributed lifetimes
denoted by X, with CDF F(x) and PDF f (x). Then the CDF of T is

FT (x) = q(F(x)),

where q : [0, 1] → [0, 1] denotes a distortion function that only depends on the structure function and
survival copula. Additionally, let h be an increasing continuous function defined on the interval [0, 1]
such that h(0) = 0 and h(1) = 1. To simplify, let u = F(x) and denote

β1,u = sup
u∈[0,1]

ϕ(q(u))
ϕ(u)

, ϕ(u) =
(
F−1(u)

)2 (
f (F−1(u))

)3
, and ψ(u) = F−1(u)

(
f (F−1(u))

)2
,
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then the WVEx of T is given by

V Jx(T ) =
1
4

( ∫ ∞

0
x2 f 3

T (x)dx −
(∫ ∞

0
x f 2

T (x)dx
)2 )

=
1
4

( ∫ ∞

0
ϕ(FT (x))dx −

(∫ ∞

0
ψ(FT (x))dx

)2 )
=

1
4

( ∫ ∞

0
ϕ(q(F(x)))dx −

(∫ ∞

0
ψ(q(F(x)))dx

)2 )
=

1
4

( ∫ 1

0

ϕ(q(u))
f (F−1(u))

du −
(∫ 1

0

ψ(q(u))
f (F−1(u))

du
)2 )

, (4.1)

where fT (x) is PDF of T .
The next result provides the relationship between the WVExs of the lifetimes of a coherent system

and its components. The proof is straightforward and thus is omitted for brevity.

Theorem 4.1. Suppose that ϕ(q(u)) ≥ (≤) ϕ(u) and ψ(q(u)) ≤ (≥) ψ(u); then

V Jx(T ) ≥ (≤)V Jx(X).

Proof. From (4.1), we have

V Jx(T ) =
1
4

∫ 1

0

ϕ(q(u))
f (F−1(u))

du −
(∫ 1

0

ψ(q(u))
f (F−1(u))

du
)2 ,

and similarly,

V Jx(X) =
1
4

∫ 1

0

ϕ(u)
f (F−1(u))

du −
(∫ 1

0

ψ(u)
f (F−1(u))

du
)2 .

Suppose that ϕ(q(u)) ≥ (≤)ϕ(u) and ψ(q(u)) ≤ (≥)ψ(u) for all u ∈ (0, 1), and noting that f (F−1(u)) > 0,
we observe

• Since ϕ(q(u)) ≥ (≤)ϕ(u), it follows that

ϕ(q(u))
f (F−1(u))

≥ (≤)
ϕ(u)

f (F−1(u))
,

and thus, ∫ 1

0

ϕ(q(u))
f (F−1(u))

du ≥ (≤)
∫ 1

0

ϕ(u)
f (F−1(u))

du.

• Similarly, since ψ(q(u)) ≤ (≥)ψ(u), we have

ψ(q(u))
f (F−1(u))

≤ (≥)
ψ(u)

f (F−1(u))
,

and hence, (∫ 1

0

ψ(q(u))
f (F−1(u))

du
)2

≤ (≥)
(∫ 1

0

ψ(u)
f (F−1(u))

du
)2

.

AIMS Mathematics Volume 10, Issue 5, 11234–11259.



11251

Combining the above two inequalities yields

V Jx(T ) ≥ (≤)V Jx(X),

which completes the proof. □
Theorem 4.1 establishes a comparison between the WVEx of the system and that of individual

components. When the distortion function q(u) satisfies certain conditions, the system’s WVEx is
bounded above or below by that of its components. This indicates that the variability in system lifetime,
as captured by WVEx, can either increase or decrease depending on the dependence structure among
the components.

The following Theorem 4.2 establishes an upper bound for the WVEx of coherent systems in
relation to WEx.

Theorem 4.2. If
1

x3 + 3
≤ f (x) ≤ 1,

then

V Jx(T ) ≤ β1,uJw1(X),

where Jw1(X) is the WEx with w1(x) = x2.

Proof. From (4.1), it can be inferred that

V Jx(T ) =
1
4

( ∫ 1

0

ϕ(q(u))
f (F−1(u))

du −
(∫ 1

0

ψ(q(u))
f (F−1(u))

du
)2 )

=
1
4

( ∫ 1

0

ϕ(q(u))
ϕ(u)

ϕ(u)
f (F−1(u))

du −
(∫ 1

0

ψ(q(u))
f (F−1(u))

du
)2 )

≤
1
4

sup
u∈[0,1]

ϕ(q(u))
ϕ(u)

∫ 1

0

ϕ(u)
f (F−1(u))

du

≤
1
4
β1,u

∫ ∞

0
x2 f 2(x)dx

= −
1
2
β1,uJw1(X).

Thus, we complete the proof.
The next corollary, directly derived from Theorem 4.1, establishes a bound for the WVEx of a

coherent system.

Corollary 4.1. If f (x) satisfies the condition in Theorem 4.1, then

V Jx(T ) ≤ β1,uV Jx(X) + β1,u(Jx(X))2.

The next corollary establishes an upper bound for V Jx(T ).

Corollary 4.2. If the PDF f (x) of component lifetimes satisfies f (x) ≥ L > 0, then

V Jx(T ) ≤
1

4L

∫ 1

0
ϕ(q(u))du.
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The derived bounds involving β1,u and L provide practical tools for system designers and reliability
engineers. They allow for estimating the WVEx of the system without fully specifying the joint
distribution of component lifetimes, provided some information on marginal distributions and the
copula structure is available.

5. Non-parametric estimation of WVEx and WRVEx

We introduce non-parametric estimators for WVEx and WRVEx. To achieve this, we utilize the
well-known kernel density estimator for f (x), as proposed by [19]. The estimator is mathematically
described as

f̂n(x) =
1

nbn

n∑
j=1

k
(

x − X j

bn

)
, (5.1)

where k(x) denotes the kernel function such that

(i) k(x) ≥ 0 for all x;
(ii)

∫
k(x)dx = 1;

(iii) k(x) is symmetric about zero;
(iv) k(x) satisfies the Lipschitz condition, i.e., there exists a constant M such that |k(x)−k(y)| ≤ M|x−y|.

The following important properties of f̂n(x) and ̂̄Fn(t) =
∫ ∞

t
f̂n(x)dx as given in [20] is useful to

obtain our main results.

Bias
(
f̂n(x)

)
≃

bncs

s!
f (s)(x), Var

(
f̂n(x)

)
≃

Ck

nbn
f (z), (5.2)

Bias
(̂̄Fn(t)

)
≃

∫ ∞

t
f (s)(x)dx, Var

(̂̄Fn(t)
)
≃

Ck

nbn
F̄(t), (5.3)

where cs =
∫ ∞
−∞

usK(u)du, Ck =
∫ ∞
−∞

k2(u)du, and f (s)(x) is the sth derivative of f with respect to x.
Now, we construct non-parametric estimators for WVEx and WRVEx.

Definition 5.1. The non-parametric estimators for WVEx and WRVEx with weight w(x) = x are

V̂ J
w
n (X) =

1
4

( ∫ ∞

0
x2 f̂ 3

n (x)dx −
(∫ ∞

0
x f̂ 2

n (x)dx
)2 )

(5.4)

and

V̂ J
w
n (X; t) =

1
4

( ∫ ∞

t
x2

( f̂n(x)̂̄Fn(t)

)3

dx −
( ∫ ∞

t
x
( f̂n(x)̂̄Fn(t)

)2

dx
)2)
, (5.5)

respectively.

The non-parametric estimators given in Eqs (5.4) and (5.5) are based on a kernel density estimation
framework. It is well known that, under standard regularity conditions, the choice of kernel function
has a relatively minor impact on the overall performance of the estimator, provided the kernel is a
valid probability density function (e.g., symmetric and integrating to one). Popular choices such as the
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Gaussian, Epanechnikov, and uniform kernels generally yield similar results. Therefore, for practical
purposes, we recommend using the Gaussian kernel due to its smoothness and widespread acceptance.

In contrast, the choice of bandwidth is critically important and has a significant influence on the
estimator’s performance. A bandwidth that is too small leads to a highly variable estimator with large
variance, while an excessively large bandwidth produces an over-smoothed estimator with substantial
bias. To select an appropriate bandwidth, methods such as cross-validation or Silverman’s rule can be
employed.

Next, we examine the consistency of the estimators for V Jw(X) and V Jw(X; t).

Theorem 5.1. The non-parametric kernel estimators V̂ J
w
n (X) and V̂ J

w
n (X; t) serve as consistent

estimators for V Jw(X) and V Jw(X; t), respectively.

Proof. For convenience, we define

ĥn(t) =
∫ ∞

t
x2 f̂ 3

n (x)dx, h(t) =
∫ ∞

t
x2 f 3(x)dx, m̂n(t) = ̂̄F3

n(t) and m(t) = F̄3(t),

thus, we have

1
4

∫ ∞

t
x2

( f̂n(x)̂̄Fn(t)

)3

dx =
1
4

ĥn(t)
m̂n(t)

.

Applying the Taylor series approximation, it follows that

̂̄F3
n(x) = F̄3(x) + 3F̄2(x)

( ̂̄Fn(x) − F̄(x)
)
+ 3F̄(x)

( ̂̄Fn(x) − F̄(x)
)2
+ o

( ̂̄Fn(x) − F̄(x)
)3

and

f̂ 3
n (x) = f 3(x) + 3 f 2(x)

(
f̂n(x) − f (x)

)
+ 3 f (x)

(
f̂n(x) − f (x)

)2
+ o

(
f̂n(x) − f (x)

)3
.

As a result,

ĥn(t) − h(t) = 3
∫ ∞

t
x2

(
f 2(x)

(
f̂n(x) − f (x)

)
+ f (x)

(
f̂n(x) − f (x)

)2
)

dx

and

m̂n(t) − m(t) = 3
(
F̄2(t)

( ̂̄Fn(t) − F̄(t)
)
+ F̄(x)

( ̂̄Fn(t) − F̄(t)
)2
)
+ o

( ̂̄Fn(t) − F̄(t)
)3
.

Thus, we have

Bias
(̂
hn(t)

)
≃ 3

∫ ∞

t
x2

(
f 2(x) Bias

(
f̂n(x)

)
+ f (x) Bias2 (

f̂n(x)
))

dx,

Var
(̂
hn(t)

)
≃ 9

∫ ∞

t

(
x4 f 4(x) Var

(
f̂n(x)

)
+ x4 f 2(x) Var2 (

f̂n(x)
))

dx,

Bias
(
m̂n(t)

)
≃ 3F̄2(x) Bias

( ̂̄Fn(t)
)
+ 3F̄(x) Bias2 ( ̂̄Fn(t)

)
,

Var
(
m̂n(t)

)
≃ 9F̄4(x) Var

( ̂̄Fn(t)
)
+ 9F̄2(x) Var2 ( ̂̄Fn(t)

)
.
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By applying conditions (5.2) and (5.3) and noting that bn → 0 and nbn → ∞ as n → ∞, bias and
variance of ĥn(t) and m̂n(t) approach zero as n→ ∞. Thus, as n→ ∞,

MSE(̂hn(t))→ 0 and MSE
(
m̂n(t)

)
→ 0.

It follows that, ĥn(t)
p
−→ h(t) and m̂n(t)

p
−→ m(t), as n→ ∞. Applying Slutsky’s theorem gives

1
4

∫ ∞

t
x2

( f̂n(x)̂̄Fn(t)

)3

dx =
1
4

ĥn(t)
m̂n(t)

p
−→

1
4

h(t)
m(t)

=
1
4

∫ ∞

t
x2

(
f (x)
F̄(t)

)3

dx.

According to Theorem 5 of [4], Ĵw
n (X; t) converges in probability to Jw(Z; t); thus( ∫ ∞

t
x
( f̂n(x)̂̄Fn(t)

)2

dx
)2 p
−→

( ∫ ∞

t
x
(

f (x)
F̄(t)

)2

dx
)2

.

Hence, V̂ J
w
n (X; t) serves as a consistent estimator of V Jw(Z; t), and the consistency of V̂ J

w
n (X) can be

shown similarly and is omitted here.
The next theorem addresses the asymptotic normality of V̂ J

w
n (X)and V̂ J

w
n (X; t).

Theorem 5.2. Let V̂ J
w
n (X) and V̂ J

w
n (X; t) denote the non-parametric kernel estimators for V Jw(X) and

V Jw(X; t), respectively. Assume that the kernel function k(·) is a symmetric probability density function
with compact support, bounded variation, and continuous first derivative. As n → ∞, for a fixed t,
both

(nbn)
1
2

( V̂ J
w
n (X) − V Jw(X)

σ1

)
and (nbn)

1
2

( V̂ J
ω

n (X; t) − V Jw(X; t)
σ2

)
follow a standard normal distribution, where

σ2
1 = Ck

∫ ∞

0
f (x)

(3
4

x2 f 2(x) − x f (x)
∫ ∞

0
t f 2(t)dt

)2

dx,

σ2
2 =

Ck

F̄6(t)

(
h(t)h1(t) + 2F̄3(t)h3

1(t) + 9
∫ ∞

t
x4 f 5(x)dx +

9h(t)
F̄(t)

)
,

and h1(t) =
∫ ∞

t
x f 2(x)dx.

Proof. We start by noting that

V̂ J
w
n (X) =

1
4

( ∫ ∞

0
x2 f̂ 3

n (x)dx −
(∫ ∞

0
x f̂ 2

n (x)dx
)2 )

=
1
4

∫ ∞

0
x2 f̂ 3

n (x)dx −
1
4

(∫ ∞

0
x f̂ 2

n (x)dx −
∫ ∞

0
x f 2(x)dx

)2

+
1
4

(∫ ∞

0
x f 2(x)dx

)2

−
1
2

∫ ∞

0
x f 2(x)dx

(∫ ∞

0
x f̂ 2

n (x)dx −
∫ ∞

0
x f 2(x)dx

)
.

Using Taylor series expansion, it follows that∫ ∞

0
f̂ αn (x)dx −

∫ ∞

0
f α(x)dx ≃ α

∫ ∞

0
f α−1(x)( f̂n(x) − f (x))dx, α = 1, 2, 3.
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Thus, it follows that

V̂ J
w
n (X) ≃

1
4

∫ ∞

0
x2 f 3(x)dx +

3
4

∫ ∞

0
x2 f 2(x)( f̂n(x) − f (x))dx −

(∫ ∞

0
x f (x)( f̂n(x) − f (x))dx

)2

+
1
4

(∫ ∞

0
x f 2(x)dx

)2

−

∫ ∞

0
x f 2(x)dx

∫ ∞

0
x f (x)( f̂n(x) − f (x))dx,

and hence, √
nbn(V̂ J

w
n (X) − V̂ J

w
(X))

≃
√

nbn

(3
4

∫ ∞

0
x2 f 2(x)( f̂n(x) − f (x))dx −

(∫ ∞

0
x f̂ 2

n (x)dx −
∫ ∞

0
x f 2(x)dx

)2

−

∫ ∞

0
x f 2(x)dx

∫ ∞

0
x f (x)( f̂n(x) − f (x))dx

)
=

√
nbn

∫ ∞

0
( f̂n(x) − f (x))

(3
4

x2 f 2(x) − x f (x)
∫ ∞

0
t f 2(t)dt

)
dx + op(1),

where the final equality is derived by Theorem 3.4 in [21]. By the asymptotic normality of f̂n(x)
established in [22], we can directly conclude that

σ2
1 = Ck

∫ ∞

0
f (x)

(3
4

x2 f 2(x) − x f (x)
∫ ∞

0
t f 2(t)dt

)2

dx.

Following a similar approach, we can obtain the asymptotic normality of V̂ J
w
n (X; t) , which is omitted

for brevity.
In the following, we employ Monte Carlo simulations to analyze the behavior of the WVEx and

WRVEx estimators, as defined in Eqs (5.4) and (5.5), respectively. The simulations are conducted
using an exponential distribution with λ = 1. For the estimation process, we utilize the Gaussian
kernel k(z) = 1

√
2π

e−z2/2. The estimators are assessed across various values of t, bandwidth bn, and
sample sizes n = 40, 50, 100. For each combination of t and bn, the simulation is repeated 5000 times to
ensure robust results. The accuracy of the estimators is measured using bias, standard deviations (SD),
and mean squared error (MSE). The results of the WVEx and WRVEx estimators are presented in
Tables 2 and 3, respectively.

Tables 2 and 3 show that for both WVEx and WVREx, increasing the sample size results in
improved performance, with smaller bias, SD, and MSE, indicating better accuracy and reduced
estimation errors. Larger bandwidth values can lead to increased standard deviation and mean squared
error, suggesting that choosing an appropriate bandwidth is crucial. Larger bandwidths may increase
the variability of the estimates, making it essential to balance between bandwidth and estimation
stability.

Table 2. Bias, SD, and MSE of the WVEx for fixed bandwidth.

n
bn = 0.5 bn = 0.7 bn = 0.9

Bias SD MSE Bias SD MSE Bias SD MSE

40 0.002750 0.001241 0.000009 0.002869 0.001024 0.000009 0.002818 0.000852 0.000009
50 0.002658 0.001089 0.000008 0.002818 0.000903 0.000009 0.002785 0.000752 0.000008

100 0.002496 0.000768 0.000007 0.002733 0.000638 0.000008 0.002733 0.000528 0.000008
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Table 3. Bias, SD, and MSE of the WVREx for fixed bandwidth.

n t
bn = 0.5 bn = 0.7 bn = 0.9

Bias SD MSE Bias SD MSE Bias SD MSE

0.5 -0.023646 0.015354 0.000795 -0.001988 0.002441 0.000010 0.002616 0.001188 0.000008
40 0.7 -0.003232 0.009215 0.000095 0.002184 0.003026 0.000014 0.002763 0.001756 0.000011

0.9 0.004743 0.005789 0.000056 0.002965 0.003629 0.000022 0.000814 0.002305 0.000006

0.5 -0.022522 0.012834 0.000672 -0.001859 0.002156 0.000008 0.002631 0.001075 0.000008
50 0.7 -0.002587 0.007706 0.000066 0.002275 0.002703 0.000012 0.002772 0.001576 0.000010

0.9 0.004816 0.005071 0.000049 0.002968 0.003235 0.000019 0.000800 0.002060 0.000005

0.5 -0.020418 0.007658 0.000476 -0.001610 0.001449 0.000005 0.002672 0.000768 0.000008
100 0.7 -0.001448 0.004499 0.000022 0.002444 0.001884 0.000010 0.002799 0.001129 0.000009

0.9 0.004906 0.003603 0.000037 0.002983 0.002332 0.000014 0.000791 0.001482 0.000003

Subsequently, we implemented Silverman’s rule to automatically determine the bandwidth based
on each generated sample. This approach is particularly useful in real-world applications where data
variability is high and bandwidth selection is crucial for model accuracy. The results presented in
Tables 4 and 5 demonstrate that, as the sample size increases, the bias, SD, and MSE of both the
WVEx and WRVEx estimators generally decrease, indicating improved estimation accuracy.

Table 4. Bias, SD, and MSE of the WVEx for bandwidth selected by Silverman’s rule.

n Bias SD MSE
40 0.002604 0.001586 0.000009
50 0.002384 0.001357 0.000008
100 0.001889 0.000901 0.000004

Table 5. Bias, SD, and MSE of the WVREx for bandwidth selected by Silverman’s rule.

n t Bias SD MSE

40
0.5 -0.117707 1.752359 3.084615
0.7 -0.019583 0.624645 0.390565
0.9 0.004404 0.011882 0.000161

50
0.5 -0.067621 0.380519 0.149367
0.7 -0.012594 0.313122 0.098204
0.9 0.004786 0.007094 0.000073

100
0.5 -0.056758 0.080122 0.009641
0.7 -0.005867 0.012762 0.000197
0.9 0.005273 0.004499 0.000048
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6. A real data

A real-world data set concerning COVID-19 infections is analyzed in this section, where data for 42
countries were gathered from various official sources as of March 26, 2020. Below is the detailed
information of the data set: 1.56, 8.51, 2.17, 0.37, 1.09, 9.84, 4.95, 3.18, 11.37, 2.81, 6.22, 1.87, 9.05,
2.44, 1.38, 4.17, 3.74, 1.37, 2.33, 7.80, 2.10, 0.47, 2.54, 4.92, 0.09, 0.18, 1.72, 1.02, 0.62, 2.34, 0.50,
2.37, 3.65, 0.59, 5.76, 2.14, 0.88, 0.95, 4.17, 2.25. Kasilingam [23] applied an exponential model to
analyze the transmission of COVID-19. Recently, Kayid [10] studied the data set; they compared the
theoretical values of residual extropy with their corresponding estimates and observed that the data set
closely fits an exponential distribution with an estimated parameter λ̂ = 0.32. Here, we investigate
the proximity of the WVEx and WRVEx estimators to their corresponding theoretical values, and no
normalization or transformation was applied to the dataset before estimation. A range of combinations
for t and bn are provided in Tables 6 and 7, which reveal that the WVEx and WRVEx estimators
approach the theoretical values as bn increases.

Table 6. Theoretical values and corresponding estimates of WVEx.

bn = 0.1 bn = 0.3 bn = 0.5 bn = 0.7 bn = 0.9

V̂ J
w
n (X) 0.027771 0.007991 0.005479 0.005012 0.004975

V Jw(X) 0.002894 0.002894 0.002894 0.002894 0.002894

Table 7. Theoretical values and corresponding estimates of WRVEx.

t bn = 0.3 bn = 0.5 bn = 0.7 bn = 0.9

V̂ J
w
n (X; t)

0.3
0.004085 0.002529 0.002892 0.003448

V Jw(X; t) 0.002419 0.002419 0.002419 0.002419

V̂ J
w
n (X; t)

0.5
0.003082 0.002016 0.002667 0.003376

V Jw(X; t) 0.002316 0.002316 0.002316 0.002316

V̂ J
w
n (X; t)

0.7
0.005146 0.002614 0.002976 0.003656

V Jw(X; t) 0.002383 0.002383 0.002383 0.002383

V̂ J
w
n (X; t)

0.9
0.008546 0.004291 0.003923 0.004385

V Jw(X; t) 0.002622 0.002622 0.002622 0.002622

Table 7 shows that both t and bn affect the estimator’s accuracy. Moderate values of t (e.g., 0.5
or 0.7) yield estimates closer to the theoretical WRVEx. For bandwidth, larger bn (e.g., 0.7 or 0.9)
reduces variance and improves stability. In applications, we recommend moderate t and data-driven
bandwidth selection for balanced performance.

7. Conclusions

In this study, we have introduced the concept of the WRVEx as a valuable addition to the study of
variability in uncertainty measures. We have also explored the theoretical properties of the WVEx and
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WRVEx, including their behavior under monotonic transformations and the derivation of key bounds.
Furthermore, we demonstrated the application of WVEx in the analysis of coherent systems and the
PHR model. The kernel-based non-parametric estimators for both WVEx and WRVEx were proposed,
with their effectiveness validated through simulation experiments and analysis of a real-world data set.
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