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Abstract: This paper focuses on state-feedback adaptive control for stochastic low-order nonlinear
systems with an output constraint and stochastic integral input-to-state stability (SiISS) inverse
dynamics. The system with an output constraint was transformed straightforwardly into the equivalent
system without a constraint using important coordinate transformations. SiISS was used to characterize
unmeasured stochastic inverse dynamics. By introducing Lyapunov functions and using the stochastic
systems stability theorem, we constructed a new adaptive state-feedback controller that assures the
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1. Introduction

Extensive research results have been achieved in the study of nonlinear systems, for example, [1]
investigated the output feedback resilient control problem of an uncertain system with two quantized
signals under hybrid cyber attacks. The problem of adaptive event-triggered security tracking
controller design was studied for interval type-2 (IT2) Takagi-Sugeno (T-S)
fuzzy-approximation-based nonlinear networked systems in [2]. The study of stochastic nonlinear
systems is equally important. It is common knowledge that stochastic nonlinear systems (SNSs) have
become indispensable in order to represent many mechanical and physical processes that have
stochastic perturbations. One of the key features of the SNSs is described by stochastic stability.
Since the establishment and improvement of stochastic stability theory in [3], the study of
stabilization issues for SNSs has advanced significantly, for example, [4] studied a finite-time
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adaptive tracking stability issue of SNSs with state constraints, parametric uncertainties, and input
saturation. A unified fuzzy control approach for stochastic high-order nonlinear systems was
examined in [5]. The fixed-time synchronization and energy consumption of Kuramoto-oscillator
networks with multilayer distributed control were studied in [6]. The finite-time
synchronization (FTS) of the prediction of the synchronization time and energy consumption was
discussed for multilayer fractional-order networks (MFONs) in [7]. [8] mainly discussed the
stabilization issue for a class of stochastic nonlinear delay systems driven by Lévy processes.
However, the above references only consider SNSs with order 1 or greater than 1.

Many practical systems, like interactive liquid level systems in [9], leaky bucket systems in [10],
and hydraulic control systems in [11], can be described as low-order SNSs because of the existence
of stochastic disturbances and signal delays. As a result, it is essential to analyze the stability issue
of low-order SNSs. Global stabilization of the low-order SNSs was examined in [12], where states
were regulated by multiple time-varying delays. [13] addressed the issue of stability for a family of
time-delay low-order SNSs. However, these references do not take the output constraint into account.

It is common knowledge that state/output constraints have been involved in a number of actual
systems on account of hardware limitations, performance demands, or safety regulations. During the
course of operation, the violation of state/output constraints will result in systems performance
degradation and even result in systems becoming unstable. For example, it is necessary to constrain
the joint variables of a robotic arm system to maintain its mechanical structure in [14]. Another
typical practical example is [15], where the velocity of the non-holonomic vehicle is required to
remain within a safe range. That is why the study of output-constrained stability for nonlinear
systems is especially significant and imperative. The barrier Lyapunov function (BLF) technique first
introduced in [16] was an extremely useful tool for handling state/output constraints. Stability or
tracking tasks can be implemented, which assure that the output constraints cannot be violated by
keeping the design of BLFs finite during operations. Recently, BLF-based methods for handling
output constraints have been progressively generalized to SNSs. A finite-time stability issue about
high-order SNSs with an output constraint was studied by [17]. [18] presented a prescribed-time
output feedback control algorithm for cyber-physical systems under an output constraint occurring in
any finite time interval and malicious attacks. Nevertheless, the approaches characterized in these
references are feasible only for remarkably restricted high-order SNSs, since systems’ nonlinear
terms have to fulfill either a low-order growth or a high-order growth condition. By fully considering
these nonlinearity properties, a breakthrough in this regard was achieved in [19], where a
state-feedback controller was designed for high-order SNSs. The problem of output feedback
stabilization for a class of stochastic switched planar systems (Sto-SPS) subjected to asymmetric
output constraints was investigated in [20]. [21] addressed output constraints of the systems by
replacing the BLF method with the coordinate transformation method, transforming the SNSs with
constraints into an equivalent SNS without constraints and solving the fixed-time stability problem of
high-order SNSs with output constraints. The obvious drawback, nevertheless, is that stochastic
inverse dynamics is ignored in these references.

Since stochastic inverse dynamics is extensively used in a variety of engineering applications, it is
a major cause of the system destabilization and affects the control systems’ practical capabilities.
Consequently, its examination has played an essential function in the advancement of both control
theories and control technologies. For handling inverse dynamics, two of the most typical methods
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were recognized as input-to-state stability (ISS) proposed by [22] and integral input-to-state
stability (iISS) proposed by [23]. For stochastic systems, a new concept about stochastic
input-to-state stability (SISS) was described by [24, 25]. Utilising the SISS concept, [26] gave the
sufficiency criterion for SISS. [27] was devoted to the global continuous control for stochastic
low-order cascade nonlinear systems with time-varying delay and SISS stochastic inverse
dynamics. [28] studied the adaptive state feedback stabilization problem of stochastic nonlinear
systems with SISS stochastic inverse dynamics. A finite-time stabilization issue for high-order SNSs
with finite-time SISS (FT-SISS) inverse dynamics was resolved in [29]. [30] aimed to investigate the
global stabilization for a class of stochastic continuous time-delay nonlinear systems involving
unknown control coefficients and SISS-like conditions. [31] further examined finite-time stabilization
issues of time-varying low-order SNSs with FT-SISS inverse dynamics. Yet, radial unboundedness
conditions need to be satisfied for the supplied rate of the SISS, thereby ruling out a number of
stochastic systems with convergent properties. For that reason, [32] first expanded iISS into stochastic
systems and put forward stochastic integral input to state stability (SiISS) which was rigorously
weaker than the SISS. Under this framework, the research on SNSs with stochastic inverse dynamics
was expanded significantly. [33] focused on the problem of adaptive state-feedback control for a class
of stochastic high-order nonlinearly parameterized systems with SiISS inverse dynamics. [34]
provided the research results on adaptive state-feedback control about high-order SNSs with an output
constraint and SiISS inverse dynamics. Nonetheless, in low-order SNSs with SiISS inverse dynamics,
the above findings do not apply to the case where the systems have output constraints, which gives a
significant incentive to our research aim.

On this basis, we solve the adaptive state-feedback control issue of low-order SNSs with an output
constraint and SiISS inverse dynamics. Our major contributions are emphasised below:

(i) In comparison with the above results, system models presented in the paper are more universal
owing to the fact that low-order SNSs, output constraints, and SiISS inverse dynamics are considered
simultaneously. Compared with the low-order SNSs with FT-SISS inverse dynamics in [30, 31], the
stochastic inverse dynamics condition is relaxed to SiISS, which is a weaker restriction about the
stochastic inverse dynamics. The order of the systems is different compared to the SNSs with output
constraints and stochastic inverse dynamics in [21]. In this paper, we investigate the low-order SNSs.

(ii) Without using the commonly available BLFs, a coordinate transformation method is applied to
convert output-constrained systems into an equivalent system without an output constraint. For this
system without constraint, we construct the adaptive state-feedback controller by employing SiISS to
characterize unmeasurable stochastic inverse dynamics. We incorporate the Lyapunov function and
utilize stochastic stability theory to ensure that the trivial solution of the closed-loop system is stable
probabilistically while satisfying the output constraint and all the closed-loop signals are almost surely
bounded.

2. Problem statement and preliminaries

2.1. Problem statement

We will study low-order SNSs in this paper as follows:

dz0 = f0(z0, x1)dt + g⊤0 (z0, x1)dω,
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dxi = xri
i+1dt + fi(θ, z0, x̄i)dt + g⊤i (θ, z0, x̄i)dω, i = 1, · · · , n − 1,

dxn = urndt + fn(θ, z0, x)dt + g⊤n (θ, z0, x)dω,
y = x1, (2.1)

with the output constraint

y ∈ Ωy = {y ∈ R : −ϵl < y < ϵl}, (2.2)

where x = (x1, · · · , xn)⊤ ∈ Rn is a measurable state and its initial value is x(0) = x0, y ∈ R is the system
output, and u ∈ R is the control input. x̄i = (x1, · · · , xi)⊤ ∈ Ri, i = 1, · · · , n, x̄n = (x1, · · · , xn)⊤ = x,
and z0 = (z01, · · · , z0d)⊤ ∈ Rd are unmeasured stochastic inverse dynamics where the initial value is
z0(0) = z̄0d. θ ∈ Rs is an unknown constant vector. The system power ri ∈ (0, 1) is an odd ratio. ω
is an m-dimensional standard Wiener process defined on the complete probability space (Ω,F , P). fi:
Rs × Rd × Ri → R and gi: Rs × Rd × Ri → Rm are Lipschitz locally as well as disappear at the initial
point. ϵl is a given positive constant.

2.2. Preliminaries

Some notations, definitions, and lemmas are used throughout this paper and are given below.
Notations: Rn stands for the real n-dimensional Euclidean space. For a given vector or matrix A,

A⊤ denotes its transpose, Tr{A} denotes its trace when A is square, and |A| is the Euclidean norm of a
vector A. Ci denotes the set of all functions with continuous ith partial derivatives. K denotes the set of
all functions: R+ → R+, which are continuous, strictly increasing, and vanishing at zero. K∞ denotes
the set of all functions that are of class K and unbounded.

The following SNS is considered

dx = f (x)dt + g⊤(x)dω, x(0) = x0 ∈ Rn,∀t ≥ 0, (2.3)

where x ∈ Rn is the system state, and ω is an m-dimensional standard Wiener process defined on the
complete probability space (Ω,F , P). f : Rn → Rn and g: Rn → Rm×n are Lipschitz locally.
Definition 1. [24] Given V(x) ∈ C2, we define the differential operators related to the system (2.3) L

by LV(x) = ∂V(x)
∂x f (x) + 1

2Tr
{
g(x)∂

2V(x)
∂x2 g⊤(x)

}
, where 1

2Tr{g(x)∂
2V(x)
∂x2 g⊤(x)} is referred to as the Hessian

term of L.
Definition 2. [25] The stochastic process x(t) is almost surely bounded if supt≥0 x(t) < ∞.

In [32], SiISS was defined using Lyapunov functions. The SNSs described as follows are considered

dx = f (x, υ, t)dt + g⊤(x, υ, t)dω, (2.4)

where x ∈ Rn is the system state, υ ∈ Rr is the input, and ω is a m-dimensional standard Wiener process.
f : Rn × Rr × R+ → Rn and g: Rn × Rr × R+ → Rm×n are Lipschitz locally.
Definition 3. [32] It is said that system (2.4) is SiISS by employing Lyapunov functions, if there are
functions V ∈ C2(Rn; R), α, β, γ ∈ K∞, and continuous function δ > 0 such that

α(|x|) ≤ V(x) ≤ β(|x|),LV ≤ −δ(|x|) + γ(|υ|). (2.5)

The function V fulfilling (2.5) is known as the SiISS-Lyapunov function, and (δ, γ) in (2.5) is referred
to as the SiISS supply rate of system (2.4).
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Lemma 1. [35] For any x ∈ R, y ∈ R, if p ≥ 1, |x + y|
1
p ≤ |x|

1
p + |y|

1
p , |x + y|p ≤ 2p−1|xp + yp| hold; if

p ≥ 1 is an odd ratio, |x − y|p ≤ 2p−1|xp − yp|, |x
1
p − y

1
p | ≤ 21− 1

p |x − y|
1
p hold.

Lemma 2. [36] Assume that there is a radially unbounded non-negative function V(x) ∈ C2, that is,
lim||x||→∞V(x) = ∞. For any initial value, the system (2.3) has a continuous solution on [0,∞) if the
second-order differential operator L about (2.3) fulfils LV(x) ≤ 0,∀x ∈ Rn.
Lemma 3. [33] With respect to system (2.3), there is a series of functions V(x) ∈ C2, W(·) ≥ 0,
α, β ∈ K∞, c1 > 0, c2 ≥ 0 which makes

α(|x|) ≤ V(x) ≤ β(|x|),
LV(x) ≤ −c1W(x) + c2. (2.6)

It follows that there is a unique solution almost surely on [0,∞), when c2 = 0, the equilibrium point
x = 0 is globally stable in probability, and P{limt→∞W(x) = 0} = 1.
Lemma 4. [37] Given a > 0, b > 0, for arbitrary real-valued functions γ(x, y), x ∈ R, y ∈ R, it holds
that

|x|a|y|b ≤ γ(x, y)|x|a+b +
( b
a + b

)(a + b
a
)− a

bγ−
a
b (x, y)|y|a+b.

Lemma 5. [35] There exists a series of smoothing functions p1(x) ≥ 0, p2(y) ≥ 0, p3(x) ≥ 1, and
p4(y) ≥ 1 for the provided consecutive function p(x, y), which makes |p(x, y)| ≤ p1(x)+p2(y), |p(x, y)| ≤
p3(x)p4(y).
Lemma 6. [21] For i = 1, · · · , n, taking into account the known constant a > 0 and arbitrary bi ∈ R,

(
n∑

i=1
|bi|)a ≤ da(

n∑
i=1
|bi|

a) holds, where if a ≥ 1, then da = na−1, and if a < 1, then da = 1.

Remark 1. A number of significant features of SiISS have been introduced by [32]: (i) SiISS is
rigorously weaker than the SISS applying Lyapunov functions from [26]; and (ii) SiISS has more
enhanced minimum phase properties over [38]. Nevertheless, for certain SNSs, there is no dynamic
output feedback control law to implement probabilistic global stability only under the assumption
of minimum phase. (iii) SiISS implies SISS, but the inverse is not valid. Furthermore, the major
distinction between SISS and SiISS lies in allowing δ in (2.5) to denote the continuous positive definite
function in SiISS, rather than the K∞ function in SISS.

3. Main results

3.1. Assumptions

In the paper, our objective is to construct the adaptive state-feedback controller for the low-order
SNSs (2.1) with output constraint (2.2) and SiISS inverse dynamics. To accomplish our goal, some
assumptions will be required as below:
Assumption 1. The Order of system (2.1) fulfils 0 < rn ≤ rn−1 ≤ · · · ≤ r2 ≤ r1 < 1.
Assumption 2. There exists two constants µi j ≥ 0, µ̄i j ≥ 0, and a series of known smoothing non-
negative functions fi1, fi2, gi1, gi2, i = 1, · · · , n, such that

| fi(θ, z0, x̄i)| ≤ fi1(|z0|)|z0|
ri + θ fi2(x̄i)

i∑
j=1

|x j|
ri+µi j ,
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|gi(θ, z0, x̄i)| ≤ gi1(|z0|)|z0|
ri+1

2 + θgi2(x̄i)
i∑

j=1

|x j|
ri+1

2 +µ̄i j . (3.1)

Assumption 3. The z0-subsystem of (2.1) is the SiISS which has x1 as the input, i.e., there is a function
V0(z0) ∈ C2 which makes

α1(|z0|) ≤ V0(z0) ≤ α2(|z0|), LV0(z0) ≤ −α0(|z0|) + γ0(|x1|), (3.2)

where α1, α2, γ0 ∈ K∞, and α0 is regarded as a continuous positive definite function.
Assumption 4. Some known smoothing non-negative functions ψ0, ψz0 exist that make |g0(z0, x1)| ≤
ψ0(|z0|),

∣∣∣∂V0
∂z0

∣∣∣ ≤ ψz0(|z0|).
Lemma 7. [26] For the z0-subsystem satisfying (3.2), if

lim sup
s→0+

α(s)
α0(s)

< ∞, lim sup
s→0+

ψ2
z0

(s)ψ2
0(s)

α0(s)
< ∞, (3.3)

∫ ∞

0
[φ(α−1

1 (s))]′e−
∫ s

0 [ζ(α−1
1 (τ))]−1dτds < ∞, (3.4)

where α(s), α1(s) ∈ K∞, ζ(s) > 0, and φ(s) ≥ 0 are regarded as continuously increasing functions that
are determined on [0,∞), fulfilling

φ(s)α0(s) ≥ 4α(s), ζ(s)α0(s) ≥ 2ψ2
z0

(s)ψ2
0(s). (3.5)

Then one can find a non-decreasing positive function ϱ(s) ∈ C1[0,∞), for any z0 ∈ Rm, which makes

ϱ(V0(z0))α0(|z0|) ≥ 2ϱ′(V0(z0))ψ2
z0

(|z0|)ψ2
0(|z0|) + 4α(|z0|). (3.6)

Remark 2. (i) Assumption 1 is the condition of orders, which is similar to that in [30, 31]. With
respect to Assumption 2, the power of x j from fi can take arbitrary values on (ri,∞), and the power of
x j from gi can take arbitrary values on ( ri+1

2 ,∞).
(ii) Assumption 3 indicates that the z0-subsystem has the SiISS characteristic. In comparison with

SISS, since α0 in (3.2) is just continuous positive definite instead of K∞, SiISS is a much weaker
restriction on the stochastic inverse dynamics.

(iii) Within Assumption 4, the restriction on
∣∣∣∂V0
∂z0

∣∣∣ ≤ ψz0(|z0|) is a common assumption that is easily
verified. |g0(z0, x1)| ≤ ψ0(|z0|) is the constraint on the inverse dynamics diffusion vector field, which
reflects the fact that the inverse dynamics diffusion vector field is constrained by dynamics themselves,
and the influence of controlled subsystem (2.1) is seen to be bounded. This second assumption is
required to handle the Itô modification term of the Itô formula, and it is among the most significant
distinctions between Itô stochastic systems and deterministic systems.
Remark 3. Stochastic inverse dynamics widely exist in practical systems, which are one of the main
sources resulting in instability. Therefore, many stochastic nonlinear systems inevitably have SiISS
stochastic inverse dynamics. For example, the z0-subsystem in the simulation part of [34] is

dz0 =

(
−4z0

1 + z4
0

+
1
8

( 4z0

1 + z4
0

+
3
2

z0

)
x4

1

)
dt + z0dω.

For the z0-subsystem, by choosing V0(z0) = ln(1+ z0)4, then LV0 ≤ −4 z4
0

1+z4
0
+ 14,534

2011 ξ
4
1. Let α0(s) = 41+s4

s4

and γ0(s) = 2011
14,534 s4 and then Assumption 3 holds. The z0-subsystem is SiISS with x1 as the input.

Therefore, Assumption 3 is achievable.
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3.2. Systems transformation

In this subsection, the equivalent coordinate transformations are described first as follows:

x1 = λ1arctan(ξ1), xi = ξi, i = 2, · · · , n, (3.7)

where λ1 =
2ϵl
π

. Particularly, x1 = λ1arctan(ξ1) satisfies the characteristics below:

x1 → −ϵl, when ξ1 → −∞,

x1 → ϵl, when ξ1 → ∞. (3.8)

As a result, if ξ1(t) is bounded almost surely, the constraint (2.2) is almost surely not violated.
Applying (3.7), the unconstrained systems can be derived as follows:

dz0 = f ′0(z0, ξ1)dt + g′⊤0 (z0, ξ1)dω,
dξ1 = D1(ξ1)ξr1

2 dt + f ′1(θ, z0, ξ1)dt + g′⊤1 (θ, z0, ξ1)dω,
dξi = ξ

ri
i+1dt + f ′i (θ, z0, ξ̄i)dt + g′⊤i (θ, z0, ξ̄i)dω, i = 2, · · · , n − 1,

dξn = urndt + f ′n(θ, z0, ξ)dt + g′⊤n (θ, z0, ξ)dω, (3.9)

when D1 =
1+ξ2

1
λ1

, f ′0 = f0, g′0 = g0, f ′1 = D1 f1 +
ξ1(1+ξ2

1)
λ2

1
g⊤1 g1, g′1 = D1g1, f ′i = fi, g′i = gi, i = 2, · · · , n.

Applying (3.7), |x1|
ς = |λ1arctan(ξ1)|ς ≤ λς1|ξ1|

ς, ς ∈ {r1 + µ11,
1+r1

2 + µ̄11}. By Lemmas 5 and 6, it
yields that

| f ′1(ξ1)|

≤ |D1(ξ1)|| f1(ξ1)| +
ξ1(1 + ξ2

1)
λ2

1

|g1(ξ1)|2

≤ |D1|
(
f11|z0|

r1 + θ f12|x1|
r1+µ11
)
+
ξ1(1 + ξ2

1)
λ2

1

(
g11|z0|

r1+1
2 + θg12|x1|

r1+1
2 +µ̄11

)2
≤ |D1|

(
f11|z0|

r1 + θ f12λ
r1
1 |ξ1|

r1(1 + x2
1)

µ11
2
)
+
ξ1(1 + ξ2

1)
λ2

1

(
g2

11|z0|
r1(1 + z2

0)
1
2 + θ2g2

12λ
r1
1 |ξ1|

r1(1 + x2
1)

1+2µ̄11
2
)

≤ D11(ξ1)
(
f ′11(|z0|)|z0|

r1 + θ f ′12(ξ1)|ξ1|
r1 + θ2 f ′13(ξ1)|ξ1|

r1
)
,

where D11, f ′11, f ′12, f ′13 are regarded as a series of known smoothing non-negative functions. Similarly
to f ′1(ξ1), there exist known smoothing non-negative functions D21, g′11, g

′
12, which makes |g′1(ξ1)| ≤

D21(ξ1)
(
g′11(|z0|)|z0|

r1+1
2 + θg′12(ξ1)|ξ1|

r1+1
2
)
.

By (3.1) and Lemmas 5 and 6, we have that

| f ′i (ξ̄i)| ≤ | fi(ξ̄i)| ≤ f ′i1(|z0|)|z0|
ri + θ f ′i2(ξ̄i)

i∑
j=1

|ξ j|
ri ,

|g′i(ξ̄i)| ≤ |gi(ξ̄i)| ≤ g′i1(|z0|)|z0|
ri+1

2 + θg′i2(ξ̄i)
i∑

j=1

|ξ j|
ri+1

2 , (3.10)

where f ′i1, f ′i2, g
′
i1, g

′
i2, i = 2, · · · , n, are regarded as a series of known smoothing non-negative functions.
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3.3. Controller design

Step 1: Denote σ = max{1≤i≤n}

{
1, θ, θ2, θ

3+r1
r1−ri+3

}
. Selecting z1 = ξ1 and the first Lyapunov function

V1(ξ1, σ̃) = W1(ξ1) + 1
2σ̃

2 = 1
4z4

1 +
1
2σ̃

2, obviously, V1 is C2, positive definite, and radially unbounded.
σ̂(t) is regarded as the estimate of σ, and σ̃ = σ− σ̂(t) is taken as the estimation error. By Definition 1
and (3.9), one has that

LV1 = z3
1
(
D1(ξ1)ξr1

2 + f ′1(ξ1)
)
+

3
2

z2
1g′⊤1 (ξ1)g′1(ξ1) − σ̃ ˙̂σ

≤ D1z3
1(ξr1

2 − ξ
∗r1
2 ) + D1z3

1ξ
∗r1
2 + z3

1| f
′
1 | +

3
2

z2
1|g
′
1|

2 − σ̃ ˙̂σ. (3.11)

According to the above derivation and Lemmas 4 and 5, it follows that

z3
1| f
′
1 | ≤ |z1|

3D11(ξ1)
(
f ′11(|z0|)|z0|

r1 + θ f ′12(ξ1)|ξ1|
r1 + θ2 f ′13(ξ1)|ξ1|

r1
)

≤ σβ11(ξ1)z3+r1
1 + κ11(|z0|)z

3+r1
0 , (3.12)

where β11, κ11 are regarded as a series of known smoothing non-negative functions. Proceeding
similarly to the derivation of (3.12), we obtain known smoothing non-negative functions
β12(ξ1), κ12(|z0|) which make

3
2

z2
1|g
′
1|

2 ≤ 3|z1|
2
(
D21(ξ1)

(
g′11(|z0|)|z0|

r1+1
2 + θg′12(ξ1)|ξ1|

r1+1
2
))2

≤ σβ12(ξ1)z3+r1
1 + κ12(|z0|)z

3+r1
0 . (3.13)

Substituting (3.12) and (3.13), known function ν1, and the virtual controller

ξ∗2 = −
(n + σ̂β1(ξ1) + φ(ξ1)

D

) 1
r1

z1 ≜ −α1(ξ1, σ̂)z1 (3.14)

into (3.11) yields

LV1 ≤ −nz3+r1
1 + D1z3

1(ξr1
2 − ξ

∗r1
2 ) + (σ̃ + ν1)(β1z3+r1

1 − ˙̂σ) + κ1(|z0|)z
3+r1
0 − φ(ξ1)z3+r1

1 , (3.15)

where D = 1
λ1

, β1 = β11 + β12, κ1 = κ11 + κ12, φ(ξ1) is the non-negative smoothing function to be
identified, and let ν1 = 0.

Step 2: Set the second Lyapunov function V2(ξ̄2, σ̃) = V1(ξ1, σ̃)+W2(ξ̄2) = V1(ξ1, σ̃)+ 1
r1−r2+4zr1−r2+4

2

and z2 = ξ2−ξ
∗
2. Clearly, V2 is C2, positive definite, and radially unbounded. Applying (3.9) and (3.15),

one obtains

LV2 ≤ −nz3+r1
1 + (σ̃ + ν1)(β1z3+r1

1 − ˙̂σ) + κ1(|z0|)z
3+r1
0 − φ(ξ1)z3+r1

1 + zr1−r2+3
2 (ξr2

3 − ξ
∗r2
3 )

+ zr1−r2+3
2 ξ∗r2

3 +
∂W2

∂σ̂
˙̂σ +

∂W2

∂ξ1

(
D1ξ

r1
2 + f ′1

)
+ zr1−r2+3

2 f ′2 +
1
2
∂2W2

∂ξ2
1

|g′1|
2

+
∂2W2

∂ξ1∂ξ2
|g′1||g

′
2| +

1
2
∂2W2

∂ξ2
2

|g′2|
2 + D1z3

1(ξr1
2 − ξ

∗r1
2 ). (3.16)

Applying the definition of W2(ξ̄2), we have

∂W2

∂ξ1
= −zr1−r2+3

2

∂ξ∗2
∂ξ1

,
∂W2

∂ξ2
= zr1−r2+3

2 ,
∂W2

∂σ̂
= −zr1−r2+3

2

∂ξ∗2
∂σ̂

,
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∂2W2

∂ξ2
1

= (r1 − r2 + 3)zr1−r2+2
2 (

∂ξ∗2
∂ξ1

)2 − zr1−r2+3
2

∂2ξ∗2
∂ξ2

1

,

∂2W2

∂ξ1∂ξ2
= −(r1 − r2 + 3)zr1−r2+2

2

∂ξ∗2
∂ξ1

,
∂2W2

∂ξ2
2

= (r1 − r2 + 3)zr1−r2+2
2 ,∣∣∣∣∣∂ξ∗2∂ξ1

∣∣∣∣∣ = ∣∣∣∣∣∂α1

∂ξ1
ξ1 + α1

∣∣∣∣∣ ≤ ϖ21(ξ1),∣∣∣∣∣∂2ξ∗2
∂ξ2

1

∣∣∣∣∣ = ∣∣∣∣∣∂2α1

∂ξ2
1

ξ1 + 2
∂α1

∂ξ1

∣∣∣∣∣ ≤ ϖ22(ξ1), (3.17)

where ϖ21(ξ1), ϖ22(ξ1) are regarded as a series of known smoothing non-negative functions.
It is clear by (3.9) and Lemmas 1 and 4, that

∂W2

∂ξ1

(
D1ξ

r1
2 + f ′1

)
≤ |z2|

r1−r2+3ϖ21(ξ1)
(
D1|z2−α1ξ1|

r1+D11(ξ1)
(
f ′11(|z0|)|z0|

r1+θ f ′12(ξ1)|ξ1|
r1+θ2 f ′13(ξ1)|ξ1|

r1
))

≤
(
1+(ϖ21zr1−r2

2 )2
) 1

2 |z2|
3
(
D1|z2−α1z1|

r1+D11(ξ1)
(
f ′11(|z0|)|z0|

r1+θ f ′12(ξ1)|z1|
r1+θ2 f ′13(ξ1)|z1|

r1
))

≤
1
7

z3+r1
1 + σβ21(ξ̄2, σ̂)z3+r1

2 + κ21(|z0|)z
3+r1
0 , (3.18)

where β21, κ21 are regarded as a series of known smoothing non-negative functions.
In a similar way to the derivation of (3.18), it is apparent that

zr1−r2+3
2 f ′2 ≤ |z2|

r1−r2+3
(

f ′21(|z0|)|z0|
r2 + θ f ′22(ξ̄2)

2∑
l=1

|ξl|
r2

)
≤ |z2|

r1−r2+3
(

f ′21|z0|
r2 + θ f ′22

2∑
l=1

|zl − αl−1zl−1|
r2

)
≤

1
7

z3+r1
1 + σβ22(ξ̄2, σ̂)z3+r1

2 + κ22(|z0|)z
3+r1
0 , (3.19)

where β22, κ22 are regarded as a series of known smoothing non-negative functions.
With (3.10), (3.17) and Lemmas 1, 4, and 5, we can conclude that

1
2
∂2W2

∂ξ2
1

|g′1|
2

≤

(
(r1 − r2 + 3)|z2|

r1−r2+2ϖ2
21(ξ1) + |z2|

r1−r2+3ϖ22(ξ1)
)(

D21(ξ1)
(
g′11(|z0|)|z0|

r1+1
2 + θg′12(ξ1)|ξ1|

r1+1
2
))2

≤ ρ21(ξ̄2, z0)
(
ϖ2

21
(
1 + (zr1−r2

2 )2) 1
2 |z2|

2 +
(
1 + (zr1−r2+1

2 ϖ22)2) 1
2 |z2|

2
)(
|z0|

1+r1 + θ2|z1|
1+r1

)
≤

1
7

z3+r1
1 + σβ23(ξ̄2, σ̂)z3+r1

2 + κ23(|z0|)z
3+r1
0 , (3.20)

where ρ21, β23, κ23 are regarded as a series of known smoothing non-negative functions.
With the help of (3.10), (3.17) and Lemmas 1, 4, and 5, we are able to deduce that

∂2W2

∂ξ1∂ξ2
|g′1||g

′
2|
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≤ (r1 − r2 + 3)|z2|
r1−r2+2ϖ21(ξ1)D21

(
g′11|z0|

r1+1
2 + θg′12|ξ1|

r1+1
2
)(

g′21|z0|
r2+1

2 + θg′22

2∑
l=1

|zl − αl−1zl−1|
r2+1

2

)
≤ ρ22(ξ̄2, z0)

(
1 + (ϖ21z

r1+r2
2 −r2

2 )2) 1
2 |z2|

r1−
r1+r2

2 +2
(
|z0|

r1+r2
2 +1 + θ|z1|

r1+r2
2 +1 + θ|z2|

r1+r2
2 +1
)

≤
1
7

z3+r1
1 + σβ24(ξ̄2, σ̂)z3+r1

2 + κ24(|z0|)z
3+r1
0 , (3.21)

where ρ22, β24, κ24 are regarded as a series of known smoothing non-negative functions.
In a similar way to the derivation of (3.21), we can identify a series of known smooth non-negative

functions ρ23, β25, κ25 such that

1
2
∂2W2

∂ξ2
2

|g′2|
2 ≤ (r1 − r2 + 3)|z2|

r1−r2+2
(
g′21|z0|

r2+1
2 + θg′22

2∑
l=1

|zl − αl−1zl−1|
r2+1

2

)2
≤ ρ23(ξ̄2, z0)|z2|

r1−r2+2(|z0|
r2+1 + θ2|z1|

r2+1 + θ2|z2|
r2+1)

≤
1
7

z3+r1
1 + σβ25(ξ̄2, σ̂)z3+r1

2 + κ25(|z0|)z
3+r1
0 . (3.22)

By Lemmas 1 and 4, one arrives at

D1z3
1(ξr1

2 − ξ
∗r1
2 ) ≤ 21−r1 D1|z1|

3|z2|
r1 ≤

1
7

z3+r1
1 + σβ26(ξ̄2, σ̂)z3+r1

2 , (3.23)

where β26 is a known smoothing non-negative function.
Substituting (3.18)–(3.23) into (3.16) leads to

LV2 ≤ −(n −
6
7

)z3+r
1 + (σ̃ + ν1)(β1z3+r1

1 − ˙̂σ) +
2∑

j=1

κ j(|z0|)z
3+r1
0 − φ(ξ1)z3+r1

1 + zr1−r2+3
2 (ξr2

3 − ξ
∗r2
3 )

+ zr1−r2+3
2 ξ∗r2

3 + σβ2z3+r1
2 +

∂W2

∂σ̂
˙̂σ − σ̂β2z3+r1

2 + σ̂β2z3+r1
2 , (3.24)

where β2 =
6∑

j=1
β2 j, and κ2 =

5∑
j=1
κ2 j. It is evident by (3.17), and Lemmas 1 and 4–6, that

∣∣∣∣∣∂W2

∂σ̂

( 2∑
j=1

β jz
3+r1
j

)∣∣∣∣∣ ≤ 1
7

z3+r1
1 + β27(ξ̄2, σ̂)z3+r1

2 , (3.25)

where β27 is a known smoothing non-negative function. Thus, we apply the known function ν2:

(σ̃ + ν1)(β1z3+r1
1 − ˙̂σ) + σβ2z3+r1

2 − σ̂β2z3+r1
2 +

∂W2

∂σ̂
˙̂σ

= σ̃β1z3+r1
1 + σ̃β2z3+r1

2 − σ̃ ˙̂σ +
∂W2

∂σ̂
˙̂σ +

∂W2

∂σ̂

2∑
j=1

β jz
3+r1
j −

∂W2

∂σ̂

2∑
j=1

β jz
3+r1
j

= σ̃

2∑
j=1

β jz
3+r1
j − σ̃ ˙̂σ − ν2 ˙̂σ + ν2

2∑
j=1

β jz
3+r1
j +

∂W2

∂σ̂

2∑
j=1

β jz
3+r1
j

= (σ̃ + ν2)(
2∑

j=1

β jz
3+r1
j − ˙̂σ) +

∂W2

∂σ̂

2∑
j=1

β jz
3+r1
j
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≤ (σ̃ + ν2)(
2∑

j=1

β jz
3+r1
j − ˙̂σ) +

1
7

z3+r1
1 + β27(ξ̄2, σ̂)z3+r1

2 , (3.26)

where ν2 = −
∂W2
∂σ̂

. Substituting (3.26) into (3.24) and using the virtual controller

ξ∗3 = −
(
n − 1 + σ̂β2 + β27

) 1
r2

z2 ≜ −α2(ξ̄2, σ̂)z2, (3.27)

we have

LV2 ≤ −(n − 1)
2∑

j=1

z3+r1
j + (σ̃ + ν2)

( 2∑
j=1

β jz
3+r1
j − ˙̂σ

)
+

2∑
j=1

κ j(|z0|)z
3+r1
0

− φ(ξ1)z3+r1
1 + zr1−r2+3

2 (ξr2
3 − ξ

∗r2
3 ). (3.28)

Inductive step (3 ≤ k ≤ n): Assume that in step k − 1, Vk−1(ξ̄k−1, σ̂) ∈ C2 exists, where Vk−1(ξ̄k−1, σ̂) is
clearly positive definite and radially unbounded. The virtual controllers ξ∗1, · · · , ξ

∗
k are determined by

ξ∗1 = 0, z1 = ξ1 − ξ
∗
1 = ξ1, ξ∗j = −α j−1(ξ̄ j−1, σ̂)z j−1,

z j = ξ j − ξ
∗
j = ξ j + α j−1(ξ̄ j−1, σ̂)z j−1, j = 2, · · · , k, (3.29)

and then, the inequality exists as below:

LVk−1 ≤ −(n − k + 2)
k−1∑
j=1

z3+r1
j + (σ̃ + νk−1)

( k−1∑
j=1

β jz
3+r1
j − ˙̂σ

)
+

k−1∑
j=1

κ j(|z0|)z
3+r1
0

− φ(ξ1)z3+r1
1 + zr1−rk−1+3

k−1 (ξrk−1
k − ξ∗rk−1

k ), (3.30)

where α j, j = 1, · · · , k − 1, are regarded as known smoothing non-negative functions and known

function νk−1 = −
k−1∑
j=2

∂W j

∂σ̂
.

Next we demonstrate that (3.30) remains applicable to step k.
Choose Vk(ξ̄k, σ̃) = Vk−1(ξ̄k−1, σ̃)+Wk(ξ̄k) = Vk−1(ξ̄k−1, σ̃)+ 1

r1−rk+4zr1−rk+4
k , where, obviously, Vk is C2,

positive definite, and radially unbounded. Using (3.9) and (3.30), we have

LVk

≤ −(n − k + 2)
k−1∑
j=1

z3+r1
j + (σ̃ + νk−1)(

k−1∑
j=1

β jz
3+r1
j − ˙̂σ) +

k−1∑
j=1

κ j(|z0|)z
3+r1
0 − φ(ξ1)z3+r1

1

+ zr1−rk+3
k (ξrk

k+1 − ξ
∗rk
k+1) + zr1−rk+3

k ξ∗rk
k+1 +

∂Wk

∂σ̂
˙̂σ + zr1−rk+3

k f ′k +
(
∂Wk

∂ξ1
(D1ξ

r1
2 + f ′1) +

k−1∑
j=2

∂Wk

∂ξ j
(ξr j

j+1+ f ′j )
)

+
1
2

k−1∑
i, j=1

∂2Wk

∂ξi∂ξ j
|g′j||g

′
i |+

1
2

k−1∑
j=1

∂2Wk

∂ξ2
j

|g′j|
2+

k−1∑
j=1

∂2Wk

∂ξ j∂ξk
|g′j||g

′
k|+

1
2
∂2Wk

∂ξ2
k

|g′k|
2+zr1−rk−1+3

k−1 (ξrk−1
k −ξ

∗rk−1
k ). (3.31)

In addition, Wk(ξ̄k) = 1
r1−rk+4zr1−rk+4

k is C2, and a simple calculation yields

∂Wk

∂ξ j
= −zr1−rk+3

k

∂ξ∗k
∂ξ j

,
∂Wk

∂ξk
= zr1−rk+3

k ,
∂Wk

∂σ̂
= −zr1−rk+3

k

∂ξ∗k
∂σ̂
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∂2Wk

∂ξi∂ξ j
= (r1 − rk + 3)zr1−rk+2

k

∂ξ∗k
∂ξi

∂ξ∗k
∂ξ j
− zr1−rk+3

k

∂2ξ∗k
∂ξi∂ξ j

,
∂2Wk

∂ξ j∂ξk
= −(r1 − rk + 3)zr1−rk+2

k

∂ξ∗k
∂ξ j

,

∂2Wk

∂ξ2
j

= (r1 − rk + 3)zr1−rk+2
k

(∂ξ∗k
∂ξ j

)2
− zr1−rk+3

k

∂2ξ∗k
∂ξ2

j

,
∂2Wk

∂ξ2
k

= (r1 − rk + 3)zr1−rk+2
k . (3.32)

From (3.29) and Lemma 5,∣∣∣∣∣∂ξ∗k∂ξ j

∣∣∣∣∣ = ∣∣∣∣∣ k−1∑
s=1

∂(
∏k−1

l=s )αl

∂ξ j
ξs + αk−1 · · ·α j

∣∣∣∣∣ ≤ ϖk1(ξ̄k−1),∣∣∣∣∣∂2ξ∗k
∂ξ2

j

∣∣∣∣∣ = ∣∣∣∣∣ k−1∑
s=1

∂2(
∏k−1

l=s )αl

∂ξ2
j

ξs + 2
∂(αk−1 · · ·α j)

∂ξ j

∣∣∣∣∣ ≤ ϖk2(ξ̄k−1),∣∣∣∣∣ ∂2ξ∗k
∂ξi∂ξ j

∣∣∣∣∣ = ∣∣∣∣∣ k−1∑
s=1

∂2(
∏k−1

l=s )αl

∂ξi∂ξ j
ξs +

∂(αk−1 · · ·α j)
∂ξ j

+
∂(αk−1 · · ·αi)

∂ξ j

∣∣∣∣∣ ≤ ϖk3(ξ̄k−1), (3.33)

where ϖk1(ξ̄k−1), ϖk2(ξ̄k−1), ϖk3(ξ̄k−1) are regarded as known smoothing non-negative functions.
Via (3.10) and Lemma 4, a number of known smoothing non-negative functions βk1, κk1 exist that

make

zr1−rk+3
k f ′k ≤ |zk|

r1−rk+3
(

f ′k1(|z0|)|z0|
rk + θ f ′k2(ξ̄k)

k∑
j=1

|ξ j|
rk
)

≤
1
8

k−1∑
j=1

z3+r1
j + σβk1((ξ̄k, σ̂))z3+r1

k + κk1(|z0|)z
3+r1
0 . (3.34)

It is deduced from (3.10), (3.32), (3.33), and Lemmas 4–6 that(
∂Wk

∂ξ1
(D1ξ

r1
2 + f ′1) +

k−1∑
j=2

∂Wk

∂ξ j
(ξr j

j+1 + f ′j )
)

≤ |zk|
r1−rk+3ϖk1(ξ̄k−1)

(
D1|z2 − α1z1|

r1 + D11
(
f ′11|z0|

r1 + θ f ′12|z1|
r1 + θ2 f ′13|z1|

r1
))

+

k−1∑
j=2

|zk|
r1−rk+3ϖk1(ξ̄k−1)

(
|z j+1 − α jz j|

r j + f ′j1|z0|
r j + θ f ′j2

j∑
l=1

|zl − αl−1zl−i|
r j

)
≤ ρk1(ξk, z0)

((
1 + (ϖk1zr1−rk

k )2) 1
2 |zk|

3(|z0|
r1 + θ|z1|

r1 + θ2|z1|
r1
)

+

k−1∑
j=2

(
1 + (ϖk1zr j−rk

k )2) 1
2 |zk|

r1−r j+3(|z0|
r j + θ

j∑
l=1

|zl|
r j + |z j+1|

r j
))

≤
1
8

k−1∑
j=1

z3+r1
j + σβk2(ξ̄k, σ̂)z3+r1

k + κk2(|z0|)z
3+r1
0 , (3.35)

where ρk1, βk2, κk2 are regarded as known smoothing non-negative functions.
With the help of (3.10), (3.32), (3.33), and Lemmas 4–6, it is possible to identify known smoothing

non-negative functions ρk2, βk3, κk3 such that

1
2

k−1∑
i, j=1

∂2Wk

∂ξi∂ξ j
|g′j||g

′
i |
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≤

k−1∑
i, j=1

(
(r1 − rk + 3)|zk|

r1−rk+2ϖ2
k1 + |zk|

r1−rk+3ϖk3

)
×

(
g′j1|z0|

r j+1
2 + θg′j2

j∑
l=1

|ξl|
r j+1

2

)(
g′i1|z0|

ri+1
2 + θg′i2

i∑
l=1

|ξl|
ri+1

2

)
≤ ρk2(ξ̄k, z0)

k−1∑
i, j=1

(
ϖ2

k1
(
1 + (z

ri+r j
2 −rk

k )2) 1
2 |zk|

r1−
ri+r j

2 +2 +
(
1 + (ϖk3z

ri+r j
2 −rk+1

k )2) 1
2 |zk|

r1−
ri+r j

2 +2
)

×

(
|z0|

ri+r j
2 +1 + θ|z1|

ri+r j
2 +1 + · · · + θ|z j|

ri+r j
2 +1 + · · · + θ|zi|

ri+r j
2 +1
)

≤
1
8

k−1∑
j=1

z3+r1
j + σβk3(ξ̄k, σ̂)z3+r1

k + κk3(|z0|)z
3+r1
0 . (3.36)

In a similar way to (3.36), there exist known smoothing non-negative functions ρk3, βk4, κk4 such that

1
2

k−1∑
j=1

∂2Wk

∂ξ2
j

|g′j|
2

≤

k−1∑
j=1

(
(r1 − rk + 3)|zk|

r1−rk+2ϖ2
k1 + |zk|

r1−rk+3ϖk2

)(
g′j1|z0|

r j+1
2 + θg′j2

j∑
l=1

|ξl|
r j+1

2

)2
≤ ρk3(ξ̄k, z0)

k−1∑
j=1

(
ϖ2

k1
(
1 + (zr j−rk

k )2) 1
2 |zk|

r1−r j+2 +
(
1 + (ϖk2zr j−rk+1

k )2) 1
2 |zk|

r1−r j+2
)

×

(
|z0|

r j+1 + θ

j∑
l=1

|zl|
r j+1
)

≤
1
8

k−1∑
j=1

z3+r1
j + σβk4(ξ̄k, σ̂)z3+r1

k + κk4(|z0|)z
3+r1
0 . (3.37)

It is clear by (3.10), (3.32), (3.33), and Lemmas 4–6 that

k−1∑
j=1

∂2Wk

∂ξ j∂ξk
|g′j||g

′
k|

≤

k−1∑
j=1

(r1 − rk + 3)|zk|
r1−rk+2ϖk1

(
g′j1|z0|

r j+1
2 + θg′j2

j∑
l=1

|ξl|
r j+1

2

)(
g′k1|z0|

rk+1
2 + θg′k2

k∑
l=1

|ξl|
rk+1

2

)
≤ ρk4(ξ̄k, z0)

k−1∑
j=1

(
1 + (ϖk1z

r j+rk
2 −rk

k )2) 1
2 |zk|

r1−
r j+rk

2 +2

×

(
|z0|

r j+rk
2 +1 + θ|z1|

r j+rk
2 +1 + · · · + θ|z j|

r j+rk
2 +1 + · · · + θ|zk|

r j+rk
2 +1
)

≤
1
8

k−1∑
j=1

z3+r1
j + σβk5(ξ̄k, σ̂)z3+r1

k + κk5(|z0|)z
3+r1
0 , (3.38)

where ρk4, βk5, κk5 are regarded as known smoothing non-negative functions.
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With the help of (3.10), (3.32), and Lemmas 4 and 5, there exist a series of known smoothing
non-negative functions βk3, κk6 that make

1
2
∂2Wk

∂ξ2
k

|g′k|
2

≤ (r1 − rk + 3)|zk|
r1−rk+2

(
g′k1|z0|

rk+1
2 + θg′k2

k∑
l=1

|ξl|
rk+1

2

)2
≤

1
8

k−1∑
j=1

z3+r1
j + σβk6(ξ̄k, σ̂)z3+r1

k + κk6(|z0|)z
3+r1
0 . (3.39)

We observe from (3.29) and Lemmas 1 and 4 that

zr1−rk−1+3
k−1 (ξrk−1

k − ξ∗rk−1
k ) ≤ 21−rk−1 |zk−1|

r1−rk−1+3|ξk − ξ
∗
k |

rk−1 ≤ 21−rk−1 |zk−1|
r1−rk−1+3|zk|

rk−1

≤
1
8

k−1∑
j=1

z3+r1
j + σβk7(ξ̄k, σ̂)z3+r1

k , (3.40)

where βk7 is a known smoothing non-negative function.
Substituting (3.34)–(3.40) into (3.31) yields

LVk ≤ −(n − k +
9
8

)
k−1∑
j=1

z3+r1
j + (σ̃ + νk−1)(

k−1∑
j=1

β jz
3+r1
j − ˙̂σ) +

k∑
j=1

κ j(|z0|)z
3+r1
0 − φ(ξ1)z3+r1

1

+ zr1−rk+3
k (ξrk

k+1 − ξ
∗rk
k+1) + zr1−rk+3

k ξ∗rk
k+1 +

∂Wk

∂σ̂
˙̂σ + σβkz

3+r1
k + σ̂βkz

3+r1
k − σ̂βkz

3+r1
k

≤ −(n − k +
9
8

)
k−1∑
j=1

z3+r1
j + (σ̃ + νk−1)(

k−1∑
j=1

β jz
3+r1
j − ˙̂σ) +

k∑
j=1

κ j(|z0|)z
3+r1
0 − φ(ξ1)z3+r1

1

+ zr1−rk+3
k (ξrk

k+1 − ξ
∗rk
k+1) + zr1−rk+3

k ξ∗rk
k+1 +

∂Wk

∂σ̂
˙̂σ + σ̃βkz

3+r1
k + σ̂βkz

3+r1
k , (3.41)

where βk =
7∑

j=1
βk j, κk =

6∑
j=1
κk j. Applying (3.32), and Lemmas 1 and 4–6, a known non-negative

smoothing function βk8 exists such that∣∣∣∣∣ − νk−1βkz
3+r1
k +

∂Wk

σ̂

k∑
j=1

β jz
3+r1
j

∣∣∣∣∣ ≤ 1
8

k−1∑
j=1

z3+r1
j + βk8(ξ̄k, σ̂)z3+r1

k , (3.42)

and

(σ̃ + νk−1)
( k−1∑

j=1

β jz
3+r1
j − ˙̂σ

)
+
∂Wk

∂σ̂
˙̂σ + σ̃βkz

3+r1
k

= σ̃

k−1∑
j=1

β jz
3+r1
j + νk−1

k−1∑
j=1

β jz
3+r1
j − σ̃ ˙̂σ − νk−1 ˙̂σ +

∂Wk

∂σ̂
˙̂σ + σ̃βkz

3+r1
k

+ νk−1βkz
3+r1
k − νk−1βkz

3+r1
k +

∂Wk

∂σ̂

k∑
j=1

β jz
3+r1
j −

∂Wk

∂σ̂

k∑
j=1

β jz
3+r1
j
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= σ̃

k∑
j=1

β jz
3+r1
j + νk

k∑
j=1

β jz
3+r1
j − σ̃ ˙̂σ − νk ˙̂σ − νk−1βkz

3+r1
k +

∂Wk

σ̂

k∑
j=1

β jz
3+r1
j

≤ (σ̃ + νk)
( k∑

j=1

β jz
3+r1
j − ˙̂σ

)
+

1
8

k−1∑
j=1

z3+r1
j + βk8(ξ̄k, σ̂)z3+r1

k , (3.43)

where known function νk = −
k∑

j=2

∂W j

∂σ̂
. Substituting (3.43) and the virtual controller

ξ∗k+1 = −

(
n − k + 1 + σ̂βk + βk8

) 1
rk

zk ≜ −αk(ξ̄k, σ̂)zk (3.44)

into (3.41) leads to

LVk ≤ −(n − k + 1)
k∑

j=1

z3+r1
j + (σ̃ + νk)

( k∑
j=1

β jz
3+r1
j − ˙̂σ

)
+

k∑
j=1

κ j(|z0|)z
3+r1
0

− φ(ξ1)z3+r1
1 + zr1−rk+3

k (ξrk
k+1 − ξ

∗rk
k+1). (3.45)

As a result, (3.30) remains applicable to step k.
For step n, choose Vn(ξ, σ̃) = Vn−1(ξ̄n−1, σ̃) + Wn(ξ), which is C2, positive definite, and radially

unbounded. With the adoption of the adaptive controller

˙̂σ =
n∑

j=1

β jz
3+r1
j , (3.46)

u = ξ∗n+1(ξ, σ̂) = −αn(ξ, σ̂)zn, (3.47)

we have

LVn ≤ −

n∑
j=1

z3+r1
j + κ(|z0|)z

3+r1
0 − φ(ξ1)z3+r1

1 , (3.48)

where κ(|z0|) =
k∑

j=1
κ j(|z0|).

Remark 4. In the theoretical derivation process of this article, we set the system parameters to a
series of known non-negative smooth functions, such as β(·), κ(·), ν(·), ρ(·), ϖ(·), and so on. To simplify
the derivation process, functions such as β(·), κ(·), ν(·), ρ(·), ϖ(·) are set as abstract expressions without
providing specific expressions. In the actual derivation process, these functions can provide specific
expressions that satisfy the conditions, such as examples in simulation. If the specific expressions
of these functions are too complex, it will reduce the performance of the systems, thereby slowing
down the convergence speed of the systems. Therefore, in practice, we usually set simple function
expressions for such functions to improve the convergence speed of the systems.
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3.4. Stability analysis

Next we use a theorem to declare the major consequence of the paper.
Theorem 1. For system (2.1) with the constraint (2.2), if Assumptions 1–4, (3.4), (3.5),

lim inf s→∞ α0(s) = ∞, lim sups→0+
κ(s)s3+r1

α0(s) < ∞, lim sups→0+
γ̄0(s)
s3+r1

< ∞, and lim sups→0+
ψ2

z0
(s)ψ2

0(s)

α0(s) < ∞

hold, then the adaptive controller (3.46)–(3.47) exists, which makes, for any initial

value (z⊤0 (0),
n∑

j=1
x⊤j (0))⊤ ∈ Rd ×Ωx, where γ̄0(s) = γ0(λ1 · s),Ωx = {x : x ∈ Rn with −ϵl < x1 = y < ϵl}:

(1) The systems (2.1), (3.7), (3.46), and (3.47) have the continuously unique solution almost surely
on [0,∞);

(2) All signals are almost surely bounded, and the constraints y(t) are almost surely not violated;

(3) The closed-loop system’s equilibrium point is stable in probability, P{limt→∞(|z0(t)|+
n∑

j=1
|x j(t)|) =

0} = 1, and P{limt→∞ σ̂ exists and is finite} = 1.
Proof. (1) Assume that ϱ(s) ∈ C1[0,∞) is a non-decreasing positive function as defined in Lemma 7
and select

Vz0(z0) =
∫ V0(z0)

0
ϱ(s)ds. (3.49)

It is clear by the tangent function’s definition that∣∣∣ arctan(ξ1)
∣∣∣ ≤ ∣∣∣ξ1

∣∣∣,∀ξ1 ∈ R. (3.50)

Using (3.7), (3.50), and Assumption 3, one has

LV0 ≤ −α0(|z0|) + γ0(|x1) ≤ −α0(|z0|) + γ̄0(|ξ1|), (3.51)

where γ̄0(s) = γ0(λ1 · s). According to Itô’s formula, (3.49), (3.51), and Assumption 4, it is evident that

LVz0 = ϱ(V0(z0))
∂V0

∂z0
f0 +

1
2
ϱ′(V0(z0))

∣∣∣∂V0

∂z0
g0

∣∣∣2 + 1
2
ϱ(V0(z0))

∂2V0

∂z2
0

g⊤0 g0

= ϱ(V0(z0))LV0 +
1
2
ϱ′(V0(z0))

∣∣∣∂V0

∂z0
g0

∣∣∣2
≤ ϱ(V0(z0))

(
−α0(|z0|) + γ̄0(|ξ1|)

)
+

1
2
ϱ′(V0(z0))ψz0(|z0|)2ψ2

0(|z0|). (3.52)

Since α0(s) satisfies lim inf s→∞ α0(s) = ∞, there exists a function ᾱ0(s) ∈ K∞, such that ᾱ0(s) ≤
α0(s),∀s ≥ 0. Now, we justify the inequality below in two cases:

ϱ(V0(z0))(−α0(|z0|) + γ̄0(|ξ1|)) ≤ ϱ(η(|ξ1|))γ̄0(|ξ1|) −
1
2
ϱ(V0(z0))α0(|z0|), (3.53)

where η(|ξ1|) = α2(ᾱ−1
0 (2γ̄0(|ξ1|))).

Case (i): When γ̄0(|ξ1|) ≤ 1
2α0(|z0|), one has

ϱ(V0(z0))(−α0(|z0|) + γ̄0(|ξ1|))

≤ ϱ(V0(z0))(−
1
2
α0(|z0|) −

1
2
α0(|z0|) + γ̄0(|ξ1|))
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≤ ϱ(V0(z0))(−
1
2
α0(|z0|) − γ̄0(|ξ1|) + γ̄0(|ξ1|))

≤ −ϱ(V0(z0))
1
2
α0(|z0|)

≤ ϱ(η(|ξ1|))γ̄0(|ξ1|) −
1
2
ϱ(V0(z0))α0(|z0|).

Case (ii): When γ̄0(|ξ1|) ≥ 1
2α0(|z0|), it is easy to get |z0| ≤ α−1

0 (2γ̄0(|ξ1|)) and V0(z0) ≤ α2(|z0|) ≤
α2(α−1

0 (2γ̄0(|ξ1|))) ≤ α2(ᾱ−1
0 (2γ̄0(|ξ1|))) = η(|ξ1|). By the monotonicity of ϱ, we have

ϱ(V0(z0))(−α0(|z0|) + γ̄0(|ξ1|))
≤ ϱ(α2(ᾱ−1

0 (2γ̄0(|ξ1|))))γ̄0(|ξ1|)) − ϱ(V0(z0))α0(|z0|)

≤ ϱ(η(|ξ1|))γ̄0(|ξ1|) −
1
2
ϱ(V0(z0))α0(|z0|).

By combing these two cases, (3.53) holds. It can be deduced from (3.52) and (3.53) that

LVz0 ≤ ϱ(η(|ξ1|))γ̄0(|ξ1|) −
1
2
ϱ(V0(z0))α0(|z0|) +

1
2
ϱ′(V0(z0))ψz0(|z0|)2ψ2

0(|z0|). (3.54)

Set V(z0, ξ, σ̃) = Vn(ξ, σ̃)+Vz0(z0), which is C2, positive definite, and radially unbounded. Using (3.48)
and (3.54), it is clear that

LV ≤ −
n∑

j=1

z3+r1
j + κ(|z0|)z

3+r1
0 − φ(ξ1)|ξ1|

3+r1 + ϱ(η(|ξ1|))γ̄0(|ξ1|)

−
1
4
ϱ(V0(z0))α0(|z0|) +

1
2
ϱ′(V0(z0))ψz0(|z0|)2ψ2

0(|z0|) −
1
4
ϱ(V0(z0))α0(|z0|). (3.55)

Since lim sups→0+
γ̄0(s)
s3+r1

< ∞, there is a smoothing non-negative function φ(s) such that

ϱ(η(|ξ1|))γ̄0(|ξ1|) ≤ φ(ξ1)|ξ1|
3+r1 . (3.56)

Due to lim sups→0+
κ(s)s3+r1

α0(s) < ∞, lim sups→0+
ψ2

z0
(s)ψ2

0(s)

α0(s) < ∞, (3.4), and (3.5), by Lemma 7, one has

1
4
ϱ(V0(z0))α0(|z0|) ≥

1
2
ϱ′(V0(z0))ψ2

z0
(|z0|)ψ2

0(|z0|) + κ(|z0|)z
3+r1
0 . (3.57)

Substituting (3.56) and (3.57) into (3.55) results in

LV ≤ −
n∑

j=1

z3+r1
j −

1
4
ϱ(V0(z0))α0(|z0|) ≤ 0. (3.58)

Denote χ(t) = [z0(t)⊤, ξ(t)⊤, σ̃], and V(χ) isC2, positive definite, and radially unbounded. The existence
of two functions α, β ∈ K∞ makes

α(|χ|) ≤ V(χ) ≤ β(|χ|). (3.59)

We can derive using (3.58), (3.59), and Lemmas 2 and 3 that the closed-loop systems (2.1), (3.7),
(3.46), and (3.47) almost surely have a continuous unique solution on [0,∞).
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(2) Set the stopping time τk = inf{t ≥ 0; |χ(t)| ≥ k}, k ∈ {2, 3, 4, · · · }. Utilizing (3.58) and Itô’s
formula, we obtain an expression as follows:

EV(χ(τk ∧ t)) = V(χ(0)) + E
∫ τk∧t

0
LV(χ(s))ds ≤ V(χ(0)). (3.60)

With the help of the definition of τk, one gets

EV(χ(τk ∧ t)) ≥
∫
{sup0≤s≤t |χ(s)|>k}

V(χ(τk ∧ t))dP

=

∫
{sup0≤s≤t |χ(s)|>k}

V(χ(τk))dP

≥ P{ sup
0≤s≤t

∣∣∣χ(s)
∣∣∣ > k} inf

|χ|≥k
V(χ)

≥ P{ sup
0≤s≤t

∣∣∣χ(s)
∣∣∣ > k} inf

|χ|≥k
α(|χ|), ∀t > 0. (3.61)

Substituting (3.61) into (3.60) yields

P{ sup
0≤s≤t

∣∣∣χ(s)
∣∣∣ > k} ≤

V(χ(0))
inf |χ|≥k α(|χ|)

, ∀t > 0. (3.62)

Let t → ∞ and k → ∞, and utilize the radial unboundedness of α(|χ|) to obtain P{supt≥0 |χ(t)| < ∞} =

1. Consequently, χ(t),
n∑

j=1
ξ j(t), σ̃(t), z0(t) are almost surely bounded, in the same way that

n∑
j=1

x j(t) is

bounded. Remembering this, and employing the definitions of
n∑

j=2
ξ∗j(t), u(t), we can demonstrate the

boundedness of
n∑

j=2
ξ∗j(t), u(t). The constraint (3.8) is almost surely fulfilled on the basis of (2.2) and

the almost surely boundedness of ξ1(t).

(3) By (3.58), (3.59), and Lemma 3, P{limt→∞(|z0(t)| +
n∑

j=1
|x j(t)| = 0} = 1 holds. Since the fact

that (3.7) is an equivalent coordinate transformation, the closed-loop system’s equilibrium point is

stable in probability and P{limt→∞(|z0(t)| +
n∑

j=1
|x j(t)| = 0} = 1. Through (3.46) and Theorem 1’s proof

in [39], it is available that P{limt→∞ σ̂ exists and is finite } = 1.
Remark 5. In comparison with the high-order (ri ≥ 1) SNSs with stochastic inverse dynamics in [29],
one of the major distinctions lies in constraint conditions on f j and g j, as well as the selection of the
Lyapunov functions. Throughout the paper, to ensure that Vn is C2, ξ∗j of formula (3.29) ought to be
C2. We cannot assure that Vn is C2 if we use the assumptions of nonlinear functions and Lyapunov
functions of high-order SNSs in [29]. Therefore, the stability issues of high-order SNSs and low-order
SNSs are two completely distinct issues. In the paper, the stability issue of low-order SNSs with an
output constraint and stochastic inverse dynamics can be solved by employing new nonlinear function
assumptions, choosing new Lyapunov functions, and using the stability theorem of stochastic systems.
Remark 6. We should show that radial unboundedness about the Lyapunov function V is essential,
that is, the existence of function V ∈ C2 and two functions α, β ∈ K∞ with α ≤ V ≤ β. Using the

barrier Lyapunov function V1(z1) = log
( k4

b1
k4

b1
−z4

1

)
from [4] as an example, it can be easily seen that V1
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is not a radial unbounded function. Although the BLF V1 can efficiently resolve the issue of output
constraint control, it makes the entire Lyapunov function V not a radially unbounded function. The
stability analysis cannot be performed using Theorem 1 in [4] since the BLF is used in the controlling
scheme.

In order to address the fatal issue, this paper uses (3.7) to convert the original system (2.1) with
output constraints into the system (3.9) without constraints. The output-constrained y(t) ∈ (−ϵl, ϵl) is
not violated by showing the almost certain boundedness for ξ1. Even more significantly, the radial
unboundedness of the entire Lyapunov function V ensures the stability in probability of the original
solution of the closed-loop system (2.1) by employing Lemmas 2 and 3.

Remark 7. Referring to [34], the block diagram of this control scheme is shown in Figure 1.
Specifically, by introducing a coordinate transformation and using SiISS to characterize unmeasurable
stochastic inverse dynamics, the systems with an output constraint are transformed into equivalent
unconstrained systems, guiding us to construct a state feedback stabilizer for stochastic low-order
nonlinear systems with SiISS inverse dynamics, while preventing the violation of a prespecified
output constraint during operation.

Figure 1. The block diagram of this scheme.
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4. A simulation example

The output-constrained SNS is considered as follows:

dz0 = (−z
3
5
0 + x

2
3
1 )dt + 0.05 sin z

3
5
0 dω,

dx1 = x
7
9
2 dt + 0.2 sin(z0x1)dt + 0.5 sin x1 cos z0dω,

dx2 = u
3
5 dt + z

2
5
0 x

3
5
2 dt + x

4
5
1 dω,

y = x1, (4.1)

with an output constraint:

y ∈ Ωy = {y ∈ R : −2 < y < 2}, (4.2)

where r1 =
7
9 , r2 =

3
5 , f0 = −z

3
5
0 + x

2
3
1 , g0 = 0.05 sin z

3
5
0 , f1 = 0.2 sin(z0x1) ≤ 0.2|x1|

7
9 , g1 =

0.5 sin x1 cos z0 ≤ 0.5|x1|
8
9 , f2 = z

2
5
0 x

3
5
2 ≤ |z0|

3
5 + |x2|

3
5 , g2 = x

4
5
1 ≤ |x1|

4
5 . Obviously, Assumption 2 holds.

By introducing

ξ1 = tan
( x1

λ1

)
, ξ2 = x2, (4.3)

where λ1 =
4
π
, then (4.1) may be reconstructed as below:

dz0 = f ′0(z0, ξ1)dt + g′⊤0 (z0, ξ1)dω,
dξ1 = D1(ξ1)ξr1

2 dt + f ′1(θ, z0, ξ1)dt + g′⊤1 (θ, z0, ξ1)dω,
dξ2 = ur2dt + f ′2(θ, z0, ξ̄2)dt + g′⊤2 (θ, z0, ξ̄2)dω, (4.4)

where D1 =
π(1+ξ2

1)
4 , f ′0 = f0, g′0 = g0, f ′1 = D1 f1 +

ξ1(1+ξ2
1)

λ2
1

g⊤1 g1, g′1 = D1g1, f ′2 = f2, g′2 = g2.

By setting σ = max{1≤i≤2}

{
1, θ, θ2, θ

3+r1
r1−ri+3

}
,V1 =

1
4z4

1 +
1
2σ̃

2 with ξ∗1 = 0 and z1 = ξ1, the virtual

controller ξ∗2 = −
(4(2+σ̂β1+φ(ξ1))

π

) 9
7 z1 ≜ −α1z1 guarantees that LV1 ≤ −2z

34
9

1 + D1z3
1(ξ

7
9
2 − ξ

∗ 7
9

2 ) + σ̃(β1z
34
9

1 −

˙̂σ) − φ(ξ1)z1
34
9 , where β1 =

2
5
π
4

2
9 ξ

16
9

1 (1 + ξ2
1)(1 + x2

1)
1
2 + 0.75π

4

2
9 ξ

34
9

1 (1 + ξ2
1), φ(ξ1) = 0.67ξ

81
3

1 +
2
3ξ

1
3
1 . Set

z2 = ξ2 − ξ
∗
2 and V2 = V1 +

45
188z

188
45

2 . The adaptive controller

˙̂σ = β1z
34
9

1 + β2z
34
9

2 ,

u = −(1 + σ̂β2 + β27)
5
3 z2 (4.5)

leads to LV2 ≤ −
2∑

j=1
z

34
9
j − φ(ξ1)z

34
9

1 +
27
170z

34
9

0 , where β2 = β21 + β22 + · · · + β26, β21 =
90
34 D1α1(1 +

α1)
7
9

(
34
27

( (10D1α1(1+α1)
7
9 )−1

7 − 1
))− 27

7

, β22=
143
170 + (1+α1)

3
5
(170

189 (1+α1)−
3
5
)− 27

143 , β23=7
8
9
(1568

176
π
4

2
9α2

1(1+ z
106
45

2 )
1
2 (1+

ξ2
1)2) 16

9 , β24=
38,038
3825

38
47 3861

3825

( 4
π

31
45α1(1+ξ2

1)(1+z
8
45
2 )

1
2
) 85

47 , β25=
1275

12,012
−36

49 7007
3825

4
π

136
49 , β26=

34
189
−27

7 7
34 (2

2
9 D1)

34
7 , β27=

β1
7β2

.

For the z0-subsystem, by choosing V0(z0) = z2
0,LV0 ≤ −

1
2z

8
5
0 +

1
3 x4

1, |
∂V0
∂z0
| ≤ 2z0, |g0| ≤ 0.05.

Assumptions 3 and 4 are satisfied with α0(s) = 1
2 s

8
5 , γ0(s) = 1

3 s4, ψz0(s) = 2s, ψ0(s) = 0.05, and then
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lim sups→0+
27

170 s
34
9

α0(s) < ∞, lim sups→0+
ψ2

z0
(s)ψ2

0(s)

α0(s) < ∞, lim sups→0+
γ0(s)

s
34
9

< ∞. We have to look for the

function ϱ(s) that satisfies (3.57), that is, 0.125ϱ(z2
0)z

8
5
0 ≥ 0.005ϱ′(z2

0)z2
0 +

27
170z

34
9

0 . In this simulation, we

select ϱ(s) = 2s4 + 1. Via (3.56), we select φ(s) = 0.67s
81
3 + 2

3 s
1
3 . First let V = V2 +

∫ z2
0

0
(2s4 + 1)ds,

then we have LV ≤ −
2∑

j=1
z

34
9
j −

1
8 (2z8

0 + 1)z
8
5
0 .

The initial values (z0(0), x1(0), x2(0)) = (0.8, 0.5,−0.6) and σ̂(0) = 1 are selected, the and results
of the simulation are shown in Figures 2–6. In particular, Figures 2–4 show the trajectories of z0, x1,
and x2, and we can clearly see that the trajectories of z0, x1, and x2 tend to zero after two seconds,
indicating that z0, x1, and x2 are stable. Figure 3 shows that the trajectory of y = x1 is restricted within
the pre-specified output constraint range (4.2), and after two seconds, the trajectory of y = x1 tends
to zero, indicating that y = x1 is stable. As shown in Figures 5–6, the range of σ(t), u(t) are almost
certainly bounded, and the trajectory of u(t) tends to zero after two seconds, indicating that u(t) is
stable. Therefore, through the trajectory curves in Figures 2–6, it can be ensured that the system in
the simulation is stable and does not violate the output constraints. All signals are almost certainly
bounded.

Figure 2. The curve of state z0(t).

Figure 3. The curves of state x1(t).
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Figure 4. The curve of state x2(t).

Figure 5. The curve of σ̂(t).

Figure 6. The curve of controller u(t).

5. Conclusions

The adaptive state-feedback control issue of low-order SNSs with output constraints and SiISS
inverse dynamics has been researched in this paper.

Some problems are still remaining as follows: (i) What is the best way to devise adaptive output
feedback controllers of low-order SNSs with an output constraint to achieve the systems’ finite-time
stabilization? (ii) For low-order SNSs with asymmetric output constraints, what is the best way to
devise controllers to maintain the systems’ finite-time stabilization? (iii) The paper deals with constant
output constraints. Can the proposed method be extended to time-varying output constraints?
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