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1. Introduction and preliminaries

In recent years, quantum calculus has emerged as a pivotal study area, garnering substantial
interest due to its foundational relevance in applied mathematics, mechanics, and physics. Serving as
a bridge between classical mathematics and quantum theories, quantum calculus extends the
principles of traditional calculus into quantum realms. This extension has led to numerous
breakthroughs, including the discovery of novel notations and significant results in combinatorics and
number theory.

At the heart of these advancements lie quantum-special polynomials, with the quantum-binomial
coeflicient (’Z)q and the quantum-Pochhammer symbol (p; g), being particularly significant. These

mathematical objects serve as essential tools in studying quantum analogues, extending traditional
concepts to the realm of quantum calculus. Their influence spans multiple areas of mathematics and
physics, including combinatorics, representation theory, and statistical mechanics. Researchers can
uncover deeper relationships and develop new analysis methods through these constructs, facilitating
progress in theoretical and applied domains. By providing a unifying framework, quantum-special
polynomials enable the translation of complex ideas into more manageable forms, which has
profound implications for diverse fields ranging from algebraic combinatorics to quantum physics.
Renowned for their intricate algebraic and analytic properties, these polynomials provide powerful
tools for investigating quantum-analogue phenomena in diverse domains. While the applications of
quantum calculus have predominantly been within advanced physics, its advancement relies heavily
on precise and consistent notation.

In the present study, we use the notation C to represent the set of complex numbers, p for the set of
natural numbers, and p, to denote the set of non-negative integers. Additionally, the variable g, which
belongs to the complex number set, is subject to the condition that its absolute value satisfies |g| < 1.
This restriction ensures that g lies within the unit disk of the complex plane.

Notably, the historical foundation of quantum series traces back to Christian Heine [7], who, in the
mid-18th century, introduced a series where the normalized factor n! was replaced by the polynomial
(¢:q)n, a degree-n polynomial in g. This innovation significantly broadened the scope of series
expansions, enabling their application to a wider array of mathematical functions and phenomena as
follows:

@), ::{ (1= q)(1 = ¢*)....(1 - ¢"), p=1,
1, p=0.

The algebraic framework of these series was further advanced by F. H. Jackson in the early 20th
century [9], laying the foundation for a systematic exploration of quantum calculus. Jackson’s
contributions played a pivotal role in formalizing the structure and properties of quantum series,
enabling their application across various mathematical and physical contexts. For deformed quantum
groups [13, 21], the deformation introduces rich algebraic structures that generalize classical
symmetries in quantum integrable systems. These groups are crucial in studying non-commutative
geometry and quantum field theories.

The concepts of quantum numbers and quantum factorials, essential tools in quantum calculus, are

defined as follows:
ol, = -4
q — 1 _ q

. qeC={l}, peC,
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o
lolg! = l_[ [klg, [0lg! =1, pep.

k=1

The Gauss formula is the cornerstone for defining all significant quantum-binomial coefficients,
denoted as (i) . These coeflicients play a critical role in quantum calculus and are defined through the
following relationship:

o
r(r— P r _po—
(T +pY =) 4" 1)/2(r)p % pepo,
r=0 q

where 7| and p are variables, and (1, + p)}, is the quantum-analogue of the binomial expansion.
The quantum-binomial coefficient (i)q is explicitly defined as:

p Pq!
=t k=01...p, 1.1
(k)q [k1,'[p — k1, p (.1

where p,! represents the quantum-factorial. Further, the formulation

1 T
Cr)=—""—=> —, |nl<ll-qg,
q\T1 (1 =719 ; Pq! 1 q

generalizes the classical binomial coefficients to the quantum calculus setting, incorporating the
deformation parameter g. It finds applications in combinatorics, representation theory, and the study
of special functions, providing a powerful framework for analyzing quantum-series and related
phenomena.

The quantum-version of the derivative of a function @ at a given point 7; € C, 7; # 0, represented
by D,®, is defined as (see [10] for reference):

O(1y) — P(gTy)
(I-gm

For the special case when 7, = 0, the quantum-derivative is defined as D,D(0) = ®’(0), provided
that the conventional derivative ®’(0) exists. Importantly, as the parameter g approaches 1, the
quantum-derivative converges to the classical derivative, thus bridging quantum calculus with
ordinary calculus.

Moreover, for any two arbitrary functions ®(w) and ¥(w), the g-derivative exhibits the following
linearity property:

= Dq(D(Tl).

Dy o(P(W)) + 0D (Y(w)) = Dy o(pP(w) + 0¥ (w)),

where a and b are constants.
Further, we have

O(qw)Dy Y (W) + V(W) Dy P(w) = Dy o (P(w) ¥ (w)) (1.2)
and
Y (qw)DywP(w) — P(qw)D,Y(w) O(w)
Y(w)¥(qw) - T\ P(w) )
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In the broader context of quantum calculus, the quantum-Jackson integral, which generalizes the
concept of integration, is defined over the interval from 0 to p € R. Its formulation (refer to [10]) is
given as:

0 (&)
fo O()D,71 = p(1 - 9) ) P(pg)g,
k=0

where @ is the function to be integrated, and d,7, denotes the quantum-differential measure.

This integral converges under appropriate conditions on @ and p. As the deformation parameter ¢
approaches 1, the quantum-Jackson integral reduces to the classical Riemann integral, maintaining a
consistent connection between quantum calculus and traditional calculus.

The quantum-Jackson integral is a vital tool in quantum calculus, facilitating the study of special
functions, quantum-series, and other mathematical constructs within the quantum-analog framework.
It has applications in diverse areas, including quantum mechanics, number theory, and combinatorics.

The Hermite polynomials were first introduced in 1836 by Sturm [19]. Later, in 1864, Hermite [8]
formally presented these polynomials as Z%,(t,), employing tools such as the Rodrigues formula,
differential equations, and orthogonality properties. Today, Hermite polynomials are regarded as one
of the most fundamental systems of orthogonal polynomials in mathematical analysis.

The quantum-Hermite polynomials, a specific subclass of orthogonal polynomials, extend the
classical Hermite polynomials by incorporating the parameter q. These polynomials occupy a
foundational position in the hierarchy of classical quantum-orthogonal polynomials [6]. Forming a
one-parameter family, the quantum-Hermite polynomials reduce to the classical Hermite polynomials
when ¢ = 1. They also generalize the heat equation in contexts involving quantum-generalized
operators, extending their applicability to broader mathematical and physical frameworks.

The quantum-Hermite polynomials %, ,(r;) are defined through their generating function,
expressed as follows:

D A0 = S BB = 5,(51.5), (13)
p=0 4
Y —1P"@-1>/2—ﬁ2p =S 201,020 =21, -+ 121, = [2p],! 1.4
2GRS =8B, Roll2p =2, 21, = ) (1.4)
I

p=0

This generating function encapsulates the key structural properties of quantum-Hermite
polynomials, facilitating their use in various applications, including combinatorics, quantum
mechanics, and approximation theory.

Also,

;- Dq,BSq(ﬁ)
Sq(gB)
and

pq%p—l,q(Tl) = Dq,‘rl%p,q(Tl ).

The bivariate Hermite polynomials are crucial in probability theory, quantum mechanics, and
solving partial differential equations. Widely used in mathematical physics, signal processing, and
approximation theory, they support function representation in multiple variables and model complex
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phenomena. Motivated by their significance, we extend the quantum-Hermite polynomials in (1.3) to
their bivariate form using the following generating relation:

Z%p,qm,m% = S, B TBE TP = 811,723 ) (1.5)
p=0 g

where S,(f) is given by expression (1.4).

In 1880, Appell [1] introduced a notable class of polynomial sequences, now known as Appell
polynomials. Later, Sharma and Chak [17] developed their quantum analogues using quantum
integers. In 1967, Al-Salam [2] and many other researchers [3, 14, 15] proposed a further
generalization. The p-degree polynomials L, ,(7;) are termed quantum-Appell if they satisfy the
following quantum-differential equation:

pq p— lq(Tl) =D (Tl){ q(Tl)} p=0,1,2,....

The quantum-Appell polynomials L, ,(7;) are determined through the subsequent generating
function (refer to [2]):

Z ,q<n> =L, BB, 0<B<1, (1.6)
where

D Loy =Ly(B), 1=Log 0% LyQB) (1.7)

p=0 Pq:

is analyticat 8 = O with L, , := LL,, ,(0).

Several characterizations and clarifications regarding the quantum-Appell family of polynomials
were extensivel provided. Over the past few decades, the quantum-Appell polynomials have
been studied from various perspectives and using different techniques. In 2015, Keleshteri and
Mahmudov [11] investigated the determinant representations for the Appell polynomials. A key
aspect of quantum-Appell polynomials is deriving quantum-recurrence relations and
quantum-difference equations, along with determinant forms for the quantum-Hermite-based Appell
family, which aid in computations and uncovering new properties.

By extending the quantum-exponential function €, (7)8) in the left-hand side (l.h.s.)  of
expression (1.6), and substituting the powers of 7%,7{,77,---,7] of 7| with the corresponding
polynomials (71, 72), Z1,4(T1,T2), - , % 4(T1,72) in right-hand side (L.h.s.) of and 7; in the
polynomials %, ,(71,72) in the r.h.s. of the resulting equation, it follows that

2

[2]q ot Ry (T4, 72)—+ ] Z 0. %11;(71 7'2) ﬂP

p=0

L) Aoy, + Brar

+ %2 q(Tl 7'2)

Moreover, by using expression (1.5) to sum up the series in the L.h.s. of the aforementioned equation
and designating the bivariate quantum-Hermite-Appell polynomials (bivariate quantum-HAP) that
results in the r.h.s. by #L, ,(71, 72), and we discover that

Lp,q(%’l,q(ﬁ,fz)) = #Lpg(T1,72), (1.8)
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and thus, considering the bivariate quantum-HAP 4L, .(7;,7,), we have the following generating
relation:

o0

Z,%Lp,q(TI’TZ)% = Ly(B)S4(B)C(11B)E(1o%) 1= QuT1, 123 8), 1Bl < 0, (1.9)
;!

p=0

where »,(8) and L,(B) are analytic at 8 = 0 given by expressions (1.4) and (1.7).

The operational correspondence between the bivariate quantum-HAP 4L, (71, 72) and the quantum-
Appell polynomials L, ,(7;) is given by expression (1.9).

Further, for 7, = 0, the bivariate quantum-HAP 4L, (71, 7>) simplify to the quantum-Hermite-
Appell polynomials %L, ,(71). These are defined through the following generating function [12]:

> ng,q(m% = Ly(B)Sy(B)€,(T1) := Qy(1: ). (1.10)
p=0 a

The structure of this article is organized as follows: We begin by introducing the adapted bivariate
quantum-HAP, highlighting their relationships with other well-known quantum polynomials such as
the quantum-Appell, quantum-Bernoulli, quantum-Euler, and quantum-Genocchi polynomials.
Section 2 presents the series definition for these bivariate quantum-HAP and explores their several
characteristics. Section 3 is dedicated to deriving determinant representations for theses bivariate
quantum-HAP, as well as for selected members of the family. Section 4 investigates the monomiality
principle for these polynomials. Also, quantum-recurrence relations and quantum-difference
equations govern these polynomials and their specific members. Section 5 establishes zeros and
numerical values for specific members of these polynomials. The article concludes with concluding
remarks.

2. Explicit forms of the bivariate quantum-HAP and related members

Explicit forms of bivariate special polynomials are essential for theoretical insights and practical
computations. They enable direct analysis, property derivation, and application in engineering,
physics, and statistics, making them key tools in research and real-world modelling. Therefore, the
series expansion for the bivariate quantum-HAP 5L, (7, 7) is derived by establishing the following
results:

Theorem 2.1. The following series expansion for bivariate quantum-HAP 2L, ,(t1,T2) holds true:

o
Ll q(T1,T2) = Z (2) Lig Zp-iq(T1,T2). (2.1)
q

k=0

Proof. After inserting expressions (1.5) and (1.7) into the left-hand side of generating function (1.9)
and then applying the Cauchy-product rule, it follows that

© P 0
E p Lk,q%p—k,q(TbTZ)_Bp = E ,%Lp,q(Tl,Tz)—'Bp . (2.2)
— i \k pPql £ Pq!
p=0 k=0 q p=0
B
Equation (2.2) yields assertion (2.1) upon equating the coefficients of — O
P!
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Theorem 2.2. The following series expansion for bivariate quantum-HAP 5L, ,(T1,T2) holds true:

P !
Pq: k
#Lpq(T1,T2) = E Ty #lp-2k.4(T1). (2.3)
P L [p = 2k],! [k], ! 277

Proof. After inserting expressions (1.1) and (1.10) into the left-hand side of generating function (1.9)
and then applying the Cauchy-product rule, it follows that

th%Lp—Zk,q(Tl)_ = %Lp,q(T 1, T2)—. (2.4)
pz(; kz(; 2k] k], Pq! pzz(; Pq!
Equation (2.4) yields assertion (2.3) upon equating the coeflicients of % O

Theorem 2.3. The following series expansion for bivariate quantum-HAP zL, (71, 72) holds true:

k—2s

o
quTl T
Lyg(11,72) = py! Zz[p RIS TRITN 2.5)

k=0 s=0

Proof. Inserting expressions (1.1) and (1.10) into the left-hand side of generating function (1.9), it

follows that
had 0

had 2
S S S -
=0 q

p= p=0

Applying the Cauchy-product rule in the second and third terms of the l.h.s. of the preceding
expression, we have

0 Bp o) s ﬁk 0o Bp
L,,— = #L ,To)—.
20 2 2 R~ 2 e

Again applying the Cauchy-product rule in the L.h.s. of the preceding expression, we have

(£

co P '
Pq:
T i o (1,7 )— (2.6)
;kz Pkt 2 T Tk = 251, 5], pq ;J Pl
Equation (2.6) yields assertion (2.5) upon equating the coefficients of % O

Corollary 2.1. For ) = 0, the bivariate quantum-HAP 5L, ,(T1, T5) reduces to the quantum-Hermite-
Appell polynomials 7L, ,(t\) and therefore satisfies the series representations:

P
ALyt =Y (2) Lty Boetg(T1)
q

k=0

and

L, (11,72) = p,! Zp] Lot Tlf
Rop, 1,T2) = . T 14 1 19a 1
" L p -k, [k,
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Proof. This result follows directly by substituting 7, = 0 into the bivariate generating function

S byl ™)1 = LB EBE, )

p=0

which simplifies to the univariate generating function:
2 7koa) o = LiBS S TiB).
=0 g

under the setting 7, = 0. Expanding both sides in powers of 5 and comparing coefficients yields the
stated representation. m|

Corollary 2.2. For L,,(B8) = 1, the bivariate quantum-HAP 3L, ,(71,7>) reduces to the bivariate
quantum-Hermite polynomials %, ,(t,T,) and therefore satisfies the series representations:

P

Pq! k
Ky o(T1,T2) = E Ty Knoko(T
,q( 1 2) -~ [p _ Zk]q' [k]q‘ 2 2k,q( 1)

and
™ 2% k

Fong(T1,T2) = g Z S TERATERE

Various members of the quantum-Appell family emerge through the choice of distinct generating
functions, denoted as L,(8). The versatility of this approach allows for the extraction of different
polynomials tailored to specific needs or applications. The table below highlights a selection of these
members, showcasing the diversity and utility inherent in the quantum-Appell family. From these
examples, it becomes evident that by manipulating the generating function, researchers can access a
wide range of polynomials with unique properties and characteristics, underscoring the flexibility and
richness of the quantum-Appell framework for mathematical analysis and problem-solving.

For L,(B) = %, the bivariate quantum-HAP 4L, (7, 72) reduces to the bivariate quantum-
Hermite-based Bernoulli polynomials denoted by»,8,, ,(71, 72), satisfying the generating function:
QT ) = — oS B TBE D) = 3w B (1, T 2.7)
¢, -1 = Pq!

and operational correspondence between the bivariate quantum-Hermite-based Bernoulli polynomials
28, 4(t1,72) and the quantum-Bernoulli polynomials 8, ,(7;) as:

#8Bg(11,72) = By o(Z14(11,72)). (2.8)

Further, the following series expansions for bivariate quantum-Hermite-based Bernoulli
polynomials 28, ,(t1, T2) holds true:

P

,%Bp,q(Tl, 7)) = Z (2) Bk,q %pfk,q(Tb T2), (2.9)
q

k=0
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g
B, (11, T Z T B owa(T1),
#Bpq(T1,72) = o Zk] T, > #Bp-21q4(T1)
and
p k-2
#Bp4(T1,T2) = pg! ZZ Bpotg 1T
o ” - .
P4 kosO[p klg! [k = 2s],! [s],!
Table 1. Distinct polynomials within the quantum-Appell family are derived by selecting
various generating functions L,(8). The subsequent table enumerates specific instances from
this family.
S.No. L, Name of the Generating function Series definition
quantum-special
polynomial and
related number
B - g _ & n-
L (W) quantum-Bernoulli ( e ) Cy(r1p) = ZOB"*‘f(Tl)ﬁ Bog(t1) = 1;0 (i)quqq ok
- B\ -
polynomials ( S 1) = E‘O Bp,q ol
and numbers Boq = B, 4(0)
(5]
19
1L (&%) quantum-Euler (e )€1 = 5 (Enq(‘r])p, Crg(r) = 2 (',j) G
ﬂ— =
polynomials (W) = pgo (En,q ol
and numbers C.q = C,40)
(5]
. s ) p n n—
ML (gge) quanum-Genocehi (g )€o(miB) = 2 Gpa(T) & Gpyri) = z (k)qgk,qx k
p= =
polynomials ((’ éjﬁ)H) Zo Gog %
o
and numbers Gpg = Goq(0)
Also
LB = —
1 €,B) + 1’

and the bivariate quantum-HAP 4L, (7, 7>) reduces to the bivariate quantum-Hermite-based Euler
polynomials denoted by 8, ,(71, 72), satisfying the generating function:

2 (o)
Ui = T DS EDG O = D a8 () (2.10)
p=0 7

E,B) +1
and operational correspondence between the bivariate quantum-Hermite-based Euler polynomials
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#6p,4(T1, 72) and the quantum-Euler polynomials &, ,(7) as:

#Epg(T1,72) = Ep g (T 4(11,72)). 2.11)

Aditionally, the following series expansions for bivariate quantum-Hermite-based Euler
polynomials &, ,(71, T2) holds true:

o
#Epqg(T1,T2) = Z( ) Erg Fp-icg(T1,T), (2.12)
k=0
#Cp.4(T1,T2) = Zp: P! ™5 #Bp2t4(T1),
L Tp = 2k1,! k],
and
%] 8 k=25 s
kg T1 ~ T

o)
#60.4(T1,T2) = pg! '
#€p4(T1,T2) = pg! % [p — k1 ! [k — 25],! [s],!

S=

Further, for
2B
€,B) +1
the bivariate quantum-HAP 4L, (71, 72) reduces to the bivariate quantum-Hermite-based Genocchi
polynomials denoted by »G, ,(71, 72), satisfying the generating function:

Lq(:B) =

(o)

JE(TPENTS) = D 4Gpq(T1, m)% (2.13)

p=0 4

2
Qu(t1, 123 B) = Wl)g‘i‘lsq(ﬁ
q

and operational correspondence between the bivariate quantum-Hermite-based Genocchi polynomials
2Gp.4(T1, T2) and the quantum-Genocchi polynomials G, ,(71) as:

,%’gp,q(Tl > TZ) = gp,q(QI ,q(Tl > 72))-

Furthermore, the subsequent series expansions for the bivariate quantum-Hermite-based Genocchi
polynomials, denoted as G, ,(71, 72), are valid and can be expressed as follows:

p

#Goq(T1,T2) = Z( ) Grg Rp-rq(T1,72), (2.14)

k=0

1

#Gpq(T1,7T2) = Z o 2k] T, 5 #Go-2kg(T1),

and

p k gp kq k 2s ;

k=0 s=0
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Furthermore, by setting 7; = 7, = 0 in the generating relation (1.9) for the bivariate quantum-HAP
#Hnqg(T1,T2), we can deduce that

Q,(0,0;8) :=L,(B)S,(B) = Z %Lp’q%,

p=0 1

Consequently, this simplifies to the bivariate quantum-Hermite-based Appell numbers, which are
represented by, A, , and expressed through the following series formulation:

o
%Lp,q = ,%Lp,q(oa O) = Z (i) Lk,q %p—k,q-
q

k=0

Therefore, the numbers related to the bivariate quantum-Hermite-based Bernoulli polynomials
#8,4(T1,72), bivariate quantum-Hermite-based Euler polynomials 48, ,(7i,7,), and bivariate
quantum-Hermite-based Genocchi polynomials G, ,(7;, 72) are obtained by taking

T =Ty = 0
in series definitions of the bivariate quantum-Hermite-based Bernoulli polynomials 28, (71, 72),

bivariate quantum-Hermite-based Euler polynomials 28p,4(T1,T2), and bivariate
quantum-Hermite-based Genocchi polynomials G, ,(71, 72). These numbers are defined as follows:

o
#Bpq: = 2840,0) = Z i Brg Kp-tq
=0 \"/q
O (P
#Bpq: = 284(0,0) = Z k Ekg Kp-kg
k=0 \'/q
- (P
K%’Bp,q .= z%’gp,q(()’ 0) = Z k Sk,q %p—k,q-

k

Il
(=]

q

In the next section, we establish the determinant forms for the bivariate quantum-HAP 5L, (71, 72),
as well as for selected members of this family.

3. Determinant form

The significance of exploring the determinant form of the quantum-Appell polynomials lies in its
implications for both computational and practical applications. = The determinant form of
quantum-Appell polynomials, particularly the bivariate quantum-HAP 2L, (7, 72), offers a compact
and efficient representation that aids both theoretical analysis and practical applications, as
highlighted by Keleshteri and Mahmudov [11]. The determinant definition of the bivariate
quantum-HAP 4L, (71, 7,) is obtained by proving the following result:

Theorem 3.1. Let 41Lp, q(71, T2) denote the bivariate quantum-HAP of degree p. Then, the following

AIMS Mathematics Volume 10, Issue 5, 11184—-11207.
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determinant form holds true:

#log(t1,12) = 1,

1 %l,q(TI s TZ) %2,11(71 s 7-2) %p—l,q(TIa 72) %p,q(Tl ’ 72)
Soq S1q 62 ooty S
0 S0 (0,010 (1) 0020 (1) 6014
C1y (3.1)
w2l g(T1,7T2) = Goay T ; ,
0 0 Sog (5 )q(sp_g,q (g)qap_z,q
0 0 0 Sog (j_’l)qél,q

where n = 1,2,..., and %, ,(1\, 1) are the bivariate quantum-HAP of degree p. Additionally 6, # 0
and are defined as:

S where Ly, is given by (1.7).
5P,q = _ﬁ,q(kgl (i)qu,q 6p—k,q)’ pP= 1’ 2’ cee q

Proof. When we set p = 0 in the series definition (2.1) of the bivariate quantum-HAP zL,, (71, T2), we
obtain

#Llog(t1,72) = 1.

(o)

Now, considering the determinant form of the quantum-Appell polynomials {L,4(71)}, as given

in [11], we have:

1 T1 7-1 T;;—l T/l)
(50 q 51 q 52,q 5p—1 g (Spq
e 1y 0 dog (?)qélq (le)chp_z’q (1) Sty
0.q(T1) = 7————
(50,11)~"+l 0 0 504 (pgl)qép_&q (g)qép—lq
0 0 0 Sog ()01

where 04, 014,024, ,0p4 €ER, 004 #0,andp =1,2,3,--- .
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Thus, expanding the above determinant along the first row, we find that

(=1y
Lp,q(Tl) = W 0 50«1
0 0
Oog 024
2
0 (5),014
a0
(G0, "] "
0 0
Oog Olg
0 oy (7
TS R
(600!
0 0
0og Olg 024
0 oy (f)q(slq
2p-10-1
(S0 RPN
...... ((50,(1)’7“ 0.9
0 0 0
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(pzl)qép—lq (?)qép—l,q

(p;)fp—&q (g)qép—Z,q

6p— lq 6p,q

00,4 (p€1) 45 Lq

5p71,q 5p,q

60,61 (pﬁl)qél,q

(/f)qdp— lgq

(g)qdp—lq

5p—2.q 5p,q

(nIz)qép—&q (?)qép—l,q

(nj)q‘sp—4,q (g)qép—lq

0 (pfl)qél’q
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Ooq Olg 024 Op-24 Op-14
2 n-2 -1
0 b0y ()10 -~ (V) 0030 ()82
(D7 n-2 -1
+W 0 O S0g o ( 5 )qép“"q (p2 )qép_&q
0 0 0 0 00
Once more, given that each minor is independent of 7, we can substitute T},T%, e ,T’f with

K 4(T1,T2), B2, f(T1,T2), -+ . X, 4(T1, T2) Tespectively. By employing operational relation (1.8) in the
left-hand side subsequently consolidating the terms in the right-hand side, we arrive at
assertion (3.1). O

Remark 3.1. Given that the polynomials 28, ,(t1,7,) mentioned in expressions (2.7) and (2.9) are
specific members of the bivariate quantum-HAP gL, ,(71,72), we can derive the determinant
definition for the bivariate quantum-Hermite-based Bernoulli polynomials 58, ,(71,72) by
appropriately selecting the coefficients 6o, and 6, in the determinant expression of zL, (71, 72).
Setting 6o, = 1 and 6;, = [l.+11]q for (i = 1,2,...,p) in expression (3.1), we establish the following
determinant definition for 8, ,(T1,72):

#Boy(T1,72) = 1,

1 Z14(t1,12) Pry(t1,72)  eo. Fpo14(T1,T2) R g(T1,72)
| 1 il 1 1
[2]4 [314 Pq [p+1]y
2\ 1 S\ 1
0 1 (l)qﬁ (pl )q[p—uq ('?)qp_q
#Bpq(T1,72) = (1) 1 , p=1,2..,
- i i
0 0 1 (p2 )q [0-2]4 (g)q [p-1l4
P L
0 0 0 1 (%), e

where %, ,(T1,T2), for (p = 0, 1,2, ...), represents the bivariate quantum-Hermite polynomials of degree
P

Remark 3.2. Given that the polynomials 78, (71, T,) mentioned in expressions (2.10) and (2.12) are
specific members of the bivariate quantum-HAP gL, (t1,72), we can derive the determinant
definition for the bivariate quantum-Hermite-based Euler polynomials 28, ,(t1,T2) by appropriately
selecting the coefficients 6y, and 6,, in the determinant expression of zL, ,(71,72). Setting 6oy = 1
and ;4 = % for (i = 1,2,...,p) in expression (3.1), we establish the following determinant definition
for %Bp,q(Tl,TZ):
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%’80,(1(7'1 ’ TZ) = 19

1 % ,q(Tl ,T2) %2,(1(7'1 ,T2) e ‘%p—l,q(‘rl ,T2) ‘%p,q(‘rl ,T2)

1 1
1 3 3 3 3

2\ 1 -1\ 1
A O E R O F
#Bpq(T1,T2) = (1) N 1 ., p=12,--
p- Py 1

0 0 1 ( )q (5 )3
0 0 0 1 (21), 3

where %, 4(T1,T2), for (p = 0, 1,2, ...), represents the bivariate quantum-Hermite polynomials of degree
0.

Remark 3.3. Given that the polynomials 28, ,(t\,T2) mentioned in expression (2.13) and (2.14) are
specific members of the bivariate quantum-HAP gL, ,(7,,72), we can derive the determinant
definition for the bivariate quantum-Hermite-based Genocchi polynomials 7G, ,(t1,72) by
appropriately selecting the coefficients 6y, and 6, in the determinant expression of zL, (71, T2).
Setting

0oq = 1
and
PR
2L+ 1],
for i = 1,2,..,p) in expression (3.1), we establish the following determinant definition for
#Gpq(T1,T2):

2G04(T1,T2) = 1,

1 Zg(11,12) PZrg(T1,72)  coee Bp1g(T1,7T2) R g(T1,72)
1 1 1 1 1
2121, 2031, 20, 2o+,
2) _L p-l 1 Py L
0 1 (1)q2[2]q ( 1 )ql[p—l]q (l)qZPq
%’gp,q(TI,TZ) = (_1)P 1 ) p: 1’2"”

p— 1 P 1

0 0 1 - )q 2021, (Z)q o1,
1

0 0 0 1 (p’_’l)q e

where %, (11, T2), for (p = 0, 1,2, ...), represents the bivariate quantum-Hermite polynomials of degree
0.
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4. Monomiality principle

The monomiality principle, originating with Steffenson’s poweroids in 1941 [18] and refined by
Dattoli [4], underpins the structure of special polynomials, ensuring orthogonality and completeness.
It facilitates the derivation of recurrence relations and explicit forms, essential in applications like
approximation and differential equations. Recently, many authors extended the monomiality
principle, for example, [16,20,22] extended this principle to many quantum polynomial families, via
operators Mq and @q, enhancing the analysis of their quasi-monomial behaviour. These polynomials
are governed by the specific forms outlined below:

Dyr1,4(11) = My Dy (T1))
and
[m]q (Dm—l,q(Tl) = z)q{(I)m,q(Tl)}-

The collection of operators responsible for manipulating the quasi-monomial sequence {®,, ,(71)}nep
must satisfy the following commutative relationship:

Dy, My] = DM, — M,D,.
The properties of the quasi-monomial set {®,,,(71)}ne, stem from the interplay between the
operators M, and ﬁq, which define its structure and transformations through specific axioms:
(i) The function ®,, ,(7) satisfies the following differential equation:
M D@y (7)) = [y By(11) @.1)
and
Z)q/\/(q{(:[)/n,q(‘rl)} =[m+ l]q (Dm,q(Tl)a

provided Mq and @qpossesses differential recognitions.
(i1) The explicit form of the function @, ,(7;) is provided by

m

@, (t)) = M, {1}, (4.2)

with @ (1) = 1.
(iii) The generating relation for @, ,(7;) in its exponential form can be represented as follows:

CoBM 1) = ) <I>m,q(n)%, Bl < o,
!

m=0
by utilizing identity expression (4.2).

The quantum-dilatation operator, represented by 7, acts on functions that are linked to the complex
variable 7y in the following manner:

T (h(y)) = h(g™y) (4.3)
and satisfies the identity:
T\, (h(y)) = h(y),
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where g represents a fixed complex parameter. This operator acts by scaling the argument of the
function by a factor of ¢, modifying its behavior according to this scaling effect.

The monomiality principle is employed as a fundamental tool in defining both the raising and
lowering operators. Within this conceptual structure, we introduce the bivariate quantum-HAP
2L 4(T1,T2). We demonstrate this by presenting the following key results, which provide insights into
the behavior and properties of these polynomials within the established framework.

Theorem 4.1. For the bivariate quantum-HAP 5L, (71,72), the following multiplicative and
derivative operators are valid:

. Sy(Dyr)) Ly(Dyy)

=117, + 12 Dyr, +qr2 T1, Dy 7, + 0T+ ———T7+,7~ 4.4
T o, T2 Dy T 472 J 1, D0 Sq(Dq,n) 17 12 Lq(Dq,n) Bl ( )

q@Lp,q(Tl ,T2)

and
=D, (4.5)

Proof. By applying the quantum-derivative to each component of the expression (1.9) with respect to
the variable S, and leveraging the relation given in Eq (1.2), we derive the following result:

D[ Ly BIS(BIETPE (8| = Ly(B)Dy [ S4B, (11 (25"
+ DygLy(B| Sy aBE(am B (g8,

and by further utilizing expression (1.2), it can be concluded that:

Dy | LyBSBIE(TB)E,(128%)| = (11 + qTaB)Ly(BISy(B)E,(T1B)E,(q7%)
+ ToBL(B)S(B)E(T18)E(T25%)
g
q(é) Ly(B)S(B)E,(qT18)E,(qT:5)
L B
L,B) *

q.%Lp,q(Tl’TZ)

(ﬁ)Sq(Qﬁ)@q(quﬁ)@q(qTZﬁ )

By utilizing (4.3), we have

’

Sq(8) L,B)

S 2P ) @
5,8 L@ " ) (+6)

D[ L BIS(BIE,(MBIE (1) = (fr T grafT +
X L,B)S,B)E,(T18)E,(125°).

By applying the quantum-derivative to each component of the expression (1.9) with respect to the
variable 71, we derive the following result:

Dy [LaBIS,BIE(TBIE,(1:87)| = B[Ly(BIS,BIE,(T1B)E (157 4.7)

By applying the expression provided in (4.6) and equating the coefficients of like powers of 5 on both
sides of the resulting equation, we can establish the validity of assertion (4.4).

Furthermore, utilizing the right-hand side of the expression in (1.9) on both sides of the
identity (4.7), and once again comparing the coeflicients of the same powers of § in the resulting
equation, we can demonstrate the truth of assertion (4.5). O
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Theorem 4.2. For the bivariate quantum-HAP 7L, (71, 72), the following differential equation is
valid:

S;I(Dq,ﬁ) L, (Dgr,)

11T, Dyry + T2 @fm +q1, T1,D? T 7,Dy, LD )77,7:17;21),”1 o4l (4.8)
q q,T1

qu q(Dq:Tl)
X %Lp,q(’rl, TZ) =0

Proof. By substituting expressions (4.4) and (4.5) into the equation (4.1), we derive the result presented
in assertion (4.8). O

Subsequently, the quantum-recurrence relation for the bivariate quantum-HAP 5L, (71,72) is
established, with the following result being rigorously proven:

Theorem 4.3. The following quantum-recurrence relation is valid for the bivariate quantum-HAP
polynomials 7L, ,(T1,7T2):

S, L,®B)
<2l T+

Sq(B) L,B)

+ Q2+ qT)p 12 2lp-1,4(T1,72).

Lp+l,q(T17T2) = (717;2 + %7;17—;2)] ,q(Tl’TZ)

Proof. We begin with the generating function identity for the bivariate quantum-HAP polynomials:
Z #Lp.q(T1, Tz) = Ly(B) Sy(B) €,(118) €, (128%), (4.9)

where L,(8) and S,(8) are generating functions defined by analytic series expansions, and €,(z) s the
g-exponential function.

Now, apply the g-differential operator d, 4 to both sides of (4.9). Using the known g-derivative rules
for products and compositions (from g-calculus), we obtain:

Z] q(Tl’TZ)

= Dy [Ly(B) S4(B) €y(11) € (1287

LB Syp)

= T
(Lq@ 5B
X L,(8) Sy(B) €,(118) €, (125%).

qﬁ

+171T7 + 2+ q‘]’,z),BTz)

Now let us denote the right-hand side as:

Q,(B; 71, 12) 1= Ly(B)S,(B)E,(T1B)E,(125),
so that the derivative becomes:

SqB) LB
7;17;2 7%7;17;2 Qq(ﬂ) + (2 + Qﬁz)ﬁTqu(ﬁ)

Pas | QB 7| = (“T’Z "5, L,®)
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Next, recall that:

Z%L q(Tl,Tz)

p=0

qﬁ

] Z w#Lpi1,4(T1, Tz)ﬁ-
P4

Therefore, equating the coefficients of % on both sides of the expression yields the recurrence:
!

#lpi1,4(T1,72) = (TlTrz +

Sy(B)
S¢(B)
+ 2 +qT,)pTo%

L)
L,®)

Lo-14(T1,72),

s laTnt

which completes the proof.

5. Distribution of

zeros and graphical representation

%TTlT;z)J ,q(Tl’ TZ)

For the bivariate quantum-Hermite-based Bernoulli polynomials denoted by, 8, ,(71, 72), given by
expressions (2.7) and (2.8), the few numerical values are given by

#Baq(11,72) =

%BS,q(Tl,TZ) =

AIMS Mathematics

%814(7'1 ,T2) =T

1— [Z_]q!’
1 2],!
%BZ,q(TI,TZ):_TI+T%+[2_]q!+TZ[2]q!_[3_]Z!a
2 31! 73],
2B34(11,T2) = —T1 + T? + [Z—]q' + 7171231, = [2]:!3 [12]61;;
1Bl w3l 13
[2],!? 21,0 4],
L2 4L, T4l T4, w4l Timlél,!
IR T R TN ER TN P YRR PIN
Tl | T, r§[4]q!+ [4],! w4l 341, 24!
[2],! [2],! 21,0 31,12 31, 21,31, [21,'[3],!
R G AT
21,'31,! [21,'131,! [51,"
B s 2[5l nisl, TSl ms),!
TR T RS T RLE T 2LE 2,8
Tnl5]! 7172[5],! _ 75[51,! .\ 7115051, 71l5],! ~ 3[5],! _3[51,!
[2]'2 21,7 21,7 21,! 31,7 3,7 [21,'131,"2
CTnls),! | Tnlsl! 45l 3nisl,! | 273s),! 2[5],!
31, B, | [2,°B1,! 21,7031 21,131 21,7031,
20,05, mISl!  3I5),! 2ni[s),! TSl TS,
(21,031,0  [4], 121,741, 21,041, (21,041, [2]1,'[4],!
2151,!  [5],!
+ — :
[31,'141,!  [6],!
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We numerically explore and plot the zeros of the bivariate quantum-Hermite-based Bernoulli
polynomials 48, ,(t1, 1) = 0 for p = 30 (Figure 1).

00%%0e,
. . ‘ ‘ ° o O,
L4 °
2| 2| 2| 2| .
(J )
{::) " \ ° ° °
Im(rs) Im(z;) Im(rs) Im(zs)
\ , ° [ °
..d.
- " 2 o
°
Y [ J
4 4 4 A o, ° ..o
(XY [ 1

Re(r) Re(r)) Re(r)) Re(r)

Figure 1. Zeros of 428, ,(71,72) = 0.

In Figure 1 (from left to right): 1st, 7, = 2, g = %; in2nd, 7, = 2,9 = %; in3rd, 7, =2,q9 = %;
in4th, 7, =2, = .

Stacks of zeros of the bivariate quantum-Hermite-based Bernoulli polynomials 28, ,(71,72) = 0
for 1 < p <30 form a 3D structure, are shown in Figure 2.

Figure 2. Zeros of 28, ,(71,12) = 0.

In Figure 2 (from left to right): 1st, 7, = 2and ¢ = ++; 2nd, 7, = 2 and ¢ = =; 3rd, 7, = 2 and
q= %;4th,7’2 =2and g = %.

We plot the zeros of the bivariate quantum-Hermite-based Bernoulli polynomials 28, ,(71,72) = 0,
for 7, = 2 and ¢ = 5 (Figure 3).

[ ]
® oo e ®pbo o ®%%%e e®%%e0,
. . ° . ° o ° ® °
[ ]
[ ]
2 2 2 of
L °
L °
Im(x;) Im(r;) — Im(r;) Im(r}) L 2
° [ J
) ) ° ) 4 L4
[ ]
[ ]
4 - [ ] - ° ° ) af [ J ° L4
[ J [ ] ] [ J
o ©®°® o opo ooo0 ® ® ¢ @0®

-6 -4 -2 o 2 4 6 -6 -4 -2 ) 2 4 6 -6 -4 -2 o 2 4 6 -6 -4 -2 o 2 4 6
Re(t) Re(r)) Re(r)) Re()

Figure 3. Zeros of 428, ,(71,12) = 0.
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In Figure 3 (from left to right), in 1st, we choose p = 10, in 2nd, p = 15, in 3rd, p = 20, and in 4th,

p =25.

Figure 2 illustrates the intricate 3D configuration formed by the zero sets of the bivariate quantum-
Hermite-based Bernoulli polynomials 48, ,(t1,72) = 0 for 1 < p < 30. This layered distribution
of zeros not only reveals the rich structural complexity of these polynomials but also provides visual

insight into their

oscillatory and geometric behavior across degrees.

Figure 4 presents plots of real zeros of the bivariate quantum-Hermite-based Bernoulli polynomials

%Bp,q(‘rl’ TZ) =0

for 1 < p < 30.

9 02

In Figure 4 (from left to right), we choose in Ist, 7, = 2, g = 15, in 2nd, 7, = 2 and ¢ = 15,

T, =2andg = -

093 094 07 080 082 0590 059 0600 0605 0610 0530

10°

Re(r)) Re(t;) Re(t)

Figure 4. Real zros of 48, ,(11,72) = 0.

1 3

and in 4th, 7, =2 and g = %.

We approximated a solution to 28, ,(71,72) = 0for7, =2, g = 19—0; see Table 2.

Table 2. Approximate solutions of 8, (71, 72) = 0.

in 3rd,

degree p T]
1 0.52632
2 0.5000 - 1.9254 1, 0.5000 + 1.9254 i
3 0.4493 - 3.1699i, 0.4493 +3.16991, 0.52769
4 0.3879 -3.99551, 0.3879 +3.9955i, 0.5171-1.49211, 0.5171 + 1.49211
5 0.3150-4.51011, 0.3150 +4.51011, 0.4982-2.67501, 0.4982+2.6750i, 0.52890
6 0.2078 - 4.74891, 0.2078 +4.74891, 0.5013-3.64701,
0.5013 +3.64701, 0.52395-1.280631, 0.52395 + 1.28063 i
7 -0.1142-4.78731, -0.1142 +4.78731, 0.5160-2.38231,
0.5160 +2.38231, 0.52997, 0.7061 -4.41241, 0.7061 +4.4124 1
8 -0.4619 - 493591, -0.4619 +4.93591, 0.5174-3.35191, 0.5174 +3.35191,
0.52791 - 1.151771, 0.52791 + 1.151771i, 0.9153-4.69741, 0.9153 +4.6974 i
9 -0.7555 -5.00331, -0.7555+5.00331i, 0.4847-4.25321i, 0.4847 +4.25321,
0.5259-2.18781, 0.5259 +2.18781, 0.53093, 1.0914-4.68761, 1.0914 +4.68761
10 1.0581-5.02931, -1.0581 +5.02931, 0.2897-4.75601,

0.2897 +4.75601, 0.53059 - 1.064091, 0.53059 + 1.06409 i,
0.5324 -3.13601, 0.5324 +3.13601, 1.4194-4.70411, 1.4194+4.70411i

AIMS Mathematics
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For the bivariate quantum-Hermite-based Euler polynomials denoted by »&,,(71,72), given by
expressions (2.10) and (2.11). We numerically explore and plot the zeros of the bivariate
quantum-Hermite-based Euler polynomials &, (71, 72) = 0 for p = 34 (Figure 5).

...l.. 1 ...'.. 1 o ..O... ] ........
: ° .. T o ° i .. .. ] .. ® ..,
o ® L4 L ° e - @ e
e o - ® o e ° o ° i
[ ] o e o b N
2 .l : .
(1) Im(t;) Im(rs) Im(r;)
o o b « | o o
[ ] o- Je () °
[ ] o - Y ° 2 @ [ ®
° o ° ° ) ° 9 L
Y [ 2 ° Y 1 [} [ ] ] Y ° ( ]
’ ®e °® ° °® © ®e o® ®e o*
(X X ®eoo0 i oo I o000

-2 ] [ 1 2 -2 - [ 1 2 " -2 [ 2 4 6 -4 -2

Re(t;) Re(t;) Re(r) Re(r)

Figure 5. Zeros of 48, ,(11,72) =0

In Figure 5 (from left to right), In 1st, we choose 7, = 5 and q= 10, in 2nd, we choose 75 = 5 and
q= 10,1n3rd T;,=5and g = ]O,and1n4th T, = 5andq— =

The distribution of zeros of the bivariate quantum- Hermlte based Euler polynomials &, (71, 72) =
0, for degrees 1 < p < 35, unveils an intricate three-dimensional configuration, revealing underlying

structural symmetries and patterns, as illustrated in Figure 6.
\\\\\ - \\\\~ f/ \\\\~/ W

. /
3 '... 00 o'
t‘s 'f \‘\ 7.’ 5 o s ":f
ot s ; ) (32 "‘0
TIOC SR S W ) x o %000 s
“\“| R ) | » \ ‘ l o t § 0..~
Partiat e L '-'
* 0 (]

Figure 6. Zeros of 4,8, ,(11,72) =0

In Figure 6 (left to right), in 1st we choose 7, = Sand g = 10, in 2nd, We choose 7, =5and g =
in 3rd, we choose 7, =5 and g = 10, and in 4th we choose 7, = 5and g = =

6. Concluding remarks

This paper investigates the bivariate quantum-HAP, examining their relationships with other
notable quantum-special polynomials, including the quantum-Appell, quantum-Bernoulli,
quantum-Euler, and quantum-Genocchi polynomials. Through the presentation of comprehensive
series definitions, determinant representations, quantum-recurrence relations, and quantum-difference
equations, this work provides a robust framework for understanding these polynomials’ intricate
connections and characteristics. This foundational approach enhances theoretical perspectives and
opens doors to practical applications in various mathematical and scientific domains.
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Future research may focus on practical applications of modified polynomials in quantum
mechanics and integrable systems, multivariate extensions for higher-dimensional problems, and
deeper exploration of quasi-monomiality and operator methods to uncover new polynomial families
and structures.
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