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1. Introduction

Mean-field SDEs are a class of SDEs with coefficients dependent on the distribution, also called
McKean-Vlasov equations. In 1956, Kac [14] studied a class of interacting particle systems and
found that as the number of particles approaches infinity, the density function of the particles evolving
over time satisfies a nonlinear evolution equation. In [21], McKean discussed the propagation of
chaos in a class of interacting particle systems and analyzed the McKean-Vlasov equation. Sznitman
provided two equivalent conditions for propagation of chaos in his review lecture notes [24] and studied
the propagation of chaos and limit equations for weakly interacting random particle systems under
different frameworks. Based on these pioneering works, the theory and numerical research of the
McKean-Vlasov equation have been a hot topic in several directions over the past few decades, such
as the stochastic characterization of nonlinear parabolic PDEs, the propagation of chaos, and the well-
posedness problems of associated martingale issues [9,22,26]. In a pure stochastic method, Buckdahn
et al. [4] obtained mean-field backward SDEs. Lions’ series of lectures [18] has pushed the study
of mean-field problems to new heights, and mean-field game theory and its applications have also
developed rapidly [5,15,17].

With the application of statistical software, an increasing number of scholars have begun to focus
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on the long-term asymptotic behaviors of solutions/trajectories of differential equations and dynamical
systems, in particular recurrence. This is because almost all interesting dynamical properties exhibit
some form of recurrence, and the complexity of dynamics often concentrates on the set of recurrent
points. Periodicity, quasi-periodicity, and almost periodicity are well-known recurrences. The almost
automorphic function is the important general notion of the almost periodic function. It was originated
by Bochner from the work on differential geometry [2]; for the more basic properties and the follow-
up development of almost automorphy on determinate systems, see Bochner [3], Veech [25], Shen and
Yi [23], among others.

We know that the stochastic perturbation, or noise, is ubiquitous in nature or social society. When
we use deterministic systems to describe these phenomena, they more or less omit some random
factors. However, these unrecognized stochastic perturbations may destroy the stability of the systems
and generate chaos. For classical differential equations, when considering external forces or stochastic
perturbations, we will obtain SDEs. Until now, there are many scholars investigating SDEs and quite a
few studying almost automorphy of SDEs. Specifically, Fu and Liu [12] established the uniqueness and
existence of almost automorphic solutions for SDEs. Chen and Lin [8] initiated the process of square-
mean pseudo almost automorphy and its application to stochastic evolution equations. In [7], Chen
and Zhang studied almost automorphic solutions of fractional Brownian motion-driven mean-field
SDEs. Liu and Gao [19] investigated the almost automorphic solutions for McKean-Vlasov equations.
Meanwhile, parallel research on SDEs with jumps based on Lévy processes have also been in progress,
such as Liu and Sun [20] , who introduced the Poisson square-mean almost automorphic functions and
proved the existence of almost automorphic solutions for SDEs with Lévy noise. Lévy processes
are a class of stochastic processes in which the sample paths are stochastic continuous. They retain
the independent increment property of Wiener processes and do not strictly require the sample path
to be continuous. They include many important processes, for instance, Poisson processes, Wiener
processes, stable and self-decomposing processes, and subordinate processes [1]. Therefore, Lévy
noises have been extensively used in physics modelling the movement of particles in a fluid, in finance
modelling asset prices, and so on. For the latest work on almost automorphy see, [6, 10, 16], among
others.

Motivated by [20], we intend to discuss the existence conditions of almost automorphic solutions
for the mean-field type SDEs with infinite-dimensional Lévy noise:

dx(7) =Ax(7)d7 + fi (t, x(7), Pyry)) dT + fo (7, X(7), Py(r)) AW (T)

+ f b1 (7, x(t=), Pye, p) N(dr, dp) + f by (7, X(t=), Py, p) N(d7, dp), (1.1)

Iplo<1 plo=1

where the semi-group of the linear operator A satisfies the exponential stable condition, the functions
f1, f>, b1, by are almost automorphic in time 7, W, N , N are the components of Lévy-Itd composition.
We establish that if the coefficients fi, f>, by, b, satisfy the given Lipschitz continuous condition, then
the SDE (1.1) admits a unique bounded solution, and it is almost automorphic in the distribution sense.
It is also proven that the solution is globally asymptotically stable in square-mean.

The structure of the paper is outlined below: Section 2 recalls some definitions and some concepts
of Lévy processes and almost automorphic stochastic processes. Section 3 establishes the existence
conditions of the almost automorphic solutions of the mean-field SDEs with large jumps driven by
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Lévy noise. Section 4 discusses the global asymptotical stability of the almost automorphic solution
and proves that any other solution converges to it at an exponential rate. Section 5 gives an example to
illustrate the viability of the findings presented in the paper.

2. Preliminaries

We shall denote by (X, [|-]|) and (O, |- |e) the real separable Hilbert spaces and by (L(®, X), || - | ex))
the set of all linear and bounded operators mapping from ® to X. We denote by (Q, ¥, P) a complete
probability space and by £2(€, X) the set of all X-valued random variables ¢ satisfying

E|I€|”? = fllfllzdP < co.
Q

For ¢ € L£2(Q,X), define

l€ll2 = [follzdp] ;

then (L2(Q,X), || - |I») is a Hilbert space. We define the space

LQ, L(0,X)) := {§ 1 Q- L(0, X)‘Ellﬂli@;@ = f €17 0.5, dP < 00},
Q

equipped with the norm

1
2
. 2
mm@mm;(ﬂmwwﬁ.
Q

Remark 2.1. Denote by L,(0,X) the collection of all Hilbert-Schmidt operators from © to X with
inner product (X, Y),ex = Yian{Xei, Ye;), where {e;};ay is an orthonormal basis of ©®. Note that
it is a separable Hilbert space. Let ® € L*(Q, L(0,X)) and let Q : ® — @ be a nonnegative and
symmetric operator satisfying TraceQ < oo, we have DQ: € L2(Q, Ly(0,X)) and define

1
1 L 2
1PQ>| 20, y0.5)) = (E||(DQ2||L2(@,X)) :

Let P(X) be the collection of all Borel probability measures on X with the metric

f&m—fbwg

where the functions G are real-valued Lipschitz continuous functions on X with norms

IG(z1) — G(22)]
IG5z = Gl + IGlleo»  IGllL = sup —"——25 [|Gll = sup|G(2).
21#22 ”Zl - ZZ” zeX
Note that the metric space (P(X), 8) is complete. If f Gduy, — f Gdu for all G € C,(X), the real-valued
bounded continuous function space on X, then {y} € P(X) — u weakly. Besides, {u} — u weakly

equals to B(u, 1) — 0 as k — oo. Consider the space

By, po) := sup

IGllL=1

. M1, M2 € P(X),

Py(X) = {,u € P(X) ||l := f||Z||2,U(dZ) < 00}
X
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with Wasserstein distance

1
Walu,po) = _inf f e = yIPa(dz,dy))”,
XxX

where C(uy, uy) denotes the set of all couplings of y; and py, i.e., 7(- X X) = gy and (X X -) = u,.
Observe that for z € X, the Dirac measure ¢, € P,(X). Let £ be a random variable and use P; to denote
its distribution. Note that

|EE = EQIl < WaBe. Bo) < (EllE - 2IP)’ . @.1)

2.1. SDEs with Lévy noise

SDEs based on Lévy noise are a class of mathematical models that incorporate random fluctuations
with heavy-tailed distributions. These equations extend the traditional Brownian motion-driven SDEs
by allowing for jumps and extreme variations, making them suitable for modeling phenomena in
finance, physics, and biology where rare events play a significant role. Now we first review some
basic definitions and facts of Lévy process; for more details, see the monumental work [1].

Definition 2.1. A stochastic process D = (D(7), T > 0) with values in © is called Lévy process provided
it satisfies

(1) D(0) = 0 almost surely,
(2) The increments of D are independent and stationary;

(3) D is continuous in the following sense

IimP (ID(t) = D(y)le >e) =0 (Ve>0,YVy>0).
Ty

Given a Lévy process D, the corresponding jump process AD = (AD(t), T > 0) is defined as
AD(t) = D(1) — D(t—), Y T > 0. We define a random counting measure

N@2)(w) :=4{0 <y <7: AD(y)(w) € Z} = Z Xz(AD(y)(w)),

O<y<t

where Z is any Borel set in ®—{0} and the notation y, denotes the indicator function. We say Z bounded
below provided O does not belong to the closure of Z. We refer to v(-) = E(N(1,-)) as the intensity
measure (i.m. for short) associated with the Lévy process D. If Z is bounded below, (N(t,Z), T > 0) is
a Poisson process with v(Z). Therefore, N is termed as the Poisson random measure (P.r.m. for short),
and the compensated P.r.m. is defined by

N(1,Z) = N(1,Z) + ™(Z). (2.2)

Remark 2.2. (Poisson integral [1]) Let Z be bounded below, and let uz denote the restriction to Z of
the measure v. Then for f € L*(Z, uy), we have

d
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Theorem 2.1. A Lévy process D with values in ® can be represented as

pN(z,dp) + f pN(t,dp) (7 >0), (2.3)

[plo=1

D(t) =g+ W(r) + f

Iple<1

where g € ©; W is a Q-Brownian motion, the independent P.rm. N with i.m. v is defined on R* x @’
and N is the compensated P.r.m. of N. Here the measure v satisfies

f (Ipe A 1) v(dp) < oo. (2.4)

(C)

Remark 2.3. Note that Theorem 2.1 is the well-known Lévy-Ité6 decomposition theorem. According

to (2.4), we have f v(dp) < oo, and then we set ¢ := f v(dp).
Iplo=1 lplo>1

Consider a two-sided Lévy process as follows:

_ | Di(y), y =0,
b = { —Dy(-y), ¥ <0,

where Lévy processes D and D, have the decompositions as in Theorem 2.1, and they are independent
and identically distributed. For our convenience, assume that the covariance operator Q of W is trace
class, i.e., TrQ < oo and the two-sided Lévy process D is defined on (Q, 7, (F7)rer, P).

Remark 2.4. If for a given a € R, the process D is defined by 5(7) = D(t + @) — D(@), then Disa
two-sided Lévy process and it has the same law as D.

By Theorem 2.1, we consider the mean-field type SDE with Lévy noise
d&(7) =AED)dT + ¢ (1, £(7), Py ) AT + Y (1, (7). Py ) dW(T)

+ f ®; (7, &(t-), Perry, p) N(dr, dp) + f ®, (7, £(t-), Pery, p) N(dr, dp).

Iplo< Iplo>1

2.2. Almost automorphic stochastic processes

Definition 2.2. (£?-continuous and L*-bounded) Assuming there exists a stochastic process { : R —
L£X(Q,X),

(1) The process ( is called L£*-continuous provided

y_r)rylEH{(T) —{IP=0, yeR;

(2) The process ( is called L*-bounded provided

sup E|lZ(D)|? < co.

TeR

Definition 2.3. (almost automorphic)
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(1) A L2-continuous stochastic process & : R — L*(Q,X) is called square-mean almost automorphic
(s.m.a.a. for short). If for any real sequence (seq. for short) {y,’(} there exists a subsequence

(subseq. for short){y,} such that for another process { : R — L*(Q,X)
lim Eig(r + i) - {@IP=0 and lim E'I(r = i) —E@IP =0,
for any T € R. The set of all s.m.a.a. stochastic processes ¢ : R — L2(Q,X) is represented by
AAR, LX(Q,X));
(2) A function ¢ : R x L2(Q,X) X P,(X) —» LX(Q,X), (1,¢, Py) = @(t,&,Py) is called s.m.a.a. in
7 € R for ¢ € L2(Q,X) and its corresponding law P € Py(X) if ¢ is L*-continuous, i.e.,
E”‘,O(T, é‘:a Pf) - QD(T,’ g,’Pf’)llz -0 as (T,"f,’Pg') - (T’ f’ Pf),

and for any real seq. {y,’(}, there exists a subseq. {y} such that for another function ¢ : R X
LHQ,X) X Py(X) = LX(Q,X)

tim E|lp (e ,6.2) -3 (r 6.7 =0,
and
Jim E H‘Z(T — V6 &P — (T4, Pg)Hz =0,

foranyt € R, £ € L2(Q,X), Py € Py(X).

(3) A function  : RX L*(Q, X)X P,(X) — LA(Q, L(O,X)), (1. £, Pe) > Y(t, £ Py) is called s.m.a.a.
in T € R for & € L2(Q,X) and the corresponding law Py € Py(X) if y is L*-continuous, i.e.,

ElW(r,&P) — (T € Pz = 0 as (1,&,Pp) > (1,& Py,

and for any real seq. {)/,’(}, there exists a subseq. {y;} such that for another function J : RXx
LX(Q,X) x Py(X) = LXQ, L(©,X))

tim £l (v +7.6.7) - 9 (.2 |

b

LOx)

and
2

=0,
L(0,X)

i st o 2|
forany T € R, & € L2(Q,X), and Py € Py(X).

(4) A function ® : R x L*(Q,X) X Py(X) X ©® - LX(Q,X), (1,&,Pg, p) > O, &P, p) is called
Poisson s.m.a.a. in 7t € R for ¢ € L*(Q,X) and corresponding law Pz € Py(X) if ® is L*-
continuous, i.e.,

fﬂ@@ammr®ﬁfﬁgm%mme0cw<ﬂ$&oe@a&x
(€]
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and for any real seq. {y,’(} there exists a subseq. {y;} such that for another O : RxLAQX) X
Po(X) x © — LXQ,X) with [, E|®(r, &, P, pPv(dp) < oo

lim [ E||0(r+y.£ P p) - ®(r.6 P, p)H2 v(dp) = 0,

k—o0

(C)

and

lim [ E|®(r -y, & p) - ©(r.6 7, p)”2 v(dp) = 0,

k—o0

@)
forallt € R, £ € L2(Q,X) and P: € Py(X).

(5) Let £(t) be an X-valued stochastic process. Then & is called almost automorphic in distribution
provided its law Pe) is a P(X)-valued almost automorphic map, that is, for any real seq. {y,’(}
there exists a subseq. {7y} and an X-valued stochastic process {(t) with its P(X)-valued law Py,
such that for any T € R

BPeriys Pry) = 0 and  B(Per—y), Pe)) = 0 ask — oo,

Remark 2.5. If the stochastic process & is s.m.a.a., then it is L>-bounded. By [I2], let ¢ €
AAR, L(Q, X)),
ll€lleo 2= sup [IE(D)IL2,

TeER

then (AAR, L2(Q, X)), || - lle) is a Banach space.

Proposition 2.1. [11] Let ¢y : R x L*(Q,X) x P,(X) —» L*(Q,X), (1,&, Py) — Y(7,&,Py) be s.m.a.a.
in T € R for each ¢ € L*(Q,X) and the corresponding law Pz € Py(X). Suppose that for all T € R,
£ € L2 X) and Py, Pp € Py(X),

Ely(r,£,Py) — (. £, POIP < L(ElIE = £IF + W3(P, Py)).

Then for all s.m.a.a. process & : R — L2(Q, X) X P»(X), the process ¥ : R — L*(Q, X) x P,(X) given
by ¥(7) :== Y(1,&,Py) is s.m.a.a.

Lemma 2.1. If the functions ®, ®,, and ®, : R X L*(Q,X) X P,(X) x @ — L*(Q,X) are Poisson
s.m.a.a. in T € R for & € L2(Q,X), then

(1) @, + O, is Poisson s.m.a.a.;
(2) k® is Poisson s.m.a.a. for every constant k;

(3) Forevery & € L*(Q,X) and the corresponding law Py € Py(X), there exists a constant C=C(£) > 0
such that

suprH(D (T,f,Pf,p)Hz v(dp) < C.

TeER
(€]
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3. Existence of almost automorphic solutions

Consider the mean-field SDE with Lévy process
d&(r) =AE(T)AT + @ (7, £(7), Pegr)) AT + 4 (1, £(0), Py ) dW(7)

+ f ®; (7.£(1=), Pemy, p) N(dr, dp) + f @, (7,£(t=), Pery, p) N(dr,dp),  (3.1)

Iple<l1 Iplo=1

where an infinitesimal generator A produces a dissipative Cy-semi-group {G(7)},~o on X such that
IGOI < Ke™™, Y120, (3.2)

with ¢, K > 0; ¢ : R x L2(Q,X) x Po,(X) = L2(Q,X), ¢ : R x L2(Q, X) x P,(X) = L2(Q, L(0,X));
D), O, : RXx L2Q,X) X P,(X) x ® - L2(Q,X); N and W are the components of the Lévy-Ito
decomposition for a two-sided Lévy process (Theorem 2.1).

Definition 3.1. An F.-adapted process &(7) is referred to as a mild solution of SDE (3.1) if
£) =Gz — $)E(s) + f G(r — a)p (e, £(a). Peoy) da
+ f G(r - o (@, £(@). Peoy ) dW(@)

+ f f G(r - a)®, (. &), Pyany, p) N(der, dp)

[plo<1

+ f f G(r - a)®; (. £(a), Pyamy. p) N(der, dp) (3.3)

[plo=1
holds for all T > s and every s € R.

Lemma 3.1. [13] (a variant of Gronwall’s lemma) Suppose that g : R — R is a continuous function
such that

T T

0 < g(1) < h(T) + w, f e TV (@)da + - + w, f e Do(a)da, TER, (3.4)

—00 —00

n
for some function h : R — R, for some constants wy,...,w, > 0, 21,...,2, > wwithw = ), wy.
k=1

Suppose the integrals on the right-hand side of (3.4) converge. Set 7 := 1rnkin . If f ° e h(a)da,
<k<n -
€ € (0,z — w] converges, then

T

g(m) < h(t)+w f e * I p(a)da

—00

holds for all T € R. If h is a constant, then

hz
Z-w

g(r) <
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Theorem 3.1. Suppose that

(1) The semi-group of the linear operator A satisfies the exponential stable condition such that (3.2)
holds;

(2) ¢ and Y are s.m.a.a. in T € R for each & € L*(Q,X) and the corresponding law P; € Py(X);

(3) ®, and ®, are Poisson s.m.a.a. in T € R for each & € L>(Q,X) and the corresponding law
Pg € P2(X);

(4) ¢, ¥, @y, and ©, satisfy Lipschitz conditions in the following sense:

Ellg(t.&.10) - (. £ I < L(Ell¢ = {IP + W2, v)) (3.5)

Ellwn - e @ < L(Ele - aF + Wiga). (3.6)

[ Bl - o P < L(BlE - 0P + Win).  G)
Iplo<1

[ Bl - s i < (Bl - 0P + Wiav). G9)
Iplo=1

forallt € R, &0 € L2Q,X) and 1, v € P»(X). Then we have

i) If
e
L , 3.9
< 8K2(1 +2¢ +2q) (3-9)
the SDE (3.1) has a unique solution in L*(Q, X);
i) If
e
L (3.10)

< T6K(1 + 2c + 4g)’

the unique solution is almost automorphic in distribution.

Proof. Let &(t) be L£2-bounded. Then by (3.2), G(t — s)é(s) — 0 as s — —oco. According to
Definition 3.1, &(7) is a mild solution of SDE (3.1) if and only if

£(r) = f G - )¢ (o, £(@), Peoy) dar + f G — )y (. £(@), Peoy) dW (@)

(o) (%9

+ f f G(r - )®; (. &(a-), Pyany. p) N(der, dp)

Iple<1

+ f f G(r - @), (@, £(@-), Peamy, p) N(da, dp). (3.11)

Iplo=1
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Step 1: Existence and uniqueness of the £>-bounded solution of SDE (3.1). We use the space
Cy(R, L2(Q, X)) to denote the set of all bounded and continuous maps from R to £3(Q, X) with || * ||w.
For ¢ € C,(R, £%(Q, X)), a nonlinear operator S is defined on C,(R, £L*(Q, X)) by

SO = [ 6= ap(aé@).Pan)dat [ G- o.6@).E) W)

+ f f G(r - a)®; (. £(@-), Peaoy, p) N(der, dp)

Iple<1

+ f f G(t - )@, (@, £(@-), Pym. p) N(der, dp).

IPlo=1

If £(-) is L?-bounded, it follows from the conditions of Theorem 3.1, Cauchy-Schwarz inequality,
Itd’s isometry property, and the property, of Poisson random measures that (S&)(-) is £2-bounded.
Similar to the proof of [20, Theorem 3.2] with minor modifications, we can illustrate that (S&)(-) is
L2-continuous. So we only need to prove the nonlinear operator S is a contraction on C»(R, £*(Q, X)).
For &, € Cp(R, L£2(Q, X)) and the corresponding law Pe, Py € Pr(X), we have

E|[(S&)(1) = (SH@)IP
<4E ” I G- | (2. £(0). Pew) — ¢ (2. £(@). Prioy) | de

2

2

+4E ’ I " G-a) [ (0. £, Pe) = W (0, (@), B dW@)

2

+ 4E‘ f f G( — @) |®1(a, &), Petary, P) — i@, £(@=), Prary, p)| N(dar, dp)

Iple<1

+ 4E‘ f f G(t—a) [CI)z(a, E(@—), Peamy, p) — Oa(a, {(@=), Pyay, p)] N(da,dp)
Iplo>1

=4l + L+ I + ). (3.12)

2

By the Cauchy-Schwarz inequality, (2.1), (3.2), and (3.5), we have

I <K I ' e 1T Idq - I ' e ITIE HQO(CU, f(oz),Paa)) - <P(“’ f(a),Paa)) “da

o0 (o)

2
S% Slellg E H(p (a, (), P,f(a)) - ¢ (a/, (), Pg(a)) ‘2

2K2L
< 7 sup Ell¢(@) - Z(@)I. (3.13)

a€R

From Itd’s isometry property, (2.1), (3.2), and (3.6), we have

I < [T Kre 2O H[lﬂ (CY, f(a'),Pg(a)) = w(a, f(a),Pg(a))] Q: ’

da
1,(0.X)

AIMS Mathematics Volume 10, Issue 5, 11159-11183.
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K2 2
<5 50 E |4 (0 £6@). Be) = (o €00, Buo )| @

2

S«TL sup El|é(a) — (). (3.14)

aeR

L,(0.X)

According to the Cauchy-Schwarz inequality, (2.1), (3.2), and (3.7), we have

I; < ff f Kl 2O ”(I)l (a, f(a—),Pf(a_),p) - @ (a, L(a—), Pg(a_),p)uz v(dp)da

Iplo<1
2 2
SZ suﬂg f E H(D1 (a, E(a-), Pg(a_),p) - O, (a, {(a—), Pro-y, p)” v(dp)
(1S
Iplo<1
KL
ST Sug Ellé(a) - L(@)IP. (3.15)

By the Cauchy-Schwarz inequality, (2.1), (2.2), (3.2), (3.8), and (3.15), we possess

. _ 2
<28 [ [ 6 - @)@, B ) - @t 0-). B )] Wida )

[plo=1

" ZEH f f G(r-a) [(DZ(“’ E(@=), Pea—y, p) — Pa(a, {(a—), Pyany, p)] w(dp)da

[ple=1

2

2

327; L sup Ellé(a) — (@) + 2K f f e 1T y(dp)da
a€R —oo

[Plox1

: f f e 1TVE|| 0y (@, £(@-), Py, p) — Do, L(@=), Priany, p)IPv(dp)da

Iple=1

2K°L
<= sup E||é(e) - ()|

aeR

2l sup [ |0 o0 B ) = @ .60 B ) i)
lplo=1

KL 4Kl
s( A )suﬂgEllf(a)—é(a)llz, (3.16)

q q*
c:= fv(dp).

[plo=1

+

recalling that

By (3.12)—(3.16) we can obtain
I(SE)(T) = (SO < 6 sup () - L)
with

8K’L 16K°L
6=(1+2c) — + .
q q
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Since

sup [l£(@) = L(@)Il; < (sup llE(e) = {(@)Ih)?,

a€R a€R
we have

ISH@ = (SH@lw < VOIED) = (Dl
The Lipschitz constant L < WZZHM in (3.9) implies # < 1, then § is a contraction on
Cy(R, L£L(Q, X)). Therefore, there exists a unique fixed point € C,(R, £L*(Q, X)) satisfying S = Z,
that is to say the SDE (3.1) has a unique £?-bounded solution.
Step 2: Almost automorphy of £>-bounded solution of SDE (3.1). We denote by {r/} an arbitrary
real seq. Since ¢, i are s.m.a.a.gni@LL@z are Poisson s.m.a.a., we can extract a subseq. {r,} of {r/}
such that for some functions ¢, ¥, @, ®,

lim E||p (v + 7, £ Pe) - 5 (. £, Rf)H2 =0,

n—oo

lim E H@’(T € Be) — o (v Pf)‘r - 0;

,}E?OEH[‘/’(TJF rus€,Be) — 0 (1.6, B | @ ;@,X) -
tin e[[a (- ez - (rer] @], =0

lim [ E[@ (c+ 5,6 Pep) - @i (r.6 P, p)H2 v(dp) =0,

n—oo

Iple<1

lim [ E[® (v =768 p)- 0 (r€, Pg,p)sz(dp) = 0;

n—oo

Iple<1

and ,
lim | E||@s(7+ 7, Pe p) - ®a (5.6, B, )| vdp) =0,

n—oo

[plo=1

i [ E[@ (c - & B, p) - 0 (0.6, B2 )| v(dp) = 0

|plo=1

hold foL each 7 € R, each ¢ € £2(Q, X), and the corresponding law Ps € Pr(X).
Let &(-) satisfy the equation

&) = f Gt = 1)g (1. E(r), Py, ) dr + f G(r = ) (r.&(r). Pg,,) dW(r)

+ f f G(r = 1)@ (1. &(r-), Pg,. . p) N(dr. dp)

Iple<l

+ f f G(x = r)®, (r, &(r-), Py, p) N(dr, dp),

[plo=1
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11171

and let @ = r — r,,, then

Er+ry)= fT G(t—a)p (a + 1, E(@ + 1), Pf(a/+r,,)) da

(%)

+ fT Gt —ay (oz + 1y, E(a + 1), Pf(w,n)) dW,(a)

+ f f G(T - CL’)(Dl (a' + Iy, ‘f(a/ + l"n—), Pf(cwr,,—)a P) Nn(daa dp)
“plo<t

+ f f G(T - (1’)(1)2 (a' + Vs é‘:(a + rn_)’ Pf(a+rn—)a P) Nn(da" dP),

[ple=1

where W,, defined as W, (t) := W(t + r,) — W(r,), T € R, is a Q-Brownian motion, having the same
law as W; N, defined as N,(t, p) := N(t + r,,p) — N(r,, p), T € R, have the same law as N with
compensated P.r.m. N,.

Subsequently we consider the process &,(-) satisfying

é:n(T) = f G(T - G’)QO (CI + Iy, é:n(a)a Pf,,(a)) da

[Se]

+ f Gt - aW (01 + 1y, (@), Pg,,(a)) dW(a)

(%)

+ f f G(r = )@ (@ + 1. &x(@=). Pe,ony, p) N(da, dp)

Iple<l

+ f f G(t—a)d, (a + I Ex(@—), Pe (o) p) N(da, dp).

Iplo=1

Notice that for every T € R, &(7 + r,,) and &,(7) have the same distribution. Like E(~), such &,(+) is also
unique and £>-bounded. We know

E g0 - €0

<4E HIT G(t - a) [90 (CY + Iy En(@), an(a)) - 'J(a,?(a)’Paa))] dor

2

2

+4E ‘ j: ’ Gt - [w (a + 1, En(@), an(a)) - J(a,g(a), Paa))] dW(a)

+4E IT f G(rt-a)- [d)l (a + 1y En(@=), Pe, -y, P) - @, (a, Ea-), Prays p)] N(da, dp)

Iplo<1
- 2
+4E f f G(r — ) - [@2 (@ + 1 £u(@=), Py, am, p) — @2 (@, E(@-), Py, p)| N(der, dp)
bl
::4(.]1 +H+J3+ J4) (317)
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By the Cauchy-Schwarz inequality, (2.1), (3.2), and (3.5), we have

2

2

Ji <2E H f G- @)@ (@ + 10 £(@), Pey)) = @ (@ + 1. (@), P, ) | da
e

+2FE H f Gr-a)lela+ rn,g(a),P_g(a)) - ?,E(a,g(a),Pg(a))] da

<22 f e IT-0(y . ' e T OE ng(a + rn,fn(a’),Pgn(a)) - QD(CY T n,g(“)’PEm)) ‘2 dar
+ 2K f T e 1 q - f T e OF H"” @ + 1y, E@), Paa)) (“’E(a)’P%)) ‘2 da
347:1 2L e TIE £ (@) - 'é?(a)”z da +df, (.18)

where
2
da.

ai = 277(2 I ; e 1TIE ”(p (a + 1y E(@), Pg(m) - I,E(a,}g?(a), PE(a))

Now we show that @] — 0 as n — co. Note by (3.5) that we have

2

E ”(p a+ rn,f(a) P (Q))
2
<2E [l (@ + . E@), By,)) = 9 @ + 7, 0,60)|| + 2E llp (@ + 1,0, 60)IP
<AL~ EIE@)P + 2E llg (@ + 1,0, 60)IF

Since ¢ is s.m.a.a. in T and E(-) is £2-bounded, then by Remark 2.5 we have

sup Ellp(e + r,, &), Pro)IIP < co.
a€R
Besides, by Definition 2.3
sup Ell¢(a, f(a) Pg(a))” < 0.

a€R
That is,

sup Ellg(ar + 12, E0), Pgi) = Bler £(@), By IF < .

Therefore, by Lebesgue dominated convergence theorem and Definition 2.3, we have

T

lim e 1TIE HQO ((x + rn,g(cx), PE(Q)) - Zﬁ(a',g(a’), P?(a))

—00
n —0o0

2
da =0,

thatis, a} — Oasn — oo.
From It6’s isometry formula, (2.1), (3.2), and (3.6), we have

2

J, X2E HIT G(rt-a) [1// (a + 1y, En(@), Pgn(a)) 4 (a + 1, &), Pf(a'))] dW(a)

2

ek H[T G- [lﬁ (“ + 1 (@), PE(a)) - Z(a’:é;(a), PE(a))] dW(e)
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K> f o2 [0 (4 (@) Be) = (4 1Bl B )| @2

- HLZ(G,X)

+ 2K I ' Y ) H[l// (a + rn,g(a/), Pg(a)) - Z(CL’,E(Q’), PE(Q))] Q: “2 da

. L,©X)

<4%°L f e M TOE gn(a)—E(a)Hz da + d, (3.19)

where

=2 [ oo ) -FloFr ), o

o L(0.X)

Similar to af, using the same argument, we can illustrate a; — 0 as n — oo.
For the third term, on account of Cauchy-Schwarz inequality, (2.1), (3.2), and (3.7), we have

. 2
J3 <L2F G(r—a) |O @+ 1y, én(@—), Peamy, p) — @1 @ + 14, (@), Pz, )| N(da, dp)
oo &la-)
Iple<1
. 2
+2E Gt —a) |O|a+ 1y, é(a-), Py, p) — i (@, (@), Pz, p) | N(de, dp)
. &la-) &la-)
Iple<1
T — 2
<2K? f f e T | H(I)1 (a + 1y, (@), Pgn(a_),p) — @, (a + rn,f(a—),Pg(a_),p)H v(dp)da
“lplo<t
T — —_ - 2
+ 2K e 2T L END (o + 1, E(@), Pzooys P) = O1 @, §(a-), Py, p)|| v(dp)da
N g g
Iplo<l1
<4K°L f M |g, () — &) da + a, (3.20)
where
o [ ~2¢(r—a) Z = Z 2
ay =2K f f e o) | “(1)1 (a + rn,f(a—),P;g(a_),p) — @, (a, f(a—),Pg(a_),p)H v(dp)da.
o<t
Now we prove aj — 0 as n — co. Note by (3.7) that we have
_ 2
f E | (@ + . &), Pz, p)| vidp)
Iplo<l1
— 2
Sz E (I)l a+rn’é‘:(a,_),P~a_ P _(DI (a+rl’l,0’50’p) V(dp)+2 E”(Dl (a+rn30,50’p)”2v(dp)
&(a-)
Iplo<1 Iple<l1
< 4L Elé@)|* +2 f E||®; (a + 12,0, 6, p)II* v(dp).

Iple<1
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Since ¢ is Poisson s.m.a.a. in 7 and E(') is £2-bounded, then by Lemma 2.1

— 2
sup f E “@1 (a + rn,f(a—),]P’g(a_),p)H v(dp) < co.

aeR
Iplo<1

In addition, by Definition 2.3

sup f E|®(a, &), Pg,_,, P)IPv(dp) < o,

aeR
Iplo<l1

that is
sup f E|®\(@ + 1, &), Ps, ), p) — Or (@, &@—), Pr,_p, pIFV(dp) < co.

aeR
Iple<1

Therefore, according to Definition 2.3 and the Lebesgue dominated convergence theorem, we can
obtain

n—oo

T — —_ - 2
lim f f e | H‘Dl (@ + r. &), Py, . p) — @1 (. E(@-), P, p)H v(dp)da = 0,
“lplo<t
Le.,a; > 0asn — oo.
For the fourth term, from (2.1), (2.2), (3.2), (3.8), (3.20), and the Cauchy-Schwarz inequality, we
can obtain
2

Ju <4E ‘ [ [ 6= a0 (o + e Beiunr ) - 0 (o + B B )] Widadp)
Iplo=1
+4E f m f G(r = @) | s (@ + s £4(@), Peyays ) = s (@ + 1 €@=), Py, p) | V(dp)da 2
Iplo=1
var [; f G(r = )| (a + 1, E@-), By, p) = ©2 (@ Ea-), Py, p) | N(der, dp) 2
Iplo=1
Hak I; f G(r =) |® (@ + 1 E(@=). P, . p) = @ (@ &(@-). Py, p) | (dp)de 2

[plo=1

<8K’L f e MTOE

&n(@) _E(a/)”2 da +4fT f er_q(T_a)V(dp)daf . fT f P

Iple=1 [plo>1

— 2
-E H(DZ (a/ + In, En(@—), Pe (o), p) - o0, (a + 1y, E(a-), PE(Q—)’ p)” v(dp)da

+4 IT f I e 20 | | H(DZ (af + rnag(a_)’ Pg(a_), p) - Eﬁ; (a’,g(a_)’ PE(Q_), p)Hz vdp)da

[plo=1
+4 f f (}(ze_"(T_“)v(dp)da- f f e 1@
" lplox1 ez
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— —, — 2
-E Hd)g (a + 1, §(@-), Py p) -, (a, §a—-), Py, p)” v(dp)da

T 2
<8K2L f ) K cL

&) — E@)|| da +

f O @)~ E@f dar v a, B21)

[ee)

where

a 452 f_’T f o 20) | ”CDZ (af + rn,g(a—), Pg((l_), p) - (Fﬁ; (a/, E(af—)’ P,E(w—)’ p)”z v(dp)da

Iple=1

2 T _ N N
47; c [ f e 1o | Hq)z (Cl’ + 1, E(@-), Pg(a_), p) - O, (a, E(am), PE(Q_), p)“z vdp)dar

[ple=1

+

Similar to a3, we can deduce that ay — 0 as n — oo.
On the basis of (3.17)—(3.21), we have

NI 16K*L (7 ..., TN
E &) - €@ < +20) . f e 1TVE (@) - E@)|| de
2 ’ —2q(t—a) & 2 : n
+64K°L | e E[é@) - &) da+4 )" a. (3.22)
e i=1
From Lemma 3.1 we know
o, 4 - 4
Elen-£@| <4 a +w f ¢4 ) alda (3.23)
i=1 — i=1

withw = (1 + 2c)% + 64%°2L and ¢ € (0, g — w). Note that in the light of the assumption in (3.10),
we have ¢ — w > 0. Hence it follows from (3.23) and Z?:l a! — 0 as n — oo that

&M —-E0| =0, TeR.

lim E

It implies that &,(t) — E(T) in distprdibution as n — oo. Since &(7 + r,) and &,(7) have the identical
distribution, we have &(7 + rn)~—> &(7) 1n distribution as n — oco. Simultaneously using the similar
argument, we can also prove &(t — r,) — &(7) (r € R) in distribution as n — oo. We finish the
proof. O

4. Stability of the almost automorphic solution

The stability of solutions is a crucial topic in stochastic systems. It has wide applications in various
fields, such as finance, biology, and engineering. For example, in financial models, understanding the
stability of asset prices under random fluctuations is essential for risk management and investment
strategies. Now let us review the definition of stability before we begin our proof.

Definition 4.1. (square-mean stable)
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(1) A solution &(t) of SDE (3.1) is called square-mean stable provided for every € > 0, there exists
0 > 0 such that when ||£(0) — £0)|| < 9,

ElL@ -&é@If <€ (x20).
Here {(7) is a solution of SDE (3.1).

(2) A solution &£(7) is called square-mean asymptotically stable provided it is square-mean stable and

Elf@) - @I -0 ast — co. 4.1
(3) A solution &(7) is called square-mean globally asymptotically stable provided it is square-mean
asymptotically stable and the inequality (4.1) holds for arbitrary (0) € L2(Q, X).

First let us investigate the existence interval of the solution of SDE (3.1). We prove that any solution
of SDE (3.1) will not blow up for all times 7 > 0 under the weaker conditions than Theorem 3.1.

Lemma 4.1. Suppose that the conditions (1)—(4) of Theorem 3.1 hold. Then the solution & of SDE (3.1)
with £0) € L*(Q,X) exists in L*(Q,X) for T € [0, +o0).

Proof. Note that by Remark 2.5 and Proposition 2.1, there exists a positive constant y such that

maX{SUPEIIQD(T,O,éo)IIZ, sup f E||®:(t,0, 6, p)IFv(dp),
TeR TER

[plo<1
2
sup E HI/I(T, 0,00)Q: , sup f E||®D(7,0, 50,P)||2V(dp)} <v.
reR L>(0,%) TeR
[plo=1

Assume that &(7) is the solution of SDE (3.1) with £(0) € £L2(Q, X). Then for T € R we have
Bl =E|Go0) + [ G g (0.66@). B o
+ fo Gt - a) (@, £(@), Peoy) dW (@)

+ fo f G(r - @)@ (@, &(@-), Peamy, p) N(da, dp)

Iple<1
2

+ fo f G(t - @)@, (@, £(@-), Pyamy. p) N(der, dp)

IPle=1
2

S57(26—2qrE||§(0)||2 +5F “f; Gt —a)y (a, é(a), Psc((,)) da

2

+ SEH fo G- (. £(@). Py dW ()

2

+5EH fo T f G(r - )®; (. £(@-), Pyaoy. p) N(der, dp)

Iple<1
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+ SEH f: f G(t - ), (a, f(a—)’Pg(a—)’P)

[ple=1

4
=5K2e 2 E|IEO) + 5 Z i 4.2)
k=1
It follows from Cauchy-Schwarz inequality, (2.1), (3.2), and (3.5)—(3.8) that
. (}(2 —qt ’ —q(t—-a) 2
I S;(l —e 1) e 1'"TYE H(p (a, f(a),Pf(a)) - ¢(a, 0, 6¢) + ¢(a, 0, 60)H da
0

K (T
<— f 1 [4LE||E@)I? + 2El|g(e, 0, 60)I*| der
q Jo

4%K°L 7<2
< f 4 ()| Pdar + (4.3)
q 0
. 2 —2¢(1—a) _ 2
2 -2q(t—a)
ac [e [4LE||§<a)|| + 26|y @0.00 @] Jda
. 2
<KL f ¢ Elle(@)|Pda + 2. 4
0 q
. 2
i3 s‘Kzf f T E H(DI (2 (@), Pegar, p) = 1,060, p) + D1 (@0, 50"”)“ v(dp)da
0 [plo<1
<K f e 210 4LEl@) + f 2E]1®1(, 0,80, pIPv(dp)|da
0 Iplo<!
r K2
<4%K°L f e HTIE|E(e)|Fda + =7 (43)
0 q

and the last one

iy <2F Gt —a)D, (a/, E(@=), Peaos p) —
[plo>1
i 2
+ ZEH f f G(t - ), (a, E(@=), Peany, p) v(dp)da
0
[plo=1

<% f e ALEE@)IP + f 2E[[02(, 0,80, p)IFv(dp)|da

Iple=1
+27<2f feq(T “y(dp)da - f _q(T_“)[4LE||§(0/)||2+ f2E||(I)2(a,0,60,p)||2v(dp) da
Iplo>1 Iplo=>1
2 2 2 4 2
<8KL f 2000 B(a)Pda + S f DBl Pda + R chy. (4.6)
0 0 q q
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On the basis of (4.2)—(4.6), we have

20%°L
q

=B, f Ell¢(@)Pda + B».
0

4Ky . 2Ky

EIE@IP <( 4 e

(1 +2¢) + 80K>L) f ' Ell¢(@)*da + SKZE|IEO)|]* + 5( (1 +2¢))
0

Then by Gronwall’s inequality we can obtain
ElE@IP < Be®™ (1 €R).

Hence the solution of SDE (3.1) has an existence duration that can be increased indefinitely, stretching
towards positive infinity. We finish the proof. O

Now that we have shown any solution of SDE (3.1) can be extended to +oo, let us study the stability
of the solutions.

Theorem 4.1. Suppose the conditions (1)—(4) of Theorem 3.1 hold. Then,
i) If

512

<
10K2(1 + 2¢ + 4q)’
this unique L*-bounded solution of SDE (3.1) is square-mean globally asymptotically stable;

L 4.7)

ii) If the Lipschitz constant satisfies inequality (3.10), the solution is both square-mean globally
asymptotically stable and almost automorphic in distribution.

Proof. Suppose that £(1) and {(7) are two solutions of SDE (3.1) starting from &£(0) and £(0) at time 0
individually. Then we have

60 =60 + [ 6= 0@ Pow)da+ [ 6= (0, @), Pew) W (@)

+ fo f G(1 - )@, (@, &(@-), Peary, p) N(da, dp)

Iple<1

+ fo f G(r - @)®, (@, &), Pea-, p) N(der, dp),

Iplo=1

and
{(1) =G(1){(0) + fo G(r - a)p (. {(@), Py ) dar + fo G(r - o (@, {(@), Pyoy) dW ()

+ \fo f G(t - a)d, (oz, {(a=),Pra-), p) ﬁ(da, dp)

Iple<l

+ fo f G(r - @)@, (@, (@), Pay, p) N(der,dp).

[ple=1
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Afterwards we have
Ellé(r) - {@IP < SENGTEO) — LI
+5E ‘fo G(t—a) [(,0 (a, (), Pg(a)) - (a, {(), Pg(a))] da

2

2

+5E ‘fOT G(t—a) [lﬂ (a, (), Pg(a)) -y (a, ), P{(a))] dW(a)

2

+5 E‘ fo f G(r - @) | @1 (@, &(@=), Peany p) = @1 (@, {(@=), Pary, p)| N(der, dp)

Iplo<1
’ 2
+ SE‘ fo f Gt - @) | @2 (@, £(@=), Peany, p) — @2 (@ {(@=), Prary, p)| N(der, dp)
Iple=1
< 5K TEIE0) = L) + 5(Ki + K + K + Ka). “48)

For these four terms, by (2.1), (3.2), and the Lipschitz conditions (3.5)—(3.8), we have for each
7>0

'2 da

K < fT K2e 1y fT e 1TVE HSD (CY, -f(a/),Pg(a)) - 90(0/, {(CI/),Pg(a))
0 0
2K°L
q

2 T
quz L f e 1TVE|E() - (@) da, (4.9)
0

<

(1— e fo 1D ElE(@) - {(@)lda

2

K, < fo R [ (o @), Betwy) = ¢ (00, 2@, )| @

L,(0,X)

<L2K’L f ' e MTIE|E(a) - L(@)|Pda, (4.10)
0

K; < fo ) f K E [0, (0, @), Beiaoy p) = @1 (L=, By p)| vidp)dar

Iple<1

LKL f ' e HMTIE|E() - L(a)|Pda, 4.11)
0

and the last one

2

K, SZE'

fo f Gt — @) | Do, £(@-), Petay, p) = Pa(@, {(@=), Py, p)| N(der, dp)

Iple=1

fo f G(r - @) | s, £(@=), Petay, p) = Do, £(@=), Pyamy» p)| v(dp)da

Iple=1

<49%C°L f e HTIE|E(@) - L(o)|Pda + 2 f f K2e 1 y(dp)da
0 0

Iplo=1

2

+ ZE'
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3 [ e 0 @ B ) - 03 .0 B ) vpc

Iplo=1

" 4%Cel
<49CL f D El(a) — L(a)lPda + TR
0

f o I€(@) ~ {(@)Pda. (4.12)
0

From (4.8)—(4.12) and ¢~2¢" < ¢~ for T > 0, we can obtain

10K%L
E|lé() = LI < 5K TENE0) — O + (1 +2¢)

+40K°2L) f e 1TIE|E(@) - L(o)|Pda.
0
Let O(1) := E||&(t) — (D)|P and A := (1 + 20)% + 40K°L, then

O(1) < 5K%e70(0) + A f e 1Y 0(a)da. (4.13)
0

Let .
O(1) = 5K2e~ 77 0(0) + A f e 1T 0(a)da,
0

and 0(0) = 5K20(0), we have
O(r) = e 0(0) + A f 1T 0(a)da. (4.14)
0

Hence O(1) < 5(7) (r € R). By taking the derivative of both sides of (4.14) with respect to 7, we have

dO(1)
dr

= (1-¢q)O(1). (4.15)

Solving the Eq (4.15) with 5(0) = 5%%0(0), we can obtain
O(t) = 5K20(0)e=7".

By the assumption of the Lipschitz constant in (4.7) and the definition of A, we have 4 —¢q < 0. That is,
if (4.7) holds, O(t) — 0 exponentially fast as 7 — oo. If the Lipschitz constant (3.10) in Theorem 3.1
holds, then Theorem 4.111) holds. We finish the proof. O

5. Application

In this part, we provide an example to demonstrate the findings presented in our work.

Example 5.1. Consider a stochastic heat equation within the range from 0 to 1, subject to the Dirichlet
boundary condition:

(cos 27 + sin V57)Eu N sin V57 - Eu OW

8(1 + u3(t, x)) 3(2 + cos21) Ot

N cos V3t sinEua_V(T .
51+ V3(t,x)) 0t

P 5
a—Z(T, X) = a—xZ(T, X) + (. %) (5.1)

), >0, x€(0,1)
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*u ow V
62+f(TuPu)+g(TuP) +h(‘ruPu,V)

u(t,0) =u(r,1) =0, 7> 0.

Here W with TrQ < o is a Q-Brownian motion on L*(0, 1), and V independent of W is a Lévy pure
jump process on L*(0, 1). Let A be a Laplace operator, then A : D(A) = Hy(0, 1) N H*(0,1) — L*(0, 1).
Let ® = X := L*(0, 1). Then the stochastic heat equation can be transformed into an abstract evolution
equation

dé=(AE+(1.&, P ))dr+y (1.6, P ) dW+ f(D(T,f,Pg, p)N(dr,dp)+ f(D(T,f,Pé:, p)N(dr,dp) (5.2)

Iple<1 Iplo=1

on the Hilbert space X, where

é‘: =u, QD(T, ‘f’ P{:) = f(T’ u, Pu), l//(T, ‘f, Pf) = g(Ta M’Pu)’

®(7,£,P;, p) N(dr, dp) + f ® (1.£, P, p) N(dr, dp) := h(r,u,P,, V)V
Iplo<l Iplo=1
with
V(r,x) = f pﬁ(T, dp) + f pN(t,dp), @ (T, ¢, Pg,p) = h(t,u,P,, V)p.

Iple<1 Iple=1

Here for simplicity we assume that by Lévy-Itd decomposition, Lévy pure jump process on L2(0, 1) is
decomposed as above.

The eigenvalues of operator A are {—k*n*} with k = 1,2,---, and A produces a Cy-semi-group G(7)
on X such that ||G(7)|| < e holds for 7 > 0, i.e., ¢ = 7% and 7( = 1. We respectively chose 1, 1, 1 as
the Lipschitz constants of f, g, &, then the conditions (3.5)—(3.8) in Theorem 3.1 are given by

L= max{ 1 lIQlee v(Bi(0) ¢ }

32° 18 7 50 750

with B;(0) denotes a ball in ® with a radius of 1 that is centered at the origin. If L < Wirw) (.e.,
condition (3.9) holds), then by Theorem 3.1i1), Eq (5.2) (and hence Eq (5.1)) has a unique bounded
solution. If L < m (i.e., condition (4.7) holds), then by Theorem 4.1, the unique bounded
solution is square-mean asymptotically stable. Note that ¢ and ¢ are s.m.a.a. in 7 € R, ® is Poisson
smaa. inTeR IfL < m (i.e., condition (3.10) holds), then by Theorem 3.1ii), the solution
is both almost automorphic in distribution and globally asymptotically stable in square-mean.
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