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with Lévy noise. It is proven that if the coefficients satisfy the Lipschitz conditions, the equation admits
a unique bounded solution, and the solution can inherit in distribution the almost automorphy of the
coefficients. In addition, we investigate the global asymptotic stability of these solutions. We also give
an example of the stochastic heat equation to illustrate our work.

Keywords: almost automorphy; mean-field stochastic differential equations; Lévy process;
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1. Introduction

Mean-field SDEs are a class of SDEs with coefficients dependent on the distribution, also called
McKean-Vlasov equations. In 1956, Kac [14] studied a class of interacting particle systems and
found that as the number of particles approaches infinity, the density function of the particles evolving
over time satisfies a nonlinear evolution equation. In [21], McKean discussed the propagation of
chaos in a class of interacting particle systems and analyzed the McKean-Vlasov equation. Sznitman
provided two equivalent conditions for propagation of chaos in his review lecture notes [24] and studied
the propagation of chaos and limit equations for weakly interacting random particle systems under
different frameworks. Based on these pioneering works, the theory and numerical research of the
McKean-Vlasov equation have been a hot topic in several directions over the past few decades, such
as the stochastic characterization of nonlinear parabolic PDEs, the propagation of chaos, and the well-
posedness problems of associated martingale issues [9,22,26]. In a pure stochastic method, Buckdahn
et al. [4] obtained mean-field backward SDEs. Lions’ series of lectures [18] has pushed the study
of mean-field problems to new heights, and mean-field game theory and its applications have also
developed rapidly [5, 15, 17].

With the application of statistical software, an increasing number of scholars have begun to focus
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on the long-term asymptotic behaviors of solutions/trajectories of differential equations and dynamical
systems, in particular recurrence. This is because almost all interesting dynamical properties exhibit
some form of recurrence, and the complexity of dynamics often concentrates on the set of recurrent
points. Periodicity, quasi-periodicity, and almost periodicity are well-known recurrences. The almost
automorphic function is the important general notion of the almost periodic function. It was originated
by Bochner from the work on differential geometry [2]; for the more basic properties and the follow-
up development of almost automorphy on determinate systems, see Bochner [3], Veech [25], Shen and
Yi [23], among others.

We know that the stochastic perturbation, or noise, is ubiquitous in nature or social society. When
we use deterministic systems to describe these phenomena, they more or less omit some random
factors. However, these unrecognized stochastic perturbations may destroy the stability of the systems
and generate chaos. For classical differential equations, when considering external forces or stochastic
perturbations, we will obtain SDEs. Until now, there are many scholars investigating SDEs and quite a
few studying almost automorphy of SDEs. Specifically, Fu and Liu [12] established the uniqueness and
existence of almost automorphic solutions for SDEs. Chen and Lin [8] initiated the process of square-
mean pseudo almost automorphy and its application to stochastic evolution equations. In [7], Chen
and Zhang studied almost automorphic solutions of fractional Brownian motion-driven mean-field
SDEs. Liu and Gao [19] investigated the almost automorphic solutions for McKean-Vlasov equations.
Meanwhile, parallel research on SDEs with jumps based on Lévy processes have also been in progress,
such as Liu and Sun [20] , who introduced the Poisson square-mean almost automorphic functions and
proved the existence of almost automorphic solutions for SDEs with Lévy noise. Lévy processes
are a class of stochastic processes in which the sample paths are stochastic continuous. They retain
the independent increment property of Wiener processes and do not strictly require the sample path
to be continuous. They include many important processes, for instance, Poisson processes, Wiener
processes, stable and self-decomposing processes, and subordinate processes [1]. Therefore, Lévy
noises have been extensively used in physics modelling the movement of particles in a fluid, in finance
modelling asset prices, and so on. For the latest work on almost automorphy see, [6, 10, 16], among
others.

Motivated by [20], we intend to discuss the existence conditions of almost automorphic solutions
for the mean-field type SDEs with infinite-dimensional Lévy noise:

dx(τ) =Ax(τ)dτ + f1
(
τ, x(τ),Px(τ)

)
dτ + f2

(
τ, x(τ),Px(τ)

)
dW(τ)

+

∫
|p|Θ<1

b1
(
τ, x(τ−),Px(τ−), p

)
Ñ(dτ, dp) +

∫
|p|Θ≥1

b2
(
τ, x(τ−),Px(τ−), p

)
N(dτ, dp), (1.1)

where the semi-group of the linear operator A satisfies the exponential stable condition, the functions
f1, f2, b1, b2 are almost automorphic in time τ, W, Ñ,N are the components of Lévy-Itô composition.
We establish that if the coefficients f1, f2, b1, b2 satisfy the given Lipschitz continuous condition, then
the SDE (1.1) admits a unique bounded solution, and it is almost automorphic in the distribution sense.
It is also proven that the solution is globally asymptotically stable in square-mean.

The structure of the paper is outlined below: Section 2 recalls some definitions and some concepts
of Lévy processes and almost automorphic stochastic processes. Section 3 establishes the existence
conditions of the almost automorphic solutions of the mean-field SDEs with large jumps driven by
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Lévy noise. Section 4 discusses the global asymptotical stability of the almost automorphic solution
and proves that any other solution converges to it at an exponential rate. Section 5 gives an example to
illustrate the viability of the findings presented in the paper.

2. Preliminaries

We shall denote by (X, ‖ · ‖) and (Θ, | · |Θ) the real separable Hilbert spaces and by (L(Θ,X), ‖ · ‖L(Θ,X))
the set of all linear and bounded operators mapping from Θ to X. We denote by (Ω,F ,P) a complete
probability space and by L2(Ω,X) the set of all X-valued random variables ξ satisfying

E‖ξ‖2 =

∫
Ω

‖ξ‖2dP < ∞.

For ξ ∈ L2(Ω,X), define

‖ξ‖2 :=


∫
Ω

‖ξ‖2dP


1
2

,

then (L2(Ω,X), ‖ · ‖2) is a Hilbert space. We define the space

L2(Ω, L(Θ,X)) :=
{
ξ : Ω→ L(Θ,X)

∣∣∣∣∣E‖ξ‖2L(Θ,X) =

∫
Ω

‖ξ‖2L(Θ,X)dP < ∞
}
,

equipped with the norm

‖ξ‖L2(Ω, L(Θ,X)) :=
(∫

Ω

‖ξ‖2L(Θ,X)dP
) 1

2

.

Remark 2.1. Denote by L2(Θ,X) the collection of all Hilbert-Schmidt operators from Θ to X with
inner product 〈X,Y〉L2(Θ,X) :=

∑
i∈N〈Xei,Yei〉, where {ei}i∈N is an orthonormal basis of Θ. Note that

it is a separable Hilbert space. Let Φ ∈ L2(Ω, L(Θ,X)) and let Q : Θ → Θ be a nonnegative and
symmetric operator satisfying TraceQ < ∞, we have ΦQ

1
2 ∈ L2(Ω, L2(Θ,X)) and define

‖ΦQ
1
2 ‖L2(Ω, L2(Θ,X)) =

(
E‖ΦQ

1
2 ‖2L2(Θ,X)

) 1
2
.

Let P(X) be the collection of all Borel probability measures on X with the metric

β(µ1, µ2) := sup
‖G‖BL≤1

∣∣∣∣∣∫ Gdµ1 −

∫
Gdµ2

∣∣∣∣∣ , µ1, µ2 ∈ P(X),

where the functions G are real-valued Lipschitz continuous functions on X with norms

‖G‖BL = ‖G‖L + ‖G‖∞, ‖G‖L = sup
z1,z2

|G(z1) −G(z2)|
‖z1 − z2‖

, ‖G‖∞ = sup
z∈X
|G(z)|.

Note that the metric space (P(X), β) is complete. If
∫

Gdµk →
∫

Gdµ for all G ∈ Cb(X), the real-valued
bounded continuous function space on X, then {µk} ∈ P(X) → µ weakly. Besides, {µk} → µ weakly
equals to β(µk, µ)→ 0 as k → ∞. Consider the space

P2(X) =

µ ∈ P(X) : ‖µ‖22 :=
∫
X

‖z‖2µ(dz) < ∞


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with Wasserstein distance

W2(µ1, µ2) := inf
π∈C(µ1,µ2)

( ∫
X×X

‖z − y‖2π(dz, dy)
) 1

2
,

where C(µ1, µ2) denotes the set of all couplings of µ1 and µ2, i.e., π(· × X) = µ1 and π(X × ·) = µ2.
Observe that for z ∈ X, the Dirac measure δz ∈ P2(X). Let ξ be a random variable and use Pξ to denote
its distribution. Note that

‖Eξ − Eζ‖ ≤ W2(Pξ,Pζ) ≤
(
E‖ξ − ζ‖2

) 1
2
. (2.1)

2.1. SDEs with Lévy noise

SDEs based on Lévy noise are a class of mathematical models that incorporate random fluctuations
with heavy-tailed distributions. These equations extend the traditional Brownian motion-driven SDEs
by allowing for jumps and extreme variations, making them suitable for modeling phenomena in
finance, physics, and biology where rare events play a significant role. Now we first review some
basic definitions and facts of Lévy process; for more details, see the monumental work [1].

Definition 2.1. A stochastic process D = (D(τ), τ ≥ 0) with values in Θ is called Lévy process provided
it satisfies

(1) D(0) = 0 almost surely;

(2) The increments of D are independent and stationary;

(3) D is continuous in the following sense

lim
τ→γ
P (|D(τ) − D(γ)|Θ > e) = 0 (∀ e > 0,∀ γ > 0).

Given a Lévy process D, the corresponding jump process ∆D = (∆D(τ), τ ≥ 0) is defined as
∆D(τ) = D(τ) − D(τ−), ∀ τ ≥ 0. We define a random counting measure

N(τ,Z)(ω) := ] {0 ≤ γ ≤ τ : ∆D(γ)(ω) ∈ Z} =
∑

0≤γ≤τ

χZ(∆D(γ)(ω)),

where Z is any Borel set in Θ−{0} and the notation χZ denotes the indicator function. We say Z bounded
below provided 0 does not belong to the closure of Z. We refer to v(·) = E(N(1, ·)) as the intensity
measure (i.m. for short) associated with the Lévy process D. If Z is bounded below, (N(τ,Z), τ ≥ 0) is
a Poisson process with v(Z). Therefore, N is termed as the Poisson random measure (P.r.m. for short),
and the compensated P.r.m. is defined by

Ñ(τ,Z) = N(τ,Z) + τv(Z). (2.2)

Remark 2.2. (Poisson integral [1]) Let Z be bounded below, and let uZ denote the restriction to Z of
the measure v. Then for f ∈ L2(Z, uZ), we have

E
(∣∣∣∣∣∫

Z
f (p)Ñ(τ, dp)

∣∣∣∣∣2) = τ

∫
Z
| f (p)|2v(dp).

AIMS Mathematics Volume 10, Issue 5, 11159–11183.
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Theorem 2.1. A Lévy process D with values in Θ can be represented as

D(τ) = gτ + W(τ) +

∫
|p|Θ<1

pÑ(τ, dp) +

∫
|p|Θ≥1

pN(τ, dp) (τ ≥ 0), (2.3)

where g ∈ Θ; W is a Q-Brownian motion; the independent P.r.m. N with i.m. v is defined on R+ × Θ′

and Ñ is the compensated P.r.m. of N. Here the measure v satisfies∫
Θ

(
|p|2Θ ∧ 1

)
v(dp) < ∞. (2.4)

Remark 2.3. Note that Theorem 2.1 is the well-known Lévy-Itô decomposition theorem. According
to (2.4), we have

∫
|p|Θ≥1

v(dp) < ∞, and then we set c :=
∫

|p|Θ≥1
v(dp).

Consider a two-sided Lévy process as follows:

D(γ) =

{
D1(γ), γ ≥ 0,
−D2(−γ), γ ≤ 0,

where Lévy processes D1 and D2 have the decompositions as in Theorem 2.1, and they are independent
and identically distributed. For our convenience, assume that the covariance operator Q of W is trace
class, i.e., TrQ < ∞ and the two-sided Lévy process D is defined on (Ω,F , (Fτ)τ∈R,P).

Remark 2.4. If for a given α ∈ R, the process D̃ is defined by D̃(τ) = D(τ + α) − D(α), then D̃ is a
two-sided Lévy process and it has the same law as D.

By Theorem 2.1, we consider the mean-field type SDE with Lévy noise

dξ(τ) =Aξ(τ)dτ + ϕ
(
τ, ξ(τ),Pξ(τ)

)
dτ + ψ

(
τ, ξ(τ),Pξ(τ)

)
dW(τ)

+

∫
|p|Θ<1

Φ1

(
τ, ξ(τ−),Pξ(τ−), p

)
Ñ(dτ, dp) +

∫
|p|Θ≥1

Φ2

(
τ, ξ(τ−),Pξ(τ−), p

)
N(dτ, dp).

2.2. Almost automorphic stochastic processes

Definition 2.2. (L2-continuous and L2-bounded) Assuming there exists a stochastic process ζ : R →
L2(Ω,X),

(1) The process ζ is called L2-continuous provided

lim
τ→γ

E‖ζ(τ) − ζ(γ)‖2 = 0, γ ∈ R;

(2) The process ζ is called L2-bounded provided

sup
τ∈R

E‖ζ(τ)‖2 < ∞.

Definition 2.3. (almost automorphic)
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(1) AL2-continuous stochastic process ξ : R→ L2(Ω,X) is called square-mean almost automorphic
(s.m.a.a. for short). If for any real sequence (seq. for short)

{
γ′k

}
, there exists a subsequence

(subseq. for short){γk} such that for another process ζ : R→ L2(Ω,X)

lim
k→∞

E ‖ξ(τ + γk) − ζ(τ)‖2 = 0 and lim
k→∞

E ‖ζ(τ − γk) − ξ(τ)‖2 = 0,

for any τ ∈ R. The set of all s.m.a.a. stochastic processes ξ : R → L2(Ω,X) is represented by
AA(R, L2(Ω,X));

(2) A function ϕ : R × L2(Ω,X) × P2(X) → L2(Ω,X), (τ, ξ,Pξ) 7→ ϕ(τ, ξ,Pξ) is called s.m.a.a. in
τ ∈ R for ξ ∈ L2(Ω,X) and its corresponding law Pξ ∈ P2(X) if ϕ is L2-continuous, i.e.,

E‖ϕ(τ, ξ,Pξ) − ϕ(τ
′

, ξ
′

,Pξ′ )‖
2 → 0 as (τ

′

, ξ
′

,Pξ′ )→ (τ, ξ,Pξ),

and for any real seq.
{
γ′k

}
, there exists a subseq. {γk} such that for another function ϕ̃ : R ×

L2(Ω,X) × P2(X)→ L2(Ω,X)

lim
k→∞

E
∥∥∥∥ϕ (

τ + γk, ξ,Pξ
)
− ϕ̃

(
τ, ξ,Pξ

)∥∥∥∥2
= 0,

and

lim
k→∞

E
∥∥∥∥ϕ̃ (

τ − γk, ξ,Pξ
)
− ϕ

(
τ, ξ,Pξ

)∥∥∥∥2
= 0,

for any τ ∈ R, ξ ∈ L2(Ω,X) , Pξ ∈ P2(X).

(3) A function ψ : R×L2(Ω,X)× P2(X)→ L2(Ω, L(Θ,X)), (τ, ξ,Pξ) 7→ ψ(τ, ξ,Pξ) is called s.m.a.a.
in τ ∈ R for ξ ∈ L2(Ω,X) and the corresponding law Pξ ∈ P2(X) if ψ is L2-continuous, i.e.,

E‖ψ(τ, ξ,Pξ) − ψ(τ
′

, ξ
′

,Pξ′ )‖
2
L(Θ,X) → 0 as (τ

′

, ξ
′

,Pξ′ )→ (τ, ξ,Pξ),

and for any real seq.
{
γ′k

}
, there exists a subseq. {γk} such that for another function ψ̃ : R ×

L2(Ω,X) × P2(X)→ L2(Ω, L(Θ,X))

lim
k→∞

E
∥∥∥∥ψ (

τ + γk, ξ,Pξ
)
− ψ̃

(
τ, ξ,Pξ

) ∥∥∥∥2

L(Θ,X)
= 0,

and

lim
k→∞

E
∥∥∥∥ψ̃ (

τ − γk, ξ,Pξ
)
− ψ

(
τ, ξ,Pξ

) ∥∥∥∥2

L(Θ,X)
= 0,

for any τ ∈ R, ξ ∈ L2(Ω,X), and Pξ ∈ P2(X).

(4) A function Φ : R × L2(Ω,X) × P2(X) × Θ → L2(Ω,X), (τ, ξ,Pξ, p) 7→ Φ(τ, ξ,Pξ, p) is called
Poisson s.m.a.a. in τ ∈ R for ξ ∈ L2(Ω,X) and corresponding law Pξ ∈ P2(X) if Φ is L2-
continuous, i.e.,∫

Θ

E‖Φ(τ, ξ,Pξ, p) − Φ(τ
′

, ξ
′

,Pξ′ , p)‖2v(dp)→ 0 as (τ
′

, ξ
′

,Pξ′ )→ (τ, ξ,Pξ),
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and for any real seq.
{
γ′k

}
, there exists a subseq. {γk} such that for another Φ̃ : R × L2(Ω,X) ×

P2(X) × Θ→ L2(Ω,X) with
∫

Θ
E‖Φ̃(τ, ξ,Pξ, p)‖2v(dp) < ∞

lim
k→∞

∫
Θ

E
∥∥∥∥Φ (

τ + γk, ξ,Pξ, p
)
− Φ̃

(
τ, ξ,Pξ, p

)∥∥∥∥2
v(dp) = 0,

and

lim
k→∞

∫
Θ

E
∥∥∥∥Φ̃ (

τ − γk, ξ,Pξ, p
)
− Φ

(
τ, ξ,Pξ, p

)∥∥∥∥2
v(dp) = 0,

for all τ ∈ R, ξ ∈ L2(Ω,X) and Pξ ∈ P2(X).

(5) Let ξ(τ) be an X-valued stochastic process. Then ξ is called almost automorphic in distribution
provided its law Pξ(τ) is a P(X)-valued almost automorphic map, that is, for any real seq.

{
γ′k

}
,

there exists a subseq. {γk} and an X-valued stochastic process ζ(τ) with its P(X)-valued law Pζ(τ)

such that for any τ ∈ R

β(Pξ(τ+γk),Pζ(τ))→ 0 and β(Pξ(τ−γk),Pζ(τ))→ 0 as k → ∞.

Remark 2.5. If the stochastic process ξ is s.m.a.a., then it is L2-bounded. By [12], let ξ ∈
AA(R, L2(Ω,X)),

‖ξ‖∞ := sup
τ∈R

‖ξ(τ)‖2,

then (AA(R, L2(Ω,X)), ‖ · ‖∞) is a Banach space.

Proposition 2.1. [11] Let ψ : R × L2(Ω,X) × P2(X) → L2(Ω,X), (τ, ξ,Pξ) → ψ(τ, ξ,Pξ) be s.m.a.a.
in τ ∈ R for each ξ ∈ L2(Ω,X) and the corresponding law Pξ ∈ P2(X). Suppose that for all τ ∈ R,
ξ, ζ ∈ L2(Ω,X) and Pξ, Pζ ∈ P2(X),

E‖ψ(τ, ξ,Pξ) − ψ(τ, ζ,Pζ)‖2 ≤ L
(
E‖ξ − ζ‖2 +W2

2(Pξ,Pζ)
)
.

Then for all s.m.a.a. process ξ : R→ L2(Ω,X) × P2(X), the process Ψ : R→ L2(Ω,X) × P2(X) given
by Ψ(τ) := ψ(τ, ξ,Pξ) is s.m.a.a.

Lemma 2.1. If the functions Φ, Φ1, and Φ2 : R × L2(Ω,X) × P2(X) × Θ → L2(Ω,X) are Poisson
s.m.a.a. in τ ∈ R for ξ ∈ L2(Ω,X), then

(1) Φ1 + Φ2 is Poisson s.m.a.a.;

(2) kΦ is Poisson s.m.a.a. for every constant k;

(3) For every ξ ∈ L2(Ω,X) and the corresponding law Pξ ∈ P2(X), there exists a constant C=C(ξ) > 0
such that

sup
τ∈R

∫
Θ

E
∥∥∥∥Φ (

τ, ξ,Pξ, p
)∥∥∥∥2

v(dp) ≤ C.

AIMS Mathematics Volume 10, Issue 5, 11159–11183.
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3. Existence of almost automorphic solutions

Consider the mean-field SDE with Lévy process

dξ(τ) =Aξ(τ)dτ + ϕ
(
τ, ξ(τ),Pξ(τ)

)
dτ + ψ

(
τ, ξ(τ),Pξ(τ)

)
dW(τ)

+

∫
|p|Θ<1

Φ1

(
τ, ξ(τ−),Pξ(τ−), p

)
Ñ(dτ, dp) +

∫
|p|Θ≥1

Φ2

(
τ, ξ(τ−),Pξ(τ−), p

)
N(dτ, dp), (3.1)

where an infinitesimal generator A produces a dissipative C0-semi-group {G(τ)}τ≥0 on X such that

‖G(τ)‖ ≤ Ke−qτ, ∀ τ ≥ 0, (3.2)

with q,K > 0; ϕ : R × L2(Ω,X) × P2(X) → L2(Ω,X), ψ : R × L2(Ω,X) × P2(X) → L2(Ω, L(Θ,X));
Φ1, Φ2 : R × L2(Ω,X) × P2(X) × Θ → L2(Ω,X); N and W are the components of the Lévy-Itô
decomposition for a two-sided Lévy process (Theorem 2.1).

Definition 3.1. An Fτ-adapted process ξ(τ) is referred to as a mild solution of SDE (3.1) if

ξ(τ) =G(τ − s)ξ(s) +

∫ τ

s
G(τ − α)ϕ

(
α, ξ(α),Pξ(α)

)
dα

+

∫ τ

s
G(τ − α)ψ

(
α, ξ(α),Pξ(α)

)
dW(α)

+

∫ τ

s

∫
|p|Θ<1

G(τ − α)Φ1

(
α, ξ(α−),Pξ(α−), p

)
Ñ(dα, dp)

+

∫ τ

s

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ξ(α−),Pξ(α−), p

)
N(dα, dp) (3.3)

holds for all τ ≥ s and every s ∈ R.

Lemma 3.1. [13] (a variant of Gronwall’s lemma) Suppose that g : R → R is a continuous function
such that

0 ≤ g(τ) ≤ h(τ) + w1

∫ τ

−∞

e−z1(τ−α)g(α)dα + · · · + wn

∫ τ

−∞

e−zn(τ−α)g(α)dα, τ ∈ R, (3.4)

for some function h : R → R, for some constants w1, . . . ,wn ≥ 0, z1, . . . , zn > w with w :=
n∑

k=1
wk.

Suppose the integrals on the right-hand side of (3.4) converge. Set z := min
1≤k≤n

zk. If
∫ 0

−∞
eεαh(α)dα,

ε ∈ (0, z − w] converges, then

g(τ) ≤ h(τ) + w
∫ τ

−∞

e−ε(τ−α)h(α)dα

holds for all τ ∈ R. If h is a constant, then

g(τ) ≤
hz

z − w
.

AIMS Mathematics Volume 10, Issue 5, 11159–11183.
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Theorem 3.1. Suppose that

(1) The semi-group of the linear operator A satisfies the exponential stable condition such that (3.2)
holds;

(2) ϕ and ψ are s.m.a.a. in τ ∈ R for each ξ ∈ L2(Ω,X) and the corresponding law Pξ ∈ P2(X);

(3) Φ1 and Φ2 are Poisson s.m.a.a. in τ ∈ R for each ξ ∈ L2(Ω,X) and the corresponding law
Pξ ∈ P2(X);

(4) ϕ, ψ, Φ1, and Φ2 satisfy Lipschitz conditions in the following sense:

E‖ϕ(τ, ξ, µ) − ϕ(τ, ζ, ν)‖2 ≤ L
(
E‖ξ − ζ‖2 +W2

2(µ, ν)
)
, (3.5)

E
∥∥∥∥[ψ(τ, ξ, µ) − ψ(τ, ζ, ν)

]
Q

1
2

∥∥∥∥2

L2(Θ,X)
≤ L

(
E‖ξ − ζ‖2 +W2

2(µ, ν)
)
, (3.6)∫

|p|Θ<1

E‖Φ1(τ, ξ, µ, p) − Φ1(τ, ζ, ν, p)‖2v(dp) ≤ L
(
E‖ξ − ζ‖2 +W2

2(µ, ν)
)
, (3.7)

∫
|p|Θ≥1

E‖Φ2(τ, ξ, µ, p) − Φ2(τ, ζ, ν, p)‖2v(dp) ≤ L
(
E‖ξ − ζ‖2 +W2

2(µ, ν)
)
, (3.8)

for all τ ∈ R, ξ, ζ ∈ L2(Ω,X) and µ, ν ∈ P2(X). Then we have

i) If

L <
q2

8K2(1 + 2c + 2q)
, (3.9)

the SDE (3.1) has a unique solution in L2(Ω,X);

ii) If

L <
q2

16K2(1 + 2c + 4q)
, (3.10)

the unique solution is almost automorphic in distribution.

Proof. Let ξ(τ) be L2-bounded. Then by (3.2), G(τ − s)ξ(s) → 0 as s → −∞. According to
Definition 3.1, ξ(τ) is a mild solution of SDE (3.1) if and only if

ξ(τ) =

∫ τ

−∞

G(τ − α)ϕ
(
α, ξ(α),Pξ(α)

)
dα +

∫ τ

−∞

G(τ − α)ψ
(
α, ξ(α),Pξ(α)

)
dW(α)

+

∫ τ

−∞

∫
|p|Θ<1

G(τ − α)Φ1

(
α, ξ(α−),Pξ(α−), p

)
Ñ(dα, dp)

+

∫ τ

−∞

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ξ(α−),Pξ(α−), p

)
N(dα, dp). (3.11)
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Step 1: Existence and uniqueness of the L2-bounded solution of SDE (3.1). We use the space
Cb(R,L2(Ω,X)) to denote the set of all bounded and continuous maps from R to L2(Ω,X) with ‖ · ‖∞.
For ξ ∈ Cb(R,L2(Ω,X)), a nonlinear operator S is defined on Cb(R,L2(Ω,X)) by

(Sξ)(τ) =

∫ τ

−∞

G(τ − α)ϕ
(
α, ξ(α),Pξ(α)

)
dα +

∫ τ

−∞

G(τ − α)ψ
(
α, ξ(α),Pξ(α)

)
dW(α)

+

∫ τ

−∞

∫
|p|Θ<1

G(τ − α)Φ1

(
α, ξ(α−),Pξ(α−), p

)
Ñ(dα, dp)

+

∫ τ

−∞

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ξ(α−),Pξ(α−), p

)
N(dα, dp).

If ξ(·) is L2-bounded, it follows from the conditions of Theorem 3.1, Cauchy-Schwarz inequality,
Itô’s isometry property, and the property, of Poisson random measures that (Sξ)(·) is L2-bounded.
Similar to the proof of [20, Theorem 3.2] with minor modifications, we can illustrate that (Sξ)(·) is
L2-continuous. So we only need to prove the nonlinear operator S is a contraction on Cb(R,L2(Ω,X)).
For ξ, ζ ∈ Cb(R,L2(Ω,X)) and the corresponding law Pξ,Pζ ∈ P2(X), we have

E‖(Sξ)(τ) − (Sζ)(τ)‖2

≤4E
∥∥∥∥∥∫ τ

−∞

G(τ − α)
[
ϕ
(
α, ξ(α),Pξ(α)

)
− ϕ

(
α, ζ(α),Pζ(α)

)]
dα

∥∥∥∥∥2

+ 4E
∥∥∥∥∥∫ τ

−∞

G(τ − α)
[
ψ

(
α, ξ(α),Pξ(α)

)
− ψ

(
α, ζ(α),Pζ(α)

)]
dW(α)

∥∥∥∥∥2

+ 4E
∥∥∥∥∥ ∫ τ

−∞

∫
|p|Θ<1

G(τ − α)
[
Φ1(α, ξ(α−),Pξ(α−), p) − Φ1(α, ζ(α−),Pζ(α−), p)

]
Ñ(dα, dp)

∥∥∥∥∥2

+ 4E
∥∥∥∥∥ ∫ τ

−∞

∫
|p|Θ≥1

G(τ − α)
[
Φ2(α, ξ(α−),Pξ(α−), p) − Φ2(α, ζ(α−),Pζ(α−), p)

]
N(dα, dp)

∥∥∥∥∥2

:=4(I1 + I2 + I3 + I4). (3.12)

By the Cauchy-Schwarz inequality, (2.1), (3.2), and (3.5), we have

I1 ≤K
2
∫ τ

−∞

e−q(τ−α)dα ·
∫ τ

−∞

e−q(τ−α)E
∥∥∥∥ϕ (

α, ξ(α),Pξ(α)

)
− ϕ

(
α, ζ(α),Pζ(α)

)∥∥∥∥2
dα

≤
K2

q2 sup
α∈R

E
∥∥∥∥ϕ (

α, ξ(α),Pξ(α)

)
− ϕ

(
α, ζ(α),Pζ(α)

)∥∥∥∥2

≤
2K2L

q2 sup
α∈R

E‖ξ(α) − ζ(α)‖2. (3.13)

From Itô’s isometry property, (2.1), (3.2), and (3.6), we have

I2 ≤

∫ τ

−∞

K2e−2q(τ−α)E
∥∥∥∥[ψ (

α, ξ(α),Pξ(α)

)
− ψ

(
α, ζ(α),Pζ(α)

)]
Q

1
2

∥∥∥∥2

L2(Θ,X)
dα
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≤
K2

2q
sup
α∈R

E
∥∥∥∥[ψ (

α, ξ(α),Pξ(α)

)
− ψ

(
α, ζ(α),Pζ(α)

)]
Q

1
2

∥∥∥∥2

L2(Θ,X)

≤
K2L

q
sup
α∈R

E‖ξ(α) − ζ(α)‖2. (3.14)

According to the Cauchy-Schwarz inequality, (2.1), (3.2), and (3.7), we have

I3 ≤

∫ τ

−∞

∫
|p|Θ<1

K2e−2q(τ−α)E
∥∥∥∥Φ1

(
α, ξ(α−),Pξ(α−), p

)
− Φ1

(
α, ζ(α−),Pζ(α−), p

)∥∥∥∥2
v(dp)dα

≤
K2

2q
sup
α∈R

∫
|p|Θ<1

E
∥∥∥∥Φ1

(
α, ξ(α−),Pξ(α−), p

)
− Φ1

(
α, ζ(α−),Pζ(α−), p

)∥∥∥∥2
v(dp)

≤
K2L

q
sup
α∈R

E‖ξ(α) − ζ(α)‖2. (3.15)

By the Cauchy-Schwarz inequality, (2.1), (2.2), (3.2), (3.8), and (3.15), we possess

I4 ≤2E
∥∥∥∥∥ ∫ τ

−∞

∫
|p|Θ≥1

G(τ − α)
[
Φ2(α, ξ(α−),Pξ(α−), p) − Φ2(α, ζ(α−),Pζ(α−), p)

]
Ñ(dα, dp)

∥∥∥∥∥2

+ 2E
∥∥∥∥∥ ∫ τ

−∞

∫
|p|Θ≥1

G(τ − α)
[
Φ2(α, ξ(α−),Pξ(α−), p) − Φ2(α, ζ(α−),Pζ(α−), p)

]
v(dp)dα

∥∥∥∥∥2

≤
2K2L

q
sup
α∈R

E‖ξ(α) − ζ(α)‖2 + 2K2
∫ τ

−∞

∫
|p|Θ≥1

e−q(τ−α)v(dp)dα

·

∫ τ

−∞

∫
|p|Θ≥1

e−q(τ−α)E‖Φ2(α, ξ(α−),Pξ(α−), p) − Φ2(α, ζ(α−),Pζ(α−), p)‖2v(dp)dα

≤
2K2L

q
sup
α∈R

E‖ξ(α) − ζ(α)‖2

+
2K2c

q2 sup
α∈R

∫
|p|Θ≥1

E
∥∥∥∥Φ2

(
α, ξ(α−),Pξ(α−), p

)
− Φ2

(
α, ζ(α−),Pζ(α−), p

)∥∥∥∥2
v(dp)

≤

(
2K2L

q
+

4K2cL
q2

)
sup
α∈R

E‖ξ(α) − ζ(α)‖2, (3.16)

recalling that

c :=
∫
|p|Θ≥1

v(dp).

By (3.12)–(3.16) we can obtain

‖(Sξ)(τ) − (Sζ)(τ)‖22 ≤ θ sup
α∈R

‖ξ(α) − ζ(α)‖22

with

θ = (1 + 2c)
8K2L

q2 +
16K2L

q
.
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Since
sup
α∈R

‖ξ(α) − ζ(α)‖22 ≤ (sup
α∈R

‖ξ(α) − ζ(α)‖2)2,

we have
‖(Sξ)(τ) − (Sζ)(τ)‖∞ ≤

√
θ‖ξ(τ) − ζ(τ)‖∞.

The Lipschitz constant L < q2

8K2(1+2c+2q) in (3.9) implies θ < 1, then S is a contraction on
Cb(R,L2(Ω,X)). Therefore, there exists a unique fixed point ζ̄ ∈ Cb(R,L2(Ω,X)) satisfying Sζ̄ = ζ̄,
that is to say the SDE (3.1) has a unique L2-bounded solution.
Step 2: Almost automorphy of L2-bounded solution of SDE (3.1). We denote by

{
r′n

}
an arbitrary

real seq. Since ϕ, ψ are s.m.a.a. and Φ1, Φ2 are Poisson s.m.a.a., we can extract a subseq. {rn} of
{
r′n
}

such that for some functions ϕ̃, ψ̃, Φ̃1, Φ̃2

lim
n→∞

E
∥∥∥∥ϕ (

τ + rn, ξ,Pξ
)
− ϕ̃

(
τ, ξ,Pξ

)∥∥∥∥2
= 0,

lim
n→∞

E
∥∥∥∥ϕ̃ (

τ − rn, ξ,Pξ
)
− ϕ

(
τ, ξ,Pξ

)∥∥∥∥2
= 0;

lim
n→∞

E
∥∥∥∥[ψ (

τ + rn, ξ,Pξ
)
− ψ̃

(
τ, ξ,Pξ

)]
Q

1
2

∥∥∥∥2

L2(Θ,X)
= 0,

lim
n→∞

E
∥∥∥∥[ψ̃ (

τ − rn, ξ,Pξ
)
− ψ

(
τ, ξ,Pξ

)]
Q

1
2

∥∥∥∥2

L2(Θ,X)
= 0;

lim
n→∞

∫
|p|Θ<1

E
∥∥∥∥Φ1

(
τ + rn, ξ,Pξ, p

)
− Φ̃1

(
τ, ξ,Pξ, p

)∥∥∥∥2
v(dp) = 0,

lim
n→∞

∫
|p|Θ<1

E
∥∥∥∥Φ̃1

(
τ − rn, ξ,Pξ, p

)
− Φ1

(
τ, ξ,Pξ, p

)∥∥∥∥2
v(dp) = 0;

and
lim
n→∞

∫
|p|Θ≥1

E
∥∥∥∥Φ2

(
τ + rn, ξ,Pξ, p

)
− Φ̃2

(
τ, ξ,Pξ, p

)∥∥∥∥2
v(dp) = 0,

lim
n→∞

∫
|p|Θ≥1

E
∥∥∥∥Φ̃2

(
τ − rn, ξ,Pξ, p

)
− Φ2

(
τ, ξ,Pξ, p

)∥∥∥∥2
v(dp) = 0

hold for each τ ∈ R, each ξ ∈ L2(Ω,X), and the corresponding law Pξ ∈ P2(X).
Let ξ̃(·) satisfy the equation

ξ̃(τ) =

∫ τ

−∞

G(τ − r)ϕ̃
(
r, ξ̃(r),Pξ̃(r)

)
dr +

∫ τ

−∞

G(τ − r)ψ̃
(
r, ξ̃(r),Pξ̃(r)

)
dW(r)

+

∫ τ

−∞

∫
|p|Θ<1

G(τ − r)Φ̃1

(
r, ξ̃(r−),Pξ̃(r−), p

)
Ñ(dr, dp)

+

∫ τ

−∞

∫
|p|Θ≥1

G(τ − r)Φ̃2

(
r, ξ̃(r−),Pξ̃(r−), p

)
N(dr, dp),
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and let α = r − rn, then

ξ(τ + rn) =

∫ τ

−∞

G(τ − α)ϕ
(
α + rn, ξ(α + rn),Pξ(α+rn)

)
dα

+

∫ τ

−∞

G(τ − α)ψ
(
α + rn, ξ(α + rn),Pξ(α+rn)

)
dWn(α)

+

∫ τ

−∞

∫
|p|Θ<1

G(τ − α)Φ1

(
α + rn, ξ(α + rn−),Pξ(α+rn−), p

)
Ñn(dα, dp)

+

∫ τ

−∞

∫
|p|Θ≥1

G(τ − α)Φ2

(
α + rn, ξ(α + rn−),Pξ(α+rn−), p

)
Nn(dα, dp),

where Wn, defined as Wn(τ) := W(τ + rn) − W(rn), τ ∈ R, is a Q-Brownian motion, having the same
law as W; Nn, defined as Nn(τ, p) := N(τ + rn, p) − N(rn, p), τ ∈ R, have the same law as N with
compensated P.r.m. Ñn.

Subsequently we consider the process ξn(·) satisfying

ξn(τ) =

∫ τ

−∞

G(τ − α)ϕ
(
α + rn, ξn(α),Pξn(α)

)
dα

+

∫ τ

−∞

G(τ − α)ψ
(
α + rn, ξn(α),Pξn(α)

)
dW(α)

+

∫ τ

−∞

∫
|p|Θ<1

G(τ − α)Φ1

(
α + rn, ξn(α−),Pξn(α−), p

)
Ñ(dα, dp)

+

∫ τ

−∞

∫
|p|Θ≥1

G(τ − α)Φ2

(
α + rn, ξn(α−),Pξn(α−), p

)
N(dα, dp).

Notice that for every τ ∈ R, ξ(τ + rn) and ξn(τ) have the same distribution. Like ξ̃(·), such ξn(·) is also
unique and L2-bounded. We know

E
∥∥∥ξn(τ) − ξ̃(τ)

∥∥∥2

≤4E
∥∥∥∥∥∫ τ

−∞

G(τ − α)
[
ϕ
(
α + rn, ξn(α),Pξn(α)

)
− ϕ̃

(
α, ξ̃(α),Pξ̃(α)

)]
dα

∥∥∥∥∥2

+ 4E
∥∥∥∥∥∫ τ

−∞

G(τ − α)
[
ψ

(
α + rn, ξn(α),Pξn(α)

)
− ψ̃

(
α, ξ̃(α),Pξ̃(α)

)]
dW(α)

∥∥∥∥∥2

+ 4E

∥∥∥∥∥∥
∫ τ

−∞

∫
|p|Θ<1

G(τ − α) ·
[
Φ1

(
α + rn, ξn(α−),Pξn(α−), p

)
− Φ̃1

(
α, ξ̃(α−),Pξ̃(α−), p

)]
Ñ(dα, dp)

∥∥∥∥∥∥2

+ 4E

∥∥∥∥∥∥
∫ τ

−∞

∫
|p|Θ≥1

G(τ − α) ·
[
Φ2

(
α + rn, ξn(α−),Pξn(α−), p

)
− Φ̃2

(
α, ξ̃(α−),Pξ̃(α−), p

)]
N(dα, dp)

∥∥∥∥∥∥2

:=4(J1 + J2 + J3 + J4). (3.17)
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By the Cauchy-Schwarz inequality, (2.1), (3.2), and (3.5), we have

J1 ≤2E
∥∥∥∥∥∫ τ

−∞

G(τ − α)
[
ϕ
(
α + rn, ξn(α),Pξn(α)

)
− ϕ

(
α + rn, ξ̃(α),Pξ̃(α)

)]
dα

∥∥∥∥∥2

+ 2E
∥∥∥∥∥∫ τ

−∞

G(τ − α)
[
ϕ
(
α + rn, ξ̃(α),Pξ̃(α)

)
− ϕ̃

(
α, ξ̃(α),Pξ̃(α)

)]
dα

∥∥∥∥∥2

≤2K2
∫ τ

−∞

e−q(τ−α)dα ·
∫ τ

−∞

e−q(τ−α)E
∥∥∥∥ϕ (

α + rn, ξn(α),Pξn(α)

)
− ϕ

(
α + rn, ξ̃(α),Pξ̃(α)

)∥∥∥∥2
dα

+ 2K2
∫ τ

−∞

e−q(τ−α)dα ·
∫ τ

−∞

e−q(τ−α)E
∥∥∥∥ϕ (

α + rn, ξ̃(α),Pξ̃(α)

)
− ϕ̃

(
α, ξ̃(α),Pξ̃(α)

)∥∥∥∥2
dα

≤
4K2L

q

∫ τ

−∞

e−q(τ−α)E
∥∥∥ξn(α) − ξ̃(α)

∥∥∥2
dα + an

1, (3.18)

where

an
1 =

2K2

q

∫ τ

−∞

e−q(τ−α)E
∥∥∥∥ϕ (

α + rn, ξ̃(α),Pξ̃(α)

)
− ϕ̃

(
α, ξ̃(α),Pξ̃(α)

)∥∥∥∥2
dα.

Now we show that an
1 → 0 as n→ ∞. Note by (3.5) that we have

E
∥∥∥∥ϕ (

α + rn, ξ̃(α),Pξ̃(α)

)∥∥∥∥2

≤2E
∥∥∥∥ϕ (

α + rn, ξ̃(α),Pξ̃(α)

)
− ϕ (α + rn, 0, δ0)

∥∥∥∥2
+ 2E ‖ϕ (α + rn, 0, δ0)‖2

≤4L · E‖̃ξ(α)‖2 + 2E ‖ϕ (α + rn, 0, δ0)‖2 .

Since ϕ is s.m.a.a. in τ and ξ̃(·) is L2-bounded, then by Remark 2.5 we have

sup
α∈R

E‖ϕ(α + rn, ξ̃(α),Pξ̃(α))‖
2 < ∞.

Besides, by Definition 2.3
sup
α∈R

E‖ϕ̃(α, ξ̃(α),Pξ̃(α))‖
2 < ∞.

That is,
sup
α∈R

E‖ϕ(α + rn, ξ̃(α),Pξ̃(α)) − ϕ̃(α, ξ̃(α),Pξ̃(α))‖
2 < ∞.

Therefore, by Lebesgue dominated convergence theorem and Definition 2.3, we have

lim
n→∞

∫ τ

−∞

e−q(τ−α)E
∥∥∥∥ϕ (

α + rn, ξ̃(α),Pξ̃(α)

)
− ϕ̃

(
α, ξ̃(α),Pξ̃(α)

)∥∥∥∥2
dα = 0,

that is, an
1 → 0 as n→ ∞.

From Itô’s isometry formula, (2.1), (3.2), and (3.6), we have

J2 ≤2E
∥∥∥∥∥∫ τ

−∞

G(τ − α)
[
ψ

(
α + rn, ξn(α),Pξn(α)

)
− ψ

(
α + rn, ξ̃(α),Pξ̃(α)

)]
dW(α)

∥∥∥∥∥2

+ 2E
∥∥∥∥∥∫ τ

−∞

G(τ − α)
[
ψ

(
α + rn, ξ̃(α),Pξ̃(α)

)
− ψ̃

(
α, ξ̃(α),Pξ̃(α)

)]
dW(α)

∥∥∥∥∥2
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≤2K2
∫ τ

−∞

e−2q(τ−α) · E
∥∥∥∥[ψ (

α + rn, ξn(α),Pξn(α)

)
− ψ

(
α + rn, ξ̃(α),Pξ̃(α)

)]
Q

1
2

∥∥∥∥2

L2(Θ,X)
dα

+ 2K2
∫ τ

−∞

e−2q(τ−α) · E
∥∥∥∥[ψ (

α + rn, ξ̃(α),Pξ̃(α)

)
− ψ̃

(
α, ξ̃(α),Pξ̃(α)

)]
Q

1
2

∥∥∥∥2

L2(Θ,X)
dα

≤4K2L
∫ τ

−∞

e−2q(τ−α)E
∥∥∥ξn(α) − ξ̃(α)

∥∥∥2
dα + an

2, (3.19)

where

an
2 = 2K2

∫ τ

−∞

e−2q(τ−α)E
∥∥∥∥[ψ (

α + rn, ξ̃(α),Pξ̃(α)

)
− ψ̃

(
α, ξ̃(α),Pξ̃(α)

)]
Q

1
2

∥∥∥∥2

L2(Θ,X)
dα.

Similar to an
1, using the same argument, we can illustrate an

2 → 0 as n→ ∞.
For the third term, on account of Cauchy-Schwarz inequality, (2.1), (3.2), and (3.7), we have

J3 ≤2E

∥∥∥∥∥∥
∫ τ

−∞

∫
|p|Θ<1

G(τ − α) ·
[
Φ1

(
α + rn, ξn(α−),Pξn(α−), p

)
− Φ1

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)]
Ñ(dα, dp)

∥∥∥∥∥∥2

+ 2E

∥∥∥∥∥∥
∫ τ

−∞

∫
|p|Θ<1

G(τ − α) ·
[
Φ1

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃1

(
α, ξ̃(α−),Pξ̃(α−), p

)]
Ñ(dα, dp)

∥∥∥∥∥∥2

≤2K2
∫ τ

−∞

∫
|p|Θ<1

e−2q(τ−α) · E
∥∥∥∥Φ1

(
α + rn, ξn(α−),Pξn(α−), p

)
− Φ1

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα

+ 2K2
∫ τ

−∞

∫
|p|Θ<1

e−2q(τ−α) · E
∥∥∥∥Φ1

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃1

(
α, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα

≤4K2L
∫ τ

−∞

e−2q(τ−α)E
∥∥∥ξn(α) − ξ̃(α)

∥∥∥2
dα + an

3, (3.20)

where

an
3 =2K2

∫ τ

−∞

∫
|p|Θ<1

e−2q(τ−α) · E
∥∥∥∥Φ1

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃1

(
α, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα.

Now we prove an
3 → 0 as n→ ∞. Note by (3.7) that we have∫

|p|Θ<1

E
∥∥∥∥Φ1

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)

≤2
∫
|p|Θ<1

E
∥∥∥∥Φ1

(
α+rn, ξ̃(α−),Pξ̃(α−), p

)
−Φ1 (α+rn, 0, δ0, p)

∥∥∥∥2
v(dp)+2

∫
|p|Θ<1

E ‖Φ1 (α+rn, 0, δ0, p)‖2v(dp)

≤ 4L · E‖̃ξ(α)‖2 + 2
∫
|p|Θ<1

E ‖Φ1 (α + rn, 0, δ0, p)‖2 v(dp).
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Since ϕ is Poisson s.m.a.a. in τ and ξ̃(·) is L2-bounded, then by Lemma 2.1

sup
α∈R

∫
|p|Θ<1

E
∥∥∥∥Φ1

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp) < ∞.

In addition, by Definition 2.3

sup
α∈R

∫
|p|Θ<1

E‖Φ̃1(α, ξ̃(α−),Pξ̃(α−), p)‖2v(dp) < ∞,

that is
sup
α∈R

∫
|p|Θ<1

E‖Φ1(α + rn, ξ̃(α−),Pξ̃(α−), p) − Φ̃1(α, ξ̃(α−),Pξ̃(α−), p)‖2v(dp) < ∞.

Therefore, according to Definition 2.3 and the Lebesgue dominated convergence theorem, we can
obtain

lim
n→∞

∫ τ

−∞

∫
|p|Θ<1

e−2q(τ−α) · E
∥∥∥∥Φ1

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃1

(
α, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα = 0,

i.e., an
3 → 0 as n→ ∞.

For the fourth term, from (2.1), (2.2), (3.2), (3.8), (3.20), and the Cauchy-Schwarz inequality, we
can obtain

J4 ≤4E

∥∥∥∥∥∥
∫ τ

−∞

∫
|p|Θ≥1

G(τ − α) ·
[
Φ2

(
α + rn, ξn(α−),Pξn(α−), p

)
− Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)]
Ñ(dα, dp)

∥∥∥∥∥∥2

+ 4E

∥∥∥∥∥∥
∫ τ

−∞

∫
|p|Θ≥1

G(τ − α) ·
[
Φ2

(
α + rn, ξn(α−),Pξn(α−), p

)
− Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)]
v(dp)dα

∥∥∥∥∥∥2

+ 4E

∥∥∥∥∥∥
∫ τ

−∞

∫
|p|Θ≥1

G(τ − α) ·
[
Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃2

(
α, ξ̃(α−),Pξ̃(α−), p

)]
Ñ(dα, dp)

∥∥∥∥∥∥2

+ 4E

∥∥∥∥∥∥
∫ τ

−∞

∫
|p|Θ≥1

G(τ − α) ·
[
Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃2

(
α, ξ̃(α−),Pξ̃(α−), p

)]
v(dp)dα

∥∥∥∥∥∥2

≤8K2L
∫ τ

−∞

e−2q(τ−α)E
∥∥∥ξn(α) − ξ̃(α)

∥∥∥2
dα + 4

∫ τ

−∞

∫
|p|Θ≥1

K2e−q(τ−α)v(dp)dα ·
∫ τ

−∞

∫
|p|Θ≥1

e−q(τ−α)

· E
∥∥∥∥Φ2

(
α + rn, ξn(α−),Pξn(α−), p

)
− Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα

+ 4
∫ τ

−∞

∫
|p|Θ≥1

K2e−2q(τ−α) · E
∥∥∥∥Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃2

(
α, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα

+ 4
∫ τ

−∞

∫
|p|Θ≥1

K2e−q(τ−α)v(dp)dα ·
∫ τ

−∞

∫
|p|Θ≥1

e−q(τ−α)
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· E
∥∥∥∥Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃2

(
α, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα

≤8K2L
∫ τ

−∞

e−2q(τ−α)E
∥∥∥ξn(α) − ξ̃(α)

∥∥∥2
dα +

8K2cL
q

∫ τ

−∞

e−q(τ−α)E
∥∥∥ξn(α) − ξ̃(α)

∥∥∥2
dα + an

4, (3.21)

where

an
4 =4K2

∫ τ

−∞

∫
|p|Θ≥1

e−2q(τ−α) · E
∥∥∥∥Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃2

(
α, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα

+
4K2c

q

∫ τ

−∞

∫
|p|Θ≥1

e−q(τ−α) · E
∥∥∥∥Φ2

(
α + rn, ξ̃(α−),Pξ̃(α−), p

)
− Φ̃2

(
α, ξ̃(α−),Pξ̃(α−), p

)∥∥∥∥2
v(dp)dα.

Similar to an
3, we can deduce that an

4 → 0 as n→ ∞.
On the basis of (3.17)–(3.21), we have

E
∥∥∥ξn(τ) − ξ̃(τ)

∥∥∥2
≤(1 + 2c)

16K2L
q

∫ τ

−∞

e−q(τ−α)E
∥∥∥ξn(α) − ξ̃(α)

∥∥∥2
dα

+ 64K2L
∫ τ

−∞

e−2q(τ−α)E
∥∥∥ξn(α) − ξ̃(α)

∥∥∥2
dα + 4

4∑
i=1

an
i . (3.22)

From Lemma 3.1 we know

E
∥∥∥ξn(τ) − ξ̃(τ)

∥∥∥2
≤ 4

4∑
i=1

an
i + w

∫ τ

−∞

e−ε(τ−α)4
4∑

i=1

an
i dα (3.23)

with w = (1 + 2c) 16K2L
q + 64K2L and ε ∈ (0, q − w). Note that in the light of the assumption in (3.10),

we have q − w > 0. Hence it follows from (3.23) and
∑4

i=1 an
i → 0 as n→ ∞ that

lim
n→∞

E
∥∥∥ξn(τ) − ξ̃(τ)

∥∥∥2
= 0, τ ∈ R.

It implies that ξn(τ) → ξ̃(τ) in distribution as n → ∞. Since ξ(τ + rn) and ξn(τ) have the identical
distribution, we have ξ(τ + rn) → ξ̃(τ) in distribution as n → ∞. Simultaneously using the similar
argument, we can also prove ξ̃(τ − rn) → ξ(τ) (τ ∈ R) in distribution as n → ∞. We finish the
proof. �

4. Stability of the almost automorphic solution

The stability of solutions is a crucial topic in stochastic systems. It has wide applications in various
fields, such as finance, biology, and engineering. For example, in financial models, understanding the
stability of asset prices under random fluctuations is essential for risk management and investment
strategies. Now let us review the definition of stability before we begin our proof.

Definition 4.1. (square-mean stable)
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(1) A solution ξ(τ) of SDE (3.1) is called square-mean stable provided for every ε > 0, there exists
δ > 0 such that when ‖ζ(0) − ξ(0)‖ < δ,

E ‖ζ(τ) − ξ(τ)‖2 < ε, (τ ≥ 0).

Here ζ(τ) is a solution of SDE (3.1).

(2) A solution ξ(τ) is called square-mean asymptotically stable provided it is square-mean stable and

E ‖ζ(τ) − ξ(τ)‖2 → 0 as τ→ ∞. (4.1)

(3) A solution ξ(τ) is called square-mean globally asymptotically stable provided it is square-mean
asymptotically stable and the inequality (4.1) holds for arbitrary ζ(0) ∈ L2(Ω,X).

First let us investigate the existence interval of the solution of SDE (3.1). We prove that any solution
of SDE (3.1) will not blow up for all times τ ≥ 0 under the weaker conditions than Theorem 3.1.

Lemma 4.1. Suppose that the conditions (1)–(4) of Theorem 3.1 hold. Then the solution ξ of SDE (3.1)
with ξ(0) ∈ L2(Ω,X) exists in L2(Ω,X) for τ ∈ [0,+∞).

Proof. Note that by Remark 2.5 and Proposition 2.1, there exists a positive constant γ such that

max
{

sup
τ∈R

E‖ϕ(τ, 0, δ0)‖2, sup
τ∈R

∫
|p|Θ<1

E‖Φ1(τ, 0, δ0, p)‖2v(dp),

sup
τ∈R

E
∥∥∥∥ψ(τ, 0, δ0)Q

1
2

∥∥∥∥2

L2(Θ,X)
, sup

τ∈R

∫
|p|Θ≥1

E‖Φ2(τ, 0, δ0, p)‖2v(dp)
}
≤ γ.

Assume that ξ(τ) is the solution of SDE (3.1) with ξ(0) ∈ L2(Ω,X). Then for τ ∈ R we have

E‖ξ(τ)‖2 =E
∥∥∥∥∥G(τ)ξ(0) +

∫ τ

0
G(τ − α)ϕ

(
α, ξ(α),Pξ(α)

)
dα

+

∫ τ

0
G(τ − α)ψ

(
α, ξ(α),Pξ(α)

)
dW(α)

+

∫ τ

0

∫
|p|Θ<1

G(τ − α)Φ1

(
α, ξ(α−),Pξ(α−), p

)
Ñ(dα, dp)

+

∫ τ

0

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ξ(α−),Pξ(α−), p

)
N(dα, dp)

∥∥∥∥∥2

≤5K2e−2qτE‖ξ(0)‖2 + 5E
∥∥∥∥∥∫ τ

0
G(τ − α)ϕ

(
α, ξ(α),Pξ(α)

)
dα

∥∥∥∥∥2

+ 5E
∥∥∥∥∥ ∫ τ

0
G(τ − α)ψ

(
α, ξ(α),Pξ(α)

)
dW(α)

∥∥∥∥∥2

+ 5E
∥∥∥∥∥ ∫ τ

0

∫
|p|Θ<1

G(τ − α)Φ1

(
α, ξ(α−),Pξ(α−), p

)
Ñ(dα, dp)

∥∥∥∥∥2
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+ 5E
∥∥∥∥∥ ∫ τ

0

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ξ(α−),Pξ(α−), p

)
N(dα, dp)

∥∥∥∥∥2

:=5K2e−2qτE‖ξ(0)‖2 + 5
4∑

k=1

ik. (4.2)

It follows from Cauchy-Schwarz inequality, (2.1), (3.2), and (3.5)–(3.8) that

i1 ≤
K2

q
(1 − e−qτ)

∫ τ

0
e−q(τ−α)E

∥∥∥∥ϕ (
α, ξ(α),Pξ(α)

)
− ϕ(α, 0, δ0) + ϕ(α, 0, δ0)

∥∥∥∥2
dα

≤
K2

q

∫ τ

0
e−q(τ−α)

[
4LE‖ξ(α)‖2 + 2E‖ϕ(α, 0, δ0)‖2

]
dα

≤
4K2L

q

∫ τ

0
e−q(τ−α)E‖ξ(α)‖2dα +

2K2γ

q2 ; (4.3)

i2 ≤K
2
∫ τ

0
e−2q(τ−α)E

∥∥∥∥[ψ (
α, ξ(α),Pξ(α)

)
− ψ(α, 0, δ0) + ψ(α, 0, δ0)

]
Q

1
2

∥∥∥∥2

L2(Θ,X)
dα

≤K2
∫ τ

0
e−2q(τ−α)

[
4LE‖ξ(α)‖2 + 2E

∥∥∥∥ψ (α, 0, δ0)Q
1
2

∥∥∥∥2

L2(Θ,X)

]
dα

≤4K2L
∫ τ

0
e−2q(τ−α)E‖ξ(α)‖2dα +

K2γ

q
; (4.4)

i3 ≤K
2
∫ τ

0

∫
|p|Θ<1

e−2q(τ−α) · E
∥∥∥∥Φ1

(
α, ξ(α−),Pξ(α−), p

)
− Φ1(α, 0, δ0, p) + Φ1(α, 0, δ0, p)

∥∥∥∥2
v(dp)dα

≤K2
∫ τ

0
e−2q(τ−α)

[
4LE‖ξ(α)‖2 +

∫
|p|Θ<1

2E‖Φ1(α, 0, δ0, p)‖2v(dp)
]
dα

≤4K2L
∫ τ

0
e−2q(τ−α)E‖ξ(α)‖2dα +

K2γ

q
; (4.5)

and the last one

i4 ≤2E
∥∥∥∥∥ ∫ τ

0

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ξ(α−),Pξ(α−), p

)
Ñ(dα, dp)

∥∥∥∥∥2

+ 2E
∥∥∥∥∥ ∫ τ

0

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ξ(α−),Pξ(α−), p

)
v(dp)dα

∥∥∥∥∥2

≤2K2
∫ τ

0
e−2q(τ−α)

[
4LE‖ξ(α)‖2 +

∫
|p|Θ≥1

2E‖Φ2(α, 0, δ0, p)‖2v(dp)
]
dα

+ 2K2
∫ τ

0

∫
|p|Θ≥1

e−q(τ−α)v(dp)dα ·
∫ τ

0
e−q(τ−α)

[
4LE‖ξ(α)‖2 +

∫
|p|Θ≥1

2E‖Φ2(α, 0, δ0, p)‖2v(dp)
]
dα

≤8K2L
∫ τ

0
e−2q(τ−α)E‖ξ(α)‖2dα +

8K2cL
q

∫ τ

0
e−q(τ−α)E‖ξ(α)‖2dα +

2K2γ

q
+

4K2cγ
q2 . (4.6)
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On the basis of (4.2)–(4.6), we have

E‖ξ(τ)‖2 ≤(
20K2L

q
(1 + 2c) + 80K2L)

∫ τ

0
E‖ξ(α)‖2dα + 5K2E‖ξ(0)‖2 + 5(

4K2γ

q
+

2K2γ

q2 (1 + 2c))

:=B1

∫ τ

0
E‖ξ(α)‖2dα + B2.

Then by Gronwall’s inequality we can obtain

E‖ξ(τ)‖2 ≤ B2eB1τ (τ ∈ R).

Hence the solution of SDE (3.1) has an existence duration that can be increased indefinitely, stretching
towards positive infinity. We finish the proof. �

Now that we have shown any solution of SDE (3.1) can be extended to +∞, let us study the stability
of the solutions.

Theorem 4.1. Suppose the conditions (1)–(4) of Theorem 3.1 hold. Then,

i) If

L <
q2

10K2(1 + 2c + 4q)
, (4.7)

this unique L2-bounded solution of SDE (3.1) is square-mean globally asymptotically stable;

ii) If the Lipschitz constant satisfies inequality (3.10), the solution is both square-mean globally
asymptotically stable and almost automorphic in distribution.

Proof. Suppose that ξ(τ) and ζ(τ) are two solutions of SDE (3.1) starting from ξ(0) and ζ(0) at time 0
individually. Then we have

ξ(τ) =G(τ)ξ(0) +

∫ τ

0
G(τ − α)ϕ

(
α, ξ(α),Pξ(α)

)
dα +

∫ τ

0
G(τ − α)ψ

(
α, ξ(α),Pξ(α)

)
dW(α)

+

∫ τ

0

∫
|p|Θ<1

G(τ − α)Φ1

(
α, ξ(α−),Pξ(α−), p

)
Ñ(dα, dp)

+

∫ τ

0

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ξ(α−),Pξ(α−), p

)
N(dα, dp),

and

ζ(τ) =G(τ)ζ(0) +

∫ τ

0
G(τ − α)ϕ

(
α, ζ(α),Pζ(α)

)
dα +

∫ τ

0
G(τ − α)ψ

(
α, ζ(α),Pζ(α)

)
dW(α)

+

∫ τ

0

∫
|p|Θ<1

G(τ − α)Φ1

(
α, ζ(α−),Pζ(α−), p

)
Ñ(dα, dp)

+

∫ τ

0

∫
|p|Θ≥1

G(τ − α)Φ2

(
α, ζ(α−),Pζ(α−), p

)
N(dα, dp).
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Afterwards we have

E‖ξ(τ) − ζ(τ)‖2 ≤ 5E‖G(τ)[ξ(0) − ζ(0)]‖2

+ 5E
∥∥∥∥∥∫ τ

0
G(τ − α)

[
ϕ
(
α, ξ(α),Pξ(α)

)
− ϕ

(
α, ζ(α),Pζ(α)

)]
dα

∥∥∥∥∥2

+ 5E
∥∥∥∥∥∫ τ

0
G(τ − α)

[
ψ

(
α, ξ(α),Pξ(α)

)
− ψ

(
α, ζ(α),Pζ(α)

)]
dW(α)

∥∥∥∥∥2

+ 5E
∥∥∥∥∥ ∫ τ

0

∫
|p|Θ<1

G(τ − α)
[
Φ1

(
α, ξ(α−),Pξ(α−), p

)
− Φ1

(
α, ζ(α−),Pζ(α−), p

)]
Ñ(dα, dp)

∥∥∥∥∥2

+ 5E
∥∥∥∥∥ ∫ τ

0

∫
|p|Θ≥1

G(τ − α)
[
Φ2

(
α, ξ(α−),Pξ(α−), p

)
− Φ2

(
α, ζ(α−),Pζ(α−), p

)]
N(dα, dp)

∥∥∥∥∥2

≤ 5K2e−2qτE‖ξ(0) − ζ(0)‖2 + 5(K1 + K2 + K3 + K4). (4.8)

For these four terms, by (2.1), (3.2), and the Lipschitz conditions (3.5)–(3.8), we have for each
τ ≥ 0

K1 ≤

∫ τ

0
K2e−q(τ−α)dα

∫ τ

0
e−q(τ−α)E

∥∥∥∥ϕ (
α, ξ(α),Pξ(α)

)
− ϕ

(
α, ζ(α),Pζ(α)

)∥∥∥∥2
dα

≤
2K2L

q
(1 − e−qτ)

∫ τ

0
e−q(τ−α)E‖ξ(α) − ζ(α)‖2dα

≤
2K2L

q

∫ τ

0
e−q(τ−α)E‖ξ(α) − ζ(α)‖2dα, (4.9)

K2 ≤

∫ τ

0
K2e−2q(τ−α)E

∥∥∥∥[ψ (
α, ξ(α),Pξ(α)

)
− ψ

(
α, ζ(α),Pζ(α)

)]
Q

1
2

∥∥∥∥2

L2(Θ,X)
dα

≤2K2L
∫ τ

0
e−2q(τ−α)E‖ξ(α) − ζ(α)‖2dα, (4.10)

K3 ≤

∫ τ

0

∫
|p|Θ<1

K2e−2q(τ−α)E
∥∥∥∥Φ1

(
α, ξ(α−),Pξ(α−), p

)
− Φ1

(
α, ζ(α−),Pζ(α−), p

)∥∥∥∥2
v(dp)dα

≤2K2L
∫ τ

0
e−2q(τ−α)E‖ξ(α) − ζ(α)‖2dα, (4.11)

and the last one

K4 ≤2E
∥∥∥∥∥ ∫ τ

0

∫
|p|Θ≥1

G(τ − α)
[
Φ2(α, ξ(α−),Pξ(α−), p) − Φ2(α, ζ(α−),Pζ(α−), p)

]
Ñ(dα, dp)

∥∥∥∥∥2

+ 2E
∥∥∥∥∥ ∫ τ

0

∫
|p|Θ≥1

G(τ − α)
[
Φ2(α, ξ(α−),Pξ(α−), p) − Φ2(α, ζ(α−),Pζ(α−), p)

]
v(dp)dα

∥∥∥∥∥2

≤4K2L
∫ τ

0
e−2q(τ−α)E‖ξ(α) − ζ(α)‖2dα + 2

∫ τ

0

∫
|p|Θ≥1

K2e−q(τ−α)v(dp)dα
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·

∫ τ

0

∫
|p|Θ≥1

e−q(τ−α)E
∥∥∥∥Φ2

(
α, ξ(α−),Pξ(α−), p

)
− Φ2

(
α, ζ(α−),Pζ(α−), p

)∥∥∥∥2
v(dp)dα

≤4K2L
∫ τ

0
e−2q(τ−α)E‖ξ(α) − ζ(α)‖2dα +

4K2cL
q

∫ τ

0
e−q(τ−α)E‖ξ(α) − ζ(α)‖2dα. (4.12)

From (4.8)–(4.12) and e−2qτ ≤ e−qτ for τ ≥ 0, we can obtain

E‖ξ(τ) − ζ(τ)‖2 ≤ 5K2e−qτE‖ξ(0) − ζ(0)‖2 + ((1 + 2c)
10K2L

q
+ 40K2L)

∫ τ

0
e−q(τ−α)E‖ξ(α) − ζ(α)‖2dα.

Let O(τ) := E‖ξ(τ) − ζ(τ)‖2 and λ := (1 + 2c) 10K2L
q + 40K2L, then

O(τ) ≤ 5K2e−qτO(0) + λ

∫ τ

0
e−q(τ−α)O(α)dα. (4.13)

Let
Õ(τ) = 5K2e−qτO(0) + λ

∫ τ

0
e−q(τ−α)Õ(α)dα,

and Õ(0) = 5K2O(0), we have

Õ(τ) = e−qτÕ(0) + λ

∫ τ

0
e−q(τ−α)Õ(α)dα. (4.14)

Hence O(τ) ≤ Õ(τ) (τ ∈ R). By taking the derivative of both sides of (4.14) with respect to τ, we have

dÕ(τ)
dτ

= (λ − q)Õ(τ). (4.15)

Solving the Eq (4.15) with Õ(0) = 5K2O(0), we can obtain

Õ(τ) = 5K2O(0)e(λ−q)τ.

By the assumption of the Lipschitz constant in (4.7) and the definition of λ, we have λ− q < 0. That is,
if (4.7) holds, O(τ) → 0 exponentially fast as τ → ∞. If the Lipschitz constant (3.10) in Theorem 3.1
holds, then Theorem 4.1ii) holds. We finish the proof. �

5. Application

In this part, we provide an example to demonstrate the findings presented in our work.

Example 5.1. Consider a stochastic heat equation within the range from 0 to 1, subject to the Dirichlet
boundary condition:

∂u
∂τ

(τ, x) =
∂2u
∂x2 (τ, x) +

(cos 2τ + sin
√

5τ)Eu
8(1 + u2(τ, x))

+
sin
√

5τ · Eu
3(2 + cos 2τ)

∂W
∂τ

(τ, x) (5.1)

+
cos
√

3τ sin Eu
5(1 + V2(τ, x))

∂V
∂τ

(τ, x), τ > 0, x ∈ (0, 1)
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=:
∂2u
∂x2 + f (τ, u,Pu) + g(τ, u,Pu)

∂W
∂τ

+ h(τ, u,Pu,V)
∂V
∂τ
,

u(τ, 0) = u(τ, 1) = 0, τ > 0.

Here W with TrQ < ∞ is a Q-Brownian motion on L2(0, 1), and V independent of W is a Lévy pure
jump process on L2(0, 1). Let A be a Laplace operator, then A : D(A) = H1

0(0, 1)∩H2(0, 1)→ L2(0, 1).
Let Θ = X := L2(0, 1). Then the stochastic heat equation can be transformed into an abstract evolution
equation

dξ= (Aξ+ϕ
(
τ, ξ,Pξ

)
)dτ+ψ

(
τ, ξ,Pξ

)
dW+

∫
|p|Θ<1

Φ
(
τ, ξ,Pξ, p

)
Ñ(dτ, dp)+

∫
|p|Θ≥1

Φ
(
τ, ξ,Pξ, p

)
N(dτ, dp) (5.2)

on the Hilbert space X, where

ξ := u, ϕ(τ, ξ,Pξ) := f (τ, u,Pu), ψ(τ, ξ,Pξ) := g(τ, u,Pu),∫
|p|Θ<1

Φ
(
τ, ξ,Pξ, p

)
Ñ(dτ, dp) +

∫
|p|Θ≥1

Φ
(
τ, ξ,Pξ, p

)
N(dτ, dp) := h(τ, u,Pu,V)dV

with

V(τ, x) =

∫
|p|Θ<1

pÑ(τ, dp) +

∫
|p|Θ≥1

pN(τ, dp), Φ
(
τ, ξ,Pξ, p

)
= h(τ, u,Pu,V)p.

Here for simplicity we assume that by Lévy-Itô decomposition, Lévy pure jump process on L2(0, 1) is
decomposed as above.

The eigenvalues of operator A are {−k2π2} with k = 1, 2, · · · , and A produces a C0-semi-group G(τ)
on X such that ‖G(τ)‖ ≤ e−π

2τ holds for τ ≥ 0, i.e., q = π2 and K = 1. We respectively chose 1
4 ,

1
3 ,

1
5 as

the Lipschitz constants of f , g, h, then the conditions (3.5)–(3.8) in Theorem 3.1 are given by

L = max
{

1
32
,
‖Q‖L(Θ,Θ)

18
,

v(B1(0))
50

,
c

50

}
with B1(0) denotes a ball in Θ with a radius of 1 that is centered at the origin. If L < π4

8(1+2c+2π2) (i.e.,
condition (3.9) holds), then by Theorem 3.1i), Eq (5.2) (and hence Eq (5.1)) has a unique bounded
solution. If L < π4

10(1+2c+4π2) (i.e., condition (4.7) holds), then by Theorem 4.1, the unique bounded
solution is square-mean asymptotically stable. Note that ϕ and ψ are s.m.a.a. in τ ∈ R, Φ is Poisson
s.m.a.a. in τ ∈ R. If L < π4

16(1+2c+4π2) (i.e., condition (3.10) holds), then by Theorem 3.1ii), the solution
is both almost automorphic in distribution and globally asymptotically stable in square-mean.
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