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1. Introduction

Meir and Keeler [1] introduced the concept of a weak contractive condition for mappings, which
guarantees the existence of a fixed point in a complete metric space. In 1981, Ciri¢ [2] used the
continuity feature to expand on the findings established by Meir and Keeler [1] in a complete metric
space. Later, Matkowski [3] extended the fixed point theorems of Banach and Kannan as well as some
results of Boyd and Wong [4], Meir and Keeler [1], Reich [5], and Wong [6] in a complete metric
space. Subsequently, Jachymski [7] demonstrated the equivalent requirements to those of Meir and
Keeler [1]. The work of Ciri¢ [2], Matkowski [3], and Jachymski [7] is collectively abbreviated as
CMJ.

Gromov [8] introduced the concept of CAT (0) spaces, which was later expanded upon with fixed
point results in R-trees and CAT (0) spaces by Kirk [9]. Goebel and Reich [10] contributed significant
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findings on non-expansive mappings, hyperbolic geometry, and uniform convexity. Reich and
Shafrir [11] demonstrated results on nonexpansive iterations in hyperbolic spaces. The A-convergence
theorems in CAT(0) spaces were given by Dhompongsa and Panyanak [12]. Khamsi and Shukri
provided generalized CAT(0) spaces in [13]. Results on monotone non-expansive mappings in
CAT,(0) spaces were provided by Shukri [14]. In CAT,(0) metric, the fixed points of
Suzuki-generalized nonexpansive mappings were established by Darweesh and Shukri [15].

Sun and Agarwal [16] investigated functionals associated with nonlinear differential operators in
order to determine whether boundary value issues have solutions. They demonstrated that identifying
a fixed point of the corresponding nonlinear operator is comparable to solving such issues. They
provided significant theoretical contributions about fixed point existence in the context of partially
ordered metric spaces, where their study was conducted. Xie et al. [17] used the Banach contraction
principle to show that there are solutions to multi-order nonlinear fractional differential equations over
the unbounded interval [0, c0). Additionally, they developed Ulam-Hyers and Ulam-Hyers-Rassias
stability, among other forms of stability, for the comparable initial value problems.

Further, Zhou et al. [ 18] focused on nonlinear -Hilfer fractional integrodifferential coupled systems
defined over a bounded domain. By employing the contraction mapping principle, they proved both
the existence and uniqueness of solutions. Additionally, they examined various notions of stability,
such as Ulam-Hyers, Ulam-Hyers-Rassias, and semi-Ulam-Hyers-Rassias, within the framework of
generalized complete metric spaces. Imran [19] applied the fractal-fractional derivative with a power-
law kernel, denoted as f7? D}’ to analyze magnetohydrodynamic (MHD) viscous fluid flow between
two parallel plates. The study also delved into the chaotic dynamics exhibited by the system.

In modeling complex systems with irregular or hierarchical structures, fractal derivatives offer a
robust mathematical tool. Traditionally, hybrid fractional differential equations (HFDEs) utilize
standard fractal derivatives characterized by a single scaling exponent, assuming uniform
self-similarity. However, many real-world systems display multiscale or heterogeneous behavior,
which a single exponent cannot fully capture. To address this, the two-scale fractal derivative extends
the standard model by incorporating two distinct fractal dimensions. This approach is especially
useful for phenomena like anomalous diffusion, porous media transport, or biological tissue
dynamics, where local and global scaling behaviors differ. The two-scale model effectively represents
systems with varying fractal dynamics across scales, enabling a more accurate description of localized
irregularities in transport or energy processes.

Recent studies, such as the work by He et al. [20], have highlighted the connection between
fractional calculus and fractal geometry and establish the fractal Fick law, the fractal Darcy law, and
the fractal Richards equation. According to these theories, the fractional order in differential
equations can be interpreted in terms of two-scale fractal dimensions, capturing both the local and
global scaling behaviors of heterogeneous materials or systems. This perspective is particularly
relevant when modeling media with complex microstructures or hierarchical properties, where
classical integer-order models may fall short. By integrating this view, the fractional order becomes
more than a fitting parameter; it acquires a geometric and physical interpretation, thereby enriching
the modeling framework and enhancing the descriptive power of fractional differential equations
where a coupled transport equation can be modeled. Also, it has a wider supplication in MHD
(magnetohydrodynamic) fluid flows, where memory and spatial non-locality due to electromagnetic
interactions are effectively described through fractional operators. Furthermore, it is applied in

AIMS Mathematics Volume 10, Issue 5, 11131-11158.



11133

MRI (magnetic resonance imaging).

On the other hand, Bini and Meini [21] focused on solving a class of nonlinear matrix equations that
arise in queueing theory, offering analytical insights into the structure and solvability of such equations.
Lim [22] presented a solution methodology for the nonlinear matrix equation X = Q + Y71, M, X% M
using a contraction principle, further extending the applicability of fixed point theory to nonlinear
algebraic systems.

In this study, we employ the two-scale derivative to enhance the descriptive power of HFDEs in
modeling multiscale transport phenomena. Its integration provides a more nuanced approach to
fractional modeling, especially in media exhibiting dual fractality, such as fractured rock formations,
hybrid organic materials, or anomalous diffusion in biological tissues.

This work’s novelty lies in establishing fixed point results for CMJ-type mappings in CAT,(0)
metric spaces, with an application to matrix equations and the two-scale fractal fractional hybrid
differential equation. It is inspired by the contributions of Darweesh and Shukri [15], Kirk [23],
Nanjaras et al. [24], Cirié [2], Matkowski [3], Jachymski [7], and others.

The structure of the manuscript is as follows. The Introduction provides the motivation and
significance of these spaces and mappings in the mathematical analysis in Section 1. Materials and
methods covers essential definitions, notations, and auxiliary results necessary for understanding the
main findings in Section 2. Section 3 contains the main results section that introduces and proves key
fixed point theorems for CMJ mappings, highlighting their generality and improvements over existing
results. In Section 4, as an application we investigate the existence of the solution to nonlinear matrix
equations in CAT,(0). In Section 5, we study unique solutions for two-scale fractal hybrid fractional
differential equations by utilizing the theorems of Section 3. The paper concludes by summarizing
findings and suggesting directions for future research, supported by a comprehensive list of
references.

2. Materials and methods

Definitions, lemmas, and some preliminary findings are provided in this section to aid in the
development of the primary findings.

According to Bridson and Haefliger [25] and Gromov [8], CAT(0) and CAT (k) spaces have the
following properties:

Definition 2.1. Let (E, ||.||) be a normed vector space and (X, d) be a geodesic metric space. When a
comparison triangle A exists in E such that the comparison axioms are satisfied for all ¢, s € A and the
comparison points ¢, 5§ € A, then X is considered a generalized CAT (0) space.

d(c, s) < |lc — 3.

If every triangle in X is at least as “thin” as its comparison triangle in the Euclidean plane and the
metric space is geodesically connected, it is referred to as a CAT (0) space.

Definition 2.2. Let k be a real number and (¥, d) be a metric space. Let A € M} be a comparison
triangle of A, and let A be a geodesic triangle in X. When all ¢, s € A and the comparison points
C, 5 € A are satisfied, then A is said to meet the CAT (k) inequality.

d(c, s) <d(c, s).
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M;-metric space is a complete, simply linked, Riemannian n-manifold with constant section curvature
k € R. For every integer n, the space M} can be divided into three qualitative classes based on whether
k is zero, positive or negative. In order to simplify the notation, we have E" = M, S" = M}, and
H" = M",. The law of cosines and the triangle inequality are shown to be closely related in each
instance. The Euclidean space n-space E" is a vector space in R” that has a scalar product metric.

n

(c/9) = D sy

i=1

where ¢ = (¢;...c,) and s = (s;...s,). E"is a uniquely geodesic space and the geodesic segments in
E" are the subset of the form

[e,s] = {Ais+Ae|0< 2 <1},

where 1, = 1 — A;. The n-sphere S" belongs to the set {¢ = (¢;...cns1) € R"™!(c|c) = 1}, where (.].)
represents the Euclidean scalar product. Assume that d : S" X S" — R is a function that allocates the
unique real number d(C;, C,) € [0, 7] to each pair (C;,C,) € S" X §". For example, cosd(Cy,C,) =
(C1|C3). The metric is thus d.

Letd : H" Xx H" — R be a function that allocates the unique nonnegative number d(C;, C,) > 0 to
each pair (Cy, C,) € H" x H" in such a way that coshd(C, C,) = —(C;|C,). The metric is thus d.

Definition 2.3. [8,25] For the given real number &, the model spaces M} are defined as:

(1) Mj is the Euclidean space E" if k = 0;

(i1) If £ > O then M} is obtained from the sphere S" by multiplying the distance function by the
constant ﬁ
Standard n-sphere S"
The standard n-sphere of radius 1, S”, is the set of points in R"*! at the unit distance from the
origin.
It comes equipped with the standard round metric, with sectional curvature equal to 1.
When you multiply distances by \/LE you are scaling the Riemannian metric g by: g; = %g. This

operation does the following: It multiplies all lengths by # It multiplies all areas by % It
multiplies all sectional curvatures by k. So, if you start with S”, which has constant sectional
curvature 1, and rescale the metric as described, you get a new Riemannian manifold: M| =
(S", % g) , which is still a sphere (same topology), but now has constant sectional curvature k.

(iii) If k < 0, then M}! can be obtained from hyperbolic H" by multiplying the distance function by
=
The hyperbolic space H", which has constant negative sectional curvature.
Standard hyperbolic space H"
H" is the simply connected, complete Riemannian manifold of constant sectional curvature —1.
It can be modeled in several ways (Poincaré disk, upper half-space, hyperboloid model), but they
all describe the same geometric structure.
If we multiply all distances in H" by \/%7 (where k < 0), we are scaling the metric g by:

1
8k = __kg’
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which has these effects:

Lengths scale by \/%7

Sectional curvatures scale by —k.

So if the original curvature was —1, the new curvature is k.
So, for k < 0, we define:

1
M’l = Hn,_ s
k ( —kg)

which gives a manifold of constant sectional curvature k < 0, the same underlying topology as
H", and a distance function scaled by \%k

Proposition 2.1. M} is a geodesic metric space.

(i) If k < O, then M} is uniquely geodesic and all balls in M} are convex.
(ii) If k > 0, then there is a uniquely geodesic segment joining c, s € M} if and only if d(c, s) < %

(iii) If k > 0, closed balls in M of radius < % are convex.

Gromov’s study [8] of CAT(0) spaces was an extensive exploration of CAT,(0) spaces, which
was initially addressed by Khamsi and Shukri [13], taking into account that the comparison triangle
pertains to a generic Banach space. Specifically, the situation where /,, p > 2 is the Banach space.
In a geodesic metric space (X, d), a geodesic triangle A(cy, ¢y, c3) in Figure 1, consists of the three
vertices ¢y, ¢, c3 in X along with the geodesic segments connecting each pair of vertices, which form
the edges of A. A comparison triangle for the geodesics triangle ¢y, c;,¢c3 = A € (X,d) is a triangle
A(cy, €2, ¢3)" = A€y, 63, 63) for p > 2 in the Banach space [, such that ¢;—¢jl| = d(c;, ¢)),V i, j € 1,2,3.
A point ¢ € [¢1, 6] is called a comparison point for ¢ € [cy, ¢;] if d(cy,¢) = |61 — ¢l

Cs C' Cz

Cs

Figure 1. Geodesic triangle.

Definition 2.4. [13] Let (X, d) be a geodesic metric space and (E, ||.||) be a normed vector space. When
a comparison triangle A in [, exists for any geodesic triangle A in X, and the comparison axioms are
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satisfied (that is, for all ¢, s € A and comparison points ¢, 5 € A), d(c, s) < ||c — 5|| and then X is said to
be a CATp(0) space.

The following is an important theorem of a CAT ,(0) space [13].

Theorem 2.1. If 3% is the midpoint of geodesic [s1, 5,] and c, sy, s, are in X, then for p > 2, the
comparison axiom entails that

S1Ds 1 1 1
d’(c, 2=22) < Sd"(e.5) + d"(e.52) = 5 od" (51, ). (2.1)

2 <
The inequality is known as (CN,,), established by Khamis and Shukra [13]. As for /,, for p > 2, the
(CN,) inequality implies that (CN,)(0) metric spaces are uniformly convex with 6(r,€) > 1 — (1 - ;—f,)%,
for each € > 0 and each r > 0. The traditional (CN) inequality of Bruhat and Tits [26] is reduced to
the (CN,) inequality for p = 2. The CAT(0) inequality means that if z = ”9% is the midpoint of the
segment [sy, s2] and c, 51, s, are points in CAT (0) space, then

1 1 1
d(c,z)* < Ed(C, s1)* + Ed(C, 52)% — Zd(Sl, 52)°. (2.2)

Recall uniform convexity of a Banach space X as follows:

Definition 2.5. [27] For each €, 0 < € < 2, the inequalities |lc|| < 1,|s|]] < 1,|lc — || = € imply
there exists 0 = d(e) > 0 such that IICT”II < 1 — 6. The midpoint of ¢ and s lies inside the unit ball By
at a distance of at least 0 from the unit sphere 6x. This indicates that ¢ and s are in the closed ball

By ={ceX:|c|| <1} with|lc —s|]| > €>0.
Example 2.1. [27] A uniformly convex space is any Hilbert space H. The parallelogram law provides
us with |lc+s]|* = 2(||c]l* +|Is|I*) = lc = s, for all ¢, s € H. Suppose ¢, s € By withc¢ # sand||c—s|| > €.

Then ||c — s]|> < 4 — €2. So it follows that 153l < 1 = d(e), where 6(e) = 1 — /1 - %. Therefore H is
uniformly convex.

Let R be a set of real numbers. A metric space (X, d) defined by a mapping ¥ : R — X in a metric
embedding of R into X are the definitions of CAT,(0) metric spaces with d(y(c), y(s)) = |c — s|, V¢, s €
R. The image R under a metric embedding is called a metric line. The image y([a, b]) C X is called a
metric segment.

Definition 2.6. [28,29] Let X be a space with metrics. In X, a geodesic path is a path y : [a, b] — X.

Assume ¢, s € X. If y(b) = s and y(a) = c, then y([c, s]) is said to link ¢ and s. This demonstrates
the hyperbolic type of (X, d).

Lemma 2.1. [30] Lety : R — X be a metric embedding a < b € R and t € [0, 1]. Then
(i) d(y(a), y(la ® 41b)) = 1d(y(a),y(b)),
(i) d(y(b),y(da ® A1b)) = Ld(y(a), y(D)).

Khamis et al. [13] introduced a property of a CAT, metric space. The CAT(0) metric space (X, d)
is said to be convex whenever [c, s] € K, for any ¢, s € K. Consider map y : X — R is a type function
if there exists a bounded sequence {c,} in X such that y(c) = lim sup d(c, c;).

i—o0
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Theorem 2.2. [13] Let p > 2. Consider (X, d) as a complete CAT,(0) metric space, and K is any
closed, bounded, convex, non-empty subset of X. Assume that a type function specified on K is y. Any
v minimizing sequence is then convergent. Its limit z satisfies and is the unique minimum of y and

1
Y@ + de (z,c) < ¥YP(o), (2.3)
for any ¢ € K.

Definition 2.7. [29] Let & be a vector space. An affinely convex subset X C & is defined as follows:
for any ¢, s € X and Ay, 4; € (0, 1) with 1 — A, = A,, the affine segment [c, 5] := {/lzc + A5 : A €O, 1]}
is contained in X.

If X has a family of metric segments, then there exists a unique metric line joining ¢ and s for every
pair of distinct points ¢ and s in X. The unique metric segment connecting the two points ¢ and s from
X is indicated by the notation [c, s] or [s, c]. This demonstrates that, for all ¢ € X, [c, c] = {c}.

Proposition 2.2. [30] Let (X, d) be a hyperbolic metric space. Assume c, s € X. There exists a unique
point 7 € [c, s] for every A € [0, 1], such that d(c,z) = A4,d(c, s), and d(s, z) = A,d(c, s)-such points will
be denoted by 7 = A,¢ ® A;s. For z € [c, 5], this imply that d(c, z) + d(z, s) = d(c, s).

Definition 2.8. [10] (X, d) is a hyperbolic metric space if

(1) d(Ae® Ays, (Are ® A12) < A1d(s, 2),
(i1) d(Ayc ® Ay, Az ® Aw) < Ad(c, 2) + A1d(s, w),

for any A4;,4, € [0,1] and all ¢, s,z,w € X. Note that every hyperbolic space is a space of hyperbolic
type [30].

Next, we recall that Hadamard manifolds [10], the Hilbert open unit ball [23], and CAT ,(0) metric
spaces [13] are some examples of normed spaces which are hyperbolic metric spaces. Opial [31]
introduced an inequality for a well-convergent sequence characterizing its limits as follows:

Definition 2.9. Suppose there are Banach spaces X. If every sequence {c,} weakly converges to ¢ for
every c in X, then X meets Opial’s condition:

lim inf |lc, — s|| > lim inf ||c, — ]|, 2.4)
which holds for s # c.
Browder [32] obtained an equivalent definition by replacing (2.4) by

lim sup |lc, — 8|l > limsup||c, —c]|. (2.5

n—oo n—00

The following is the extension of p-uniform convexity to the set of geodesic space by Naor and
Silberman [33]:

Definition 2.10. Let 1 < p < oo be fixed. If (X, d) is geodesic, it is called p-uniformly convex if there
exist a constant u > 0 such that ¢, s,z € X with every A; € [0, 1], and for all i = 1,2, we have:

APAoc® A15,7) < Aad?(c,2) + 1,d(s,2) — '%/ll/lzdp(c, 5). (2.6)
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One should bear in mind that the space X is confirmed to be uniquely geodesic based on the
inequality stated above. Darweesh et al. [15] proved the following theorem on CAT ,(0) space.

Theorem 2.3. [15] Given a complete CAT,(0) metric space X with p > 2, let K be a non-empty
bounded, closed, convex subset of that space. Given a Suzuki generalized non-expansive mapping
T : K — K, T has a fixed point.

Lemma 2.2. [34] Let K be a non-empty subset of a metric space X. Suppose T : K — K is a Suzuki
generalized non-expansive mapping. Then d(c,Ts) < 3d(ZTc,c) +d(c, s), forall c,s € K.

Lemma 2.3. [34] Assume that the generalized metric space is (X,d). If we have Tc, — Tz such that
T : X — X is continuous at 7 € X, then lim d(ZTc,, Tz) = 0, for any sequence {c,} in X, converges to
z€X. Thatisc, — z.

The following is the relationship between the aforementioned lemma and the Ciri¢ [2],
Jachymski [7], and Matkowski [3] (CMJ) fixed point theorem.

Theorem 2.4. [35] Let X be a CM]J contraction on X, and let (X, d) be a complete v-generalized metric
space. This means that the following is true:

(i) For every € > 0, there exists § > 0 such that d(c, 5) < € + § implies d(Tc, Ts) < eforanyc, s € X.
(i1) ¢ # s implies that d(Tc, Ts) < d(c, s) forany c, s € X.

Then T has a unique fixed point z of T. Moreover lim d(T"c,z) = 0 forany c, s € X.

n—oo

A weak contractive condition that grants the existence of a fixed point in all metric space was
developed by Meir et al. [1]. In their investigation, they considered € > 0, where there exists 6 > 0
such that € < d(c, s) < € + 6 implies d(Tc, Ts) < €.

Theorem 2.5. [1] Assume that T is a mapping from X into itself and that (X, d) is a full metric space.
Then, there is a single fixed point { for T. Additionally, lim "¢ = { for any ¢ € X.

The following theorem is proved in metric space by Ciri¢ [2] using the preceding principles for
contractive mappings with the continuity property.

Theorem 2.6. [2] Given € > 0, there exists ¢ > 0 such that, given (X, d), a full metric space, and T a
self mapping of X into itself, satisfying the condition € < d(c, s) < € + 6 implies d(Tc, Ts) < €. Then T
has a unique fixed point ¢ € X and lim "¢ = { foreach x € X .

n—oo

Additionally, Matkowski [3] established the subsequent theorem.

Theorem 2.7. [3] Let T : X — X be a full metric space, and let (X, d) be its metric space. Assume
that for each ¢, s € X and € > 0,

d(Zc, s) +d(c,Ts)
2

0 < max {d(Zc, 5), d(s, Ts), d(c s). l<e= d(Tc,Ts) <e
If for every € > O there is a 6 > O such that forc, s € X :
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e<d(c,s)<e+0
0 < max {d(zc, s), W} <€ ;= d(Tc,Ts) < €, then for every ¢ € X, the sequence {T"c}
d(s,Ts)<e+0
converges. Moreover, if T is continuous, or, given € > 0, there is a,u, 0 < u < € such that for every
c,s € X,

0 < max e, o 4zesptezal <

0<d(c,s),d(s,Ts) < u
e Xand lim T'c = { foreachc € X.

n—oo

= d(Tc,Ts) < €, and then T has a unique fixed point

Furthermore, the following Mier Keeler-type theorem was demonstrated by Jachymski [7].
Theorem 2.8. [7] Let (X, d) be a complete metric space and let T : X — X be a self map. If T satisfies
(1) forevery e >0and 6 > 0, forany ¢, s € X,

d(c,Ts) +d(s,Tc)

€ < max {d(c, 5),d(c, Tc), d(s, Ts), >

}<e+6,:d(i§c,1s)£e,

(i1) forevery € > 0and 6 > 0, forany c, s € X,

d(c,Ts) + d(c, ic)}

d(Tc,Ts) < max {d(c, s),d(c,Ts),d(s,Ts), >

then T has a unique fixed point £ € X and lim T"c = ¢ for each ¢ € X.

n—oo

3. Results

In this section, we shall cover our main results. We start the section with the following theorem.

Theorem 3.1. Let K € X be a non-empty, bounded, closed, weakly uniformly convex subset of a
CAT,(0) metric space, where p > 2, 4;,4, € [0,1], and let T : X — X be a CMJ-type mapping.
Suppose that for every € > O and ¢, s € X,

dP’(ZTc, s) + dP(c, Ts)
2

0 < max {d”(fzc, 5),d"(s, Ts),d"(c, s), } < e = d(Te, Ts) < €, (3.1)

then for every ¢ € X, the sequence {T"c} converges. Furthermore, if T is continuous, or if, for any
¢, s € X, there exists u, 0 < u < € such that

0 < max {d”(flc, c), W} <e€

= dP(Tc,Ts) < € — .
0 < max {d"(c, s), dP(s, ‘Is)} <u

Then T has a unique fixed point z € X and for each ¢ € X, lim T'c = z.

1—00

Proof. Let K be a bounded, closed convex subset of X. For simplicity, let X represnted CAT,(0)-metric
spaces. Assume ¢y € K. Now, for all i > 0, {c;} is a Picard sequence defined by ¢; = T'c,. Clearly for
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¢; = ciy1, we can have T'cq be a fixed point of T. This means that for some i, Ticy = T ¢. If possible,
let T'cy # Tley. If ¢ = ¢ and s = Ty, then from the inequality (3.1), we have

d”(ico, zCO) + dp(Co, EZCO)} <
€
5 <
= dP(Tcy, T?cy) < €. (3.2)

0 < max {dp(zco, Teo), dP(Teo, T2co), d(co, Tco),

Now using Lemma 2.1, we can compute all metrics of the above inequality as follows.

d"(Tco, Tep) = d’(¥(Tco), Y(A2Tco @ 4, Tcp)) = A1d” (y(Tep), y(Tcp))
= 4,d"(Tco, Tey) = 0.
dP(Tco, T2cp) = d’(¥(Tco), y(ATco ® 1, T7¢p)) = 11d” (¥(Tcp), Y(Tcp))
= L,d"(Tcy, TPep).
d’(co, Teo) = d’(y(co), y(Aaco ® 11Tcp)) = 41d”(¥(co), ¥(Tco))
= N4d’(co, Tcy).
d’(co, Tco) = d"(y(co), ¥(daco ® LiT7cp)) = A1d” (y(co), ¥(Tco))
= Ld(co, T?cy).

Substituting the derived metrics in (3.2), we obtain

0 < max {/hdp(ZCo, ‘Ico), /l]dp(zCO, zZCO), /l]dp(Co, ZCO),

dp(i:CO, zC()) + /l]dp(Co, zZCO)
2

0 < max {0, 1,dP(Teo, T2cp), A, dP (co, Tco),
= 1,d"(Tcy, T?cp) < €.

} < e= 0d"(Tep, Teo) < e,

/l]dp(Co, (IC()) + /hdp(ZCO, 3:200)} <
€
) <

A1dP(co,Tco)+A1dP(Tco,T2co)
2

Suppose < 41d?(co, Tcp), and we get

0 < max {O,AIdp(ico, T2¢0), A, d” (co, Tco), A1dP(co, zco)} < €= 4,d" (T, T2cp) < e,
0 < Ad"(co, Tco) = ,dP(Tco, T2cp) < €.

Next, by using mathematical induction, we have

0 < A limd”(T"co, T co) = A limd”(Ticy, T'cp) < €.

i—00

Hence, we get

0 < limd"(T'cy,T*'cy) <e.
This is a contradiction to our assumption. So the sequences {d”(T'cy, T*'cy)} converge.
Further, let (X, d) be a complete CAT,(0) metric space and T is closed, bounded, and uniformly
convex. We need to prove {T'cy} is a Cauchy sequenc. Let us construct a sequence {T'cy} in K in such
a way that Tc = limd(c;, ¢). Let yp = inf{y(c) : ¢ € K} and {s;} be a y minimized sequence. Since K is
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bounded, then for any c, s € K, there exists an R > 0 such that d(c, s) < R. Since (X, d) is a CAT,(0)
metric space, it is enough to show that the inequality (2.6) of Definition 2.10 is satisfied.

dP(ci, Aasi @ Ay1sj) < Adl(ci, si) + 1dP (s, ¢;) — 41 Ad (4, 5)). (3.3)
By applying inequality (2.3) from Theorem 2.2, we can derive the inequality (3.3), which yields
Y(ci, dasi® A1sj) < Aoylsi+ AiyPs;j— LidyP(si, ).
This gives a conclusion that for all 5;; > 1, we have

yg < AyPsi+ AiyPsj — iyl (si, 5)).

As {s;} is a minimizing sequence for y, we have lim d(s;, s;) = 0, implying that {s;} is Cauchy.

l,]—)OO

Consequently, {s;} converges to some z € K with yy = y(2).
Since vy is continuous and X is complete, Lemma 2.2 gives us

d"(z,¥7) < 3d"(T'z,2) + d’(z,2),

limsupd?(z,¥z) < 3limsupd’(T'z,z) + limsup d’(z, 2),
1
limsupd?(z,3z) < 3 lim sup d”(z, 2).

Therefore, d”(z, Tz) = 0, which implies that z is a fixed point of <.
Case 1: If T is continuous, then taking limits yields:
z=1lim ¥'c = lim ¢y = Iz,
and hence z is a fixed point.

Case 2: Suppose instead that the second condition in the theorem holds. Assume, for contradiction,
that Tz # z. Then d”(Tz, z) > 0. Since ¢; — z, for sufficiently large i, we have

<e€

—_ 2

P(Tz, ¢c; P(r T
0 < max {dl’(zz’ 2, d (Tz, C;)+d (z, Cl)}

2
d’(Tz,z) + d’(z, iz}
<e€,

2
0 < max {d”(Tz,z),d"(z, Tz} < €,
0<dl(z,TI7) <€

0 < max {d”(zz, 2),

and
0 < max {d”(z, ¢;),d"(ci, Tcy)} < u,

0 < max {d”(z,2),d"(z, T2)} < ,
0 <dl(z,Tz) < p,

for some 0 < u < €. Then the hypothesis implies

dP(Tz,Tc)) < e—p,
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dP(Tz,Tz7) < € —u,
0<e—p.
O<e—u<dl(z,Tz) < e

Letting i — oo, the right-hand side remains positive while the left-hand side tends to d”(¥z,z), a
contradiction. Hence, Tz = z.
Next for uniqueness: let y(¥z) < y(z). According to the asymptotic center’s uniqueness, Iz = z.
Given s; = { and s; = z, we may use inequality (2.6) to determine the uniqueness of . Since,

dP (i, b{® z) < AdP((, )+ 4dP(z,8) — LidP({, 2),
by taking the limit on each side of the inequality shown above, we arrive at

limsup d”({i, 2 ® 41z) < limsup ,d"(, 0) +

lim sup 4,d*(z, ;) — lim sup A, 4,d?(Z, 2).

Since, lim sup d”({;, z) < lim sup d”({;A2{ @ A,z), then we have:

[—00 [—00

limsupd”(¢i,z) < limsup Ld" (4, $) +
o lim s;; 4d"(z, &;) — limsup 4, d” (£, 2),
limsupd’(z,z) < lim ls::; d"(z,0) + -
o lim ls;; 4,d"(z,2) — limsup A, A,d"({, 2),
0 < lim ls;; dP(z,0) - liml;lo; 1 AdP (L, 2),
0 < lim s;; WdC D).
lim sup 4, LdP(l,z) = 0, o
llTl; supd?(£,z) = O,

i—0o0

which is a conflict. Thus, { = z. In conclusion, z represents a single fixed point in T and Opial’s
condition is equal to this argument. O

The second important work extends Theorem 2.6 to consider an analog of the theorem in the context
of Meir and Keeler-type uniformly convex contractive mappings in CAT ,(0) space.

Theorem 3.2. Given € > 0, there exists 6 > 0 such that, given (X, d), a full CAT,(0), where p > 2,
A1, A, € [0,1], and let K be a non-empty, bounded, closed , convex subset of a CAT,(0) metric space
and T : K — K is a convex contractive mapping, satisfying the condition

€ < d(c,5)<€e+0 = d’(Tec,Ts) <Le. (3.4)

Then T has a unique fixed point £ € X and lim T'c, = ¢ foreach c € X .
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Proof. Let ¢y € X. Let us construct a series {c;} by ¢; = T'c, for each i € N. Then ¢; is a fixed point
on T if there exists i such that ¢; = ¢;4;. The proof is hereby finalized. Alternatively, suppose that for
every i > 0, ¢; # ¢ir1. Asc = ¢o and s = T'cg in (3.4) implies that T is contractive, therefore real
sequence d”(cy, T'cy) is non-growing and has a limit € > 0. Based on monotonicity, we obtain

1dP(co, T'cy) > €, fori=0,1,2,... 3.5
Let us assume € > 0. Then, for all i such that 6 = 6(¢) > 0,
€ < 41d"(co, T'co) < €+ 6. (3.6)
By (3.4),
d”(T'cy, T ) < €, (3.7)
which is a contradiction with (3.5). Therefore € = 0 and
LdP(T'co, T ) = 0,
d”(T'cy, T cp) = 0. (3.8)

Let us assume ¢ € K. Using the argument of induction, we will create a sequence {c¢;} in K such that,
for any i > 0, the sequence {Zc¢;} has a point z linked with it in Theorem 2.2. For any integer i > 0,

e=r; = A limsupd’(c;, Tcy), (3.9)
j—oo

=R, = A limsupd”(T'c;, T"¢)). (3.10)
j—ooo

By (3.9) and (3.10), we have

ri < Aylimsup d’(c;, T*'¢;) < 4, lim sup d”(c;, Tey) +
J—00 Jj—ooo
Ay lim sup d”(Tle;, Tey),
J—o
ri < A limsupd’(c;, ¥*'e;) <ri+ Ry,
]
r; < A limsup d”(c;, T*'¢;)) < 2R; < r;. (3.11)

Jj—ooo

Hence by (3.4) for i > 1, the series ). =1 AidP(c;, T ¢;) is also convergent and therefore {c;} is
Cauchy. The remaining steps to demonstrate that {c;}, the fixed point’s existence and uniqueness,

follow Theorem 3.1°s proof in a similar manner. This concludes the proof. O

Utilizing the concepts derived from CMJ-type contractive mappings within the context of CAT ,(0)
space, we establish the subsequent corollary that supports Theorem 3.1.

Corollary 3.1. Let K € X be a non-empty, bounded, closed, weakly uniformly convex subset of a
CAT ,(0) metric space since p > 2, A1, A € [0, 1] and we specify T : X — X as a CMJ-type mapping.
Forallc,s € X and € > 0, let us assume

0 < max {d”(c, s),d"(s, Ts)} < € + p <= d(Tc, Ts) < €.

Then T has a unique fixed point { € X and lim T'c = { for each c € X.
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Proof. The similar evidence for Theorem 3.1 is applied in the proofs of the remaining stages.
Therefore, the proofs have been concluded. O

To support the established results mentioned above, an example is illustrated below.

Example 3.1. Let X = [0,1], K = [1, X

L] € X forn € N, and (X,d) be a complete CAT,(0)

>3 o]
metric space, p > 2. Define a metric by d”(c, s) = ||c — 5|, and a mapping T : X — X given by
1
5, forneN
— 2c¢
te= { 0, otherwise.
We show that T satisfies inequality (3.1).
First we calculate the following metrics for ¢ = Tl—l’ s = Tlﬂ
1 1 2 p
dp s = dﬂ ’ = /1 s
€9 =d =T o+ 1) ! (2n—1)(2n+1)”
1 2n-1) 1 P 4n* p
P z =dP(— = — =
4(Ze, s) d( ) H m+ 1 Al
2n+ 1 1 — (4n* + 4n)p
dP(s, T =A - = 4||——————|,
(5,35) = ( ‘H2n+1 2 N 2@n+1) '
2n+ 1» 3 —4n?
d’(c,Ts) = =A - = A
(€ T5) = ( 1”2 172 ! 2(2n—1)“
1 1 2n - 1) 1 P Qn—-172 -2
P(T — P = —_—
d'(Te,c)=d (2c 20— H T o1 4
1 1 (2n—1) 2n+ 1y 2n—1-2n—-1y»
P p( . _ —
R e IERTEE
By applying all of the above equalities in (3.1), forn =2..., 4; = % and p > 2, we get
P 1 — (4n* + 4n)|p 2 P
0 /l ,AM||—————— ,
< max 1”(2n+1) 1220+ 1) 1”(2}1—1)(2n+1)H
4n? 3-an? ||P
/11' @n+1) ‘ + ﬂl”zm-n
5 } <€
:>/1H2n—1 2n +1 p<
- €.
2 2
5.12 + 2.3464
0 < max{5.12,2.645,0.008, ————}<e=l<e
0 < 512<e=>05<e
Furthermore, since T is continuous, it follows that
0 < max {0.6805,3.733} < €
=05<e—pu.
0 < max {0.0088,2.645) <
Consequently
0<3733 <€ 05 <e—
0 < 2.645, < D SEeTh
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This shows that the conditions given in Theorem 3.1 are satisfied.
Similarly, assume that T does not satisfy the CN,, inequality:

AP ® A15,2) < LdP(c,2) + 1,dP(s,2) — L1Ad"(c, 5), (3.12)
where
d”(ﬂzc @ A5, Z) < /12dp(C, Z) + /hdp(s, Z). (313)

Using (3.13) in (3.12), we get

/]-de(K’ Z) + /l]dp(sa Z) < /lep(C’ Z) + /l]dp(s’ Z) - /ll/Ide(C’ S),
0 < —A4Ad%,ys),
0 < Adlle—slP,
2 p
0 < 44 ,
= 2H(2n-—1)(2n+1)H
1122
0 < —==[.
< 33l
15212
0 < z”g' ’
1
0 < —.
- 225

Thus, T satisfies the CN,, inequality and possesses a unique fixed point at ¢ = g, which leads to a

contradiction.
For CAT(0) space, we show that our results are a real extension by showing that the example given
above does not satisfy the CN inequality, which is an example of a CAT(0) space. Let ¢ = 1,5, =

1o -1 e _ s@sn _ 8.
3,Sz—5bethethreepomtsm%andz_ S = s

1 1 1
d(c,2)* < Ed(C, s1)* + zd(C, 52)* — Zd(sl, 52)°,
054 < 0.222 +0.32 —0.0088,
0.54 < 0.53,

which is a contradiction when you compare with a CAT (0)p space.
4. Comparison with previous research in different spaces

Theorem 3.1 extends the scope of fixed point theory by considering CMJ-type mappings in CAT ,(0)
metric space with p > 2 and weak uniform convexity. We now compare this result with existing
literature across various settings:

(1) Banach spaces

In normed linear spaces, especially Banach spaces, the foundational result is the Banach contraction
principle [36], which requires:

d(Tc,Ts) < Ad(c, s), forAde]0,1).
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By taking ¢ = 1, s = { with A = 1, we have

0.5 £0.066,

which is a contradiction.

The Mankowski-type conditions in Theorem 2.7 serve as a generalization of the Banach
contraction principle, particularly in cases where Example 3.1 fails to satisfy the Banach conditions.
This highlights that the results established in the theorem are indeed a genuine extension.

Theorem 3.1, on the other hand:

e Uses d” instead of d, extending the metric to include nonlinear or weighted behaviors.

e Requires only weak uniform convexity, thus covering a broader class of metric spaces.

e Applies to CAT,(0) spaces, which generalize Hilbert spaces to nonlinear, non-positive curvature
settings.

(2) CAT(0) and CAT(k) spaces

Previous works by Kirk [9], Gromov [8], and others studied fixed points of nonexpansive mappings
in CAT(0) spaces. These studies typically rely on:

e Convexity of the metric (midpoint inequality).
e Nonexpansive or asymptotically nonexpansive conditions.

Theorem 3.1 strengthens such results by:

e Introducing CMJ-type conditions with d” terms.

e Applying to CAT,(0) spaces, which accommodate generalized distances and stronger nonlinear
structures.

e Allowing weakly uniformly convex subsets instead of requiring global convexity.

We present a comparison of fixed point results in various metric and geometric settings in the following
table (see Table 1).

AIMS Mathematics Volume 10, Issue 5, 11131-11158.



11147

Table 1. Comparison of fixed point results in various metric and geometric settings.

Reference / Space Type of Mapping Conditions Limitation /
Approach Considered Imposed Novelty
Banach  (1922) Metric space Contraction Constant Limited to linear
[36] mapping Lipschitz contraction in
condition k < 1 complete metric
spaces
Meir-Keeler Metric space Generalized Convergence- Fails in geometric
(1969) [1] contraction type  condition or non-Euclidean
on distance spaces
functions
CMIJ Mappings Metric / b-metric Cyclic or multi- Use of cyclical Not always
space valued mappings and intermediate extendable
contractive to non-linear
conditions geometric spaces
Results in CAT(0) (non- Nonexpansive Convexity Limited to
CAT(0) Spaces positively mappings + geodesic single-valued and
Kirk [9] curved) spaces properties nonexpansive
cases
Results in  Generalized Generalized Geometric
CAT(0)p Spaces geodesic spaces mappings assumptions
Khamsi and with projection under convexity can  be  too
Shukri [13]. properties constraints restrictive for
hybrid mappings
Present Work CAT(0)p spaces CMIJ-type + Weak cyclic Unifies multiple
(This Paper) / generalized Meir—Keeler + contraction, mapping  types;
metric spaces hybrid/self/non-  convexity, = and applicable
self mappings non-linear in abstract
projection geometric
structure settings with
greater flexibility

5. Existence of the solution of matrix equation in CAT,(0) metric space

In this section, we explore the existence of solutions to the non-linear matrix equation in the context
of the CAT,(0) metric space, which is intended to demonstrate Theorem 3.1. Consider the following a
non-linear matrix equation:

X+ ZAI-%‘]D,- = C

1<i<d

5.1

The solution pertaining to a tree-like stochastic process, which acts as a generalization of the quasi-
birth-and-death (QBD) process, is fundamental to this equation. The expression for S is regarded as
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minimal, specifically § = T — I, where T is identified as a sub-stochastic matrix, as demonstrated by
Bini et al. [37].

Lemma 5.1. [37] The matrix T = S + I is the minimum non-negative solution of the equation

X = B+ Z A(A-D7'D, (5.2)

I<i<d
where
(i) C = B -1, Bis sub-stochastic,

(ii) A; and D; have non-negative entries,
(iii) the matrices | + C+ D; + A; +---+ Ay, i = 1...d, are stochastic.

The matrices G, are defined as G; = (—S)™'D;, where (G,);, denotes the probability of the tree-like
process starting at state (i, k) in &V; and eventually reaching the root node, with k" being the first state
visited in this process. If the process exhibits positive recruitment, then G; is stochastic for every i.
Furthermore, Eq 5.1 can be expressed as a system of coupled equations.

S = C+ ) AG, (5-3)

I<i<d

where G; = (=S)7'D;, for 1 <i < d, from which S is obtained by fixed point iteration. Then (X, d) is a
complete CAT,(0) metric space. We hereby introduce the subsequent theorem.

Theorem 5.1. Suppose the following hypotheses hold:

(i) The sequences {S, : n >0} and {G;,, : n > 0},1 <i < d, definedby S, = C+3},.,_;AiGi,, where
Gips1 = (-S,)"'D;V1<i<dn>0with Gip = -+ = G4 = 0, monotonically converge to S
and G, respectively. S is a non-singular matrix.

(i1) There exists a matrix G such that

1) AGin— Y AGinall < llc = sl
1<i<d 1<i<d
where
d’(ZTc, s) +dP(c,Ts)
2

Then, the stochastic matrix equation (5.1) has a minimum unique at c.

llc — s|I” = max {dp(zc, 5),d" (s, Ts),d"(c, s), } <e= d’(Te,Ts) < €.

Proof. 1t is known that the stability of the positive steady state of the stochastic matrix equation can be
ascertained from conditions (i) and (if). We now demonstrate that a minimal unique positive point can
be reached by the stochastic matrix equation (5.1), and that point is c.

Define a mapping ¥ : C!([0,T],X) — C([0,T],X) by IS, = C + 2ui<i<a AiGi,. By the continuity
property, for 0 < t < T, we have Tc,Ts € X and T ¢ # Ts. Letc,s € C'([0,T], ¥) for s < ¢ and
c=S,5=3S,:1,and we get

p

b

138, - ISuall” = |lc+ ] AiG,-,n—(C+ > A,~G,-,n+1)

I<i<d I<i<d
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138, - TS0l < || 3 4G = Y AGiu
I<i<d I<i<d
1380 = TS0all < [|S0 =S|
ITe - Tsl? < - siP,

which implies

d?(Te, Ts) < d(c,s),
dP(Tc, Ts) < max{dﬁ(izc,s),dp(s,zs),dp(c,s),

< €e=>d"(Te,Ts) <€,

A

dP(Zc, s) + dP(c, is)}
2 b

which is a contradiction. As a result, there is a minimal unique positive solution for the stochastic
matrix Equation (5.1) at c. O

6. Uniqueness solution for two-scale fractal fractional hybrid differential equations in CAT ,(0)
metric spaces

In this section, we delve into the results associated with two-scale fractal fractional hybrid
fractional differential equations (HFDEs) in CAT,(0) metric space, which leads to Theorem 3.1. One
can see [38] and the references therein for several hybrid differential equations. In addition to the
commonly used Caputo and Riemann-Liouville definitions, several alternative formulations of
fractional derivatives have been introduced to address specific modeling needs. For instance, the
He [39] fractional derivative, based on an invariant transformation method, is particularly useful in
solving nonlinear problems analytically. Similarly, the Atangana-Baleanu [40] fractional derivative,
defined with a non-singular and non-local kernel based on the Mittag-Leffler function, provides
advantages in modeling processes with fading memory.  These definitions, alongside the
Caputo-Fabrizio and other generalized operators, offer diverse tools for fractional-order modeling in
various disciplines, including physics, engineering, and biology.

Atangana and Baleanu [40] gave the following definition on fractional derivatives:

Definition 6.1. [40] The Atangana-Baleanu fractional differential equation is defined as follows with
the left and right in Caputo sense:

peppn = 1 f FOIE(

(t — 5)7)ds,t € I =[0,T],

b D7f()

Definition 6.2. [40] The Atangana-Baleanu fractional differential equation is defined as follows, with
the left and right in Riemann-Lioville sense:

o = MO0 f O - 517)ds,
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o = O f FOE

s)‘r)d s

where f € H'(a,b),a < b, o € [0, 1], and M(0) is a normalization function with M(0) = M(1) = 1.
According to He [39,41], the fractional derivative is defined in the following form.

Definition 6.3. [39]

n—1

o _ 1 ﬂ t _ pn—o-1 l AN ) _
DI = f =03 56 - 07w = s

for the continuous and differentiable case.

|
<« (s —tp)

o _ n—o— 1 io _
DI = st f =0 X s 0 - S0l

for continuous and not differentiable case.

Shafiullah and his team [42] have recently addressed this topic, employing fixed point analysis
alongside numerical approaches to derive significant theoretical and computational insights regarding a
class of fractal HFDEs that utilize a power law kernel. The following challenge discussed by Shafiullah
et al. [42] is presented as follows:

6.1)

FABCDCIP (D) — K, c)] = F(3,¥(10)), ¥ € I = (0,T),
Y(0) = Yo + H@®, ¥()),

where [*#¢Dj* denotes the fractal fractional Atangana-Baleanu-Caputo (ABC) derivative fractal order

A€ (0, 1) K, F € C[I xR, R] is a given function, and ¥ € C and A are the proportional delay terms.

Differential equations featuring proportional delay terms constitute the pantograph equations. These
equations are applicable in both pure and applied mathematics, encompassing fields such as control
systems, probability, and electrodynamics. In the case where A = 1, Equation 6.1 yields the standard
HFDE fractals. However, when A4 > 1, Equation 6.1 is classified as ill-posed. The fractal dimension is
denoted by the symbol &, and a value of € = 1 indicates the consideration of the commonly employed
fractional differential operator.

Some examples of fractional derivatives are as follows: The symbol for Riemann Liouville is RL.
CP-is the derivative of Caputo. CF D-is the derivative of Caputo Fabrizio. The exponential kernel in
the CF'D was replaced with a Mittag-Lefller by Atagana and Baleanu [40], and the resulting definition
was dubbed ABC. It has been applied to the Klein-Gordan equation using the HIV-1 model and the
Atangana-Baleanu-Caputo (ABC) differential operator in [42,45].

The following definitions and lemma are taken from [39,40,43,46].

Definition 6.4. The following is the definition of the RL fractional integral of order 0 < o < 1:

o
RLImp(9) = f @& — N7 () dr, 3 1=1[0,T]. (6.2)
0

1
I'(o)
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Definition 6.5. The following is the definition of an ABC-type arbitrary-order integral with order o~ >
0:

ABC 0' _ 1 _ o1
Iyc() = —N( ) Y1) + o )N( )f (¢ —r)?7" W(rdr (6.3)

such that the right side exists.
Additionally, the definition of Mittag-Leffler is as follows:

Definition 6.6. The definition of the arbitrary-order derivative of ABC-type with order 0 < o < 1 is as
follows:

ABC D) = (‘T) e {0) f (,[——(19 P (P (6.4)
In the definition, E, is the Mittag-Leffler function, and the function N(o), which is called
normalization, obeys N(0) = N(1) = 1.
Moreover, the definitions of the fractal fractional ABC integral and derivatives are as follows:

Definition 6.7. The following is the definition of the fractal fractional ABC integral with fractional
order o € (0, 1) and fractals £ € (0, 1):

e(1 — o)y !

FABCIU;,-S 0 —
0= TN

)
e o1 e-1
Y(P) + —F(O')N(O') fo @@ - rr¥Yr)dr. (6.5)

Definition 6.8. The following is the definition of the fractal fractional ABC derivative with fractional
order o € (0, 1) and fractals € € (0, 1):

P Do) = () f AT = 1D g, (6.6)
Lemma 6.1. Ifc € L[0, T] and c(0) = 0, the solution of
FABC DEop() = c(9), with o € (0, 1],
Y(0) = Yo,
is described as follows:
W) = Wy + U ;7(0))19 Ul LA TN )N & f @ — 1) e(rdr. 6.7)

The continuous function defined on 7 has a space I = X. Assume that all continuous functions from /
into X have a norm of ||c|| := sup|c(?)|, ¥ € I for ¢ € C(I, X). Let (X, ||) be a Banach space.
This space defines the path metric by

d’(c, s) = sup{lc(d) — s(D)I"} (6.8)

del

where V¢, s € X. This is a complete CAT ,(0) metric space.
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It is possible to define problem (6.1) as a fixed point problem by using Lemma 6.1.

_ e—1
Y@ = Yo+ HDD,Y®)) + KO, YD) + %c(ﬂ) +

9
oe 9 o161

c() = F(3,¥Y(19))

where

and
c(r) = F(r,¥Y(Ar)).

(6.9)

Referencing [44], the following image in Figure 2 depicts the fractal fractional behavior of Eq (6.1),

which is identical to Eq (6.9).

Figure 2. FABC- CAT,(0) metric spaces.

From the above information, we prove the following theorem.
Theorem 6.1. For this investigation, the following presumptions are required.
(1) There exists a constant £ > 0, such that
IH@,¥(®) — HB, @) < P —F@)| = Lle(@) - s,

(i1) a constant 7 > 0, such that

IA

K(3, ¥(9)) - K3, F()) @) = P = nle(@) - s@)|,

(iii) a constant y > 0 given by

IF(8,¥(9)) — F(A9, Y| < yP(@) — P = yle@) — s,

e(1-o)9°!

where y = o)
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(iv) a constant p > 0 is given by

[F(@,¥(Ar) = F@, ¥l < pl¥@) =¥ = ple@) - s@),

imply that p = ;55— 971 B(0, €), and
(v) K =l+n+vy+p<e<]1,where

dP (T dP(c, T
K < max {d"(Tc, 5), d”(s, Ts),d”(c, 5), (3, S); (c S)} < €= d”(Te,Ts) < €.

Then Eq (6.9) has a unique solution which is also a solution to problem (6.1).

Proof. We define an operator T : X — X by

(1 — o)y !

N o) c(9) +

IYP}) = Yo+ HW,YW))+ KO, Y(D)) +

o
oe o1 -1
[N ) f(; @ =r)7 re(rydr.

The following uses the aforementioned conditions (i) — (v) to demonstrate the existence of a fixed point:

(1 — o) !
N(o)

9
oge o1 e-1 _
+F(0’)N(0‘) fo @—=r)"'r c(r)dr)
&l —o)9e!

N(o)

p

2

TP — TXD| = H(‘I’o + H@, Y@®) + K9, ¥(9)) + ()

(‘Po + HW,Y(®)) + K, P()) + s(9)

g
oe -1 &-1
T J, @ o]

IH®, ¥($)) — HI, Y))II” +

1K@, () — K@, PO +

(1 — o)y¥e!
N(o)

9
ge o1 =1 ~
T@ON @) f @ =7 le) - sl

IA

lle(@) = s@II” +

JI¥@) = YN + @) — FOI” +

e(1 — o)y !

WIIC(ﬁ) = s@II” +
_9¢
I'(o)N(0)
Lle@) = s@I” + nlle@) = s@I” +

HNe@) = s@I” + plle(r) = s’

IA

97 B(a, &)lle(r) = s(II”,

IA
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ITY@) - T¥DI” < C+n+y+p)lle@) = s@IPF,
d"(ZTe(@), Ts(@) < (L+n+7y+p)d"(c(@), (1)),
d’(Te(@), Ts(®@) < KdP(c(®), s(9)).

A A

This suggests that
dP(Tc, s) + dP(c, Ts)
2

Consequently, the fractal fractional hybrid differential Eq (6.1) has a unique solution, which is also the
solution to Eq (6.9). Thus, our evidence is finished. O

kK d?(c(), s(3)) < max {d”(Zc, 5),d?(s, Ts),d’(c, s), } <e=d’(Tc,Ts) <e.

7. Discussion

This model captures the fractal time evolution of MHD flow velocity, reflecting the memory and
multiscale effects inherent in porous or heterogeneous conducting media. Such models have relevance
in:

e Geophysical flows (e.g., lava or saline water),
e Plasma confinement and
¢ Blood flow in biological tissues with magnetic therapy.

The two-scale derivative introduces control over scale effects (a(s)) and temporal memory (5(s)),
while VIM ensures analytical tractability and rapid convergence.

The current study demonstrates that the fractal derivative model can be used to describe the
anomalous diffusion process as captured by diffusion-weighted MRI in a fixed mouse brain. In the
model, the fractal dimension of the diffusion trajectory is directly expressed in terms of the Hausdorft
fractal dimension, and the spectral entropy is used to measure the uncertainty in the heterogeneous
and multi-scale system of biological tissues. Interestingly, the fractal derivative order influences the
diffusion behavior significantly, especially in systems with anomalous transport properties.

8. Conclusions

In this manuscript, we establish and validate fundamental fixed point theorems for CMJ-type
mappings, highlighting their broad applicability and improvements over existing results in the
literature. Our investigation addresses the existence of solutions to a nonlinear matrix equation within
the framework of a CAT ,(0) metric space, thereby reinforcing the claims presented in Theorem 3.1.

Additionally, we examine the behavior of an iterative matrix process governed by a recursive
scheme, which guarantees convergence. This approach is particularly relevant in the context of
solving stochastic matrix equations that frequently arise in image reconstruction problems, such as
those encountered in tomography and signal processing—most notably in X-ray computed
tomography (CT). In these applications, the goal is to reconstruct internal images, such as anatomical
cross-sections, from projection data—often requiring the resolution of large systems of equations
affected by noise and uncertainty.

Our study further extends to hybrid fractional differential equations (HFDEs) within the CAT ,(0)
setting, leading to the formulation and conclusion of Theorem 3.1. We demonstrate that the fractal

AIMS Mathematics Volume 10, Issue 5, 11131-11158.
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derivative framework in CAT,(0) spaces effectively models anomalous diffusion phenomena, as
observed in diffusion-weighted MRI scans of fixed mouse brains. In this model, the fractal nature of
the diffusion pathway is directly quantified via the Hausdorff fractal dimension, while spectral entropy
serves as a metric for the uncertainty inherent in the complex, multi-scale biological tissue
environment. Notably, the order of the fractal derivative is intricately linked to the underlying
diffusion characteristics.

A promising direction for future work involves establishing fixed point theorems for
extended (p, g)-F-interpolative mappings within CAT(0) spaces. To support the theoretical
development, one may construct concrete examples that validate the proposed results. These fixed
point formulations can further be applied to models in economic dynamics such as economic growth,
market equilibrium, and bifurcation scenarios in energy capital accumulation by incorporating
fractional differential equations to demonstrate their practical utility. Additionally, the structure of
CAT(0) spaces can be integrated with generalized two-scale fractional derivatives within the
framework of the variational iteration method (VIM), particularly for modeling heat transfer in fractal
porous media and magnetohydrodynamic (MHD) flow in fractal environments.
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