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Abstract: We consider the stochastic nonlinear Kodama equation (SNLKE) driven by multiplicative
white noise. A specific wave transformation is applied to convert this system into a one-dimensional
conservative Hamiltonian system. We analyze the bifurcation of this system and present its phase
portrait. Additionally, a brief description of the phase portrait is provided, along with an illustration of
the phase orbit degeneracy depending on the bifurcation parameter. Bifurcation allows us to deduce that
changing the parameter values can have a substantial influence on nonlinear optics and mathematical
physics as well as the dynamics of the optical soliton solutions of the Kodama equation. Using the
conserved quantity, we derive new traveling wave solutions for the SNLKE. In the absence of noise,
we recover certain wave solutions for the deterministic case. Furthermore, we examine the influence
of multiplicative white noise on the exact solutions of the SNLKE, with some of the obtained solutions
visualized graphically.
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1. Introduction

Stochastic nonlinear evolution equations (SNLEEs) play a crucial role in a wide range of scientific
disciplines, including physics, biology, chemistry, economics, finance, climate science, and many
others [1, 2]. Therefore, finding solutions to these equations is important because it allows researchers
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to make predictions about the behavior of a system under different conditions, and to optimize strategies
for controlling and manipulating the system.

Recently, there are several analytical methods that can be employed to find solutions to nonlinear
evolution equations (NLEEs), ranging from simple separation of variables to more advanced techniques
such as the exp(−ϕ(ς))-expansion method [3], the Riccati equation method [4], the qualitative theory
of dynamical systems [5–7], the sine-cosine method [8], the (G′/G)-expansion [9,10], the sine-Gordon
expansion technique [11], the Jacobi elliptic function expansion [12], the F-expansion method [13], the
Kudryashov’s method [14], the Hirota Bilinear method [15], the direct algebraic equation method [16],
the modified exp-function method [17], the Elzaki transform [18], etc. By understanding these
analytical methods and their applications, mathematicians and scientists can tackle complex NLEEs
and gain valuable insights into the behavior of the solutions.

Optical solutions are exact or approximate analytical solutions of nonlinear partial differential
equations (PDEs) that model light wave propagation in optical systems. These solutions play a
vital role in areas such as nonlinear optics, fiber optics, and laser physics, where wave dynamics
are influenced by nonlinear effects like self-phase modulation, dispersion, and diffraction. Optical
solutions are classified into different types. Optical soliton solutions are localized waves that maintain
their shape during propagation. Periodic and super-periodic optical solutions refer to repeating
waveforms that appear in optical lattices and photonic crystals. Breather optical solutions are localized
waves that periodically grow and decay in amplitude. Rogue optical wave solutions are extreme
localized waves that emerge in optical fibers due to modulation instability.

In this paper we consider the stochastic nonlinear Kodama equation (SNLKE) as follows:

iGt + Gxx + iGxxx + ℓ1|G|
2G + ℓ2|G|

2Gx + iℓ3G
2G∗x = iσG ◦ Bt, (1.1)

where G = G(x, t) represents the complex function, i2 = −1,
∗

G is the complex conjugate of G, ℓ1, ℓ2

and ℓ3 are arbitrary constants, σ is the noise amplitude. B = B(t) is the Brownian motion, Bt =
∂B
∂t and

G ◦Bt is a multiplicative noise in the Stratonovich sense. In this paper, we only consider the condition
in which noise is a spatial constant. It is very crucial at this point to establish the definition of a
Brownian motion. The stochastic process B(t) is called Brownian motion if it satisfies the following
conditions: (I) B(0) = 0, (II) B(t) has continuous trajectories, (III) {B(t)}∞t=0 has stationary, independent
increments, (IV) the B(t) has a normal distribution. When we put σ = 0, we have the deterministic
nonlinear Kodama equation [19]:

iGt + Gxx + iGxxx + ℓ1|G|
2G + ℓ2|G|

2Gx + iℓ3G
2G∗x = 0. (1.2)

The nonlinear Kodama equation (NLKE) (1.2), also known as the nonlinear Schrödinger equation,
is an important mathematical equation used in the field of nonlinear optics. Nonlinear optics is
the study of how materials interact with light in a nonlinear way, leading to phenomena such as
harmonic generation, self-focusing, and soliton formation. The Kodama equation plays a crucial role
in understanding and predicting these nonlinear optical phenomena. Moreover, the Kodama equation
is used in the study of optical fiber communications. Optical fibers are widely used for long-distance
data transmission due to their low attenuation and high data-carrying capacity. Nonlinear effects in
optical fibers, such as self-phase modulation and four-wave mixing, can degrade the quality of the
transmitted data. The Kodama equation helps researchers model and mitigate these nonlinear effects,
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allowing for more efficient and reliable optical communications systems. Due to the significance
of the NLKE (1.2), many authors have acquired its solutions by applying many different methods
including the generalized Jacobi elliptic method [20], the ansatz method [21], the modified Jacobi
method [22], the planar dynamical system and Lie symmetries group [23], the generalized Riccati
equation method [24]. While the stochastic exact solutions for SNLKE (1.1) have been obtained by
using the (G′/G)-expansion method and mapping method [25].

This article’s goal is to utilize the bifurcation method to find the exact solutions of the SNLKE (1.1)
driven by multiplicative white noise. The phase portrait of Eq (1.1) is examined and analyzed using the
qualitative theory of dynamical systems. In order to investigate the impact of multiplicative white noise
on these solutions, the solutions are also graphically displayed for a range of noise strength parameter
values.

The rest of this paper is structured as follows: Section 2 introduces a wave transformation that
reduces the SNLKE (1.1) to a Hamiltonian system with a single degree of freedom. Section 3
presents a bifurcation study using Hamiltonian concepts. In Section 4, we provide new stochastic
traveling wave solutions for the SNLKE (1.1). Section 5 investigates the quasi-periodic behavior after
introducing certain periodic external effects. Finally, Section 6 presents the conclusion based on the
results obtained.

2. Mathematical analysis

In this section, we obtain the traveling wave equation using a suitable transformation. After that, we
obtain a Hamiltonian system with a single degree of freedom. To obtain the wave equation, we assume
that the solution to Eq (1.1) takes the following form:

G(x, t) =W(ξ)eiΘ+σB(t)−σ2t, Θ = θ1x + θ2t, ξ = ξ1x + ξ2t, (2.1)

whereW is a real deterministic function, ξi and θi are free parameters for i = 1, 2. We see that

Gt = [ζ2W
′ + iθ2W + σWWt +

1
2
σ2W−σ2W]eiΘ+σB(t)−σ2t

= [ζ2W
′ + iθ2W + σW◦Wt]eiΘ+σB(t)−σ2t, (2.2)

where +1
2σ

2W is the Itô correction term, and

Gx = (ζ1W
′ + iθ1W)eiΘ+σB(t)−σ2t,

Gxx = (ζ2
1W

′′ + 2iθ1ζ1W
′ − θ2

1W)eiΘ+σB(t)−σ2t,

Gxxx = (ζ3
1W

′′′ + 3iθ1ζ
2
1W

′′ − 3θ2
1ζ1W

′ − iθ3
1W)eiΘ+σB(t)−σ2t. (2.3)

Substituting Eqs (2.2) and (2.3) into Eq (1.1), we have for the real part

(ζ2
1 − 3ℓ1θ1ζ

2
1 )W′′ + (ℓ1θ

3
1 − θ2 − θ

2
1)W + (ℓ1 − ℓ2θ1 + ℓ3θ1)W3e2σB(t)−2σ2t = 0, (2.4)

and for the imaginary part,

ℓ1ζ
3
1W

′′′ + (ζ2 + 2θ1ζ1 − 3ℓ1θ
2
1ζ1)W′ + ζ1(ℓ2 + ℓ3)W2W′e2σB(t)−2σ2t = 0. (2.5)
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Taking the expectation E(·) on both sides into Eqs (2.4) and (2.5), we have

(ζ2
1 − 3ℓ1θ1ζ

2
1 )W′′ + (ℓ1θ

3
1 − θ2 − θ

2
1)W + (ℓ1 − ℓ2θ1 + ℓ3θ1)W3e−2σ2tE(e2σB(t)) = 0, (2.6)

and
ℓ1ζ

3
1W

′′′ + (ζ2 + 2θ1ζ1 − 3ℓ1θ
2
1ζ1)W′ + ζ1(ℓ2 + ℓ3)W2W′e−2σ2tE(e2σB(t)) = 0, (2.7)

whereW is a real deterministic. Since B(t) is a normal distribution, then E(eσB(t)) = e
1
2σ

2t for σ > 0
(for details, see [26]). Therefore, Eqs (2.6) and (2.7) become

(ζ2
1 − 3ℓ1θ1ζ

2
1 )W′′ + (ℓ1θ

3
1 − θ2 − θ

2
1)W + (ℓ1 − ℓ2θ1 + ℓ3θ1)W3 = 0, (2.8)

and
ℓ1ζ

3
1W

′′′ + (ζ2 + 2θ1ζ1 − 3ℓ1θ
2
1ζ1)W′ + ζ1(ℓ2 + ℓ3)W2W′ = 0. (2.9)

Integrating (2.9) once and putting the integration constant equal to zero, we obtain

ℓ1ζ
3
1W

′′ + (ζ2 + 2θ1ζ1 − 3ℓ1θ
2
1ζ1)W + ζ1(ℓ2 + ℓ3)W3 = 0. (2.10)

Hence, Eqs (2.8) and (2.10) are equal with the following constraint conditions:

θ1 =
ℓ2 + ℓ3 − ℓ

2
1

2ℓ1ℓ2 + 4ℓ1ℓ3
, and θ2 =

8θ2
1ℓ1ζ1(1 − θ1ℓ1) − 2θ1ζ1 + ζ2(3θ1ℓ1 − 1)

ℓ1ζ1
.

Rewriting Eq (2.10) with the previous conditions, we have

W′′(ξ) + rW(ξ) + sW3(ξ) = 0, (2.11)

where r and s are given by

r =
ζ2 + 2θ1ζ1 − 3ℓ1θ

2
1ζ1

ℓ1ζ
3
1

, and s =
ℓ2 + ℓ3

ℓ1ζ
2
1

. (2.12)

Equation (2.11) can be written as a dynamical system in the form

W′ = Y,
Y′ = −W(r + sW2).

(2.13)

Because the system (2.13) is formed from the next Hamiltonian function and div(W′,Y′) = 0, the
system (2.13) is a conservative Hamiltonian system.

H =
1
2
Y2 +

r
2
W2 +

s
4
W4, (2.14)

using canonical Hamilton equations [27]. Physically, the Hamiltonian (2.14) is the one-dimensional
motion of a unit-mass particle under the influence of a potential function characterized by two
parameters

V(W) =
r
2
W2 +

s
4
W4. (2.15)
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Therefore, solving Eq (2.14) is equivalent to determining a solution for the Hamiltonian system (2.13).
Scince, ∂H

∂ξ
= 0, the Hamiltonian (2.14) is constant of motion, meaning it maintains a fixed value along

the phase plane orbits. Thus, we have

1
2
Y2 +

r
2
W2 +

s
4
W4 = p, (2.16)

where p is a constant that plays a significant role, as will be shown later. Using the system (2.13) and
the constant of motion (2.16) and separating the variable provide

dW√
f (W)

= ±dξ, (2.17)

where f (W) is a quartic polynomial given by

f (W) = 2p − rW2 −
s
2
W4. (2.18)

3. Bifurcation analysis

The possible values of the parameters p, r, and s must be identified in order to integrate both sides
of Eq (2.17). To discover these parameter ranges and categorize the different kinds of solutions before
solving the equation, a bifurcation analysis must be carried out.

We utilize Hamiltonian approaches to determine the system’s equilibrium points (2.13) and examine
their characteristics [27]. The equilibrium points, or (W0, 0), are the critical positions for the potential
function (2.15), whereW0 is a solution for

dV
dW

=W0(r + sW2
0) = 0. (3.1)

Hence, if rs > 0, the system (2.13) has a single equilibrium point, O = (0, 0). However, if rs < 0,

the system has three equilibrium points: O = (0, 0) and Q1,2 = (±
√
−r
s , 0). According to Lagrange’s

theorem, the equilibrium point of a conservative Hamiltonian system is either stable (a center) if it
corresponds to a minimum of the potential function (2.15), or unstable (a saddle point) if it corresponds
to a maximum of the potential function (2.15). Thus, we calculate

d2V
dW2 |O = r,

d2V
dW2 |Q1,2 = −2r. (3.2)

Thus, we have:
(a) If rs > 0, then the system (2.13) has a unique equilibrium point. If r > 0, s > 0, the equilibrium
point O is the center; if r < 0, s < 0, it is the saddle. Figure 1 demonstrates the phase portrait in this
instance.
(b) When rs < 0, the system (2.13) has three equilibrium points. If r < 0, s > 0, the equilibrium points
O and Q1,2 serve as a saddle and centers; if r > 0, s < 0, they are a center and saddle. In Figure 2, the
relevant phase portrait is displayed.
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(a) r > 0, s > 0 (b) r < 0, s < 0

Figure 1. The system (2.13)’s phase portrait for rs > 0. The equilibrium point is shown by
the black solid point. (a) r = 1, s = 1, (b) r = −1, s = −1.
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(a) r > 0, s < 0 (b) r < 0, s > 0

Figure 2. Phase portrait for the system (2.13) for rs < 0. The black solid points indicate the
equilibrium points. (a) r = 2, s = −1, (b) r = −2, s = 1.

To give a short description of the phase portrait, we compute the value of the parameter p at the
equilibrium points. They are

p0 = H(O) = 0, p1 = H(Q1,2) = −
r2

4s
. (3.3)

It is well known that the phase orbits are parametrized by p, i.e.,

Cp = {(W,W′) ∈ R2 : Y2 = 2(p − V(W)}. (3.4)

For fixed values of r and s, the type of solution is determined by the value of p. When
(r, s) ∈ R+ × R+, all the phase orbits are bounded and periodic for p > 0 and they are characterized
by Cp>0. This family of orbits degenerates into the equilibrium point O as p approaches zero; see
Figure 1(a). Conversely, if (r, s) ∈ R−×R−, all phase orbits are unbounded, as illustrated in Figure 1(b).
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Consequently, the corresponding solutions to system (2.13) are also unbounded, making this type of
solution physically less significant. When (r, s) ∈ R+×R−, the phase portrait is depicted in Figure 2(a).
The type of solution depends on p. There are three families of orbits: the blue family, C0<p<p1 ,
which includes a periodic orbit contained within the heteroclinic orbit in green, Cp=p1 . For other
values of p, the phase orbits are unbounded. Notably, the periodic family in blue degenerates into
the equilibrium point O as p approaches zero and into the heteroclinic orbit in green as p approaches
p1. If (r, s) ∈ R− × R+, the phase portrait is shown in Figure 2(b). When p = 0, a homoclinic orbit
appears in blue, Cp=0, enclosing two periodic families of orbits in red around the two center points Q1,2.
Additionally, a family of super-periodic orbits emerges in green, Cp>0. The two periodic orbit families
in red degenerate into the equilibrium points Q1,2 and into the homoclinic orbit as p approaches p1

and zero, respectively. On the other hand, the super-periodic family in green degenerates into the blue
homoclinic orbit as p approaches zero.

Therefore, the bifurcation parameter p plays a crucial role in determining the solution’s behavior.

4. Solutions of SNLKE

The construction of the solution to Eq (1.1), or the determination ofW(ξ), is the main goal of this
section. We limit ourselves to forming solutions that correspond to constrained phase orbits in the
following. We create the following potential solutions while accounting for the bifurcation conditions
on the parameters s, r, and p:
(a) If r > 0, s > 0, p > 0, the system has a family of periodic orbits in red as shown in Figure 1(a).
Therefore, the polynomial f (W) has two real roots, denoted by ±q1, and two pure imaginary roots,
denoted by iq2. Hence, f (W) =

√ s
2 (q2

1 −W
2)(q2

2 +W
2). LetW ∈ (−q1, q1) and assumeW(0) = q1.

The integration of Eq (2.17) gives

W1(ξ) = q1cn
(√ s

2
(q2

1 + q2
2)ξ,

q1√
q2

1 + q2
2

)
, (4.1)

where cn(u, k) is a Jacobi elliptic function [28]. By using Eqs (4.1) and (2.1), Eq (1.1) has a new
solution in the form

G1(x, t) = q1cn
(√ s

2
(q2

1 + q2
2)ξ,

q1√
q2

1 + q2
2

)
eiΘ+σB(t)−σ2t. (4.2)

Figure 3 provides a graphical representation of solution (4.2) for different values of the noise
strength. In Figure 3(a), the solution (4.2) exhibits periodic behavior in the deterministic case. As
the noise strength increases, the surface representing the solution becomes rougher, as shown in
Figures 3(b)–3(e). Figure 3(f) presents a 2D representation of the solutions, highlighting that an
increase in noise strength leads to a decrease in both the amplitude and width of the solution. Moreover,
for larger noise values, the solution loses its periodicity.
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(a) σ = 0 (b) σ = 0.1

(c) σ = 0.3 (d) σ = 1

(e) σ = 2 (f) σ = 0, 0.1, 0.3, 1, 2

Figure 3. (a-e) depict 3D-profile of |G1(x, t)| presented in Eq (4.2) with ℓ1 = θ1 = −1, ℓ2 =

ℓ3 = ξ1 = 1, and ξ2 = −2 (f) exhibits 2D-profile of Eq (4.2) with various σ.

(b) Figure 2(a) displays the phase picture of the system (2.13) if r > 0, s < 0. The phase plane orbits
change according to the value of the parameter p, as previously mentioned. As a result, we create
potential solutions forW(ξ) for various p values.
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• If p ∈ (0, p1), the polynomial f (W) has four real roots, namely, ±q3,±q4, where 0 < q3 < q4.
Hence, it reads as f (W) = − s

2 (W2 − q2
3)(W2 − q2

4). The interval of real solutions forW(ξ) is
W ∈ (−∞,−q4) ∪ (−q3, q3) ∪ (q4,∞). Let us find the solutions along each interval individually.
(i) Presume that W ∈ (−q3, q3), which represents the blue periodic orbit family. Assuming
W(0) = q3 and integrating both sides of Eq (2.17), we obtain

W2(ξ) = ±q3cd
(
q4

√
−s
2
ξ,

q3

q4

)
. (4.3)

The function cd(u, k) = cn(u, k)/dn(u, k) denotes a Jacobi elliptic function [28]. A novel solution
to Eq (2.1) can be obtained by substituting the expression (2.12) into (2.1). This solution takes
the form

G2(x, t) = ±q3cd
(
q4

√
−s
2
ξ,

q3

q4

)
eiΘ+σB(t)−σ2t. (4.4)

(ii) Let W ∈ (q4,∞) ∪ (−∞,−q4), which corresponds to the two unbounded orbits in blue.
PresumingW(0) = q4, and both sides of Eq (2.17) are integrated, the result is

W3(ξ) = ±q4dc
(
q4

√
−s
2
ξ,

q3

q4

)
, (4.5)

where dc(u, k) = dn(u, k)/cn(u, k) is a Jacobi elliptic function [28]. By substituting the
expression (4.5) into Eq (2.1), we obtain a new solution to Eq (1.1) in the form

G3(x, t) = ±q4dc
(
q4

√
−s
2
ξ,

q3

q4

)
eiΘ+σB(t)−σ2t. (4.6)

• On p = p1, the polynomial f (W) has two doubles roots, which are the W-coordinates of the
saddle equilibrium points. Hence, it is expressed as f (W) = − s

2 (W2 + r
s )2. The intervals of real

solutions forW(ξ) areW ∈ (−∞,−
√
−r
s ) ∪ (−

√
−r
s ,
√
−r
s ) ∪ (

√
−r
s ,∞). Let us find the solution

along each interval individually:

(i) We considerW ∈

(
−

√
−r
s ,
√
−r
s

)
, which represents the green heteroclinic orbit connecting the

two saddle points Q1,2 with themselves. By assuming thatW(0) = 0 and both sides of Eq (2.17)
are integrated, the result is

W4(ξ) = ±

√
−r
s

tanh
(√ r

2
ξ
)
. (4.7)

Inserting the expression (4.7) into Eq (1.1), we obtain a new solution to Eq (1.1) in the form

G4(x, t) = ±

√
−r
s

tanh
(√ r

2
ξ
)
eiΘ+σB(t)−σ2t. (4.8)

Figure 4 provides a graphical representation of the solution (4.8) for various values of the noise
strength.

(ii) The two extensions of the hetroclinic orbit are represented byW ∈ (−∞,−
√
−r
s )∪ (

√
−r
s ,∞).

With the assumption thatW(0) = ∞, both sides of Eq (2.17) are integrated; the result is

W5(ξ) = ∓
√

r
s
coth
(√−r

2
ξ
)
. (4.9)
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We establish a new solution to Eq (1.1) using Eqs (4.9) and (2.1), which takes the form

G5(x, t) = ∓
√

r
s
coth
(√−r

2
ξ
)
eiΘ+σB(t)−σ2t. (4.10)

(a) σ = 0 (b) σ = 0.1

(c) σ = 0.3 (d) σ = 1

(e) σ = 2 (f) σ = 0, 0.1, 0.3, 1, 2

Figure 4. (a-e) depict 3D-profile of |G4(x, t)| presented in Eq (4.8) with ℓ1 = θ1 = −1, ℓ2 =

ℓ3 = ξ1 = 1, and ξ2 = −2 (f) exhibits 2D-profile of Eq (4.8) with various σ.

AIMS Mathematics Volume 10, Issue 5, 11111–11130.



11121

• If p > p1, the polynomial f (W) has pure complex conjugate roots denoted by ±iq5 and ±iq6,
where 0 < q5 < q6. Therefore, we write as f (W) = − s

2 (W2 + q2
5)(W2 + q2

6). The intervals of
real solutions for W are W ∈ (−∞,∞). Assuming W(0) = 0 and both sides of Eq (2.17) are
integrated, the result is

W6(ξ) = ±q5sc
(
q6

√
−s
2
ξ,

√
1 −

q2
5

q2
6

)
, (4.11)

where sc(u, k) = sn(u, k)/cn(u, k) is a Jacobi elliptic function. A newly discovered solution to
Eq (1.1) can be obtained by inputting the expression (4.11) into Eq (2.1). This solution takes
the form

G6(x, t) = ±q5sc
(
q6

√
−s
2
ξ,

√
1 −

q2
5

q2
6

)
eiΘ+σB(t)−σ2t. (4.12)

• As shown in Figure 2(a), when p = 0, the system (2.13) exhibits a pink unbounded orbit. The

polynomial f (W) has two double roots and two simple roots at the origin, ±
√
−r
2s . The solutions

forW(ξ) are found within the intervalsW ∈ (−∞,−
√
−r
2s )∪ (

√
−r
2s ,∞). AssumingW(0) = 0 and

integrating both sides of Eq (2.1), we derive the following:

W7(ξ) = ±

√
−2r

s
tan(
√

rξ). (4.13)

We gain a new solution to Eq (1.1) by entering Eq (4.13) into Eq (2.1), which takes the form

G7(x, t) = ±

√
−2r

s
tan(
√

rξ)eiΘ+σB(t)−σ2t. (4.14)

• When p < 0, the polynomial has two real roots, namely ±q7, and two pure conjugate complex
roots, namely ±iq8. Consequently, f (W) has the structure f (W) = − s

2 (W2 − q2
7)(W2 + q2

8).
The real solutions forW(ξ) exist whenW ∈ (q7,∞) ∪ (−∞,−q7). PostulatingW(0) = q7 and
integrating both sides of Eq (2.1), we obtain

W8(ξ) = q7nc
(√−s

2
(q2

7 + q2
8)ξ,

q8√
q2

7 + q2
8

)
, (4.15)

where nc(u, k) = 1/cn(u, k) is a Jacobi-elliptic function [28]. By employing the Eqs (4.15)
and (2.1), we obtain a novel solution to Eq (1.1) in the form

G8(x, t) = q7nc
(√−s

2
(q2

7 + q2
8)ξ,

q8√
q2

7 + q2
8

)
eiΘ+σB(t)−σ2t. (4.16)

(c) If r < 0 and s > 0, the phase portrait of system (2.13) is described by Figure 2(b). Let us form the
solutions to Eq (1.1) for distinct values of the parameter p, separately.

• A family of super-periodic orbits in green appears in the system when p > 0. As a result, the
polynomial f (W) has two real roots, ±q9, and two conjugate pure complex roots, ±iq10. The
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formula for f (W) is given by f (W) = s
2 (q2

9 −W
2)(q2

10 +W
2). WhenW ∈ (−q9, q9),W(ξ) has

a real solution. AssumingW(0) = q9 and integrating both sides of Eq (2.1), we obtain

W9 = q9cn
(√ s

2
(q2

9 + q2
10)ξ,

q9

q2
9 + q2

10

)
. (4.17)

Using Eqs (4.17) and (2.1), we obtain a new solution to Eq (1.1) in the form

G9(x, t) = q9cn
(√ s

2
(q2

9 + q2
10)ξ,

q9

q2
9 + q2

10

)
eiΘ+σB(t)−σ2t. (4.18)

• When p ∈ (p1, 0), the polynomial f (W) has four real roots denoted by ±q11 and ±q12, where
0 < q11 < q12. Hence, it is written as f (W) = s

2 (q2
11 −W

2)(W2 − q2
12). The real solutions for

W(ξ) exist forW ∈ (q11, q12) ∪ (−q12,−q11). AssumingW(0) = q12 and integrating both sides
of Eq (2.1), we obtain

W10(ξ) = ±q12dn(q12

√
s
2
ξ,

√
1 −

q2
11

q2
12

). (4.19)

Inserting the expression (4.19) into Eq (2.1), we obtain a novel solution to Eq (1.1) in the form

G10(x, t) = ±q12dn
(
q12

√
s
2
ξ,

√
1 −

q2
11

q2
12

)
eiΘ+σB(t)−σ2t. (4.20)

• When p = 0, the system (2.13) has two homoclinic orbits in blue connected to the saddle point

O with itself. The polynomial f (W) has two simple roots, ±
√
−2r

s , and one double root at the

origin. Therefore, it is written as f (W) = s
2W

2(−2r
s −W

2). The real solution for W exists if

W ∈ (0,
√
−2r

s ) ∪ (−
√
−2r

s , 0). Let W ∈ (0,
√
−2r

s ), which corresponds to the right homoclinic

orbit, and assumeW(0) =
√
−2r

s . Hence, the integration of both sides of Eq (2.1) gives

W11(ξ) =

√
2r
−s

sech(
√
−rξ). (4.21)

By utilizing the Eqs (4.21) and (2.1), we obtain a new solution to Eq (1.1) in the form

G11(x, t) =

√
2r
−s

sech(
√
−rξ)eiΘ+σB(t)−σ2t. (4.22)

Figure 5 provides a graphical representation of the solution (4.22) for different values of noise
strength. Figure 5(a) illustrates that the surface representing the solution (4.22) is solitary and
smooth. As the noise strength σ increases, the surface characterizing the solution (4.22) becomes
rough, as shown in Figures 5(b) and 5(c). Furthermore, for larger noise values, the solution (4.22)
flattens, as depicted in Figure 5(d). The 2D representation of the solution (4.22) shows that while
the amplitude decreases, the width remains approximately unchanged. However, for larger noise
values, the solution (4.22) becomes completely flat, as illustrated in Figure 5(f).

Remark 4.1. We observe that the solutions of the SNLKE (1.1) fluctuate and have a distinct pattern
when the noise strength σ = 0. However, as the noise strength σ increases, the pattern begins to break
down, as shown in Figures 3–5. This indicates that the multiplicative noise in the Itô sense affects the
solutions of the SNLKE (1.1) and stabilizes them around zero.
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(a) σ = 0 (b) σ = 0.1

(c) σ = 0.3 (d) σ = 1

(e) σ = 2 (f) σ = 0, 0.1, 0.3, 1, 2

Figure 5. (a-e) depict 3D-profile of |G11(x, t)| presented in Eq (4.22) with θ1 = ℓ1 = ℓ2 =

ℓ3 = ξ1 = 1, and ξ2 = −2 (f) exhibits 2D-profile of Eq (4.22) with various σ.
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5. Quasi-periodic behaviour

This section looks at the non-autonomous system’s autoresonance behaviour, or how the oscillator
self-regulates when it is exposed to a fluctuating periodic force. Thus, we consider the perturbed system

W′ = Y,

Y′ = −W(r + sW2) + ν1cn(ν2ξ, κ).
(5.1)

The external effects denoted by F = ν1cn(ν2ξ, κ) are defined by the two parameters νi, i = 1, 2. Strength
and frequency of external periodic effects F are indicated by the parameters ν1 and ν2. The period of
the external effect is 4K(κ)/ν2, where K(κ) is a complete elliptic integral of the first kind and given
by [28]

K(κ) =
∫ π/2

0

dψ√
1 − κ2 sin2 ψ

.

The perturbed system can be viewed as a generalization of the undamped Duffing system [29],
to which it reduces when κ = 0. The presence of the arbitrary constants r and s, along with the
two constants ν1, ν2, and κ that define the perturbed term, complicates the analysis of the periodic
and chaotic dynamical features of the system (5.1). This analysis includes varying the frequency and
strength while keeping the other parameters constant.
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(a) 2D− phase portrait (b) 3D− phase portrait
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(c) Time analysisW(ξ) verse ξ

Figure 6. The 2D, 3D, and time series for the unperturbed system (2.13) with initial condition
W(0) = 0.1 andW′(0) = 0.1 while r = 1, s = 1, and κ = 0.02.
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First, we analyze the perturbed system (5.1) with ν1 = 0, which is equivalent to considering the
unperturbed system (2.13). Based on the bifurcation analysis, the unperturbed system (2.13) exhibits
periodic behavior when (r, s, p) ∈ (R+ × R+ × R+) ∪ (R+ × R− × (0,− r2

4s )) ∪ (R− × R+ × (− r2

4s , 0)). In
this study, we focus on the case (r, s, p) ∈ (R+ × R+ × R+), as the similarity in the analysis for the
other possible ranges of r, s, and p. Accordingly, we set r = 1 and s = 1. Choosing initial conditions
W(0) = 0.1 andW′(0) = 0.1 and applying Eq (2.16), we obtain p = 0.100025 > 0. Thus, for these
parameter values and initial conditions, the unperturbed system (2.13) exhibits periodic behavior, as
illustrated in Figure 6, in agreement with the bifurcation theory. The system exhibits a periodic phase
orbit as shown in Figures 6(a) and 6(b). Additionally, Figure 6(c) illustrates the periodicity ofW(ζ)
versus ζ.

Second, we analyze the perturbed system (5.1) using the same values for r, s, κ, and the initial
conditions, in order to investigate the influence of periodic external effects on the dynamical behavior
of system (2.13).

By choosing ν1 = 0.2, ν2 =
√

3, κ = 0.02, the 2D and 3D phase portraits shown in Figures 7(a)
and 7(b) exhibit a regular structure (e.g., invariant tori), indicating the presence of quasi-periodicity.
This behavior is further confirmed by the time series displayed in Figure 7(c).
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(a) 2D− phase portrait (b) 3D− phase portrait
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(c) Time analysisW(ξ) verse ξ

Figure 7. The 2D, 3D, and time series for the unperturbed system (5.1) with initial condition
W(0) = 0.1 andW′(0) = 0.1 while r = 1, s = 1, ν1 = 0.2, ν2 =

√
3, and κ = 0.02.
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In a contrast, When ν1 = 20, ν2 = 1, κ = 0.02, the 2D and 3D phase portraits shown in Figures 8(a)
and 8(b) display irregular dynamics, indicating the presence of chaotic behavior. This is further
illustrated by the time series presented in Figure 8(c).
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(a) 2D− phase portrait (b) 3D− phase portrait

0 50 100 150

-4

-3

-2

-1

0

1

2

3

4

(c) Time analysisW(ξ) verse ξ

Figure 8. The 2D, 3D, and time series for the unperturbed system (5.1) with initial condition
W(0) = 0.1 andW′(0) = 0.1 while r = 1, s = 1, ν1 = 20, ν2 = 1, and κ = 0.02.

On another hand, the Poincaré surface of section is a powerful tool for the qualitative analysis of
dynamical systems, particularly in studying nonlinear and Hamiltonian systems. This method records
the intersections of a trajectory with a lower-dimensional subspace (the “section”) at discrete time
intervals, effectively reducing the system’s dimensionality. By doing so, it enables clearer visualization
of long-term behavior. Distinct patterns on the section, such as regular, quasi-periodic, or chaotic
dynamics, can be readily identified and analyzed [30, 31].

The Poincaré surface of section is generated for the perturbed system using MATLAB, considering
different values of the parameters ν1 and ν2 using Matlab software. Figure 9 displays the Poincaré
surface of section for system (5.1) across varying parameters ν1, and ν2. Figure 9(a) (ν1 = 0) reveals
a single line on the section, confirming strictly periodic motion. Figure 9(b), for ν1 = 0.2, ν2 =

√
3,

and κ = 0.02, exhibits points distributed along nested closed curves (invariant tori), indicative of quasi-
periodic dynamics. In contrast, Figure 9(c) (ν1 = 20, ν2 = 1 and κ = 0.02) demonstrates a scattered
point distribution, a hallmark of chaos. Together, these results illustrate the system’s progression from
periodic to quasi-periodic and finally to chaotic behavior as parameters are adjusted.
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Figure 9. Poincaré surface of section for the system (5.1) for different values of ν1 and ν2.

6. Conclusions

This paper is interested in constructing traveling wave solutions for the stochastic nonlinear Kodama
equation (SNLKE) forced by multiplicative white noise. A wave transformation has been applied to
transform the SNLKE into a two-dimensional dynamical system. Based on the qualitative theory of the
dynamical system, the bifurcation and phase portrait have been investigated and clarified graphically in
the phase plane for different values of the parameters. Taking into account the conserved quantity and
bifurcation constraints on the parameters, some new traveling wave solutions have been introduced.
Furthermore, we have explained the influence of multiplicative noise on the exact solution of the
SNLKE graphically. Furthermore, we have explored the quasi-periodic and chaotic patterns exhibited
by the perturbed system by introducing periodic external effects into the current phenomenon, thereby
illustrating the system’s chaotic behavior. Quasi-periodic patterns play a crucial role in designing
and optimizing optical systems, influencing key features such as resonance modes, light propagation,
and filtering properties. They are particularly important in photonic crystals and integrated optical
devices, where precise periodicity control enhances performance and enables new functionalities.
Understanding these phenomena can improve the efficiency of optical sensors, modulators, and lasers,
as well as optimize light trapping in solar cells and resonance tuning in optical cavities. For further
details, see, for example, [32]. In future work, we can consider the stochastic nonlinear Kodama
equation with additive noise.
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