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Abstract: This paper studies mean-field linear-quadratic-Gaussian (LQG) games with a major
agent and a large number of minor agents, where each agent’s state process is driven by a Poisson
random measure and independent Brownian motion. The major and minor agents were coupled
via both their state dynamics as well as in their individual cost functionals. By the Nash certainty
equivalence (NCE) methodology, two limiting control problems were constructed and the decentralized
strategies were derived through the consistency condition. The ϵ-Nash equilibrium property of the
obtained decentralized strategies was shown for a finite N population system where ϵ = O(1/

√
N).

A numerical example was presented to illustrate the consistency of the mean-field estimation and the
impact of the population’s collective behavior.
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1. Introduction

Mean-field games of a large population system have attracted consistent and intense attention in
recent years (see, e.g., [1–10]) due to their wide applicability in many fields such as finance,
economics, engineering, biological science, and social science. The agents in mean-field games are
individually insignificant, while their aggregated behavior has a substantial effect on each agent. This
collective influence can be captured by the mean-field couplings in their individual dynamics and/or
individual cost functionals. For mean-field games, it is unrealistic for a given agent to collect detailed
state information of all agents due to the highly complex interactions among its peers. To tackle the
dimensionality difficulty caused by the highly complex interactions among the agents in mean-field
games, Huang, Caines, and Malhamé [11], Huang [12], and Nourian and Caines [13] developed a
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powerful approach—the Nash certainty equivalence (NCE) methodology. The key idea of this
methodology is to establish a consistency relationship between the individual strategies and the mass
effect (i.e., the asymptotic limit of state-average) as the population size goes to infinity. Based on this
effective analytical tool, one can construct a set of decentralized strategies for each agent in the
mean-field game, and verify the asymptotic Nash equilibrium property (namely, ϵ-Nash equilibrium)
of the decentralized strategies where the individual optimality loss level ϵ depends on the population
size N. A closely related method for solving mean-field games was independently developed by Lasry
and Lions [14–16]. For a comprehensive survey of the theory of the mean-field game and its
applications, one is referred to [11, 12, 14, 16–21] and the references therein.

The consideration of major and minor a agent game problems under a large population framework
has been well studied in [3,12,13,21,22]. Huang [12] investigated a kind of stochastic dynamic linear-
quadratic-Gaussian mean-field games model involving a major agent interacting with a large number
of minor agents. The major agent has a significant influence in affecting minor agents, while the
minor agents individually have negligible impact on others, but their collective behavior will impose
a significant impact on all agents through mean-field coupling terms in the individual dynamics and
costs. Applications of this type of mean-field game appear in many socio-economic problems such as
economic and social opinion models with an influential leader (e.g., [23]), such as the charging control
of plug-in electric vehicles [24]. Xu and Wu [21] studied large-population dynamic games involving a
LQG system with an exponential cost functional, and the parameter in the cost functional can describe
an investor’s risk attitude. Moreover, in the game, there is a major agent and a population of N minor
agents where N is very large. Wang and Xu [22] investigated a time-inconsistent linear-quadratic game
involving a major agent as well as numerous minor agents.

Motivated by the absence of relevant theory and some practical applications, this paper studies
mean-field LQG games with random jumps involving a major agent and plenty of minor agents.
Specifically, we consider mean-field games with agents of the following mixed types: (i) a major
agent and (ii) a large population of N minor agents where N is very large. The dynamic of each agent
follows a linear stochastic differential equation driven by both Brownian motions and Poisson random
measures. Moreover, the present study considers the mean-field LQG mixed games in which the
diffusion term depends on the major agent’s and the minor agent’s states as well as the individual
control strategy. Stochastic processes with random jumps can be used to model fluctuations in the
financial market, both for option pricing purposes and risk management (see [20, 25–27]). As for
mean-field LQG games with random jumps, Benazzoli, Campi, and Di Persio [1] studied a symmetric
n-player nonzero-sum stochastic differential game with jump-diffusion dynamics and mean-field type
interaction among the players, and they constructed an approximate Nash equilibrium for the n-player
game with n sufficiently large. Xu and Shi [20] investigated LQG games of a stochastic large
population system with jump diffusion processes. It is worth noting that in existing research on
mean-field games of a stochastic large population system driven by jump-diffusion processes, all
agents are comparably small and may be regarded as peers.

To obtain an asymptotic Nash equilibrium property (i.e., ϵ-Nash equilibrium) for the original mean-
field game, we apply the NCE approach to establish a certain consistency relationship between all
minor agents and the mass effect. First, we construct two auxiliary stochastic control problems driven
by stochastic differential equations driven by Poisson jumps (SDEPs) which depict the state of the
major agent and a generic minor agent, and obtain the corresponding optimal control in feedback
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form. Next, to devise the decentralized strategies of individual agents, we formulate a kind of fully
coupled forward-backward stochastic differential equation driven by Poisson jumps which is called a
consistency condition (CC) system. Then, a set of decentralized strategies are constructed by using the
solution of the CC system, which are demonstrated to be the ϵ-Nash equilibrium.

The main contributions of this paper can be summarized as follows:

• A new class of LQG mean-field games involving major and minor agents is investigated. The
dynamics of each agent follows a linear stochastic differential equation driven by both Brownian
motions and Poisson random measures, in which the diffusion terms of the major and minor
agents depend on their states and control strategy.
• The average state of all minor agents x(N)(·) appears in the drift term and diffusion term of the state

equations for both the major agent and all the minor agents, as well as in their cost functionals.
• The consistency condition system called the NCE equation is represented through a fully coupled

two-point boundary value problem, and based on this equation, we design a set of decentralized
feedback control strategies for the N + 1 agents by use of two limiting control systems.
• By the approximation relationship between the closed-loop mean-field game system and the

limiting systems, the set of NCE-based decentralized control strategies is shown to be an ϵ-Nash
equilibrium for a finite N + 1 population system where ϵ = O(1/

√
N).

This paper is organized as follows. In Section 2, we formulate the LQG mean-field games driven
by Poisson random jumps involving a major agent and many minor agents. Section 3 introduces
two auxiliary optimization problems for the major agent and each minor agent, respectively, and the
consistency condition system is derived. Section 4 aims to present the ϵ-Nash equilibrium property
of the decentralized control strategies. A numerical example is given in Section 5. Finally, Section 6
concludes the paper.

2. Formulation of the problem

2.1. Notations

Throughout this paper, we denote by Rn the n-dimensional Euclidean space. For a given Euclidean
space, we denote by | · | (respectively, ⟨·, ·⟩) the standard Euclidean norm (respectively, inner product).
The transpose of a matrix (or vector) X is denoted by XT . Let (Ω,F , {Ft}0≤t≤T ,P) be a complete filtered
probability measure space for fixed time T > 0, and let the number N represent the population size
of minor agents. Denote by N the index set {1, 2, · · · ,N}. Let Ft be the filtration generated by the
following mutually independent processes:

(i) (N + 1) independent one-dimensional standard Brownian motions {Wi(t), i = 0, 1, · · · ,N}0≤t≤T ;
(ii) (N + 1) independent Poisson random measures {G̃i, i = 0, 1, · · · ,N} on Ei ×R

+, where Ei ⊂ R is
a nonempty open set equipped with its Borel field B(Ei), with compensator Ĝi(dedt) = πi(de)dt, such
that Gi(S × [0, t]) = (G̃i − Ĝi)(S × [0, t])t≥0 is a martingale for all S ∈ B(Ei). πi is a σ-finite measure
on (Ei,B(Ei)) and is called the characteristic measure. Moreover, ∀S ∈ B(Ei), C0 := sup

0≤i≤N
πi(S ) < +∞

is a positive constant independent of the number N.
We also set

F 0
t := σ

{
W0(s), 0 ≤ s ≤ t}

∨
σ{G0(S 0 × [0, s]), 0 ≤ s ≤ t,∀S 0 ∈ B(E0)

}
,
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F i
t := σ

{
Wi(s), 0 ≤ s ≤ t}

∨
σ{Gi(S i × [0, s]), 0 ≤ s ≤ t,∀S i ∈ B(Ei)

}
,

F
0,i

t := σ
{
W0,Wi(s), 0 ≤ s ≤ t}

∨
σ{G0(S 0 × [0, s]),Gi(S i × [0, s]), 0 ≤ s ≤ t,

∀S 0 ∈ B(E0), S i ∈ B(Ei)
}
,

where
∨
α Fα := σ

(⋃
α Fα

)
. Here, {F 0

t }0≤t≤T represents the information of the major agent, whereas for
the given i ∈ N , {F i

t }0≤t≤T stands the individual information of the ith minor agent.
Denote by Sn the set of symmetric n × n matrices with real elements. If M ∈ Sn is positive (semi)

definite, we write M > (≥) 0. We also introduce the following spaces:

L2
G(Rn) :=

{
ζ : Ω→ Rn|ζ is G-measurable and E

[
|ζ |2

]
< +∞

}
;

S 2
G

([0,T ];Rn) :=
{
ϕ(·) : [0,T ] ×Ω→ Rn|ϕ(·) is Gt-adapted and E

[
sup

0≤t≤T
|ϕ(t)|2

]
< +∞

}
;

L2
G

([0,T ];Rn) :=
{
ϕ(·) : [0,T ] ×Ω→ Rn|ϕ(·) is a Gt-progressively measurable process

and E
[ ∫ T

0
|ϕ(t)|2dt

]
< +∞

}
.

2.2. Major-minor mean-field game problems

Let us consider an LQG mean-field game involving a major agentA0 and a population of N minor
agents {Ai, i = 1, 2, · · · ,N}. For the major agent A0, Uc,0

ad := {u(·)|u(·) ∈ L2
F

([0,T ];Rk)} denotes the
centralized admissible control set, andU0

ad := {u(·)|u(·) ∈ L2
F 0([0,T ];Rk)} represents the corresponding

decentralized admissible control set. For each i ∈ N , we define the centralized admissible control set
for the minor agent Ai as Uc,i

ad := {ui(·)|ui(·) ∈ L2
F

([0,T ];Rk)}, while the corresponding decentralized
admissible control set is Ui

ad := {ui(·)|ui(·) ∈ L2
F 0,i([0,T ];Rk)}. Note that we have Ui

ad ⊂ U
c,i
ad for

i = 0, 1, · · · ,N.
The dynamics of the major agentA0 is given as follows:

dx0(t) = [A0x0(t) + B0u0(t) + b0x(N)(t) + f0(t)]dt + [C0x0(t) + D0u0(t)
+ l0x(N)(t) + σ0(t)]dW0(t) + F0

∫
E0

G0(dedt),
x0(0) = a0 ∈ R

n,

(1)

and the state of the minor agentAi is described by
dxi(t) = [Axi(t) + Bui(t) + b1x(N)(t) + f (t)]dt + [Cxi(t) + Dui(t)

+ b2x(N)(t) + Hx0(t) + σ(t)]dWi(t) + F
∫

Ei
Gi(dedt),

xi(0) = ai ∈ R
n, i = 1, · · · ,N,

(2)

where x(N)(t) = 1
N

∑N
j=1 x j(t) represents the average state of all minor agents. Here, A0 ∈ R

n×n, B0 ∈

Rn×k,C0 ∈ R
n×n,D0 ∈ R

n×k, b0 ∈ R
n×n, l0 ∈ R

n×n, F0 ∈ R
n, A ∈ Rn×n, B ∈ Rn×k,C ∈ Rn×n,D ∈ Rn×k, b1 ∈

Rn×n, b2 ∈ R
n×n,H ∈ Rn×n, and F ∈ Rn are given constants, and f0(·) ∈ Rn, σ0(·) ∈ Rn, f (·) ∈ Rn, and

σ(·) ∈ Rn are given deterministic functions. For given admissible control u0 and ui, it follows that the
systems (1) and (2) admit a unique solution x0(·), xi(·) ∈ S 2

F
([0,T ];Rn).

Let u = (u0, u1, . . . , ui, . . . , uN) be the set of control strategies for all N + 1 agents, and u−i =

(u0, u1, . . . , ui−1, ui+1, . . . , uN) for i = 0, 1 · · · ,N. The cost functional for the major agentA0 is

J0(u0, u−0) =
1
2
E
{ ∫ T

0

[
⟨Q0(x0(t) − β0x(N)(t)), (x0(t) − β0x(N)(t))⟩ + ⟨R0u0(t), u0(t)⟩

]
dt
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+ ⟨M0x0(T ), x0(T )⟩
}
. (3)

The cost functional for minor agentAi, 1 ≤ i ≤ N, is

Ji(ui, u−i) =
1
2
E
{ ∫ T

0

[
⟨Q(xi(t) − β1x(N)(t) − β2x0(t)), (xi(t) − β1x(N)(t) − β2x0(t))⟩

+ ⟨Rui(t), ui(t)⟩
]
dt + ⟨Mxi(T ), xi(T )⟩

}
. (4)

The coefficients of cost functionals satisfy that Q0,Q ∈ Sn,Q0 ≥ 0,Q ≥ 0, β0, β1, β2 ∈ R
n,R0 > 0,R >

0,R0,R ∈ Sk and M0 ≥ 0,M ≥ 0,M0,M ∈ Sn.
Parallel to (2), the cost functional (4) contains the term β2x0(t) to capture the strong influence of the

major agent. Note that the state dynamics (1) and (2), and the cost functionals (3) and (4), indicate that
the major agentA0 has a significant influence on minor agents, while each minor agentAi, i ∈ N , has
a negligible impact on other agents in a large N population system.

Now, we propose the following LQG mean-field games.
Problem (LP): Find an admissible strategy ū = (ū0, ū1, . . . , ūi, . . . , ūN) where
ūi(·) ∈ Uc,i

ad, i = 0, 1, · · · ,N, such that

Ji(ūi, ū−i) = inf
ui(·)∈U

c,i
ad

Ji(ui, u−i), i = 0, 1, · · · ,N.

We call ū a Nash equilibrium strategy for Problem (LP).

Remark 2.1. It should be noted that this paper only addresses the existence of Nash equilibrium
strategies and does not involve whether the Nash equilibrium is unique. The study of the uniqueness
of Nash equilibrium strategies is also an active research topic. The variational inequality approach
proposed in He and Wang [28] provides a feasible methodology for studying the uniqueness of Nash
equilibrium strategies.

3. Closed-loop behavior of the agents

In this section, we first construct two auxiliary stochastic optimal control problems, which are called
limiting systems, for the major and a generic minor agent in Sections 3.1 and 3.2, respectively. Then
we present the approximations between the limiting systems and the corresponding mean-field system
in Section 3.3.

3.1. Optimal control of the major agent

For any v0(·) ∈ U0
ad, the state y0(·) of agentA0 satisfies the following stochastic differential equation:

dy0(t) = [A0y0(t) + B0v0(t) + b0x(0)(t) + f0(t)]dt + [C0y0(t) + D0v0(t)
+ l0x(0)(t) + σ0(t)]dW0(t) + F0

∫
E0

G0(dedt),
y0(0) = a0,

(5)

where function x(0)(·) will be given later.
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The corresponding cost functional is given by

J̃0(v0) =
1
2
E
{ ∫ T

0

[
⟨Q0(y0(t) − β0x(0)(t)), (y0(t) − β0x(0)(t))⟩ + ⟨R0v0(t), v0(t)⟩

]
dt

+ ⟨M0y0(T ), y0(T )⟩
}
.

Problem (LM1): The objective is to find v̄0(·) ∈ U0
ad such that

J̃0(v̄0) = inf
v0∈U

0
ad

J̃0(v0).

Let P0(·) be the solution of the following Riccati equation:
−Ṗ0(t) = P0(t)A0 + A⊤0 P0(t) +C⊤0 P0(t)C0 + Q0 − (B⊤0 P0(t) + D⊤0 P0(t)C0)⊤

× (R0 + D⊤0 P0(t)D0)−1(B⊤0 P0(t) + D⊤0 P0(t)C0),
R0 + D⊤0 P0(t)D0 ≥ 0,
P0(T ) = M0.

Let η0(·) denote the solution of
η̇0(t) = −

{
[A0 − B0(R0 + D⊤0 P0(t)D0)−1 × (B⊤0 P0(t) + D⊤0 P0(t)C0)]⊤η0(t)

+ [C0 − D0(R0 + D⊤0 P0(t)D0)−1 × (B⊤0 P0(t) + D⊤0 P0(t)C0)]⊤

× P0(t)(l0x(0)(t) + σ0(t)) + [P0(t)(b0x(0)(t) + f0(t)) − β0Q0x(0)(t)]
}
,

η0(T ) = 0.

The following result presents the optimal control of Problem (LM1).

Theorem 3.1. Suppose that{
Λ0(t) := −(R0 + D⊤0 P0(t)D0)−1 × (B⊤0 P0(t) + D⊤0 P0(t)C0),
Θ0(t) := −(R0 + D⊤0 P0(t)D0)−1 × [B⊤0 η0(t) + D⊤0 P0(t)(l0x(0)(t) + σ0(t))].

Then the optimal control strategy of Problem (LM1) is

v̄0(t) = Λ0(t)ȳ0(t) + Θ0(t),

where ȳ0(·) satisfies
dȳ0(t) = [(A0 + B0Λ0(t))ȳ0(t) + B0Θ0(t) + b0x(0)(t) + f0(t)]dt

+ [(C0 + D0Λ0(t))ȳ0(t) + D0Θ0(t) + l0x(0)(t) + σ0(t)]dW0(t)
+ F0

∫
E0

G0(dedt),
ȳ0(0) = a0.

(6)

Proof. Let b̂(t) := b0x(0)(t)+ f0(t), σ̂(t) := l0x(0)(t)+σ0(t). Then the state equation (5) can be written as
dy0(t) =

[
A0y0(t) + B0u0(t) + b̂(t)

]
dt +

[
C0y0(t) + D0u0(t) + σ̂(t)

]
dW0(t)

+ F0

∫
E0

G0(dedt),
y0(0) = a0.
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For simplicity, we denote R̂0(t) := R0 + D⊤0 P0(t)D0, B̂0(t) := B⊤0 P0(t) + D⊤0 P0(t)C0. Applying Itô’s
formula to

(
1
2y⊤0 (t)P0(t)y0(t) + y⊤0 (t)η0(t)

)
, we obtain

E
{1
2

y⊤0 (T )P0(T )y0(T ) −
1
2

y⊤0 (0)P0(0)y0(0) + y⊤0 (T )η0(T ) − y⊤0 (0)η0(0)
}

= E
{1
2

M0y2
0(T ) −

1
2

y⊤0 (0)P0(0)y0(0) − y⊤0 (0)η0(0)
}

= E

∫ T

0

[
−

1
2

Q0y2
0 −

1
2

y2
0B̂2

0R̂−1
0 + P0y0v⊤0 B⊤0 + P0C0y0v⊤0 D⊤0 + η0v⊤0 B⊤0 + η0b̂⊤

]
dt

+ E

∫ T

0
(
1
2

P0D2
0v2

0 + P0D0v0σ̂ +
1
2

P0σ̂
2)dt + E

∫ T

0

[
B0R̂−1

0 (B⊤0 P0 + D⊤0 P0C0)
]⊤
η0y⊤0 dt

+ E

∫ T

0

{[
D0R̂−1

0 B̂0

]⊤
P0σ̂y⊤0 + β0Q0x(0)(t)y⊤0

}
dt +

1
2

P0F2
0

∫
E0

∫ T

0
π0(dedt).

Combing the above equation with the definition of J̃0(v0), it follows that

J̃0(v0) = E
{∫ T

0
(
1
2

Q0(y0 − β0x(0)(t))2 +
1
2

R0v2
0)dt +

1
2

M0y2
0(T )

}
= E

{∫ T

0

[
− β0Q0x(0)(t)y0 +

1
2

Q0(β0x(0)(t))2 +
1
2

R0v2
0 +

1
2

P0D2
0v2

0 + y0v⊤0 P0B⊤0

+ y0v⊤0 P0C0D⊤0 + β0Q0x(0)(t)y⊤0 +
1
2

y2
0B̂2

0R̂−1
0 + P0D0v0σ0 + η0v⊤0 B⊤0

+
[
B0R̂−1

0 B̂0

]⊤
η0y⊤0 +

[
D0R̂−1

0 B̂0

]⊤
P0σ̂y⊤0 +

1
2

P0σ̂
2 + η0b̂⊤

]
dt

}
+

1
2

P0F2
0

∫
E0

∫ T

0
π0(dedt) +

1
2

a2
i0P(0) + ai0η(0)

= E

{∫ T

0

[1
2

R̂−1
0

{[
R̂0v0 + B̂0y0

]2
+ 2(B⊤0 η0 + D⊤0 P0σ̂)

(
R̂0v0 + B̂0y0

)}
+

1
2

P0σ̂
2 + η0b̂⊤

]
dt

}
+

1
2

P0F2
0

∫
E0

∫ T

0
π0(dedt) +

1
2

a2
i0P(0) + ai0η(0)

= E
{ ∫ T

0

[1
2

R̂−1
0 ∥R̂0v0 + B̂0y0 + (B⊤0 η0 + D⊤0 P0σ̂)∥2 −

1
2

R̂−1
0 (B⊤0 η0 + D⊤0 P0σ̂)2

+
1
2

P0σ̂
2 + η0b̂⊤

]
dt

}
+

1
2

P0F2
0

∫
E0

∫ T

0
π0(dedt) +

1
2

a2
i0P(0) + ai0η(0).

Hence we obtain the optimal control

v̄0(t) = − R̂−1
0 (t)B̂−1

0 (t)ȳ0(t) − R̂−1
0 (t)(B⊤0 η0(t) + D⊤0 P0(t)σ̂(t))

= Λ0(t)ȳ0(t) + Θ0(t).

The proof is therefore complete. □
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3.2. Optimal control of the minor agent

For any i ∈ N , the limiting state of minor agentAi is
dyi(t) = [Ayi(t) + Bvi(t) + b1x(0)(t) + f (t)]dt + [Cyi(t) + Dvi(t) + b2x(0)(t)

+ Hy0(t) + σ(t)]dWi(t) + F
∫

Ei
Gi(dedt),

yi(0) = ai.

The limiting cost functional is given by

J̃i(vi) =
1
2
E
{ ∫ T

0

[
⟨Q(yi(t) − β1x(0)(t) − β2y0(t)), (yi(t) − β1x(0)(t) − β2y0(t))⟩

+ ⟨Rvi(t), vi(t)⟩
]
dt + ⟨Myi(T ), yi(T )⟩

}
.

Problem (LM2): Find a control strategy v̄i(·) ∈ Ui
ad, 1 ≤ i ≤ N, such that

J̃i(v̄i) = inf
vi∈U

i
ad

J̃i(vi).

Let P1(·) be the solution of the following Riccati equation:
−Ṗ1(t) = P1(t)A + A⊤P1(t) +C⊤P1(t)C + Q − (B⊤P1(t) + D⊤P1(t)C)⊤

× (R + D⊤P1(t)D)−1(B⊤P1(t) + D⊤P1(t)C),
R + D⊤P1(t)D ≥ 0,
P1(T ) = M.

η1(·) satisfies
η̇1(t) = −

{
[A − B(R + D⊤P1(t)D)−1 × (B⊤P1(t) + D⊤P1(t)C)]⊤η1(t)

+ [C − D(R + D⊤P1(t)D)−1 × (B⊤P1(t) + D⊤P1(t)C)]⊤ × P1(t)(b2x(0)(t)
+ Hy0(t) + σ(t)) + [P1(t)(b1x(0)(t) + f (t)) − β1Qx(0)(t) − β2Qy0(t)]

}
,

η1(T ) = 0.

Denote 
Λ1(t) := −(R + D⊤P1(t)D)−1 × (B⊤P1(t) + D⊤P1(t)C),
Θ1(t) := −(R + D⊤P1(t)D)−1 × [B⊤η1(t) + D⊤P1(t)(b2x(0)(t) + Hy0(t) + σ(t))],
Θ̄1(t) := −(R + D⊤P1(t)D)−1 × [B⊤η1(t) + D⊤P1(t)(b2x(0)(t) + Hȳ0(t) + σ(t))].

Using a similar proof as in Theorem 3.1, we have the following result.

Theorem 3.2. The optimal control strategy of Problem (LM2) is

v̄i(t) = Λ1(t)ȳi(t) + Θ̄1(t),

where ȳi(·) satisfies
dȳi(t) = [(A + BΛ1(t))ȳi(t) + BΘ̄1(t) + b1x(0)(t) + f (t)]dt + [(C + DΛ1(t))ȳi(t)

+ DΘ̄1(t) + b2x(0)(t) + Hȳ0(t) + σ(t)]dWi(t) + F
∫

Ei
Gi(dedt),

ȳi(0) = ai.

(7)
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3.3. Approximation for the closed-loop system

In this subsection, we design a closed-loop mean-field system, and show the approximations
between the limiting system and the corresponding closed-loop system.

Based on the feedback formulation of the optimal control for major agent A0 and minor agents
Ai, 1 ≤ i ≤ N, we obtain

dx̄0(t) = [(A0 + B0Λ0(t))x̄0(t) + B0Θ0(t) + b0 x̄(N)(t) + f0(t)]dt + [(C0 + D0Λ0(t))x̄0(t)
+ D0Θ0(t) + l0 x̄(N)(t) + σ0(t)]dW0(t) + F0

∫
E0

G0(dedt),
x̄0(0) = a0,

(8)

and 
dx̄i(t) = [(A + BΛ1(t))x̄i(t) + BΘ̄1(t) + b1 x̄(N)(t) + f (t)]dt + [(C + DΛ1(t))x̄i(t)

+ DΘ̄1(t) + b2 x̄(N)(t) + Hx̄0(t) + σ(t)]dWi(t) + F
∫

Ei
Gi(dedt),

x̄i(0) = ai.

(9)

By x̄(N)(t) = 1
N

N∑
k=1

x̄i(t), the function x(0)(t) fulfills


dx(0)(t) = [(A + BΛ1(t) + b1)x(0)(t) + BΘ̄1(t) + f (t)]dt,

x(0)(0) =
1
N

N∑
j=1

a j.
(10)

Now, we introduce the following NCE equation:

dȳ0(t) =
[
(A0 + B0Λ0(t))ȳ0(t) + B0Θ0(t) + b0x(0)(t) + f0(t)

]
dt

+
[
(C0 + D0Λ0(t))ȳ0(t) + D0Θ0(t) + l0x(0)(t) + σ0(t)

]
dW0(t) + F0

∫
E0

G0(dedt),

ẋ(0)(t) =
(
A + BΛ1(t) + b1

)
x(0)(t) − B(R + D⊤P1(t)D)−1

× [B⊤η1(t) + D⊤P1(t)(b2x(0)(t) + Hȳ0(t) + σ(t))] + f (t),
−η̇1(t) = [A + BΛ1(t)]⊤η1(t) + [C + DΛ1(t)]⊤P1(t)[b2x(0)(t) + Hȳ0(t) + σ(t)]

+ P1(t)(b1x(0)(t) + f (t)) − β1Qx(0)(t) − β2Qȳ0(t),
−η̇0(t) = [A0 + B0Λ0(t)]⊤η0(t) + [C0 + D0Λ0(t)]⊤P0(t)l0x(0)(t)σ0(t)

+ P0(t)(b0x(0)(t) + f0(t)) − β0Q0x(0)(t),
ȳ0(0) = a0, η0(T ) = η1(T ) = 0, x(0)(0) = 1

N
∑N

j=1 a j,

which can be written as

dȳ0(t) =
[
Â0(t)ȳ0(t) + G0(t)x(0)(t) − B0R̂−1

0 (t)B⊤0 η0(t) + Ĝ0(t)
]
dt

+
[
C0(t)ȳ0(t) + H0(t)x(0)(t) − D0R̂−1

0 (t)B⊤0 η0(t) + Ĥ0(t)
]
dW0(t) + F0

∫
E0

G0(dedt),

ẋ(0)(t) = G1(t)x(0)(t) − BR̂−1(t)
[
B⊤η1(t) + D⊤P1(t)Hȳ0(t) + D⊤P1(t)σ(t)

]
+ f (t),

−η̇1(t) = Â⊤(t)η1(t) + L1(t)x(0)(t) + H1(t)ȳ0(t) + K1(t),
−η̇0(t) = Â⊤0 η0(t) + L0(t)x(0)(t) + P0(t) f0(t)
ȳ0(0) = a0, η0(T ) = η1(T ) = 0, x(0)(0) = 1

N
∑N

j=1 a j,

(11)

where

Â0(t) := A0 + B0Λ0(t), G0(t) := −B0R̂−1
0 (t)D⊤0 P0(t)l0 + b0,
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R̂0(t) := R0 + D⊤0 P0(t)D0, Ĝ0(t) := f0(t) − B0R̂−1
0 (t)D⊤0 P0(t)σ0(t),

C0(t) := C0 + D0Λ0(t), H0(t) := −D0R̂−1
0 (t)D⊤0 P0(t)l0 + l0,

Ĥ0(t) := σ0(t) − D0R̂−1
0 (t)D⊤0 P0(t)σ0(t), G1(t) := Â(t) + b1 − BR̂−1(t)D⊤P1(t)b2,

Â(t) := A + BΛ1(t), L1(t) := [C + DΛ1(t)]⊤P1(t)b2 + P1(t)b1 − β1Q,

R̂(t) := R + D⊤P1(t)D, H1(t) := [C + DΛ1(t)]⊤P1(t)H − β2Q,

K1(t) := [C + DΛ1(t)]⊤P1(t)σ(t) + P1(t) f (t),

L0(t) := [C0 + D0Λ0(t)]⊤P0(t)l0σ0(t) + P0(t)b0 − β0Q0.

The above NCE equation is a kind of coupled two-point boundary value problem, whose
well-posedness can be found in Theorem 4.2 of Hu et al. [3] under some monotonicity assumptions.
We will not repeat them here for simplicity.

Next, we establish the approximation relationship between the closed-loop mean-field game system
and the limiting system.

Proposition 3.3. The following estimates hold:

(i) sup
0≤t≤T
E
∣∣∣∣x̄(N)(t) − x(0)(t)

∣∣∣∣2 = O(
1
N

),

(ii) sup
0≤t≤T
E
∣∣∣∣|x̄(N)(t)|2 − |x(0)(t)|2

∣∣∣∣ = O(
1
√

N
),

(iii) sup
0≤t≤T
E
∣∣∣∣x̄0(t) − ȳ0(t)

∣∣∣∣2 = O(
1
N

),

(iv) sup
0≤t≤T
E
∣∣∣∣|x̄0(t)|2 − |ȳ0(t)|2

∣∣∣∣ = O(
1
√

N
),

(v) sup
0≤t≤T
E
∣∣∣∣x̄i(t) − ȳi(t)

∣∣∣∣2 = O(
1
N

), 1 ≤ i ≤ N,

(vi) sup
0≤t≤T
E
∣∣∣∣|x̄i(t)|2 − |ȳi(t)|2

∣∣∣∣ = O(
1
√

N
), 1 ≤ i ≤ N.

Proof. Let z̄(t) := x̄(N)(t) − x(0)(t), z̄0(t) := x̄0(t) − ȳ0(t), z̄i(t) := x̄i(t) − ȳi(t) (1 ≤ i ≤ N). Combining (9)
with (10), we derive

dz̄(t) = [(A + BΛ1(t) + b1)z̄(t)]dt +
1
N

N∑
j=1

[(C + DΛ1(t))x̄ j(t) + DΘ̄1(t)

+ b2 x̄(N)(t) + Hx̄0(t) + σ(t)]dW j(t) +
1
N

N∑
j=1

F
∫

E j

G j(dedt),

z̄(0) = 0.

Define χ(t) := b2 x̄(N)(t) + Hx̄0(t) + σ(t). Applying Itô’s formula to z̄2(t), we obtain

E[z̄2(t)] = 2
∫ t

0
(A + BΛ1(s) + b1)E[z̄2(s)]ds +

1
N2

N∑
j=1

E

∫ t

0

{
[(C + DΛ1(s))x̄ j(s)
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+ DΘ̄1(s) + χ(s)]
}2

ds +
F2

N2

N∑
j=1

E

∫
E j

∫ t

0
π j(deds),

≤ 2 sup
0≤t≤T

(A + BΛ1(t) + b1) ×
∫ t

0
E[z̄2(s)]ds +

T
N

max
0≤ j≤N

E[(C + DΛ1(t))x̄ j(t)

+ DΘ̄1(t) + χ(t)]2 +
F2

N
max
0≤ j≤N

E

∫
E j

∫ t

0
π j(deds).

According to Gronwall’s inequality, it follow that

sup
0≤t≤T
E
∣∣∣∣x̄(N)(t) − x(0)(t)

∣∣∣∣2 = O
(

1
N

)
. (12)

For (ii), according to Hölder’s inequality, we have

E
∣∣∣∣|x̄(N)(t)|2 − |x(0)(t)|2

∣∣∣∣ = E∣∣∣∣|x̄(N)(t) − x(0)(t)|2 + 2x(0)(t)(x̄(N)(t) − x(0)(t))
∣∣∣∣

≤ E
[
|x̄(N)(t) − x(0)(t)|2

]
+ 2|x(0)(t)|

(
E[|x̄(N)(t) − x(0)(t)|2]

) 1
2
.

By (12) and the boundedness of |x(0)(t)|, one has

sup
0≤t≤T
E
∣∣∣∣|x̄(N)(t)|2 − |x(0)(t)|2

∣∣∣∣ = O
(

1
√

N

)
.

We now prove (iii). According to (6) and (8), it follows thatdz̄0(t) = [(A0 + B0Λ0(t))z̄0(t) + b0z̄(t)]dt + [(C0 + D0Λ0(t))z̄0(t) + l0z̄(t)]dW0(t),
z̄0(0) = 0.

Applying Itô’s formula to z̄2
0(t), we obtain

E[z̄2
0(t)] = 2

∫ t

0
E
[
(A0 + B0Λ0(s))z̄2

0(s) + b0z̄(s)z̄0(s)
]
ds

+

∫ t

0
E
[
(C0 + D0Λ0(s))z̄0(s) + l0z̄(s)

]2
ds

≤ 2
∫ t

0

[
(A0 + B0Λ0(s)) + (C0 + D0Λ0(s))2 + b2

0

]
Ez̄2

0(s)ds +
∫ t

0

(1
2
+ 2l2

0

)
Ez̄2(s)ds.

By (12) and Gronwall’s inequality, we have

sup
0≤t≤T
E
∣∣∣∣x̄0(t) − ȳ0(t)

∣∣∣∣2 = O(
1
N

). (13)

Note that

E
∣∣∣∣|x̄0(t)|2 − |ȳ0(t)|2

∣∣∣∣ = E∣∣∣∣|x̄0(t) − ȳ0(t)|2 + 2ȳ0(t)(x̄0(t) − ȳ0(t))
∣∣∣∣
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≤ E
[
|x̄0(t) − ȳ0(t)|2

]
+ 2

(
E[|ȳ0(t)|2]

) 1
2
(
E[|x̄0(t) − ȳ0(t)|2]

) 1
2
.

According to (13) and the boundedness of |ȳ0(t)|, we obtain

sup
0≤t≤T
E
∣∣∣∣|x̄0(t)|2 − |ȳ0(t)|2

∣∣∣∣ = O(
1
√

N
).

Next, we prove (v). Combining (7) with (9), we havedz̄i(t) = [(A + BΛ1(t))z̄i(t) + b1z̄(t)]dt + [(C + DΛ1(t))z̄i(t) + b2z̄(t) + Hz̄0(t)]dWi(t),
z̄i(0) = 0.

Applying Itô’s formula to z̄2
i (t), we obtain

E[z̄2
i (t)] = 2

∫ t

0
E
[
(A + BΛ1(s))z̄2

i (s) + b1z̄(s)z̄i(s)
]
ds

+

∫ t

0
E
[
(C + DΛ1(s))z̄i(s) + b2z̄(s) + Hz̄0(t)

]2
ds

≤

∫ t

0

[
2(A + BΛ1(s)) + b2

1 + 3(C + DΛ1(s))2
]
Ez̄2

i (s)ds

+

∫ t

0
(1 + 3b2

2)Ez̄2(s)ds + 3H2
∫ t

0
Ez̄2

0(s)ds.

By Gronwall’s inequality, and estimates (12) and (13), we obtain

sup
0≤t≤T
E
∣∣∣∣x̄i(t) − ȳi(t)

∣∣∣∣2 = O(
1
N

). (14)

Finally, we prove (vi). Since

E
∣∣∣∣|x̄i(t)|2 − |ȳi(t)|2

∣∣∣∣ ≤ E[|x̄i(t) − ȳi(t)|2
]
+ 2E

[
|ȳi(t)||x̄i(t) − ȳi(t)|

]
≤ E

[
|x̄i(t) − ȳi(t)|2

]
+ 2

(
E[|ȳi(t)|2]

) 1
2
(
E[|x̄i(t) − ȳi(t)|2]

) 1
2
.

According to (14) and the boundedness of |ȳi(t)|, we get

sup
0≤t≤T
E
∣∣∣∣|x̄i(t)|2 − |ȳi(t)|2

∣∣∣∣ = O(
1
√

N
).

The proof is then complete. □

Define the control strategy for the major agent as

ū0(t) = Λ0(t)x̄0(t) + Θ0(t), (15)

and the control strategy for minor agents as

ūi(t) = Λ1(t)x̄i(t) + Θ̄1(t). (16)

Based on the approximation relationship between the closed-loop mean-field systems and the limiting
system, the following approximation relationship between cost functionals can be derived.
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Proposition 3.4. For any i = 0, 1, · · · ,N, we have∣∣∣∣Ji(ūi, ū−i) − J̃i(v̄i)
∣∣∣∣ = O(

1
√

N
).

Proof. Based on the definitions of the cost functionals, we obtain∣∣∣∣Ji(ūi, ū−i) − J̃i(v̄i)
∣∣∣∣

=

∣∣∣∣∣∣12E
∫ T

0

{[
Q(x̄i(t) − β1 x̄(N)(t) − β2 x̄0(t))2 − Q(ȳi(t) − β1x(0)(t) − β2ȳ0(t))2

]
+

[
Rū2

i (t) − Rv̄2
i (t)

]}
dt +

1
2
E
[
Mx̄2

i (T ) − Mȳ2
i (T )

]∣∣∣∣∣∣
=

∣∣∣∣∣∣12E
∫ T

0

{
Q
[
(x̄i(t) − β1 x̄(N)(t) − β2 x̄0(t)) + (ȳi(t) − β1x(0)(t) − β2ȳ0(t))

]
×

[
(x̄i(t) − β1 x̄(N)(t) − β2 x̄0(t)) − (ȳi(t) − β1x(0)(t) − β2ȳ0(t))

]
+ R

[
(Λ1(t)x̄i(t) + Θ̄1(t))2 − (Λ1(t)ȳi(t) + Θ̄1(t))2

]}
dt +

1
2
E
[
Mx̄2

i (T ) − Mȳ2
i (T )

]∣∣∣∣∣∣
=

∣∣∣∣12E
∫ T

0

{
Q
[(

2x̄i(t) − 2β1 x̄(N)(t) − 2β2 x̄0(t)
)
− L(t)

]
× L(t)

+ R
[
(Λ1(t))2

(
x̄2

i (t) − ȳ2
i (t)

)
+ 2Λ1(t)Θ̄1(t)(x̄i(t) − ȳi(t))

]}
dt +

1
2
E
[
Mx̄2

i (T ) − Mȳ2
i (T )

]
≤

1
2

∫ T

0

{
QE

[∣∣∣(2x̄i(t) − 2β1 x̄(N)(t) − 2β2 x̄0(t))L(t)
∣∣∣] + QE

[∣∣∣L2(t)
∣∣∣]

+ R(Λ1(t))2E
[∣∣∣x̄2

i (t) − ȳ2
i (t)

∣∣∣] + 2RΛ1(t)Θ̄1(t)E
[∣∣∣x̄i(t) − ȳi(t)

∣∣∣]}dt

+
1
2

ME
[∣∣∣x̄2

i (T ) − ȳ2
i (T )

∣∣∣]
≤

1
2

QT sup
0≤t≤T
E
[∣∣∣(2x̄i(t) − 2β1 x̄(N)(t) − 2β2 x̄0(t))L(t)

∣∣∣] + 1
2

QT sup
0≤t≤T
E
[∣∣∣L2(t)

∣∣∣]
+

1
2

RT (Λ1(t))2 sup
0≤t≤T
E
[∣∣∣x̄2

i (t) − ȳ2
i (t)

∣∣∣] + RTΛ1(t)Θ̄1(t) sup
0≤t≤T
E
[∣∣∣x̄i(t) − ȳi(t)

∣∣∣]
+

1
2

M sup
0≤t≤T
E
[∣∣∣x̄2

i (T ) − ȳ2
i (T )

∣∣∣],
where L(t) :=

[
(x̄i(t) − ȳi(t)) − β1(x̄(N)(t) − x(0)(t)) − β2(x̄0(t) − ȳ0(t))

]
. Obviously, according to

Proposition 3.3, we have E
[∣∣∣∣L(t)

∣∣∣∣2] = O( 1
N ). Therefore, it follows that

∣∣∣∣Ji(ūi, ū−i) − J̃i(v̄i)
∣∣∣∣ = O( 1

√
N

).
The proof is then complete. □

4. ε-Nash equilibrium for Problem (LP)

This section will verify the asymptotic Nash equilibrium property of the decentralized control
strategies ū = (ū0, ū1, · · · , ūN) specified by (15) and (16).
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4.1. Major agent’s perturbation

Let the major agent Ã0 take an alternative control strategy u0, and let the minor agent Ãi take the
control law (16). Then the state system with the major agent’s perturbation is

dx̃0(t) = [A0 x̃0(t) + B0u0(t) + b0 x̃(N)(t) + f0(t)]dt + [C0 x̃0(t) + D0u0(t)

+ l0 x̃(N)(t) + σ0(t)]dW0(t) + F0

∫
E0

G0(dedt),

dx̃i(t) = [(A + BΛ1(t))x̃i(t) + BΘ̄1(t) + b1 x̃(N)(t) + f (t)]dt + [(C + DΛ1(t))x̃i(t)

+ DΘ̄1(t) + b2 x̃(N)(t) + Hx̃0(t) + σ(t)]dWi(t) + F
∫

Ei

Gi(dedt),

x̃0(0) = a0, x̃i(0) = ai, i = 1, · · · ,N,

(17)

where x̃(N)(t) = 1
N

N∑
k=1

x̃k(t). The cost functional for major agent Ã0 is

J0(u0, u−0) =
1
2
E

{∫ T

0

[
⟨Q0(x̃0(t) − β0 x̃(N)(t)), (x̃0(t) − β0 x̃(N)(t))⟩

+ ⟨R0u0(t), u0(t)⟩
]
dt + ⟨M0 x̃0(T ), x̃0(T )⟩

}
.

The corresponding limiting state equation with the major agent’s perturbation control is

dỹ0(t) = [A0ỹ0(t) + B0u0(t) + b0x(0)(t) + f0(t)]dt + [C0ỹ0(t) + D0u0(t)
+ l0x(0)(t) + σ0(t)]dW0(t) + F0

∫
E0

G0(dedt)
dỹi(t) = [(A + BΛ1(t))ỹi(t) + BΘ̄1(t) + b1x(0)(t) + f (t)]dt + [(C + DΛ1(t))ỹi(t)

+ DΘ̄1(t) + b2x(0)(t) + Hỹ0(t) + σ(t)]dWi(t) + F
∫

Ei
Gi(dedt)

ỹ0(0) = a0, ỹi(0) = ai, i = 1, · · · ,N.

The cost functional is

J̃0(u0) =
1
2
E

{∫ T

0

[
⟨Q0(ỹ0(t) − β0x(0)(t)), (ỹ0(t) − β0x(0)(t))⟩

+ ⟨R0u0(t), u0(t)⟩
]
dt + ⟨M0ỹ0(T ), ỹ0(T )⟩

}
.

The following result presents an approximation relationship between two perturbation systems.

Proposition 4.1. We have the following conclusion:

(i) sup
0≤t≤T
E
∣∣∣∣x̃(N)(t) − x(0)(t)

∣∣∣∣2 = O(
1
N

),

(ii) sup
0≤t≤T
E
∣∣∣∣|x̃(N)(t)|2 − |x(0)(t)|2

∣∣∣∣ = O(
1
√

N
),

(iii) sup
0≤t≤T
E
∣∣∣∣x̃0(t) − ỹ0(t)

∣∣∣∣2 = O(
1
N

),

(iv) sup
0≤t≤T
E
∣∣∣∣|x̃0(t)|2 − |ỹ0(t)|2

∣∣∣∣ = O(
1
√

N
).
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Proof. We only need to prove the first approximation relationship, and a other three approximation
relationships can be obtained by a similar proof as in Proposition 3.3.

Define Φ(t) := x̃(N)(t) − x(0)(t). Combining (10) with (17), we have
dΦ(t) =

[
(A + BΛ1(t) + b1)Φ(t)

]
dt + 1

N

N∑
k=1

[
(C + DΛ1(t))x̃k(t) + DΘ̄1(t) + b2 x̃(N)(t)

+ Hx̃0(t) + σ(t)
]
dWk(t) + 1

N

N∑
k=1

F
∫

Ek
Gk(dedt),

Φ(0) = 0.

Define Lk(t) := [(C + DΛ1(t))x̃k(t) + DΘ̄1(t) + b2 x̃(N)(t) + Hx̃0(t) + σ(t)]. Therefore

E

∫ t

0
|Lk(s)|2ds

= E

∫ t

0

[
(C + DΛ1(s))x̃k(s) + DΘ̃1(s) + b2(x̃(N)(s) − x(0)(s)) + b2x(0)(s) + Hx̃0(s) + σ(s)

]2ds

≤ CE

∫ t

0
[|x̃k(s)|2 + 1 + |x̃(N)(s) − x(0)(s)|2 + |x(0)(s)|2 + |x̃0(s)|2 + |σ(s)|2]ds

≤ CE

∫ t

0
|(x̃(N)(s) − x(0)(s))|2ds + C1,

where

C := max
{

sup
t∈[0,T ]

|C + DΛ1(t)|, sup
t∈[0,T ]

|DΘ̃1(t)|, |b2|, |H|, 1
}
,

C1 := CE
∫ T

0
[|x̃k(s)|2 + 1 + |x(0)(s)|2 + |x̃0(s)|2 + |σ(s)|2]ds

are constants independent of N.
Furthermore,

EΦ2(t) = 2E
{ ∫ t

0

[
(A + BΛ1(s) + b1)Φ(s)

]
ds

}2
+

2
N2E

{ ∫ t

0

N∑
j=1

L2
j(s)ds

}
+ 2E

{ ∫ t

0

1
N

N∑
k=1

F
∫

Ek

Gk(deds)
}2

≤ 2E
∫ T

0

[
T |(A + BΛ1(s) + b1)Φ(s)|2 +

1
N

max
1≤k≤N

|Lk(s)|2
]
ds

+
2

N2 E
∫ t

0

N∑
k=1

∫
Ek

|FGk|
2n(de)ds.

By Grownwall’s inequality, we have

sup
0≤t≤T
E
∣∣∣∣x̃(N)(t) − x(0)(t)

∣∣∣∣2 = O(
1
N

).

Then, the proof is complete. □
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Similarly to the proof of Proposition 3.4, we can obtain the following result.

Proposition 4.2. For any u0(·) ∈ Uc,0
ad , we have∣∣∣∣J0(u0, ū−0) − J̃0(u0)

∣∣∣∣ = O(
1
√

N
).

4.2. Minor agent’s perturbation

Now, let us consider the following case: a given minor agent Ãi takes an alternative control strategy
ui(·) ∈ Uc,i

ad, the major agent uses the optimal control strategy ū0(·) defined by (15), while other minor
agents Ã j take the control strategy ū j(·), j , i, 1 ≤ j ≤ N, defined by (16). Then the dynamics of the
agents with the given minor agent’s perturbation can be written in the form

dx̂0(t) = [(A0 + B0Λ0(t))x̂0(t) + B0Θ0(t) + b0 x̂(N)(t) + f0(t)]dt + [(C0 + D0Λ0(t))x̂0(t)

+ D0Θ0(t) + l0 x̂(N)(t) + σ0(t)]dW0(t) + F0

∫
E0

G0(dedt),

dx̂i(t) = [Ax̂i(t) + Bui(t) + b1 x̂(N)(t) + f (t)]dt + [Cx̂i(t) + Dui(t) + b2 x̂(N)(t)

+ Hx̂0(t) + σ(t)]dWi(t) + F
∫

Ei

Gi(dedt),

dx̂ j(t) = [(A + BΛ1(t))x̂ j(t) + BΘ̄1(t) + b1 x̂(N)(t) + f (t)]dt + [(C + DΛ1(t))x̂ j(t)

+ DΘ̄1(t) + b2 x̂(N)(t) + Hx̂0(t) + σ(t)]dW j(t) + F
∫

E j

G j(dedt),

x̃0(0) = a0, x̃i(0) = ai, x̃ j(0) = a j, j = 1, 2, · · · ,N, j , i,

(18)

where x̂(N)(t) = 1
N

N∑
k=1

x̂k(t). The cost functional is

Ji(ui, u−i) =
1
2
E
{ ∫ T

0

[
⟨Q(x̂i(t) − β1 x̂(N)(t) − β2 x̂0(t)), (x̂i(t) − β1 x̂(N)(t) − β2 x̂0(t))⟩

+ ⟨Rui(t), ui(t)⟩
]
dt + ⟨Mx̂i(T ), x̂i(T )⟩

}
.

The corresponding limiting system with the minor agent’s perturbation strategy is

dŷ0(t) = [(A0 + B0Λ0(t))ŷ0(t) + B0Θ0(t) + b0x(0)(t) + f0(t)]dt + [(C0 + D0Λ0(t))ŷ0(t)

+ D0Θ0(t) + l0x(0)(t) + σ0(t)]dW0(t) + F0

∫
E0

G0(dedt),

dŷi(t) = [Aŷi(t) + Bui(t) + b1x(0)(t) + f (t)]dt + [Cŷi(t) + Dui(t) + b2x(0)(t)

+ Hŷ0(t) + σ(t)]dWi(t) + F
∫

Ei

Gi(dedt),

dŷ j(t) = [(A + BΛ1(t))ŷ j(t) + BΘ̄1(t) + b1x(0)(t) + f (t)]dt + [(C + DΛ1(t))ŷ j(t)

+ DΘ̄1(t) + b2x(0)(t) + Hŷ0(t) + σ(t)]dW j(t) + F
∫

E j

G j(dedt),

ỹ0(0) = a0, ỹi(0) = ai, ỹ j(0) = a j, j = 1, 2, · · · ,N, j , i.
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The cost functional is

J̃i(ui) =
1
2
E
{ ∫ T

0

[
⟨Q(ŷi(t) − β1x(0)(t) − β2ŷ0(t)), (ŷi(t) − β1x(0)(t) − β2ŷ0(t))⟩

+ ⟨Rui(t), ui(t)⟩
]
dt + ⟨Mŷi(T ), ŷi(T )⟩

}
.

Now, we are in a position to state the following approximation results.

Proposition 4.3. For the fixed i, we have

(i) sup
0≤t≤T
E
∣∣∣∣x̂(N)(t) − x(0)(t)

∣∣∣∣2 = O(
1
N

),

(ii) sup
0≤t≤T
E
∣∣∣∣|x̂(N)(t)|2 − |x(0)(t)|2

∣∣∣∣ = O(
1
√

N
),

(iii) sup
0≤t≤T
E
∣∣∣∣x̂i(t) − ŷi(t)

∣∣∣∣2 = O(
1
N

),

(iv) sup
0≤t≤T
E
∣∣∣∣|x̂i(t)|2 − |ŷi(t)|2

∣∣∣∣ = O(
1
√

N
).

Proof. We prove only the first approximation relationship, and the other three approximation
relationships can be obtained by a similar proof as in Proposition 3.3.

Define z̃(t) := x̂(N)(t) − x(0)(t). According to (10) and (18), we get
dz̃(t) = [(A + BΛ1(t) + b1)z̃(t)]dt + S(t)dt + dL(t) +

1
N

N∑
k=1

F
∫

Ek

Gk(dedt),

z̃(0) = 0,

where

S(t) =
B
N

[ui(t) − Λ1(t)x̂i(t) − Θ̄1(t)],

L(t) =
1
N

N∑
k=1,k,i

∫ t

0
[(C + DΛ1(r))x̂k(r) + DΘ̄1(r) + b2 x̂(N)(r) + Hx̂0(r) + σ(r)]dWk(r)

+
1
N

∫ t

0
[Cx̂i(r) + Dui(r) + b2 x̂(N)(r) + Hx̂0(r) + σ(r)]dWi(r).

Since ∫ t

0
E|S(r)|2dr ≤

3B2

N2

( ∫ t

0
E[u2

i (r)]dr +
∫ t

0
E[(Λ1(r))2 x̂2

i (r)]dr +
∫ t

0
E[(Θ̄1(r))2]dr

)
,

we get ∫ t

0
E|S(r)|2dr = O(

1
N2 ). (19)
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Note that

V(t) := E
∫ t

0
(dL(r))2

=
1

N2

N∑
k=1,k,i

∫ t

0
E
∣∣∣∣(C + DΛ1(r))x̂k(r) + DΘ̄1(r) + b2 x̂(N)(r) + Hx̂0(r) + σ(r)

∣∣∣∣2dr

+
1

N2

∫ t

0
E
∣∣∣∣Cx̂i(r) + Dui(r) + b2 x̂(N)(r) + Hx̂0(r) + σ(r)

∣∣∣∣2dr

≤
T
N

sup
0≤t≤T

max
0≤t≤T
E
∣∣∣∣(C + DΛ1(t))x̂k(t) + DΘ̄1(t) + b2 x̂(N)(t) + Hx̂0(t) + σ(t)

∣∣∣∣2
+

T
N2 sup

0≤t≤T
E
∣∣∣∣Cx̂i(t) + Dui(t) + b2 x̂(N)(t) + Hx̂0(t) + σ(t)

∣∣∣∣2.
Thus

V(t) = O(
1
N

). (20)

Applying Itô’s formula to z̃2(t), we obtain

E[z̃2(t)] = 2
∫ t

0
(A + BΛ1(r) + b1)E[z̃2(r)]dr + 2

∫ t

0
E[z̃(r)S(r)]dr + V(t)

+
F2

N2

N∑
i=1

E

∫
Ei

∫ t

0
πi(dedr)

≤ sup
0≤t≤T

(|2A + 2BΛ1(t) + 2b1| + 1)
∫ t

0
E[z̃2(r)]dr +

∫ t

0
E[S2(r)]dr + V(t)

+
F2

N
max
0≤t≤T
E

∫
Ei

∫ t

0
πi(dedr).

Combining (19) and (20) with Gronwall’s inequality, we get

sup
0≤t≤T
E
∣∣∣∣x̂(N)(t) − x(0)(t)

∣∣∣∣2 = O(
1
N

).

This completes the proof. □

By using similar arguments as in Proposition 3.4, we can obtain the following conclusion.

Proposition 4.4. For any ui(·) ∈ Uc,i
ad, 1 ≤ i ≤ N, one has∣∣∣∣Ji(ui, ū−i) − J̃i(ui)

∣∣∣∣ = O(
1
√

N
). (21)

4.3. ϵ-Nash equilibrium

In this subsection, we will verify the ϵ-Nash equilibrium property of the decentralized control
strategies (15) and (16).

Before presenting the main result, we give the definition of ϵ-Nash equilibrium in the following
manner.
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Definition 4.5. A set of control strategies ū = (ū0, ū1, · · · , ūN) where ūi(·) ∈ Uc,i
a,d, i = 0, 1 · · · ,N, is

called an ϵ-Nash equilibrium with respect to costs Ji, i = 0, 1 · · · ,N, if there exists an ϵ ≥ 0, such that
for any i = 0, 1 · · · ,N, we have

Ji(ūi, ū−i) ≤ Ji(ui, ū−i) + ϵ, (22)

when any alternative strategy ui(·) ∈ Uc,i
a,d is applied by agentAi.

Based on the above results, we obtain the following main result.

Theorem 4.6. Suppose that x̄i(·), i = 0, 1, · · · ,N, is the solution to the equation systems (8) and (9).
Then the set of control strategy profiles ū = (ū0, ū1, · · · , ūN) defined by (15) and (16) is an ϵ-Nash
equilibrium of Problem (LP), where ϵ = O( 1

√
N

)→ 0 as N → +∞.

Proof. Combining Propositions 3.4 and 4.2 with Proposition 4.4, we obtain

Ji(ūi, ū−i) = J̃i(v̄i) + O(
1
√

N
)

≤ J̃i(ui) + O(
1
√

N
)

≤ Ji(ui, ū−i) + O(
1
√

N
), i = 0, 1, · · · ,N.

Therefore, the conclusion holds with ϵ = O( 1
√

N
). □

5. Numerical examples

This section demonstrates the consistency of mean-field estimation as well as the influence of the
population’s collective behavior x̄(N)(·) on the state trajectories of the agents through a numerical
example.

Consider a mean-field game system with one major agent and N = 500 minor agents. For any
u j ∈ U

c, j
ad , j = 0, 1, · · · ,N, the dynamics of the major agent and minor agents are given by

dx0(t) =
(1

2 x0(t) + u0(t) + x(N)(t)
)
dt +

(
x0(t) + u0(t) + x(N)(t)

)
dW0(t)

+ 2
∫

E0
G0(dedt),

dxi(t) =
(
3xi(t) + 5ui(t) + x(N)(t)

)
dt +

(
2xi(t) + ui(t) + x(N)(t) + x0(t)

)
dWi(t)

+
∫

Ei
Gi(dedt),

x0(0) = 5, xi(0) = ai, i = 1, · · · ,N,

(23)

where t ∈ [0,T ] with T = 1. Let the initial states of the agents {ai, i = 1, · · · ,N} be independent and
identically distributed random variables with the normal distribution N(−5, 1).

The cost functional of the major agentA0 is

J0(u0, u−0) =
1
2
E
{ ∫ T

0

[
3(x0(t) − x(500)(t))2 + u2

0(t)
]
dt + 3x2

0(1)
}
, (24)
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and the cost functional of the minor agentAi, i = 1, · · · , 500, is

Ji(ui, u−i) =
1
2
E
{ ∫ T

0

[
2(xi(t) − x(500)(t) − x0(t))2 + u2

i (t)
]
dt + x2

i (1)
}
. (25)

It is easy to check that {P0(t) ≡ 3,∀t ∈ [0, 1]} is a unique solution of the following Riccati equation:{
Ṗ0(t) + 2P0(t) − 4P2

0(t)(1 + P0(t))−1 + 3 = 0,
P0(1) = 3.

Suppose that P1(·) fulfills{
Ṗ1(t) + 10P1(t) − 49P2

1(t)(1 + P1(t))−1 + 2 = 0,
P1(1) = 1.

Then the NCE Eq (11) turns out to be

dȳ0(t) =
[
− ȳ0(t) + 1

4 x(0)(t)
]
dt +

[
− 1

2 ȳ0(t) + 1
4 x(0)(t)

]
dW0(t) + 2

∫
E0

G0(dedt),

ẋ(0)(t) =
(
4 + 40P(t)

)
x(0)(t) − 25(1 + P1(t))−1η1(t) + 5P(t)ȳ0(t),

−η̇1(t) =
(
3 + 35P(t)

)
η1(t) + P1(t)x(0)(t) +

(
2P1(t) + 7P(t)P1(t) − 2

)(
ȳ0(t) + x(0)(t)

)
,

ȳ0(0) = a0, η1(T ) = 0, x(0)(0) = 1
N

N∑
j=1

a j, η0(t) ≡ 0, t ∈ [0,T ],

(26)

where P(t) = −(1 + P1(t))−1P1(t).
According to Theorem 4.6, the set of control strategies ū = (ū0, ū1, · · · , ūN) defined by

ū0(t) = −
3
2

x̄0(t) −
3
4

x(0)(t),

ūi(t) = P(t)
(
7x̄i(t) + x(0)(t) + ȳ0(t)

)
− 5(1 + P1(t))−1η1(t), i = 1, 2, · · · ,N,

is an ϵ-Nash equilibrium of the mean-field systems (24) and (25), where x̄0(·) and x̄i(·) satisfy

dx̄0(t) =
(
− x̄0(t) − 3

4 x(0)(t) + x̄(500)(t)
)
dt +

(
− 1

2 x̄0(t) − 3
4 x(0)(t) + x̄(500)(t)

)
dW0(t)

+ 2
∫

E0
G0(dedt),

dx̄i(t) =
[(

3 + 35P(t)
)
x̄i(t) + 5P(t)x(0)(t) + 5P(t)ȳ0(t) + x̄(N)(t)

− 25(1 + P1(t))−1η1(t)
]
dt +

[(
2 + 7P(t)

)
x̄i(t) + P(t)x(0)(t) + P(t)ȳ0(t)

+ x̄(N)(t) + x̄0(t) − 5(1 + P1(t))−1η1(t)
]
dWi(t) +

∫
Ei

Gi(dedt),

x̄0(0) = a0, x̄i(0) = ai, i = 1, · · · ,N,

(27)

where x̄(500)(t) = 1
500

500∑
j=1

x̄ j(t).

In this article, Merton’s jump model (see Merton [29], as well as Platen and Bruti-Liberati [30, pg.
37] is applied to describe the jump-diffusion process. Assume that

∫
E0

G0(dedt) = Q0(µ0, σ0)dΠ0(λ0).
Q0(µ0, σ0) is the jump size with a normally distributed mean µ0 ∼ N(2, 1) and a standard deviation
σ0 = 0.1. The Poisson process Π0(λ0) has a jump intensity of λ0 = 2. For agent Ai, i = 1, · · · , 500,
let

∫
Ei

Gi(dedt) = Qi(µ1, σ1)dΠi(λ). Qi(µ1, σ1) is the jump size with a normally distributed mean
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µ1 ∼ N(1, 1) and a standard deviation σ1 = 0.05. The Poisson process Πi(λ) has a jump intensity of
λ = 5.

Figure 1 shows the consistency of mean-field estimation, and the interactive influence between
mean-field term x̄(500)(·), and the major state x̄0(·). When the number of minor agents N = 500, as
shown in Figure 1, the curves of x̄(500)(·) and x(0)(·) coincide well, which illustrates the consistency of
the mean-field estimation indicated by Proposition 3.3.

Figure 2 illustrates the state trajectories of the major agent and all the minor agents. As shown in
Figure 2, for each fixed i, the trajectory x̄i(·) of Ai, in addition to being influenced by its own initial
values and parameters, is also affected by the major agent and the collective behavior of all the minor
agents.

Figure 1. Consistency of mean-field estimation for ai ∼ N(−5, 1), i = 1, · · · , 500, x0(0) = 5.

Figure 2. Curves of x̄i, i = 0, 1, 2, · · · , 500, for ai ∼ N(−5, 1), i = 1, · · · , 500, x0(0) = 5.
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To illustrate how the key parameters in the control strategies of Eqs (15) and (16) influence the
system’s dynamic behavior, we set another set of initial values for N + 1 agents with x0(0) = −5 and
the independent and identically distributed random variables {ai ∼ N(5, 1), i = 1, · · · , 500}. Figures
3 and 4 are shown to elaborate the consistency of mean-field estimation and the curves of x̄i, i =
0, 1, 2, · · · , 500.

Figure 3. Consistency of mean-field estimation for ai ∼ N(5, 1), i = 1, · · · , 500, x0(0) = −5.

Figure 4. Consistency of mean-field estimation for ai ∼ N(5, 1), i = 1, · · · , 500, x0(0) = −5.

6. Conclusions

Motivated by the lack of theory and some practical applications, this paper in concerned with linear-
quadratic-Gaussian mean-field games involving mixed agents of a stochastic large population system
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with random jumps. There are two mixed types of agents: (i) a major agent and (ii) a population of N
minor agents where N is very large. The coupling of the major and minor agents exists in both their
state dynamics and their individual cost functions. To deal with the dimensionality difficulty and obtain
decentralized strategies, the NCE methodology is applied to yield a set of decentralized strategies
which is verified to be the ϵ-Nash equilibrium. We provide numerical examples to illustrate both the
consistency of the mean-field estimation and the impact of the population’s collective behavior. In
the future, an interesting research direction is to extend the modeling and analysis to the social optima
case, which may involve more applications in practice and generate more challenges in theory. Another
potential direction is to study the uniqueness of the equilibrium strategy, which may be more valuable
and challenging.
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15. J. M. Lasry, P. L. Lions, Jeux à Champ Moyen. II–Horizon fini et contrôle optimal, C. R. Math.,
343 (2006), 679–684. https://doi.org/10.1016/j.crma.2006.09.018

16. J. M. Lasry, P. L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229–260.
https://doi.org/10.1007/s11537-007-0657-8

17. A. Bensoussan, J. Frehse, P. Yam, Mean field games and mean field type control theory, New York:
Springer, 2013. https://doi.org/10.1007/978-1-4614-8508-7

18. J. Huang, S. Wang, Z. Wu, Backward mean-field linear-quadratic-gaussian (LQG)
games: full and partial information, IEEE T. Automat. Contr., 61 (2016), 3784–3796.
https://doi.org/10.1109/TAC.2016.2519501

AIMS Mathematics Volume 10, Issue 5, 11086–11110.

https://dx.doi.org/https://doi.org/10.1137/17M1151420
https://dx.doi.org/https://doi.org/10.1109/TAC.2012.2183439
https://dx.doi.org/https://doi.org/10.1109/TAC.2023.3323576
https://dx.doi.org/https://doi.org/10.1137/15M104178X
https://dx.doi.org/https://doi.org/10.1007/s10957-023-02223-2
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2020.108835
https://dx.doi.org/https://doi.org/10.1137/23M1593681
https://dx.doi.org/https://doi.org/10.1007/s11432-024-4075-2
https://dx.doi.org/https://doi.org/10.1109/TAC.2007.904450
https://dx.doi.org/https://doi.org/10.1137/080735370
https://dx.doi.org/https://doi.org/10.1137/120889496
https://dx.doi.org/https://doi.org/10.1016/j.crma.2006.09.019
https://dx.doi.org/https://doi.org/10.1016/j.crma.2006.09.018
https://dx.doi.org/https://doi.org/10.1007/s11537-007-0657-8
https://dx.doi.org/https://doi.org/10.1007/978-1-4614-8508-7
https://dx.doi.org/https://doi.org/10.1109/TAC.2016.2519501


11110

19. T. Nie, S. Wang, Z. Wu, Linear-quadratic delayed mean-field social optimization, Appl. Math.
Optim., 89 (2024), 4. https://doi.org/10.1007/s00245-023-10067-5

20. R. Xu, J. Shi, ϵ-Nash mean-field games for linear-quadratic systems with
random jumps and applications, Int. J. Control, 94 (2021), 1415–1425.
https://doi.org/10.1080/00207179.2019.1651940

21. R. Xu, T. Wu, Risk-sensitive large-population linear-quadratic-gaussian games with major and
minor agents, Asian J. Control, 25 (2023), 4391–4403. https://doi.org/10.1002/asjc.3106

22. H. Wang, R. Xu, Time-inconsistent large-population linear-quadratic games with major and minor
agents, Int. J. Control, 2025. https://doi.org/10.1080/00207179.2025.2491823
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