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Abstract: This paper studies mean-field linear-quadratic-Gaussian (LQG) games with a major
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1. Introduction

Mean-field games of a large population system have attracted consistent and intense attention in
recent years (see, e.g., [1-10]) due to their wide applicability in many fields such as finance,
economics, engineering, biological science, and social science. The agents in mean-field games are
individually insignificant, while their aggregated behavior has a substantial effect on each agent. This
collective influence can be captured by the mean-field couplings in their individual dynamics and/or
individual cost functionals. For mean-field games, it is unrealistic for a given agent to collect detailed
state information of all agents due to the highly complex interactions among its peers. To tackle the
dimensionality difficulty caused by the highly complex interactions among the agents in mean-field
games, Huang, Caines, and Malhamé [11], Huang [12], and Nourian and Caines [13] developed a
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powerful approach—the Nash certainty equivalence (NCE) methodology. The key idea of this
methodology is to establish a consistency relationship between the individual strategies and the mass
effect (i.e., the asymptotic limit of state-average) as the population size goes to infinity. Based on this
effective analytical tool, one can construct a set of decentralized strategies for each agent in the
mean-field game, and verify the asymptotic Nash equilibrium property (namely, e-Nash equilibrium)
of the decentralized strategies where the individual optimality loss level € depends on the population
size N. A closely related method for solving mean-field games was independently developed by Lasry
and Lions [14-16]. For a comprehensive survey of the theory of the mean-field game and its
applications, one is referred to [11,12, 14, 16-21] and the references therein.

The consideration of major and minor a agent game problems under a large population framework
has been well studied in [3,12,13,21,22]. Huang [12] investigated a kind of stochastic dynamic linear-
quadratic-Gaussian mean-field games model involving a major agent interacting with a large number
of minor agents. The major agent has a significant influence in affecting minor agents, while the
minor agents individually have negligible impact on others, but their collective behavior will impose
a significant impact on all agents through mean-field coupling terms in the individual dynamics and
costs. Applications of this type of mean-field game appear in many socio-economic problems such as
economic and social opinion models with an influential leader (e.g., [23]), such as the charging control
of plug-in electric vehicles [24]. Xu and Wu [21] studied large-population dynamic games involving a
LQG system with an exponential cost functional, and the parameter in the cost functional can describe
an investor’s risk attitude. Moreover, in the game, there is a major agent and a population of N minor
agents where N is very large. Wang and Xu [22] investigated a time-inconsistent linear-quadratic game
involving a major agent as well as numerous minor agents.

Motivated by the absence of relevant theory and some practical applications, this paper studies
mean-field LQG games with random jumps involving a major agent and plenty of minor agents.
Specifically, we consider mean-field games with agents of the following mixed types: (i) a major
agent and (ii) a large population of N minor agents where N is very large. The dynamic of each agent
follows a linear stochastic differential equation driven by both Brownian motions and Poisson random
measures. Moreover, the present study considers the mean-field LQG mixed games in which the
diffusion term depends on the major agent’s and the minor agent’s states as well as the individual
control strategy. Stochastic processes with random jumps can be used to model fluctuations in the
financial market, both for option pricing purposes and risk management (see [20, 25-27]). As for
mean-field LQG games with random jumps, Benazzoli, Campi, and Di Persio [1] studied a symmetric
n-player nonzero-sum stochastic differential game with jump-diffusion dynamics and mean-field type
interaction among the players, and they constructed an approximate Nash equilibrium for the n-player
game with n sufficiently large. Xu and Shi [20] investigated LQG games of a stochastic large
population system with jump diffusion processes. It is worth noting that in existing research on
mean-field games of a stochastic large population system driven by jump-diffusion processes, all
agents are comparably small and may be regarded as peers.

To obtain an asymptotic Nash equilibrium property (i.e., e-Nash equilibrium) for the original mean-
field game, we apply the NCE approach to establish a certain consistency relationship between all
minor agents and the mass effect. First, we construct two auxiliary stochastic control problems driven
by stochastic differential equations driven by Poisson jumps (SDEPs) which depict the state of the
major agent and a generic minor agent, and obtain the corresponding optimal control in feedback
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form. Next, to devise the decentralized strategies of individual agents, we formulate a kind of fully
coupled forward-backward stochastic differential equation driven by Poisson jumps which is called a
consistency condition (CC) system. Then, a set of decentralized strategies are constructed by using the
solution of the CC system, which are demonstrated to be the e-Nash equilibrium.

The main contributions of this paper can be summarized as follows:

e A new class of LQG mean-field games involving major and minor agents is investigated. The
dynamics of each agent follows a linear stochastic differential equation driven by both Brownian
motions and Poisson random measures, in which the diffusion terms of the major and minor
agents depend on their states and control strategy.

e The average state of all minor agents x')(-) appears in the drift term and diffusion term of the state
equations for both the major agent and all the minor agents, as well as in their cost functionals.

e The consistency condition system called the NCE equation is represented through a fully coupled
two-point boundary value problem, and based on this equation, we design a set of decentralized
feedback control strategies for the N + 1 agents by use of two limiting control systems.

e By the approximation relationship between the closed-loop mean-field game system and the
limiting systems, the set of NCE-based decentralized control strategies is shown to be an e-Nash
equilibrium for a finite N + 1 population system where € = O(1/ VN).

This paper is organized as follows. In Section 2, we formulate the LQG mean-field games driven
by Poisson random jumps involving a major agent and many minor agents. Section 3 introduces
two auxiliary optimization problems for the major agent and each minor agent, respectively, and the
consistency condition system is derived. Section 4 aims to present the e-Nash equilibrium property
of the decentralized control strategies. A numerical example is given in Section 5. Finally, Section 6
concludes the paper.

2. Formulation of the problem

2.1. Notations

Throughout this paper, we denote by R” the n-dimensional Euclidean space. For a given Euclidean
space, we denote by | - | (respectively, (-, -)) the standard Euclidean norm (respectively, inner product).
The transpose of a matrix (or vector) X is denoted by X”. Let (Q, F, {F}o<i<r P) be a complete filtered
probability measure space for fixed time 77 > 0, and let the number N represent the population size
of minor agents. Denote by N the index set {1,2,---,N}. Let ¥, be the filtration generated by the
following mutually independent processes:

(i) (N + 1) independent one-dimensional standard Brownian motions {W;(t), i =0,1,---, N}oc<r;

(i1) (N + 1) independent Poisson random measures {Gi, i=0,1,--- ,N}on E; xR*, where E; C Ris
a nonempty open set equipped with its Borel field B(E;), with compensator a(dedt) = m;(de)dt, such
that G;(S x [0,7]) = (5,- - Ei)(S X [0, t])»0 1s a martingale for all S € B(E);). n; is a o-finite measure

on (E;, B(E;)) and is called the characteristic measure. Moreover, VS € B(E;), Cy := sup m;(S) < +o0
0<i<N
is a positive constant independent of the number N.

We also set

FO = o Wo(s),0 < s <1} \/ olGo(So X [0, 51),0 < 5 < 1,¥S € B(Ey)),
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F 1= o{Wi(),0 < s <1} \/ o{Gi(S: x [0, 5,0 < 5 < 1,YS,; € BE),
FO = a{Wo, Wi(s),0 < s < 1} \/ a{Go(So % [0, 51), Gi(S; X [0,5]),0 < s <1,
VS € B(Ey),S; € B(E)),

where \/, ¥, := 0 (U, Fo). Here, {F, }o<<r represents the information of the major agent, whereas for
the giveni € N, {7—7 Jo<t<r stands the individual information of the ith minor agent.

Denote by S” the set of symmetric n X n matrices with real elements. If M € §”" is positive (semi)
definite, we write M > (>) 0. We also introduce the following spaces:

Lé(R”) = {{ : Q — R"|{ is G-measurable and E[|{|2] < +oo};
SE (0. TI:R") := {¢() : [0, T]1 X Q — R"|$(") is G,-adapted and E| sup |p(1)]*| < +oo};
0<t<T

Lé ([0, T];R™ := {¢(-) 1[0, T] x Q — R"|¢(-) is a G,-progressively measurable process
T
and E| f l¢()dt] < +oo}.
0

2.2. Major-minor mean-field game problems

Let us consider an LQG mean-field game involving a major agent A, and a population of N minor
agents {A;,i = 1,2,---,N}. For the major agent Ay, U := {u()lu(-) € L>([0, T]; RY)} denotes the
centralized admissible control set, and (ng ;= uOlu() € L;O([O, T]; R¥)} represents the corresponding
decentralized admissible control set. For each i € N, we define the centralized admissible control set
for the minor agent A; as (L{;‘j = {u,()|u;(+) € L;([O, T1;R%)}, while the corresponding decentralized
admissible control set is U’ = {u;(-)lu;(-) € LE/,O’,.([O, T1;RY)}. Note that we have U, ¢ U for
i=0,1,---,N.

The dynamics of the major agent Ay is given as follows:

dxo(t) = [Aoxo(r) + Bouo(t) + box™ (1) + fo(D)1dt + [Coxo(t) + Douo (1)
+ Lpx™M (@) + oo ()]dWo(t) + F on Go(dedr), (D
X()(O) =aqay € R",
and the state of the minor agent A; is described by
dx;(t) = [Ax;(t) + Bu;(t) + bix™M(t) + £()]dt + [Cxi(t) + Du;(t)
+ byx™(@t) + Hxy(t) + o(O)1dWi(t) + F fE G,(dedt), 2)
x(0)=a;eR", i=1,-- N, '
where XM (1) = & 3| x;(t) represents the average state of all minor agents. Here, Ay € R™", B, €
R™k Cy € R™ Dy € R, by € R [y € R Fy e R",A e R™" Be R™ CeR™ DeR> b e
R™ b, € R™" H € R™, and F € R" are given constants, and fy(-) € R",0¢(-) € R", f(-) € R", and
o(-) € R" are given deterministic functions. For given admissible control 1, and u;, it follows that the
systems (1) and (2) admit a unique solution xy(-), x;(:) € S ;([O, TI;RM.

Let u = (ug,uy,...,u;,...,uy) be the set of control strategies for all N + 1 agents, and u_; =

(up, U1y ... Uiy, Uiy1, ..., uy) fori =0,1---,N. The cost functional for the major agent Ay is

1 T
Joluo. o) = SE fo [(Qo(xo(t) = Box™ (@), (xo(t) = Box™ (1)) + (Roto (1), uo(0)) |dt
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+ (Moxo(T), xo(T))}. 3)

The cost functional for minor agent A;, 1 <i < N, is

1 T
Ji(ui, u_;) = EE{j; [(Q(xi(l) = Bix™ (@) = Baxo(®), (xi(t) = Brx™ (@) = Baxo(1)))
+ (Ru(t), u(O)|dt + (Mxi(T), x(T))}. (4)

The coeflicients of cost functionals satisfy that Oy, Q € 8", Qy > 0,0 > 0,80,81,8. € R", Ry > 0,R >
0,Ry,Re Sfand My >0, M >0, My, M € S".

Parallel to (2), the cost functional (4) contains the term 8, x(¢) to capture the strong influence of the
major agent. Note that the state dynamics (1) and (2), and the cost functionals (3) and (4), indicate that
the major agent (A, has a significant influence on minor agents, while each minor agent A;,i € N, has
a negligible impact on other agents in a large N population system.

Now, we propose the following LQG mean-field games.

Problem (LP): Find an admissible strategy u = (g, dy,...,4,...,uy) Where
() € Uy, i=0,1,-- N, such that

Ji(ﬁi, ﬁ—i) = inf in(l/t,‘, l/t_i), 1= O’ 1’ . ’N‘
u,-(~)e’LIZ;;

We call iz a Nash equilibrium strategy for Problem (LP).

Remark 2.1. It should be noted that this paper only addresses the existence of Nash equilibrium
strategies and does not involve whether the Nash equilibrium is unique. The study of the uniqueness
of Nash equilibrium strategies is also an active research topic. The variational inequality approach
proposed in He and Wang [28] provides a feasible methodology for studying the uniqueness of Nash
equilibrium strategies.

3. Closed-loop behavior of the agents

In this section, we first construct two auxiliary stochastic optimal control problems, which are called
limiting systems, for the major and a generic minor agent in Sections 3.1 and 3.2, respectively. Then
we present the approximations between the limiting systems and the corresponding mean-field system
in Section 3.3.

3.1. Optimal control of the major agent

For any vy(-) € (L{S ,» the state yo(-) of agent Aj satisfies the following stochastic differential equation:

dyo(t) = [Agyo(?) + Bovo(t) + box (1) + fo(D)1dt + [Coyo(t) + Dovo(r)
+1oxO(5) + oo (D1dWo(0) + Fo [, Go(dedn), (5)

y0(0) = ao,

where function x¥(-) will be given later.
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The corresponding cost functional is given by

— 1 T
Jo<vO>:§E{ fo [(QoGo(t) = Box (1)), (o(t) = Box V() + (Rovo(1), vo(1) |dt

+ (Moyo(T), 30T
Problem (LLM1): The objective is to find v(-) € 1{2 , such that

Jo(¥o) = inf  Jo(vp).

V()Erugd
Let Py(-) be the solution of the following Riccati equation:

—Po(t) = Po(1)Ao + A Po(t) + C§ Po(1)Co + Qo — (B] Po(t) + D Po(t)Co)™
X (Ro + D§ Po(1)Do)™" (B Po(t) + D Po(1)Co),

R() + DS—P()(Z‘)D() > 0,

Po(T) = M,

Let 179(-) denote the solution of
no(t) = —{[Ao — Bo(Ro + D Po()Do) ™" x (B Po(t) + Dy Po(1)Co)] " 110(1)
+ [Co — Do(Ry + Dy Po(1) Do)~ x (B Po(t) + Dy Po(1)Co)1"

X Po(0)(lox V() + oo(1)) + [Po(t)(box V(1) + fo(1)) —,BOQOX(O)(I)]},
no(T) = 0.

The following result presents the optimal control of Problem (LM1).

Theorem 3.1. Suppose that

{ Ao(1) := =(Ro + D Po(1)Do)™" x (B] Po(t) + D Po(1)Cy),
Oo(1) := —(Ro + D§ Po(1)Do)™" x [B; (1) + D§ Po(t)(lox V(1) + o7o(1))].

Then the optimal control strategy of Problem (LM1) is

Vo(1) = No()Jo(1) + Op(1),
where yo(-) satisfies

dyo(t) = [(Ag + BoAo())yo(1) + Bo®o(1) + box©(2) + fo(1)]dt
+ [(Co + DoAo(0))3o(t) + D@y (1) + lox V(1) + oo(1)1d Wy (1)
+ Fo [, Golded),

$0(0) = ao.

(6)

Proof. Let b(t) := box@(t) + fo (1), 6(f) := lopx©(£) + o(). Then the state equation (5) can be written as

dyo(t) = [Aoyo(t) + Bouo(t) + b()|dt + | Coyo(t) + Douo(t) + 6-()|dWi(z)
+ Fo [, Go(dedn),
¥0(0) = ap.

AIMS Mathematics Volume 10, Issue 5, 11086-11110.



11092

For simplicity, we denote Ry(f) := Ry + D Py(t)Dy, Bo(t) := B Py(t) + Dy Po(t)Cy. Applying Itd’s
formula to (3yg ())Po(t)ye(t) + g ()0(t)), we obtain

1 1
B(555 (DPoT3T) = 535 OPo0)yo(0) + 35 (DT = 35 O)o(0))

1 1
= B{5Moy}(T) = 535 0Po(0)y0(0) = ¥ (0)1o(0)}
T
1 1 55 -
= E‘fo‘ [_ EQO)}% - EyéB(z)R(_)l + Poyovng + P()C()yongg + novng + nObT]dt
T 1 5 5 1 ) T . .
+E fo (EP()DOVO + PyDyvoG + EPO& )dt + E fo [BOR(; (By Py + D] PoCo)] noye dt

g T
p—17 1
+E jo‘ {[DoRalBO]TPoa'ya— + ,BOQox(O)(t)ya—}dt + EPOF(% L j(; mo(dedt).
0
Combing the above equation with the definition of Jo(vo), it follows that

- "1 02 s 1p 2 |
Jo(vp) =E (EQO()’O — Box (1)) + ERoVo)dl + EMoyo(T)
0
! ©) 1 02 1p 21 ) Tp BT
=E — BoQox(D)yo + iQo(ﬁox ()" + EROVO + EPODOVO + yovo PoBy
0

L 5anse
+ y()VgP()C()D(—)r +ﬂ0Q0X(O)(l’)y(—)r + Ey(z)B(z)Rol + P()D()V()O'() + novng
A 1A 1T A AT 1 o
+ [B()R(;IB()] T]Oy(—)r + [D()RalBo] P()O'yg + EP()O'2 + nobT]dl}
1, ! 1,
+ EPOF 0 mo(dedt) + Ea,-OP(O) + a;on(0)
Eo Jo
! 1 p—-1[| p D 2 T T ANCD D
= E ; I:ERO {[R()V() + B()yo] + 2(B0 TIO + DO P()O-)(ROVO + Boyo)}
1, 7T 1 2 ! 1,
£ 2Py + b ]dt ¥ ZPyF? Ro(deds) + ~a2,P(0) + apn(0)
2 2 £ Jo 2
’ 1 p—1p 7 T T ANI2 1 p—1/nT Tp A)2
= Ef 0 [ERO IRovo + Boyo + (B 1o + Dg Poo)I = 5 Ry (B0 + DG Poc)
1, T 1 2 ! 1,
+ >P6” + b |dt} + S PyF} rto(dedr) + =3 P(0) + an(0).
2 2 Eo Jo 2
Hence we obtain the optimal control

Po(1) = — Ry (OB, (1)30(1) — Ry (1)(Bg no(t) + D{ Po(t)6-(1))
= Ao(0)Fo(t) + B (1.

The proof is therefore complete. O
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3.2. Optimal control of the minor agent

For any i € N, the limiting state of minor agent A, is

dy(t) = [Ay;(D) + Bvi(t) + bixO(t) + f()ldt + [Cy;() + Dvi(t) + brx (1)
+ Hyo(t) + o (DldW(1) + F [, G(ded),
yi(0) = a;.

The limiting cost functional is given by

_ 1 T
Ji(vi) = iE{ fo [(Q(yi(t) = B1x (1) = Boyo (), ilt) = B1x (1) = Bayo(1)))
+ R0, v dt + My, 3T
Problem (LLM2): Find a control strategy v;(-) € (Ll; s> 1 < i < N, such that

Ji(#) = inf Ji(v).

Vi€ ad

Let P;(-) be the solution of the following Riccati equation:
—Pi(t) = PI()A+ ATP,(t) + C"Pi(1)C + Q — (BTP1(t) + DTP,(H)C)"
X (R+ DTP(t)D)" (BT P(t) + DT P(1)C),
R+ D"P(t)D > 0,
P(T)=M.

n:(+) satisfies
m@) = —{[A — B(R+ DTP(1)D)™" X (BTPy(t) + D" P1()C)]"m1 (1)
+[C=DR+D"P,(t)D)! x (BTP,(t) + D" P (H)C)]™ X P1(t)(b,x(2)

+ Hyo(t) + o(1) + [Pi(0)(01x (1) + f(2)) = B10x (1) —,BzQyo(t)]},
m(T) = 0.

Denote

A(D) := ~(R + DTP{()D)™" x (BT P,(1) + DT Py (r)C),
®,(t) := ~(R+ DTP\()D)™" x [BTm(t) + DT Pi(t)(b2x V(1) + Hyo(t) + ()],
@,() := ~(R+ DTPy()D)™" X [BTm (1) + DTPi(t)(b2x () + Hyo(1) + ()]

Using a similar proof as in Theorem 3.1, we have the following result.

Theorem 3.2. The optimal control strategy of Problem (LM?2) is

7i(t) = A (0)7i(t) + O (1),
where y;(-) satisfies

dyi() = [(A + BA{(0)Ji(0) + BOy(1) + bixV(t) + f()]dt + [(C + DA, (1))i(0)
+ DO(1) + box V(1) + HFo(t) + c(D]dWi(1) + F [, Gi(dedn),
yi0) = a;.

)
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3.3. Approximation for the closed-loop system

In this subsection, we design a closed-loop mean-field system, and show the approximations
between the limiting system and the corresponding closed-loop system.

Based on the feedback formulation of the optimal control for major agent Ay, and minor agents
A;, 1 <i < N, we obtain

d%o(t) = [(Ao + BoAo(1)Xo(1) + Bo®o(t) + box™ (1) + fo(D))dt + [(Co + DoAo(1))%o (1)

+ DOy (1) + [pxN (1) + oo ()]dWy (1) + F on Go(dedt), ®)
X0(0) = ay,
and
dx,(t) = [(A + BA(1)%,(t) + BO(2) + by (1) + f(1)]dt + [(C + DA (1)X:(t)
+ DO (1) + b, (1) + HXo(t) + o(t)1dWi(t) + F fE,- Gi(dedt), 9
x;(0) = a;.
By xV(t) = + % %,(1), the function x©(¢) fulfills
k=1

dxO(t) = [(A + BAL(t) + b)xXO() + BO, (1) + f(1)]dt,

| & (10)
00 = > a;.

=1
Now, we introduce the following NCE equation:

d5o(t) = | (Ao + BoAg()To() + Bo®o(1) + box (1) + fo(1)]dt
+ [(Co + DoAo()F0(1) + De®o(1) + lox (1) + o)) |dWo (1) + Fo [, Goldeds),

#O®t) = (A + BA (1) + b))xO(t) = B(R + DT Py (t)D)!

X [BTn1(1) + DT Py (t)(box () + Ho(t) + o(t)] + f(1),
—11(0) = [A + BA{O] (1) + [C + DAL(O]T Pr(D)[bax® (1) + Ho(t) + o (1)]

+ Pr (b1 xO@) + £(1)) = B1OxO(1) = B>.050(0),
—iio(t) = [Ag + BoAo()] m0(1) + [Co + DoAo(D)] T Po()lox(1)oro(r)

+ Po(D(box V(1) + fo(1) = BoQox (1),
50(0) = ao, mo(T) = m(T) =0, x00) = 3 XV, a;,

which can be written as

dyo(t) = [Ao(®)50(t) + Go(0x (1) ~ BoRy' (B mo(t) + Co(0) ]
+ | Co@so(e) + Ho)x (1) ~ Dok (0)Bgmo() + Ho()|dWo(e) + Fo [, Golded),
#0(r) = G (0xV(1) - BR™ (0[BT (1) + DT Py HFo(1) + DT Py ()] + f(0),
=i = AT ) + L0 + Hi(030(0) + Ka(0),
=i0(t) = A 0(t) + Lo(x @) + Po(t)folr)
50(0) = ag, 1o(T) = m(T) =0, xV(0) = 5 X7, aj,

(1)

where

Ao(t) 1= Ag + BoAo(1), Go(t) := —=BoRy' (D Po(1)ly + bo,
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Ro(1) := Ry + D{ Po(1)Dy, Go(1) := fo(t) = BoRy () D Po(t)oro(1),

Co(1) := Co + DoAg (1), Ho(t) := —=DoR;' (1)Dg Po(D)lo + lo,

Ho(1) := o0(t) — DoRy' (10D Po(D)aro(), Gy (1) := A(t) + by = BR™' (1)D" P\ (1)b»,

A1) := A+ BA (1), Ly () := [C + DA ()] P1(D)by + P1(D)b1 — 1 Q.
R() =R+ D"P,(H)D, H,(7) := [C + DA()]" P1(H - 5,0,

Ki(®) := [C + DA{(D]T P1(1)o (1) + Pr(D) f (),
Lo(2) := [Co + DoAo()]" Po(D)looo(t) + Po(t)by — B Qo.

The above NCE equation is a kind of coupled two-point boundary value problem, whose
well-posedness can be found in Theorem 4.2 of Hu et al. [3] under some monotonicity assumptions.
We will not repeat them here for simplicity.

Next, we establish the approximation relationship between the closed-loop mean-field game system
and the limiting system.

Proposition 3.3. The following estimates hold:

@) sup B[ - 00 = 0

0<t<T

1
(i) sup E[IxV @) - IXO@))| = 0(—),
ooy | | N

1
(i) sup Efx(o) - 50| = ()

0<t<T

1
. Ellx 2 15 2 — -
(@) sup EIH00P ~ 5o = 07,

(v) sup E’)'c,-(t) - yi(z)'2 - O(%), 1<i<N,

0<t<T

1
i) sup Elx:0)f - 5:(0)| = O(—=), 1<i<N.
oy | 5o N

Proof. Let (1) := V(1) — x0(1), 20(t) := Fo() = Jo(t), Z:(t) := %(t) = 5:i(#) (1 <i < N). Combining (9)
with (10), we derive

N
dz(t) = [(A + BA(¢) + by)Z(t)]dt + % Z[(C + DA (1))X;(t) + DO, ()

J=1

1 N
+ by @™(1) + HRo(1) + o(D)]dW;(t) + N JZ:; F ij Gj(dedt),

z2(0) = 0.

Define x(f) := b,x™ (1) + Hx,(t) + o(t). Applying 1td’s formula to Z%(¢), we obtain

t 1 N t
E[2’(n] =2 fo (A +BA(s) + b)EIZ(9)lds + 5 > E fo {[(C + DAY()E(s)

J=1
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_ 2 F2 N t
+ DBy (s) + ()1} ds + v ; E fE j fo 7 (deds),

<2 sup(A+BA(t)+ b)) X f E[Z2(s)]ds + % m_ax E[(C + DA())x;(t)

0<t<T

+ DO,(1) +)((t)]2 + — max Ef f nj(deds).

According to Gronwall’s inequality, it follow that

sup E‘ (1) - x(O)(t)' - 0(;]) (12)

0<t<T

For (i1), according to Holder’s inequality, we have
BJI# 0 - KO0F| = B[l - 220 + 240GV (0 - 200)
1
<E[lXV) - 2O OF | + 2 OBV (1) - 2" 0F1) .

By (12) and the boundedness of |x?(¢)|, one has
sup BlIEV @) - x| = (i)
0<t<T \/N

We now prove (iii). According to (6) and (8), it follows that

{dZo(f) = [(Ap + BoAo(1))Zo(1) + boz()1dt + [(Co + DoAo(1))Zo(1) + LoZ()|dWy(2),
70(0) =0

Applying Itd’s formula to Z3(z), we obtain

E[z(0] = 2 f E| (Ao + BoAo()Z(s) + boZ(8)Z(s)|d's
0
+ f E[(Co + DoAo(5)Z(s) + loz(s)]zds
0

< 2f [(Ao + ByAo(s)) + (Co + DOAO(S))2 + b(z)]EZ(z)(S)dS + f (% + 21%)E22(S)ds
0 0

By (12) and Gronwall’s inequality, we have

sup [ - 50| = 0. (13)

0<t<T

Note that
B 1500 — [50(| = B||%0(t) = Fo(OF + 250(5)(Fo(t) - 70(0))
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Dl

< E|I%0(1) - Fo()P | + 2(E[|570(l)|2])%(}5[|)_€0(f) - 5o)P1)".

According to (13) and the boundedness of [yy()|, we obtain

1
E v 2 — |v 2 = 0 — N
sup E[Iw0P - o(0f| = 0(—=)

Next, we prove (v). Combining (7) with (9), we have

{dZi(t) = [(A + BA1(0)zi(1) + biz(D])dt + [(C + DA (1))7i(1) + boZ(1) + HZo()]1dWi(d),

zi(0) = 0.

Applying 1t0’s formula to 72(), we obtain
E[z/(1)] =2 fo | E[(A + BA()Z(s) + biZ(s)2(s) | ds
+ j; t E[(C + DAV(s)2(5) + baz(s) + Hz(0)| ds
< fo t [2(A + BA(s)) + b7 + 3(C + DAl(s))Z]Ezf(s)ds

! !
+ f (1 + 3b3)BZ*(s)ds + 3H* f EZ3(s)ds.
0 0

By Gronwall’s inequality, and estimates (12) and (13), we obtain

2 1
sup E[%(1) 50| = O()-

0<t<T

Finally, we prove (vi). Since

Bl - 5P| < E[15:(0) - 5:0F ] + 2E[5:0l15:0) - 5:0)]

< E[1%() - 5P| + 2(EI5:0P1) (BIE) - 5:()P1).
According to (14) and the boundedness of [y;(z)|, we get

1
E _i 2 - _,' 2 = 0 —).
OSsltlfT ‘Ix O = [yl ‘ ( \/JT/)

The proof is then complete.

Define the control strategy for the major agent as

to(1) = Ao()Xo(2) + O (1),
and the control strategy for minor agents as

it:(t) = A (D%(1) + O (2).

(14)

15)

(16)

Based on the approximation relationship between the closed-loop mean-field systems and the limiting

system, the following approximation relationship between cost functionals can be derived.
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Proposition 3.4. Foranyi=0,1,---,N, we have

i ) - T = O(%).

Proof. Based on the definitions of the cost functionals, we obtain
‘Ji(ah u_j) — j;(\_’i)|
1 T
= |§E f {[0Gi0) - B1x™() = Bazo(1)* = QGi(r) — B1x (1) = BaFo(1))?
0

+ [Rz} (1) - R¥}(1) |}t + %E[M)‘cf(T) - M)‘),.Z(T)]‘

1 T
5B fo {0 = BiFV (1) = BFo(1)) + Gi1) = Bix (1) = Baso(0)]

X [(E(0) = BLEV(1) = Bao(1) = (i) — B1xV(0) = BT (1) ]

_ - 1
+R[(MOTW) + ©1(1)) = (AMOFi(1) + O,(0)) [Jdr + SB[ ME(T) - My%m]‘
1 T
= 5B f {Q[(mt) = 212" (1) = 2Ba%0(1)) - L(t)| X L(0)
0
+ R|(A1 (0P (R2(1) = 57(0)) + 281 (0O ()(Fi(1) - ?i(t))]}dt + %E[Mﬁm - MyX(T))
1 T
<3 fo {QE[l(zxi(t) = 2815M(1) - 2B, % (1) L(1)|| + QE[|L*(1)|
+ RAOYE|[F () - 50| | + 2RA1 (0O (DE||%:(0) - m)l]}dt
[
+ S ME[|5(T) = 53T
1 1
< 50T sup E||@x(1) - 2813V (0) - 28250 L(1)|| + 50T sup E||L2)|]

0<t<T 0<t<T

1 -
+ SRTAO) sup E[[530) = 570)[| + RTA(081(0) sup E[[5i(1) - 5.(0)

0<t<T 0<t<T

1 _ -
+ EMOSS?ST E||#(T) - 53(1)|].

where L(f) := [()'ci(t) - 3i(0) = B1GEM (@) — X O(1)) = Br(X(t) — yo(t))]. Obviously, according to

2 —
Proposition 3.3, we have ]E['L(t)‘ ] = O(%). Therefore, it follows that '],-(ﬁ,-, ;) — J;)l = O(ﬁ).
The proof is then complete. O

4. e-Nash equilibrium for Problem (LP)

This section will verify the asymptotic Nash equilibrium property of the decentralized control
strategies u = (i, ity, - - , iy) specified by (15) and (16).
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4.1. Major agent’s perturbation

Let the major agent A\ take an alternative control strategy u, and let the minor agent A; take the
control law (16). Then the state system with the major agent’s perturbation is

dxy(t) = [AZo(t) + Bouo(t) + boX™(t) + fo(t)]dt + [CoZo(t) + Douo(t)

+ 1oZN@) + oo (H)1dWo (1) + Fy f Go(dedt),

Ep

d%(t) = [(A + BA{(0)Ti(D) + BO, (1) + b1 XV (1) + f(1)]ldt + [(C + DA (1))%i(1) a7)

+ DO, (1) + b,i™N(6) + HZo(t) + o()]dWi(t) + F f Gi(dedt),

E;

5(:'0(0) = ao,fc,-(()) =da, i = 17 ’N’

N ~
where V(1) = 1 ¥, %(¢). The cost functional for major agent Aj is
k=1

1 T
Jo(uo, u_g) = EE{fo [(Qo(fo(l) = BoiN(1)), (Fo(1) — BoX™M (1))

+ (Rouo(1), Mo(l)>]df + (Myxo(T), fo(T»}-

The corresponding limiting state equation with the major agent’s perturbation control is

d5o(t) = [AoFo(1) + Bouo(1) + box V(1) + fo(D)]dr + [CoFo() + Douto(7)
+ px (1) + ao(DIdWo(D) + Fy [, Go(ded?)

dyi(t) = [(A + BA(0)7i(1) + BO\(2) + b1xO(t) + f(1)ldr + [(C + DA (1)7i(1)
+ DO\ (1) + byxO(t) + Hyo(t) + o ())dWi(t) + F fE; Gi(dedt)

¥o(0) =ap, §i(0)=a; i=1,--- ,N.

The cost functional is

— 1 T
Jo(uo) = EE{ fo [(Qo@o(t) = Box (1)), Go(1) = Box V(1))

+ (Rotto (1), uo(0) |dt + <Moyo(T>,yo(T)>}.

The following result presents an approximation relationship between two perturbation systems.

Proposition 4.1. We have the following conclusion:

) sup B[ - 0 = o)

0<t<T

1
(i) sup EJlFM0P - xO0)P] = 0(—),
ooy | | YN

1
(i) sup E[oo) - 500 = 05,

0<t<T

1
. =2 o2 =
) sup E[[woF - o] = ().
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Proof. We only need to prove the first approximation relationship, and a other three approximation
relationships can be obtained by a similar proof as in Proposition 3.3.
Define @(¢) := ¥V (f) — x©(#). Combining (10) with (17), we have
N —
do(r) = [(A + BA (1) + b1)®(r)]dt Z [(C + DA ()% (1) + DO (1) + b, (2)

#
+ Ho(t) + o(t) [dWi() + & % F [, Gi(deds),
®(0) = 0 -

Define Ly(t) := [(C + DA())F(1) + DO, (1) + b, (1) + Hiy(t) + o(1)]. Therefore
f L (5)1%ds
= j; [(C + DA()%(5) + DO, (s5) + by(KN(5) = xV(5)) + byxO(s) + HZo(s) + 0(s)]’d
<CE fo t[lik(S)Iz + 1+ V() = XV + XO)P + [Ko(s) + lo(s)1ds

t
<CE f IGM(s) = xXO(s)Pds + Cy,
0

where

C:= max{ sup |C + DA(t)|, sup |DC:)1(t)|, |bsl, |HI, 1} ,

1€[0,T] 1€[0,T1]
T
C,:=CE f (% + 1+ X + [Zo(9) + o ()] 1ds
0

are constants independent of N.
Furthermore,

Ed* :ZEftABA bCI)d —Ef de
(1) = 2E| 0 [(A + BAY(9) + b)®(s)|ds) + ji] (s)ds}

: N
+ 28] fo %;F fE k Gk(a’eds)}z

T
<2E f [T|(A + BAL(s) + b)D(s)] + % max [Ly(s) ]

+ —E f |FGk|2n(de)ds.
0
By Grownwall’s inequality, we have
sup B|F (1) - 20| —m )

0<t<T

Then, the proof is complete. O
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Similarly to the proof of Proposition 3.4, we can obtain the following result.

Proposition 4.2. For any uy(-) € (LIZ;?, we have

_ 1
Jo(uo, i) — Jo(uo)' = O(W)-

4.2. Minor agent’s perturbation

Now, let us consider the following case: a given minor agent A; takes an alternative control strategy
u,(-) € ‘L[Z’i, the major agent uses the optimal control strategy iiy(-) defined by (15), while other minor
agents A ; take the control strategy i;(-), j # i, 1 < j < N, defined by (16). Then the dynamics of the
agents with the given minor agent’s perturbation can be written in the form

dxo(t) = [(Ag + BoAo(D)Fo(t) + Bo®o(t) + bo™ (1) + fo(D)]dt + [(Co + DoAo(t))Fo(?)

+ Dy®y(1) + [ (1) + oo(H)1dWo (1) + F, f Go(ded?),

Ey
dz:i(t) = [A%:(t) + Bu(t) + b1V (1) + f(O)]dt + [CR:i(t) + Duy(t) + b2 (1)
+ HRo(t) + o()]1dWi(t) + F f Gi(dedr), (18)
E;

d%(t) = [(A + BA(D))%,(t) + BO(t) + b12™ (1) + f(1)]dt + [(C + DA ()%(?)

+ DO (t) + byi™(1) + Hy(1) + o()]dW(t) + F f G (dedt),
E:

J

)~C()(O) = Ay, X,(O) = da, )~C](O) = aj,j = 1,2,"' ,N, ]?& i,

N
where £M(1r) = 1 3 £(1). The cost functional is
k=1

Ji(ui,u_;) = %E{ fo ' [(Q(fci(t) = Bi1&M (1) = Bao (D), (Ri(1) — B1E™ (1) — BaRo(1)))
+ (Rug(0), wi(0)) |dt + (M&(T), 2(T))).
The corresponding limiting system with the minor agent’s perturbation strategy is
d$o(t) = [(Ag + BoAo(1))0(t) + Bo®o(t) + box(t) + fo(t)ldt + [(Co + DoAo(t)Fo(t)
+ DBy (t) + loxV (1) + ao()]dWo () + F f Go(dedt),
d$i(t) = [APi(0) + Bui(t) + by xO(®) + f(H)]dt + [cy,-(go+ Duy(t) + byx(t)
+ H90(1) + o()]1dW(t) + F fE Gi(dedp),

d3 (1) = [(A + BAL(1)3,(1) + BOL(1) + b1x V(1) + f(1)]d1 + [(C + DA (1),(1)

+ DO\ (1) + byx(t) + H9o(t) + o(D]dW (1) + F f G (dedt),

Ej

$0(0) = ap, ¥:(0) = a;, yj(0) =a;, j=1,2,---,N, j+1i.
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The cost functional is

1 T
~M%)=§ELL [<QGi(0) = Bix(1) = B3o(0), Git) = B1x(1) = BaFo()))
+ (Ruy(t), (1)) |dt + (MSIT), $:(T))).
Now, we are in a position to state the following approximation results.

Proposition 4.3. For the fixed i, we have

) sup B[ - 0 = o)

0<t<T

(i) sup E

0<t<T

2 1
Gii) sup E[() - 5,0 = 0().

0<t<T

00 - 0P| = 0t

(iv) sup E

0<t<T

1
40P = 0P| = 0o,

Proof. We prove only the first approximation relationship, and the other three approximation
relationships can be obtained by a similar proof as in Proposition 3.3.
Define #(¢) := ™M (¢) — xO(f). According to (10) and (18), we get

N

dﬂnzKA+BA(0+hﬁumh+8mm+dLm+~£§:FjﬁGgmﬂ&
NS Ex
7(0) = 0,
where
B . _
S = Sl = Ai(O3(1) = ©1(D)],
N f
L@:%;2}f}w+DAm»mﬂ+D®umwﬁmm+H%m+ammmﬂ)
k=1 ki 0
+%pfKRNO+Dm0y+MﬁMUy+H%U}HﬂHMWKﬂ
0
Since
' 2 332 ' 2 ' 242 ' ® 2
fElS(r)l dr < —2(f Elu; (r)]dr+fE[(A1(r)) X (r)ldr + f E[(®;(r)) ]dr),
0 N 0 0 0
we get

' 1
27—
ﬁEwmm_am. (19)
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Note that

V@) =E f (L)’
0
1 & i
= “Zk; f E[(C + DA/)R() + DO + ba5(r) + Hin(r) + o) dr

Alﬂ f E[CS.r) + D) + a2 (r) + HSo(r) + (1) dr

<L qup max E|(C + DAL(E)5x(8) + DO, (£) + bri™(8) + HRo (1) + O'(I)‘

0<t<T 0s1<T

T
+— sup E‘Cfc,-(t) + Duilt) + ™ () + Hio(0) + O'(t)' .
N? <<t

Thus
1
V() = O(N)' (20)

Applying It6’s formula to 72(f), we obtain

E[Z2(1)] = 2 f (A + BA((r) + b)E[Z2(r)]dr + 2 f E[z(")S(r)]dr + V(©)
0 0

N /
— E f f mi(dedr)
E; Jo

< sup (|2A + 2BA (1) + 2by| + 1) E[ 2(r)dr + f E[S*(r)]dr + V()
0

0<t<T

+—maXEf f ni(dedr).
N o<i<T

Combining (19) and (20) with Gronwall’s inequality, we get

sup £tV - 0| = o).

0<r<T
This completes the proof. O

By using similar arguments as in Proposition 3.4, we can obtain the following conclusion.
Proposition 4.4. For any u;(-) € (L(” 1 <i <N, one has

~ 1
) = Tw| = O @1

4.3. e-Nash equilibrium

In this subsection, we will verify the e-Nash equilibrium property of the decentralized control
strategies (15) and (16).

Before presenting the main result, we give the definition of e-Nash equilibrium in the following
manner.
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Definition 4.5. A set of control strategies u = (iy, Uy, - - ,Uy) where ii;(-) € (LIZ;, i=0,1---,N, is

called an e-Nash equilibrium with respect to costs J;,i = 0,1--- | N, if there exists an € > 0, such that
foranyi=0,1--- N, we have

Ji(@;, u_;) < Ji(u;, ;) + €, (22)

when any alternative strategy u;(-) € (L{;; is applied by agent A,;.
Based on the above results, we obtain the following main result.

Theorem 4.6. Suppose that x;(-),i = 0,1,---, N, is the solution to the equation systems (8) and (9).
Then the set of control strategy profiles u = (g, iy, -+ ,iy) defined by (15) and (16) is an e-Nash
equilibrium of Problem (LP), where € = O(%) — 0as N — +oo.

Proof. Combining Propositions 3.4 and 4.2 with Proposition 4.4, we obtain

T i) = To) + 0(%)
< T + 0(%)
< Ji(u;,u_;) + 0(%), i=0,1,---,N.

Therefore, the conclusion holds with € = 0(#). O
5. Numerical examples

This section demonstrates the consistency of mean-field estimation as well as the influence of the
population’s collective behavior X (-) on the state trajectories of the agents through a numerical
example.

Consider a mean-field game system with one major agent and N = 500 minor agents. For any
uj € (LIZ;f, j=0,1,---, N, the dynamics of the major agent and minor agents are given by

dxo(t) = (5x0(1) + uo(r) + XM (0)dt + (xo(t) + uo(t) + x™())dWo(r)
+2 [, Go(dedn),

dxi(t) = (3x,(1) + Sui(t) + XNV (@)dt + (2x,(0) + ui(2) + XN @) + xo(0))dWi(0) (23)
+ [, Gi(ded),

x(0) =5, x(0)=a;, i=1,---,N,

where ¢ € [0, T] with T = 1. Let the initial states of the agents {a;,i = 1,---, N} be independent and
identically distributed random variables with the normal distribution N(-5, 1).
The cost functional of the major agent Ay is

T
Sntuss ) = 5B [ [30a(0 = X500 + a0 ar + 35301}, 4)
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and the cost functional of the minor agent A;,i = 1,---,500, is

1 T
T u;) = 5E{ f |20xi(0) = x500) = xo(0))” + u} ()]t + (1)} (25)
0
It is easy to check that {Py(¢) = 3, V¢ € [0, 1]} is a unique solution of the following Riccati equation:

Po(t) + 2Py(t) — 4P5(1)(1 + Po(1))™' +3 =0,
Py(1) = 3.

Suppose that P;(-) fulfills

Pi(f) + 10P (1) — 49Pf(t)(l +Pi)'+2=0,
Pi(1)=1.

Then the NCE Eq (11) turns out to be

d5o() = | = 5o + §xO@]dt + | = 1500 + xOW|dWo(t) + 2 [, Go(deds),
ZO(r) = (4 + 40P(0))x (1) — 25(1 + P1(1) "' (1) + SP®)50(0),
=i1(0) = (34 35P@)m () + PrOxO(@) + (2P1 (1) + TROP1 (1) - 2)(Fo(0) + xO(1)), (26)

N
50(0) = ap, m(T) =0, xV(0) = § Zl aj, no() =0, r€[0,T],
=

where P(t) = —(1 + P;(8))"'P,(¢).
According to Theorem 4.6, the set of control strategies it = (io, iy, - - , ily) defined by

3 3
(1) = — E?_Co(f) - ZX(O)(I),

(1) = P)(75%:(6) + XO(0) + 5o(0)) = 51 + Py 'mi(@), i =1,2,-++ N,
is an e-Nash equilibrium of the mean-field systems (24) and (25), where Xy(-) and X;(-) satisfy

do(0) = (= Xo(t) = 3300 + X501 + (= 570(1) = 3xO@) + F°00)dWo(7)
+2 [ Go(ded),
dx(t) = [(3 + 35P(6)xi(1) + SP()xO (1) + 5P(t)yo (1) + N(1)
- 25(1 + Pl(t))_lm(t)]dt + [(2 + TR(0))%:(1) + P(1)x (1) + P()70(t) @7
+ M) + %o(r) = 5(1 + Pl(t))_lﬂl(t)]dwi(t) + fE[ Gi(ded?),

X0(0) =ap, x(0)=a;, i=1,---,N,

where x90(1) = S_Zo‘fl))? ().

In this article, Me;ton’s Jjump model (see Merton [29], as well as Platen and Bruti-Liberati [30, pg.
37] is applied to describe the jump-diffusion process. Assume that on Go(dedt) = Qo(uo, 09)dIIy(Ag).
Qo(uo, 00) 1s the jump size with a normally distributed mean gy ~ N(2,1) and a standard deviation
oo = 0.1. The Poisson process I1y(4y) has a jump intensity of 1, = 2. For agent A;,i = 1,---,500,
let fE,- Gi(dedt) = Qi(u1,o01)dll;(1). Q;(uy,0) 1s the jump size with a normally distributed mean
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u1 ~ N(1,1) and a standard deviation o; = 0.05. The Poisson process I1;(1) has a jump intensity of
A=5.

Figure 1 shows the consistency of mean-field estimation, and the interactive influence between
mean-field term ¥°°0(-), and the major state ¥y(-). When the number of minor agents N = 500, as
shown in Figure 1, the curves of x°%(-) and x(*)(:) coincide well, which illustrates the consistency of
the mean-field estimation indicated by Proposition 3.3.

Figure 2 illustrates the state trajectories of the major agent and all the minor agents. As shown in
Figure 2, for each fixed i, the trajectory X;(-) of A;, in addition to being influenced by its own initial
values and parameters, is also affected by the major agent and the collective behavior of all the minor
agents.

Figure 1. Consistency of mean-field estimation for a; ~ N(=5,1),i = 1,--- ,500, x¢(0) = 5.

20

0 0.2 0.4 0.6 0.8 1

Figure 2. Curves of X;,i =0,1,2,---,500, fora; ~ N(=5,1),i =1,---,500, x0(0) = 5.
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To illustrate how the key parameters in the control strategies of Eqs (15) and (16) influence the
system’s dynamic behavior, we set another set of initial values for N + 1 agents with x,(0) = —5 and
the independent and identically distributed random variables {a; ~ N(5,1), i = 1,---,500}. Figures
3 and 4 are shown to elaborate the consistency of mean-field estimation and the curves of X;,i =
0,1,2,---,500.

6 T T T T T T T T T
—zO(¢)
xk R 5;500(t) |
Sy jo(t)
2 '
0 -
2+ r
i
/
ny ]
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Figure 4. Consistency of mean-field estimation for a; ~ N(5,1),i = 1,--- ,500, x¢(0) = =5.

6. Conclusions

Motivated by the lack of theory and some practical applications, this paper in concerned with linear-
quadratic-Gaussian mean-field games involving mixed agents of a stochastic large population system
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with random jumps. There are two mixed types of agents: (i) a major agent and (ii) a population of N
minor agents where N is very large. The coupling of the major and minor agents exists in both their
state dynamics and their individual cost functions. To deal with the dimensionality difficulty and obtain
decentralized strategies, the NCE methodology is applied to yield a set of decentralized strategies
which is verified to be the e-Nash equilibrium. We provide numerical examples to illustrate both the
consistency of the mean-field estimation and the impact of the population’s collective behavior. In
the future, an interesting research direction is to extend the modeling and analysis to the social optima
case, which may involve more applications in practice and generate more challenges in theory. Another
potential direction is to study the uniqueness of the equilibrium strategy, which may be more valuable
and challenging.
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