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Abstract: This work introduces the closed form approach to generate solitary wave solutions to the
modified equal width (MEW) model. This model generalizes the equal width (EW) equation, which
characterizes wave propagation in shallow water. It aims to better represent nonlinear and dispersive
effects by altering the original model’s terms. Because of its simplicity, reliability, and efficiency,
the proposed technique has the potential to be applied to a range of nonlinear partial differential
equations (NPDEs) in practical research. We also employ the finite difference method to provide
the numerical solution for the MEW model. A comparison with the analytical solution we arrived
at demonstrates the method’s accuracy. This work shows that the numerical method stays stable and
accurate despite alterations in time stepping, wave speed, and spatial discretization. This also allows
further exploration of nonlinear models that accurately depict significant physical processes in our
everyday existence.
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1. Introduction

Nonlinear partial differential equations (NPDEs) are widely used in scientific areas, such plasma
physics, biological sciences, chemical engineering, chemical processes, optical fibers, superfluids,
etc., for describing complex phenomena [1, 2] and references therein. The analytical and numerical
solutions of these equations, particularly, the soliton solutions, which have recently become among
the most noteworthy topics for mathematicians and physicists, are necessary to comprehend these
physical processes, see for example [3,4]. Nonlinear waves refer to wave phenomena in which the
principle of superposition is not applicable, owing to the nonlinear characteristics of the governing
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equations [5,6]. Nonlinear wave theory is essential for understanding real-world phenomena in fluids,
plasmas, mechanical systems, optics, and biological systems. Many recent studies have examined the
behavior of nonlinear waves using different models of NPDEs [7, 8].

One may define a solitary wave as a wave whose form and size, while observed in the context
of traveling at the wave’s group velocity, is independent of any temporal development [9]. Solitary
waves can arise from a variety of events, such as increasing light intensity in optical cables or
rising water surfaces. Due to the intricate nature and challenges associated with achieving a multi-
wavelength soliton state, there is a limited amount of information available regarding its internal
dynamic characteristics [10]. The mathematical justification of these particular events yields the
NPDE:s [11, 12]. Understanding these physical processes more effectively is potentially possible by
looking at the analytical solutions to different NPDEs. The water wave soliton arises from the wave’s
propensity to disperse, a dynamic balance between nonlinear effects and dispersion. There are other
applications for soliton waves in the field of applied science [13—-15].

Wave propagation in dispersive and nonlinear media is described by the modified equal
width (MEW) equation, a nonlinear partial differential equation (NPDE) [16]. It is an expansion of
the equal width (EW) equation with changes made to better account for physical phenomena such
nonlinear dispersion, wave steepening, and soliton interactions. Fluid dynamics, ion acoustic plasma
waves, plasma physics, and other applied disciplines frequently employ the MEW equation [17],
showing the importance of this equation. The equation produces an undular bore of the same
breadth [18]. This model is really connected with the modified regularized long wave model and
the modified Korteweg-de Vries equation [19]. Wazwaz applied the tanh and sine-cosine approaches
to investigate the MEW equation and two of its modifications [20]. Saka and Dag examined a solution
based on a collocation approach that incorporates cubic B-splines [21]. Baghan et al. used the the fifth-
order quintic B-spline-based scheme and a forward finite difference formula for finding approximate
solutions to the MEW equation [22]. Yagmurlu and Karakas numerically solved the MEW equation
utilizing an innovative approach that employs the collocation finite element method, incorporating
trigonometric cubic B-splines as the approximating functions [23]. Fan and Wu applied the fourth-
order improvised cubic B-spline collocation method to numerically solve the MEW equation [24].
Kirli and Cikit developed a high-order accurate hybrid technique to construct an approximate solution
of the MEW equation [25]. The MEW equation has a few analytical solutions, along with certain
beginning and boundary conditions. As a result, comparing the MEW equation’s analytical and
numerical solutions will be an interesting task. The MEW model is presented as follows [16,19,26]:

Xt + 33X Xx — HXaw = 0, (1.1)

where p is a constant, and y(x, #) denotes the wave profile. This equation is a nonlinear wave equation
with cubic nonlinearity and a pulse-like solitary wave solution. It is essential to comprehend and
investigate these equations in order to accurately simulate physical processes and elucidate nonlinear
wave dynamics in dispersive media.

We apply the closed-form approach to solve the MEW model. Using unrestricted physical
parameters, this technique gives several families of solitary wave solutions. It also provides us
with important solitary wave responses and saves us from tiresome and complicated computations,
among other advantages. This strategy is well-designed. This technique might be beneficial for
mathematicians, engineers, and physicists as a box solver. The numerical solution for the MEW model
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is illustrated using a powerful finite difference approach. The accuracy of this approach is shown by
a comparison with the presented analytical solution. This study demonstrates that changes in time
stepping, wave speed, and spatial discretization do not affect the numerical method’s stability and
accuracy. Our findings demonstrate the effectiveness of the suggested technique and how it may be
utilized to solve a wide variety of applied science and creative physics models.

The structure of this work is as follows. Section 2 explains the expanded tanh technique. Section 3
includes closed-form solutions for the MEW model. Section 4 shows graphical representations of
selected solutions to illustrate their behavior. We also explore the interpretation of the data to evaluate
the success of the proposed technique. Section 5 provides a numerical investigation of the MEW model
and a comparison with the exact solutions. Lastly, we provide some closing thoughts on our findings
in Section 6.

2. The description of the technique

This section provides a simplified version of the extended tanh technique [27,28]. Assume that the
NPDE:s for y(x, t) have the following form:

(B(Xa/\/t’)(x’)(tt’)(xt’)(xx’-'-') = 0’ (21)

where y = y(x, ) denotes an unknown function. We utilize the wave transformation
{=x+t, 2.2)
where v is the wave speed. Putting Eq (2.2) into Eq (2.1) changes it into an ODE

g(X’X,’X”’X”’, ----- =0. (23)

Step 1. The solution of Eq (2.3) is given as

I=N

X =ao+ ) a'€) +bip™(©). (2.4)

J=0

There are constants to be found, namely a;(j = 0, 1, ..., N), and the function ¢({) satisfies the Riccati
equation provided by

¢ =@+ ¢ (), (2.5)

where @ is a constant to be determined. Eq (2.5)’s validated solutions are as follows.

1. If w < 0, then
¢(0) = — V-w tanh(N-w ),

$(() = — V- coth(N-w {).

(2.6)

2. If @ > 0, then
() = Vo tan(Nw {),
2.7)
() = — V@ cot(Nw ©).
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3. If w =0, then
1
&) =—-. (2.8)
{
Step 2. Balancing the highest power nonlinear term in (2.3) with the highest-order derivative term
provides N.

Step 3. Substituting Eqs (2.4) and (2.5) into Eq (2.3) yields a set of nonlinear algebraic equations with
zero coeflicients for each power of ¢({). Solving these equations yields the expression of Eq (2.4).
Thus, using Eqgs (3.12), (2.7), and (3.26) gives the desired explicit solutions of Eq (2.1).

3. Solutions of the MEW equation

Here, we use the wave transformation

x(x,0) =x(), {=x-vt, (3.1

where w denotes the wave speed. Eq (3.1) is substituted into Eq (1.1) to produce

mx”+mx’ +mx =0, (3.2)
m = uv, n, = 1, 73 = —v. Balancing the highest-order derivatives with nonlinear terms gives N = 1.
Thus b
X(Q) = ap+a + j (3.3)
’ 2 blw
X () =aw+ad _7_b1~ (3.4)

Substituting Eq (3.3) and its derivative into Eq (3.2) and collecting all terms with the same power of
¢3’ ¢2’ ¢a ¢Oa ¢_1, ¢_2, and ¢_3 giveS

2may +ajn, =0, (3.5)
3apain, = 0, (3.6)
3a§a1n2 + 3a%772b1 +ainz + 2may@ =0, 3.7
agna + 6agaimaby + aons = 0, (3.8)
3aimb, + 3aimbt + bz + 2n1byw = 0, (3.9)
3agmb? =0, (3.10)
mb; +2mby@* = 0. (3.11)
Solving these equations, gives the following cases.
Case 1.
4 =0, ay=+ 2N b =0,@=-T" (3.12)
2 2m

Putting Eq (3.12) into Eq (3.3), we get the following solutions.
For Z—? > (0, the solutions of (3.2) are
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X12(0) = £ [ tanh( |22~ ),
2 2m

XsaQ) = = | =2 coth( | 35 0)
m 2

Thus, the solutions of (1.1) are

X12060) = £ [ tanh( |22~ (x = v 1)),
2 2m

X3.4(x, l)—+,/ lh(,/ (X—Vl))

For % < 0, the solutions of (3.2) are

Md@=i¢%m( By,
m 2m;

X180 = 7 [P cor( ([T 0.
2 2m
Thus the solutions of (1.1) are

Yoot t) = £ |2 tan( | =L (x = vi)),
' m 2m,

xosx0) = F [ B cot( (| 2B (x = v1)).
Iy 2771

For Z—? = 0, the solutions of (3.2) are

=2 -1
Xou0(0) = £ 4|2
m ¢
Thus the solutions of (1.1) are
-2 1
Xo,10(x, 1) = + L .
m x-—vt
Case 2.
-2
G =0, a=x1—L b=F—DB  m=1
n 2V2v=m 4

For 2 < 0, the solutions of (3.2) are

X112(d) = 1/2 (tanh( _—7735) - coth(
2m, 4n,
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Thus the solutions of (1.1) are

Xi(x, 1) =+ / iE (tanh( ) / (x— vt)) - coth( - (x— vt))). (3.23)

For % > (, the solutions of (3.2) are

Yia(Q) = + 2223 (ran(,/;% 5) + cor( %4)) (3.24)

Thus the solutions of (1.1) are

Xizaa(x, 1) = £ / o ( ( 4771 (x - vt)) + cot( \ / (x - vt))) (3.25)

For Z—? = 0, the solutions of (1.1) are identical to the solutions provided in (3.20).
Case 3.

=0, =ty —L p=z— B oD (3.26)

m AN2\Fm 8m-

For Z—? < 0, the solutions of (3.2) are

X1516(0) = 4)7;2 (tan( , /—877—]731 {) - cot( —877—)731 g’)) (3.27)

Thus the solutions of (1.1) are

Yisis(n ) =+ [ (tan( B (- vt)) S /<R cot( E/ERy vt))). (3.28)
4n, 811 4n, 811

For % > (0, the solutions of (3.2) are

X17’13(§) == 773 (ta h( ﬂ {) + COZh( ﬂ 5)) . (329)
V' 4m, 81 8m

Thus the solutions of (1.1) are

Yirs(nf) = + /—% (tanh( 8’7—;1 (x - vt)) + coth( /8’7—7731 (x — vt))). (3.30)

For Z—? = 0, the solutions of (1.1) are identical to the solutions provided in (3.20).
4. Graphical representation

In this part, the solutions obtained by applying the closed-form method to the MEW are visually
demonstrated using MATLAB. We illustrate the solutions that we provided with several two- and
three-dimensional examples. The physical characteristics of the acquired solution (3.15) are shown

in Figures 1 and 2, where x € [-10,10], ¢t € [0,1], v = 4, and u = —1. Namely, Figure 1
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represents the three-dimensional (3D) kink wave for the corresponding solution. Figures 2 shows
the two-dimensional (2D) localized soliton wave solution. Figure 3(a) represents 2D kink wave
solution in (3.15), where x € [-1,5], v = 4, and u = -0.01, but taking different snapshots
by varying t = {0,0.2,0.4,0.6,0.8, 1}, to exhibit the influence of time on the solution, displaying
a soliton wave’s transition with time. Similarly, Figure 3(b) shows the effects of varying u
= {-0.001,-0.01,-0.1,-0.5,-1, -2, -3, -4, -5} on the same solution with x € [-3,3], t = 0, and
v = 4. Figure 4(a) shows 2D solitary wave solution given in Eq (3.18), where x € [-0.985, -0.97],
t=0,v=-4 and u = 1. Figure 4(b) shows the 2D solitary wave solution given in Eq (3.23), where
x€[-0.2,02],t=0,v=—4,and u = 1.

2

0.5
1 9 -5 0 5 10
X

Figure 1. A 3D plot of the solution y(x, #) given in Eq (3.15), with x € [-10, 10], 7 € [0, 1],
wave velocity v =4, and u = —1.

t

|X1(£E,t)‘
—
L

0.5 — 1

0 0.5

10 5 0 -

x
Figure 2. A 3D plot of the absolute value of the solution |y;(x,?)| given in (3.15) for
x € [-10,10], ¢ € [0, 1], with parameters v = 4, and u = —1.

0

-10 t
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—— = -0.001
w=-0.01
= p=-0.1
& —p=-05
= —_—p=-1
n=-2
—_—=-3
—_— =4
T —_—p =5

Figure 3. (a) Evolution over time (¢ € {0,0.2,..., 1}) of the solution y(x, #) given in (3.15)
for x € [-1,5], with the parameters v = 4 and ¢ = —0.01. (b) This figure shows the
solution y(x, f) given in (3.15) depending on u (u € {—0.001,-0.01,...,-5}) att = 0, with
x€e[-3,3]and v = 4.

x10% ' (a)
)

—_0.985 -0.98 -0.975 -0.97

XS(xvt)

2000 . (b)
1000 -

0

xi(z,t)

-1000 -

-2000 . .
-0.2 -0.1 0 0.1 0.2
T

Figure 4. (a) 2D plot of the solution y5(x, 7) given in (3.18) at = 0 and x € [-0.985, -0.97],
with the parameters v = —4, and u = 1. (b) 2D plot of the solution y;(x, #) given in (3.23) at
t =0and x € [-0.2,0.2], with the parameters v = -4 and u = 1.

5. Numerical method and test cases

The numerical approach employed here is described in this section, along with a comparison of the
results with previously obtained analytical solutions [29]. First, we construct a discrete function that
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approximates the solution given in (1.1), i.e., ¥;; = x(x,?). A uniform partition is made both spatially
and temporally, such as x; = xo + ih, i = 0,1,..,M, h = (xy — xo)/M, and ¢t; = jot for j = 0,1,..,N,
where 6t = T/N for t € [0, T']. First, we need to rewrite Eq (1.1) in conservative form as follows:

Xt+(/\/3)x_ﬂ)(xxt:0- (51)

By approximating the time derivative with forward difference and the spatial first derivative with
Crank—Nicolson approximation and central difference approximation for the second derivative, we
get the following explicit numerical scheme:

Xijet=Xij 1 /3 3 3 3
e + ah (Xi+1,j+1 —Xic1,j+1 Y Xinj _Xi—l,j) 5.2)

lJ ¥ % % Y ~ ~
- SR (Xi+1,j+1 = 2Wij+1 + Xi-1j+1 — Xivlj + 2Xi —)(i—1,j) =0.

) ) - . - o . ) )
Using Taylor expansion for X?,j 10 1€, X?,j = X?,j + 5t%, to simplify the nonlinear system of equations
3 ~
ij+1 "~
)2?]. + 3/\?1.% J.(/%,; j+1 — Xij)- Then Eq (5.2) is reformed into the following system of linear equations for z;

by allowing z; = ¥; j+1 — Xij. and r = ﬁi

in Eq (5.2) and approximating the time derivatives using finite difference techniques produces

Q1% ¥ @2%i+1 — @3Zi-1 = 2”(/??_1,1- _/\7?+1,j)’ (5.3)
where
1 2u

Q) =—+ ——,
st oth?

2 M

a2 =Ty, Sth2’
u

)
@3 =ryi; + SR

As a result, the right-hand side of Eq (5.3) becomes known, leading to a linear system. We then
compute z; and update the next iteration using jy; j+1 = ¥i; + . Next, we apply the numerical approach
described in this section to various test problems. Furthermore, the definition of the L2-norm used here

is the following:
N = i = I
I = xll2 = ,
N2 3

where y; represents the exact solution at x;, whereas y represents the numerical solution at x;. L, is
the standard maximum absolute error norm. L also represents the conventional maximum absolute
error norm.

5.1. Example 1
Consider ¢ = —1 for this example, in which case the MEW in Eq (1.1) becomes

Xt+3/\/2)(x+)(xxt =0, 5.4)
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over x € [—10, 10] and ¢ € [0, 1] with the following initial and boundary conditions:

X(x,0) =0.7 tanh(0.7x), (5.5)
x(=10,6) =—-0.7, (5.6)
(10, 1) =0.7. (5.7)

The numerical solution jy;(x,?) is demonstrated in Figure 5, along with the analytical solution
X1(x,1), which was previously derived and is shown in Eq (3.15), using 2 = 0.01 and 67 = 0.001.
We also use the L,-norm and the L.-norm to compare the numerical errors, as presented in Table 1.
Therefore, the numerical results are accurate up to 10~ according to the Euclidean norm.

Numerical solution for y =-1

0.6 -
0.4+
0.2

0k

5(1 (X7t)

-0.2F

-0.4 +

0.6 - = FExact
=« Numerical

-0.8 I I |
-10 -5 0 5 10

Figure 5. A comparison of the analytical solution y(x, #) given in (3.15) with the numerically
computed solution y (x, f) of (5.4), evaluated across the spatial domain x € [-10, 10] atz = 1,
using the discretisation parameters 4 = 0.01 (spatial) and 67 = 0.001 (temporal).

Table 1. An illustration of the numerical results compared with the analytical solution given
in Eq (3.15) using the L,-norm and L-norm.

Example 1 Example2 Example 3 Example 4

7 1 0.9 15 -0.16
v 0.5 0.1 0.75 1.00E-03
L. 5.86E-04 891E-07 140B-03 3.06E-10
L, 844E-05 198E-07 2.58E-04 2.75E-11
h 0.01 0.001
X [-10, 10]
ot 0.001

5.2. Example 2
For this example, let 4 = —0.9. The MEW Eq (1.1) then becomes

Xi + 3%+ 09y, =0, (5.8)
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over x € [—10, 10] and ¢ € [0, 1] with the following initial and boundary conditions:

1 1

¥(x,0) =3 tanh(Zx), (5.9)
x(-=10,1) = - % (5.10)
x(10,7) =%. (5.11)

The analytical solution y(x,t) given in Eq (3.15) is shown alongside the numerical solution y(x, t)
in Figure 6 with 4 = 0.01, 6t = 0.001, and we compared the numerical errors in Table 1 using the
L,-norm and L.,-norm. Hence, using the Euclidean norm, the numerical results are accurate to 107,

Numerical solution for p =-0.9

0.4
0.2+
)
=
-0.2 +
— FxaCH
= «Numerical
0.4 ‘ ‘ ‘
-10 -5 0 5 10

Figure 6. A comparison of the analytical solution y(x, f) given in (3.15) with the numerically
computed solution y (x, ¢) of (5.8), evaluated across the spatial domain x € [-10, 10] atz = 1,
using the discretisation parameters 4 = 0.01 (spatial) and At = 0.001 (temporal).

For Examples 3 and 4, where u = {—1.5,—-0.16}, we present only the numerical errors of these
examples in Table 1, alongside the results of Examples 1 and 2, to demonstrate the effect of . As the
value of u was altered, we observed that the numerical method produced accurate results up to 107!
according to the Euclidean norm as u decreased.

5.3. Example 5
For this example, let x = —0.9. The in MEW Eq (1.1) then becomes

Xi+ 3%+ 09y, =0, (5.12)
over x € [0.1,4] and ¢ € [0, 1] with the following initial and boundary conditions:
3
x(x,0) =0.031 coth(Zx), (5.13)

x(0.1,7) =0.42, (5.14)
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x4,1) =0.031. (5.15)

If we use the spatial and temporal steps 7 = 0.01 and Ar = 0.001, respectively, the analytical solution
X3(x, 1) previously derived and shown in (3.16) and its numerical approximation y3(x, ¢) are shown in
Figure 7. The Euclidean norm measurement of the numerical solution yields an accuracy of O(107%).

Numerical solution for g =-0.9

0.5 -
— Fixact
== :Numerical
0.4+
03}
7
=02+
0.1+
0 1 1 L )
0 1 2 3 4

Figure 7. A comparison of the analytical solution y3(x, f) given in (3.16) with the numerically
computed solution y3(x, f) of (5.12), evaluated across the spatial domain x € [0.1,4] at7 = 1,
using the discretisation parameters 4 = 0.01 (spatial) and A¢ = 0.001 (temporal).

6. Conclusions

A closed-form method for examining nonlinear wave phenomena is the MEW model, especially
in systems where dispersion and nonlinearity are both crucial. It is a useful model in fluid dynamics,
optics, and plasma physics because of its capacity to generate soliton solutions and simulate a variety
of physical systems. The MEW equation is a testbed for developing and improving analytical and
numerical approaches in nonlinear wave theory. We applied the closed-form technique and introduced
the solitary wave solutions to the MEW equation. Namely, we introduced different families of solitary
wave solutions through physical parameters. For suitable free parameter values, some 2D and 3D
charts are supplied to show the dynamic behavior of the solutions that are presented. Additionally, we
employed a creative finite difference technique to demonstrate the MEW model’s numerical solution.
The accuracy of the procedure is shown by a comparison with the analytical solution we arrived at.
This study demonstrates that changes in time stepping, wave speed, and spatial discretisation do not
affect the numerical method’s stability and accuracy. On the basis of this analytical and numerical
research, the MEW model’s solutions are predicted to exhibit localized, stable, and coherent structures
such as solitons, kinks, or compactons, depending on the parameter regime and initial conditions.
It is expected that these waveforms will maintain their amplitude, shape, and velocity over time,
even following interactions, thereby demonstrating the model’s ability to uphold the integrity of
nonlinear waves.
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