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1. Introduction

The natural world surrounding us contains incidents and phenomena that repeat themselves at
precise intervals of time, and broaden the underlying order in seemingly complex systems. This
periodicity can be seen frequently in daily life, such as the motion of atoms and molecules, the
rhythmic behavior of ocean waves, and even biological rhythms like heartbeat. These phenomena,
though diverse in scale and nature, can be consistently described and predicted using partial
differential equations, providing a unifying framework to understand and analyze the dynamics of our
universe.

One of the stunning phenomena observed across many fields is soliton waves. These waves have
a remarkable ability to travel through dispersion mediums without losing their shape, and even after
collisions, they tend to keep their structure and amplitude without distortion. This unique property
makes solitons highly valuable in communication systems, fluid mechanics, and plasma physics [1-3],
where stable and distortion-free signal transmission is crucial. Additionally, solitons are prominently
observed in natural settings, such as in ocean waves, highlighting their relevance in both technological
and environmental contexts.

In this work, we point out our attention to attaining the soliton solutions to the generalized Calogero-
Bogoyavlenskii-Schiff equation [4] in (3+1) dimensional form, which is expressed as follows:

{ut + Uyyy + 3utty + 3u vy + piiy + folty + [3Vyy + falt; + Us (uxxxxx + 15uu, + 15ut,, + 45u2ux) =0,
Vy = U,

(1.1)
where v = v(x,y, z,t) is the wave profile in the three dispersion axes x, y, z; the time dimension ¢ and
u(x,y,z,t) represents the dispersion rate of the wave profile v in the direction of the x axis. Also,
Eq (1.1) contains 5 arbitrary constants y;, where u;, u,, and u4 represent the strength of dispersion
along the y-, x-, and z-axes, respectively; p3 denotes the coefficient of second-order dispersion in the
y-direction; and us accounts for higher-order nonlinear effects. This equation has a great impact in
fluid mechanics and plasma physics, providing crucial insights into the behavior of nonlinear waves in
these domains.

The classical form of the Calogero-Bogoyavlenskii—Schift equation was derived by two different
approaches; both approaches were focused on modeling the propagation of long waves (usually in
shallow waters) in a medium having an index of nonlinear dispersion. Schiff [5] obtained the equation
by reducing the Yang-Mills self-dual equation, while Bogoyavlenskii [6] used the modified Lax pair
equation alongside an inverse scattering problem to obtain it.

Various mathematical techniques have been proposed and employed to address such problems,
including Hirota’s bilinear method, which has been effectively used to extract soliton, breather, and
lump solutions [7, 8]. It has also proven highly effective in extracting interaction solutions and
multi-soliton solutions of a variable-coefficient Schrédinger equation [9, 10].

Besides the above, the modified Hirota bilinear method has made significant contributions in dealing
with systems where standard bilinearization fails or becomes too complicated [11, 12]. Bilinear neural
network method [13], Backlund transformation [14—16], and the inverse scattering method [17,18] all
have great impacts on finding exact solutions. In addition, numerous approaches based on the ansatz
method have been developed, offering straightforward and effective solutions, such as the improved
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modified tanh function method [19, 20], the modified extended direct algebraic method [21,22], and
the improved simple equation method [23].

In [4], Yue et al. implemented the Hirota bilinear method to solve Eq (1.1) and obtained soliton
solutions, N-soliton solutions, and breather solutions. They also discussed the transformation of
breathers into nonlinear localized waves. In this work, we focus on the derivation and stability
analysis of soliton solutions using the improved simple equation method. This approach yields a rich
set of novel solutions, including various forms of bright, dark, and singular solitons, as well as
singular periodic and exponential solutions—many of which were not reported in [4]. Bright solitons,
corresponding to localized wave packets, are relevant in optical fibers and Bose—Einstein condensates,
where nonlinearity balances dispersion. Dark solitons, characterized by localized intensity dips, arise
under different boundary or phase conditions in similar physical contexts. The appearance of singular
periodic solutions, marked by sharp transitions within each cycle, suggests potential applications in
systems such as plasma waves and nonlinear electrical circuits. These results highlight the physical
significance and flexibility of the obtained solutions in describing a wide range of nonlinear wave
phenomena.

Our paper is organized as follows: Section 2 discusses the improved simple equation method.
Section 3 focuses on applying this method to our problem and presenting the outcomes. Section 4
presents three different kinds of solitons in 3D and contour plots to display the obtained solutions
properties. Section 5 is dedicated to discussing the linear stability analysis. Finally, the conclusions of
our work are presented in Section 6.

2. Improved simple equation approach

This section is dedicated to illustrating the improved simple equation method in organized and brief
steps.
First, consider the nonlinear partial differential equation (NLPDE) [23]

F . forSys fosfos feor frtn ) = 0, 2.1)

where ¥ is a polynomial of f and its partial derivatives, with constant coefficients. So to proceed to
the improved simple equation method, we are going to track the following steps.

First step: Transform the NLPDE in Eq (2.1) to an ordinary differential equation (ODE), by using the
transformation f(x,y, z,t) = f({), where { = yt + ax + By + 6z, y # 0. Then, Eq (2.1) is transformed
into an ODE in the following form:

T(f’f/’f//’f///,f(4),f(5)’ ) =0. (22)

Second step: Assume the solution for Eq (2.2) in a finite series form

N

fO=> aQ, (2.3)

i=—N

where N is going to be calculated later by using the homogeneous balance principle method and Q
satisfies the following ODE:
Q =dy+dQ+ d@. (2.4)
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Third step: Substituting Eq (2.3) into Eq (2.2), and taking into consideration Eq (2.4), we obtain a
polynomial of Q({).
Fourth step: Balancing the coefficients of Q(0)’ to zero for every i in the polynomial, resulting in a
system of equations to be dealt with by any mathematical software.
Fifth step: We are going to solve the system obtained from step four to calculate the arbitrary constants
assumed in the solution for Eq (2.3) {a;}. Using these constants, along with the general solution of
Eq (2.4), we get the general exact solution to our problem.

In the following subsections, we demonstrate the solution of Eq (2.4), with different settings for the
values of d;.

2.1. First family:
When d, =0,

exp(dil)  dy

Q) = a a

2.2. Second family:
When d; = 0, we get the following [24,25]:

d d
Q) = — 4 /—d—;’ tanh(\/—dodz g), dodr < 0, Q) = \/diz tan(\/dodz g), dod> > 0.

2.3. Third family:
When d, = 0, we get the following:

d, exp(di{)

 —diexpldid)
—dopdd) X9

A = T 1+ drexp(di)

2.4. Fourth family (dy,d,,d, # 0) [26]
Case 1: When d; > 4dyd,,

&> = 4dods &= ddods | 4 d} — 4dods \ah —4dods | 4,

Q) =~ 2d, tanh > 4 +2—dz, Q) = _2—0'2 coth #é +2—dz’
i} = 4dod) (A2 + B2 = A\Jd} — ddods cosh (\Jd; — 4o )
Q) = ~—, AB#0.
2d
24 sinh ( [ - 4docs £) + B) :
2d, cosh (—W{)
QY =

2_ — N
d} — 4dyd, sinh (@ g) _d, cosh ( @4)
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2dy sinh (—WI;“"“‘%)

d% — 4dyd, cosh (@{) _ d, sinh (@4)

Case 2: When d; < 4dyd,,

Jddody - & \Jadody -2 |y J4dody — &2 ddody -2 | 4

QY = 0 tan > {l- 2 Q) = - o cot 3 |+ R

Q) =

\/(4d0d2 - d%)(A2 — BZ) —-A A [4d0d2 - d% COS ( A [4d0d2 - d% Z:) dl

Q) = — ., B’< A%

2d2(A sin ( \J4dod> — d} g) + B) 2d,

and A, B # 0.
2d, cos (M{)
Q({) T \/4dod, —d? \/4dod, —d? ’
\J4dody — d? sin (—02 — lg) +d, cos (—02 — lg)
2d, sin (—@{)
Q) =

P =\
Jadods — & cos (_V 5) ~ dysin (—g)

3. Outcomes

Now, we extract the waves solution for our problem Eq (1.1) by applying the improved simple
equation method. To begin, we will simplify it in one single form as follows:

2
Vixxy + M1 Vay + o Vix + H3Vyy + UaVi, + Us (vxxxxxx + 15V Ve + 15V Vi + 450 (vy) ) + 3V Ve + Vi + 3V, = 0. (3.1)

Substituting the wave-like solution v(x,y, z,¢) = v({) into Eq (3.1), where { = yt + ax + By + 0z,
with v # 0; the parameters «, £, and ¢ represent the spatial coeflicients in the x, y, and z directions,
respectively; and y characterizes the temporal evolution or wave speed, we obtain the following
ordinary differential equation:

O 4 @?y@® (15(12/15\/ +ﬁ') +v" (15&5/151/(3) + 450 us (v')2 + 6078V + &’y + afuy + ay + aduy +,82,u3) =0.

(3.2)

a®usv
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By equating the greatest nonlinear term v/v® with the greatest derivative v, we obtain that 2N +
5 = N + 6, which implies that N = 1. Therefore, we write the wave profile v in this form:

V() =ap+a1Q+ a1 Q"

Inserting the above equation and Eq (2.4) into Eq (3.2), we get a polynomial in Q. Equating the
coeflicients of the polynomial to zero, we get a system of algebraic equations to be solved for each
family we have discussed in the previous section.

3.1. First family:

When d, = 0, we get the following solution set:

=

ay =0,a_y = 4ady,y =

—2502 g5 — 250 s — 25aSpapts — 25B2usis + 4/32}

RN 25aus
According to the above solution set, we obtain the following pair of exponential wave solutions:
4 +/-Bd
WO = o+ il

o) )

5, (3.3)
4Bdye N s
__B Ie '
Saus [eV seus —d0]2

uig) =

3.2. Second family:

When d; = 0, we get three different sets of solutions:

Set 1

___F P B y= —250pops — 250 ps — 25a8usps — 2567 usps + 457
YT sa2dops T T T T 2003dous” 25aus '

According to the above solution set, we attain the following dark and bright soliton wave solutions
and a pair of singular periodic solutions:

(3.4)

) = -
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48 B
= ay — t ,
v({) = ao Sayis an[ 2005 (}
; 3.5)
B sec? (Y;/”f
ul) = - Says
Set IT
_ _ _ B =25’ uous — 25aBuips — 25a8usps — 2567 usps + 457
a) = 0, a1 = 4ad0,d2 = Y = .
2003 dous 25aps

According to the above solution set, we obtain the following pair of singular soliton solutions and a

pair of singular periodic solutions:

4 B
= ay— |- th| |- :
v({) = ao ” co ( 20011 é)
ﬁ 3.6)
ﬁcsch2
ul@l) = -
© 5 (g5
4B B
= _ t 5
v({) = ap + Sapis co [ 20005 g“}
-, (3.7)
3”5
Bcsc? VS
ul)=————-=
= " Sl
Set 11T
o= B 0= dade. do = B _ —250°popts — 25aBuipts — 25a6paps — 258 usps + 467
' T 2002dous ! 09 = Q0a3dops T 250115

According to the above solution set, we obtain the following pair of singular soliton solutions and a

pair of singular periodic solutions:
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B B B
v(§) =ag— 4|~ n tan [ _20a°’u5§) [cothz{ _20a3u5 )+ 1],
— £ (3.8)
Zﬁcschz[ \/;5‘ ]
O = T S ()
B B > B B
MO =0\ Sy ( \ 2007 5] [COt [ \ 20075 ] ]
\/315 3.9
2B csc? %]
O = S )

3.3. Third family

When d, = 0, we get the following solution set:

o —25a%uous = 25afuips — 25adpaps — 2587 uspus + 487 i\B
a; = —4adr,a_1 =0,y = ,dy = .
25aus V50372 N
The above set implies the following two pairs of exponential wave solutions:
/ 1
V() =ap+44]|—- P +1],
50345 °
d2€ -1
[ [ (3.10)
4(Bdy)e N s
u(@) = 5
(\-5k
Sapus (a’ge s 1]
1
W) = ap + 4y |- |1~ ,
Saus -
dyeV T+ 1
(3.11)
é' _ B
4(Bdy) e N s
W) = - -
’( _S(yg
ausS|de S |
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3.4. Fourth family
When (dy, d;, d> # 0), we get the following sets of solutions:

Set 1

~250°papts = 250 s — 25apapss — 25B7uspts + 48° V2023 dodoyis — B
a, = —4ady,a_; =0,y = ,dy = .

25aps 1 V3032 s

Considering the condition d? > 4dyd,, the above set implies the following solutions:

3 2003 dodrpis — B B B
V() = ag + 2[\/ Sape + \/ Sape tanh(w f 2007 {]]

; [Z (3.12)
2| "N @
Bsech v
ul) = - Saps
B
20a3dydapts — s
V() =ag+2 V200 dydops ﬁ+ __p coth| ——2_
Viaus Saus 245
(3.13)
__B be
2 03/15‘
Besch [ 3V ]
U =
©= S

/_5('1% ( VA + B2 + Acosh( _5a€y5 (yt+ax+ By + 6z))) . \/20a3d0d2u5 7
A sinh ( A /—Safﬂs (yt+ax+ By + 6z)) + B VSHsa

v({) = ap+2

{|-£
2Aﬁ{‘/A2+BZCOSh(§ [—Safﬂs)+A—BSinh \/;jus
ug) =
(uis) (5 (A sinh (g _ 5(5“5) L B) z)
(3.14)
/ 5
V({) . + 8d()d2 50’ M5 ’
V2023 dodops — B - \/—_ﬁtanh( ~ gl )
(3.15)

4a”Bdydysech’ (g s )

T 20a%us

u(@) = -

( V20a3dydopis — B — \/—f tanh (g B 2053/‘5 )) :

AIMS Mathematics Volume 10, Issue 5, 11052-11070.



11061

8d()d2 \/561’5/,(5

v({) = ap + g
N0 dogis = = NP coth (-2t

(3.16)

20a3us

( \/20a3dod2ﬂ5 ~ B~ V=Bcoth ( m)) :

where Eq (3.12) represents a pair of dark and bright solitons; Eq (3.15) represent a pair of rational
wave solutions; and Eq (3.13), (3.14), and (3.16) represent three pairs of singular solitons.

Considering the condition d? < 4dyd, , the above set implies the following solutions:

4(1’2ﬁdodzCSCh2 (( - )
u(() =

W) = ap + 2[\/2003%;?5 - \/5515 tan[ 2053“5 g]]
) (3.17)
u(l) = _50,115 (cos( 5(515{) + 1).
W) = ap + 2[ \/20013;?5—;‘:5 = 55;15 COt[ 2053;15 g]]
ﬁ (3.18)
u@) = Sas (cos (g\/%) 3 1)'
o \/%(2 ( VAZ B2+ A cos( Sﬁﬂs 5))) o \/20a3d0d2#5 -B
. Sin( S(I/‘ﬁ{) e Saus )
(3.19)
2Aﬁ(\/(A “BA~ B)cos({\/E) FA+ Bsin({\/%))
u({) = - |
Saus (A sin (§ \/E) + B)Z
) 8dod, /5215
v({) = ap + \/20a3dod2l15 — B+ \/Btan(\/%(w +ax+py+ &)),
(3.20)

dia*Bdod; sec? (g \/%)
(\/_ tan( \/Tw ) 203 dodogis - ,3)2'
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8d0d2 \/5&’5/15

V20a3dodrus — B — \/Bcot( 20&3 (yt+ax+ By + 61))

W) = ag+

(3.21)

4i6¥2ﬂd0d2 CSCZ( — B )

20a3ps

( V20a3dydopis — B — VB cot ( N 20(%;15 )) 3

Where, Eq (3.17) to Eq (3.21) represent singular periodic solutions.

u@) = -

Set II

~250" popus — 250 pis — 25adpaps — 258 uspus + 46° V2023 dodoys — B
a; =0,a_1 =4ady,y = d, = .

25aus T V532 \Jis

The above set implies the following solutions:

8 V5dod, \Ja s
\/20(1/3dod2/15 - B+ V—Ftanh ( - 2053,15 4)

V() = ap —

(3.22)

4a?Bdodssech’ (g __& )

20a3us

(@tanh ({ \/X) + 2023 dodyis —ﬁ)l.

8 V3dyd, \Vadus
\/20a3dod2/15 — B+ \—Bcoth ( _2053;45 {)

—4a*Bdydrcsch? ({ A /—ﬁéﬂs)
(Voo (i i) + V20w dodins =)

u(@) = -

V() = ag -

(3.23)

ul) = -

) 8 V3dadz aps (Asinh (¢ -4 ) + B)
O B (VAT+ B+ Ao (o2 )+ V20w (A smh (<) + )
SazAﬁdodg(\/mcosh(g A= 503 )+A Bsmh({ \-3 )
ue) = (\/—\/ﬁ B 3 3 2
BVAT+ B +A@cosh(§1/—m)+A 200 dodz,us—/a’smh(g’ 50#5)+BW)

(3.24)
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_ B [ 5 ) [ooddus-p
v({) =ap + 2[ Sapis tanh[ 200718 {] Sapis ],

(3.25)
ﬁsech2 (§ A /—20(’:;%)
u(¢) = - S :
8 “#at | [200dodops - B
V() =ap+2 _5(1/#5 coth 55 - Saps s
(3.26)

ﬁcsch2 ({ A /—20:;%)

Saps

uig) =

Where Eq (3.22) represents a pair of rational soliton solutions; Eq (3.25) represents a pair of dark
and bright solitons; and Eq (3.23), (3.24), and (3.26) represent singular soliton wave solutions.

/305
V(é’) = gp— Sd()dz Sa Hs - ’
V203dodous — B — B tan( A )
Ve (3.27)
u({) _ 402,8d0d2
( VB sin (g” A/ 20&3/“) V20a3dydaps — 3 cos (g /205;3#5)) 2
IEP%
V(f) = gy — Sd()dz Sa HMs ’
V20a dodogis — B + \/Bcot( S )
o (3.28)
u(f) _ 40’2,8(100,2
( v cos ({ 5— oo ) + 4/20a3dydous — Bsin ({ 2053#5 )) 2

) 8\60’0@@(145111({\/%)"'3)
V() =ag -
\/m(\/iB2 + Acos( \/7)) + /202 dodops — ( ({ \/;) )
8a*ABdyd, ( VB (A% = B?) cos (é 503 5 ) +A + Bsin ( \/;))
u(@) = -
D e B e

(3.29)
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2 ( V20a3dydaps — B + \/I[_j’tan( V%))
J3aus (3.30)

V(&) = ag -

i sec? ({ - 2053#5 )

e=- S (aps)
2| V200 dodopts - B - \/BCOt(%— m))
V() = ao —

VSaps 3.31)

. 2 [ VB(yt+ax+By+67)
ifcsch (—2 N )

S (aps)

u(¢) =

Where Eq (3.27) to Eq (3.31) are singular periodic solutions.

4. Graphical illustration

In this section, we illustrate the features of selected solutions via 3D plotting and contour plotting.
All the following figures are plotted at z = 1 and at time ¢ = 1.

Figure 1 displays a dark soliton described by Eq (3.4) in 3D, and contour plotting with { us = —0.09,
uy = 1.08, uz = =2.05, o, = 0.04, u; = 046, 8 = -1.64, « = -0.9, 6 = -4, ayp = 2.265} , and
represents a bright soliton by setting {us = —1.26, uy = 0.73, u3 = -0.25, u, = 0.12, u; = 0.61,
B =-225a=-05,0=-4}.

IRTSAR)
-~ T

(a) (b) (0 (d)
Figure 1. (a) and (b), represent dark soliton in 3D , and contour Plot at z = ¢ = 1, with the
parameters sets as: { us = —0.09, uy = 1.08, puz = -2.05, u, = 0.04, y; = 0.46, 8 = —1.64,
a=-0.9, 6 = —4, ap = 2.265}; (c) and (d) represents bright solitons at z = ¢t = 1, with the
parameters sets as: {us = —1.26, yuy = 0.73, uz = —=0.25, o, = 0.12, ; = 0.61, g = -2.25,
a=-0.50=-4}

Figure 2 represents a pair of singular periodic solutions described by Eq (3.7) in 3D, and contour
plotting with { us = -1.27, uy = -1.56, u3 = 1.3, uo = 1.28, yy = -0.01, 8 = -1.68, @ = 0.5,
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§=-297,ay =1}, and { s = —0.4, py = 0.46, yu3 = 0.51, p = =025, u; = —0.72, B = —1.41,
a = 0.46, 6 = 0.25).

y
L - - - z i B
4 v(xy,1,1) /
AT

y 27| — ) |

° . —_

-2 /]
4

“ uxy1,1)
2 - —

(@) (b) (©) (d)
Figure 2. (a) and (b) represent singular periodic solution in 3D, and contour plotatz =7 = 1,
by the following settings{ us = —1.27, uy = —1.56, u3 = 1.3, uy, = 1.28, y; = —-0.01,
B=-168,a=05,6=-297, ay = 1}; (c) and (d) represents singular periodic solution in
3D, and contour plot at z = t = 1, by setting { us = —0.4, uy = 0.46, 3 = 0.51, wp, = -0.25,
w =-0.72,8=-141,a =0.46, 6 = 0.25}.

Figure 3 illustrates a pair of singular soliton solutions represented by Eq (3.6) in 3D, and contour
plot using the parameters { us = 0.26, uy = 0.29, u3 = -0.18, w, = 0.17, u; = -0.01, g8 = 0.07,

a=-4,0=-1.14,a9 = 1} and { us = —0.6, gy = —0.13, u3 = 0.56, u, = 0.54, u; = 0.73, B = —3.68,
a=-3.34,6 = -3.95}.

<
<

1) 4 "‘?","71 1)

=

4 vy 1)
y 27 T

c" o

(a) (b) (0) (d)
Figure 3. (a) and (b) represent singular soliton in 3D, and contour plot at z = ¢ = 1, by setting
{ps =0.26, gy =029, u3 = —0.18, o, = 0.17, u; = =0.01, 8 = 0.07, @ = -4, 6 = —1.14,
ap = 1}; (c¢) and (d) representing singular soliton in 3D, and contour plot at z = ¢t = 1, by

setting { ps = —0.6, g = —0.13, yz = 0.56, 1o = 0.54, yy = 0.73, B = —3.68, @ = —3.34,
5 = -3.95).

5. Stability analysis
In this section, we apply the linear stability analysis to Eq (3.1) [27-29]. By assuming the perturbed
solution as follows:

v(x,y,2,1) = qo + AU(x,y,2,1). (5.1)
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Here, g is the steady-state solution and A is the perturbed parameter, usually taken to be very small.
Then, we substitute the above perturbed solution into Eq (3.1) and obtain the following:

AUy + AUy + ugU, + Aug Uy + 382U Uy + Aa U, + 382U U + AU

(5.2)
+ us(4SBU2U . + 152U Uy + 152U, U sy + AU i) = 0.
By ignoring the nonlinear terms in Eq (5.2), we obtain the following:
M5 Uxxxxxx + U ny + 2 Uxx + U3 Uyy + 4 sz + Uxxxy + Utx =0. (53)
Then, for the Eq (5.3), we solve it by substituting the following solution in Eq (5.3).
U(x,y, z, l) — pei(Wt+Mx+Ry+Fz)’ (54)

where M, R, and F are the wave numbers for each axis, and W is the wave frequency. The following
equation are obtained:
FusM + usM® — MPR + 1o M? + iy MR + MW + 3R* = 0.

Then, we get the relation between the wave numbers and frequency,

_ M — usM® + MPR — pi, M? — 1y MR — (13R

w
M

(5.5)

e0f W

ol
40
20
J — R=1F=1 20 — R=1,F=1
; . 4 — R=5F=5 L — R=5F=5
-1.0 -05 +0 S M
R=10,F=10 -10 = 05 0 R=10,F=10
-20
20}
-40 0

(a) (b)
Figure 4. The relation between the frequency W(M, R, F) and the number M, by setting
M1 = 0.2,/12 = 0.3,/13 = 0.1,/14 = 0.3,/15 = -1 in (a), and M1 = —0.2,/12 = 0.3,/13 =
—-0.1, 44 = 0.3, us = —1 in(b).

In Figures 4 and 5, we plotted the relation between the frequency W and the wave number M, under
different settings of {x;} and different settings for {R, F'}, which indicates how the solution will decay or
converge to the steady state go. As W takes a negative sign, the solution will converge to gy. Conversely,
when the sign of W is positive, the solution will diverge, which means it will be an unstable solution,
and if it takes O it will be called marginally stable. Additionally, we have perturbed and plotted the
dark soliton (at z = @« = 8 = 1, and 6 = ayg = 0) described by Eq (3.4) under two distinct parameter
regimes. For the stable case, the parameters are set as: y; = 0.2, o = 0.3, u3 = 0.1, gy = 0.3, s = -1,
M=-1,R=1, F = 1,yielding W = —0.1 according to Eq (5.5). For the unstable case, the parameters
aresetas: u; =02, o =03, 3 =01, uy =03, us = -1, M = -05,R =1, F = 1, resulting in
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W = 0.06875 and the perturbed parameter 4 = 0.5, p = 1 for the two cases. The time evolution of the
perturbed solution, illustrated in figure 6 through a series of snapshots, which corroborates our linear
stability analysis. The solution remains stable as time progresses when W = —0.1, while it becomes
unstable for W = 0.06875.

w
800} w0l ¥
600}
400 — R=1,F=1 0
— R=0.1,F=0.1
200} — R=5F=
R=5,F=5 S m n — R=0.5,F=0.5
. — — R=10,F=10
-10 5 7 5 0 — R=1F=1
200
400
(a) (b)

Figure 5. The relation between the frequency W(M, R, F) and the number M, by setting
m = —05,u, = -08,u3 = 05,4 = —-0.001,us = 0.00lin (a), and p; = =05, =
-0.8, 3 = 0.5, 44 = 0.001, us = —0.001 1in (b).

Stable (W=-0.1) t=0 Unstable (W=0.06875) t=0

Stable (W=-0.1) t=20

(a) Represents a pair of perturbed dark soliton at # = 0 (b) Represents a pair of perturbed dark soliton at t = 20

Stable (W=-0.1) t=50 Unstable (W=0.06875) t=50 Stable (W=-0.1) t=100 Unstable (WfO 06875) t=100

(c) Represents a pair of perturbed dark soliton at # = 50  (d) Represents a pair of perturbed dark soliton at # = 100
Figure 6. The evolution of the perturbed dark soliton described by Eq (3.4) (atz =a =8 =1,
and 0 = ay = 0) is shown at four time snapshots: ¢ = 0, 20, 50, and 100, under two parameter
sets: (i) convergent case with y; = 0.2, u, = 0.3, uz = 0.1, g = 0.3, us = -1, M = -1,
R=1,F =1,yielding W = —0.1; and (ii) divergent case with u; = 0.2, u, = 0.3, u3 = 0.1,
s =03, us=-1,M =-05,R=1, F =1, yielding W = 0.06875.

6. Conclusions

Using the improved simple equation method, we derived several types of solutions to the (3+1)
generalized Calogero-Bogoyavlenskii-Schif equation, which models the propagation of long waves in
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nonlinear mediums and has many contributions to fluid mechanics and plasma physics. These include
dark, bright, and singular solitons; singular periodic solutions; and exponential solutions. Furthermore,
to highlight the properties of these solutions, we have supported our findings with 3D visualizations
and contour plots. Also, we have discussed the linear stability analysis for our equation and provided
a 2D plot for the relation between the wave number and the frequency.
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