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Abstract: In this paper, we investigated a continuous version of an insider trading model. There
were three basic assumptions in this model: (1) the insider exhibited risk-seeking, (2) market makers
could receive partial signals regarding the risky asset, and (3) the risky asset was driven by a standard
Brownian motion. By employing optimal filtering theory and stochastic control theory, we derived
some necessary conditions for market equilibrium. Additionally, we established both the existence
and uniqueness of the market equilibrium. At equilibrium, we observed that as time progresses, the
insider’s residual information gradually diminished when the volatility of the risky asset was low. In
contrast, if the volatility was high, the insider’s residual information initially increased. Meanwhile,
the partial observation coefficient remained constant, while both trading intensity and market liquidity
increased over time.
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1. Introduction

In 1985, Kyle [1] established an equilibrium model in which a neutral trader possesses private
information on the value of a risky asset. Subsequently, Back [2] revisited a continuous-time version
of the Kyle model. Using stochastic control theory, signal filtering techniques, and signal filtering
theory, Back derived a unique equilibrium within a certain class.

In real trading markets, market equilibrium is influenced by a variety of key factors. In 2020,
Banerjee and Breon-Drish [3] extended Kyle’s framework [1] by incorporating unobservable and costly
information acquisition. They assumed that the volatility of liquidity traders follows a general, positive
stochastic process, which directly implies that insider information evolves over time. Subsequently,
Han et al. [4] examined the long-range dependence characteristic of market liquidity. More recently,
Qiu and Zhou [5] not only modeled the volatility of risky assets as a random process, but also developed
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a random deadline insider trading model under dynamic asset conditions.
From the above mentioned, we realize that the impact of dynamic assets on market equilibrium

is significant, because insider will update his/her private information over time. Moreover, insider
behavior is one of the key factors affecting market equilibrium. For example, Baruch [6] considered a
risk-averse monopolist model and assumed that liquidity traders’ instantaneous demand depended on
the cost of trading. His conclusion indicated that market depth increased over time. Later, Cho [7]
extended the uniqueness result from the model of Kyle [1] and Back [2], and pointed out that market
liquidity decreases over time if an insider is risk-averse. Recently, Xiao and Zhou [8] also considered
a risk-averse model, but, unlike Baruch [6] and Cho [7], they analyzed a risky asset whose value is
driven by an arithmetic Brownian motion, as in [9,10], and established a closed-form equilibrium with
a risk-averse insider. In fact, there is lots of literature on continuous-time risk-averse models [11, 12],
and discrete-time risk-averse models [13, 14]. However, risk-seeking literature has been less relatively
addressed.

Why do most insider trading models tend to treat insiders as risk-averse or risk-neutral individuals?
Tversky and Kahneman [15] provided their perspective in 1979, suggesting that when investors face
uncertain decision-making, their investment behavior deviates from the rational models of classical
financial theory due to the influence of personal and social factors. The risk attitude and behavior
patterns often deviate from the optimal models of classical financial theory. They argued that when
an investor is confronted with certain gains, they are generally risk-averse, seeking to minimize risk.
However, when faced with certain losses, the investor is more inclined to take risks, focusing on the
volatility of returns rather than the stability of those returns. As a result, risk-seeking investors are
more likely to choose higher-risk assets in pursuit of higher returns.

From the perspective of behavioral economics, it is reasonable for most insider trading models to
assume that insiders are either risk-averse or risk-neutral. However, it is important to note that this
assumption reflects a subjective tendency, not an absolute truth. In reality, it is entirely possible for
an insider to be a risk-seeking investor, as psychological factors, such as an abnormal mentality, can
significantly influence an investor’s risk preferences. Research by Frank et al. [16] indicates that CEOs,
for example, may exhibit lower self-control, abusing their informational advantages to make profits,
sometimes engaging in more aggressive trading behaviors. Furthermore, overconfidence in investors
often leads to excessive self-assurance in their judgments and an overestimation of their chances of
success. This, in turn, can lead to overreaction and excessive trading, causing the investor to behave as
a risk-seeking agent. Zhou [17] examined a public disclosure model where an insider, overconfident
in his private information, initially refrained from aggressive trading. This strategy aimed to preserve
information for future trades, reflecting the insider’s risk-seeking behavior. Kyle et al. [18] studied a
continuous-time model and described the overconfident trading behavior of oligopolistic insider with
exponential utility. In addition, several studies [19, 20] have explored these behaviors, demonstrating
that insiders, under certain conditions, can indeed act as risk-seeking investors.

Kyle et al. [18] describe a symmetric continuous-time model of trading among relatively
overconfident, oligopolistic informed traders with exponential utility. Traders agree to disagree about
the precisions of their continuous flows of Gaussian private information.

In fact, in 2010, Gong and Zhou [21] examined mixed equilibrium in a rationally expected price
model under different risk preferences, noting that market liquidity increases over time. Subsequently,
Gong and Zhou [22] developed a risk-seeking insider trading model within the context of Stackelberg
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equilibria. In 2023, Xiao [23] investigated a risk-seeking insider trading model in a continuous-time
framework, where market makers could observe partial information about the risky asset. Using
filtering theory and the dynamic programming principle, he proved the uniqueness and existence of
a solution to the model. Unfortunately, in his assumptions, the risky asset is static, so market makers’
partial information is integrated into the initial price at the beginning, making the partial observation
coefficient always zero. In fact, partial observation has been studied by many researchers [24–26], but
their models typically assume the risky asset is static. In my view, the risky asset should be dynamic.
Therefore, we aim to improve and extend the previous model.

Next, this paper makes the following assumptions: (i) the insider is risk-seeking, (ii) the risky asset
is dynamic, and (iii) market makers can receive partial signals about the risky asset. The remainder
of the paper is organized as follows. Section 2 presents the preliminaries, including a definition of
risk-seeking linear equilibrium. Section 4 outlines some necessary conditions for market efficiency.
The main conclusions, including the existence and uniqueness of the equilibrium, are presented in
Section 5. Section 6 provides numerical simulations of the equilibrium, and conclusions are drawn in
Section 7.

2. Preliminaries

Before introducing our model, we first assume that all randomness originates from a common
filtered probability space (Ω,F , {Ft}t≥0, P), which satisfies the usual conditions [27]. Following this,
we present the formulation of the optimal filtering problem below:

dθt = [a0(t, ξ) + a1(t, ξ)θt]dt + Σ2
i=1bi(t, ξ)dWi(t), (2.1)

dξt = [A0(t, ξ) + A1(t, ξ)θt]dt + Σ2
i=1Bi(t, ξ)dWi(t), (2.2)

Theorem 2.1. [28] Let (θ, ξ) be a random process with differentials given by (2.1) and (2.2), and
the conditions (1)–(10) be satisfied in [28]{12.3 Optimal Filtering Equations in Several Dimensions}.
Then the vector mt = M(θt|Fξt ) and the matrix γt = M((θt − mt)(θt − mt)∗|Fξt ) are unique continuous
Fξt -measurable for any t solutions of the system of equations

dmt = [a0(t, ξ)+a1(t, ξ)mt]dt+[(b◦B)(t, ξ)+γtA∗1(t, ξ)](B◦B)−1(t, ξ)[dξt−(A0(t, ξ)+A1(t, ξ)mt)dt], (2.3)

dγt = (a1(t, ξ)γt+γta∗1((t, ξ))+(b◦b)(t, ξ)−[(b◦B)(t, ξ)+γtA∗1(t, ξ)](B◦B)−1(t, ξ)[(b◦B)(t, ξ)+γtA∗1(t, ξ)]∗)dt
(2.4)

where B◦B = B1 ◦B∗1+B2 ◦B∗2, b◦B = b1 ◦B∗1+b2 ◦B∗2, b◦b = b1 ◦b∗1+b2 ◦b∗2, and C∗ is a transpose
of C.

3. The model

In a risky market, there is a risky asset traded in a finite continuous-time interval [0,1], with its
value, denoted as vt, evolving according to

vt = v0 +

∫ t

0
σvdBvs, (3.1)

where v0 is normally distributed with mean 0 and variance σ2
v0, and Bv is a standard Brownian motion.

There are three types of traders participating in the market:
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(i) risk-seeking insider, who possesses the information regarding the liquidation value vt, and
chooses his/her trading strategy xt as follows:

dxt = βt(vt − pt)dt, x0 = 0, (3.2)

where β is a positive deterministic function, referred to as insider trading intensity [1];
(ii) liquidity traders, who submit random trading volume zt in the following form [7]:

zt = σzBzt, z0 = 0, (3.3)

where σz is a positive deterministic constant, and Bz is a standard Brownian motion that is
independent of vt;

(iii) risk-neutral market makers, who observe the total orders of risk-seeking insider and noise traders
(but do not observe them separately)

yt = xt + zt (3.4)

and obtain a signal ut on risky asset vt

ut = vt + ϵt (3.5)

where ϵt = ϵ0+
∫ t

0
σϵdBϵs is independent of vt and Bzt, and ϵ0 ∼ N(0, σ2

ϵ0). Subsequently, based on
the trading volume yt and the signal ut, they set the market price pt as a linear function satisfying:

dpt = λytdyt + λutdut, p0 = 0, (3.6)

where λy and λu are two deterministic, measurable, and differentiable functions, referred to as the
market liquidity parameter and the partial observation coefficient, respectively.

Then, approximately, the ex-ante profit for insider from time t to 1 is given by:

πt =

∫ 1

t
βs(vs − ps)2ds. (3.7)

Based on the characteristics of risk-seeking insider, we assume she/he has an exponential utility
function from time t to 1 in the following form:

U(πt) = expπt . (3.8)

Of course, the following conditions should be guaranteed,
∫ 1

0
λ2

t dt < ∞,
∫ 1

0
β2

t dt < ∞, and

E(exp
∫ 1

t βs(vs−ps)2ds) < ∞. Otherwise, it is difficult to guarantee its well-posedness. Next, the concept of
equilibrium will be given as follows.

Definition 3.1. A risk-seeking linear equilibrium is a series (β, (λy, λu)) such that
(i) maximization of utility: for the given (λy, λu), the trading intensity β maximizes

E[U(πt)] = E[exp
∫ 1

t βs(vs−ps)2ds], (3.9)

where the insider’s information domain F I
t = σ{v} ∨ σ{ps, 0 ≤ s ≤ t} for t ∈ [0, 1), and

(ii) market semi-strong efficiency: for the given β, a pair (λy, λu) ought to satisfy∫ t

0
(λysdys + λusdus) = E[vt|F

M
t ], (3.10)

where F M
t = σ{u}

∨
σ{ys, 0 ≤ s ≤ t} for t ∈ [0, 1).
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Remark 3.1. In this model, market makers can’t obtain profit from trading, that is to say

E[(ṽ − p̃)ỹ|ỹ, q̃] = ỹE[(ṽ − p̃)|ỹ, q̃] = ỹ( p̃ − p̃) = 0.

Therefore, if market makers are not risk-neutral, the pricing process is not a martingale process, which
will eventually lead to unfair market.

4. Necessary condition for market efficiency

In our model, the signal-observation system is given by

Signal vt : dvt = σvdBvt,

Obervation yt : dξt = (A0 + A1vt)dt + A2dBvt + A3dBt, (4.1)

where ξt =
(
yt

ut

)
, ξ0 =

(
0

v0 + ϵ0

)
, A0 =

(
−ptβt

0

)
, A1 =

(
βt

0

)
, A2 =

(
0
σv

)
, A3 =

(
σz 0
0 σϵ

)
, Bt =

(
Bzt

Bϵt

)
.

By Theorem 2.1, we get

dpt = dE[vt|F
M

t ] =
Σtβt

σ2
z

dyt +
σ2

v

σ2
v + σ

2
ϵ

dut, (4.2)

where

λyt =
Σtβt

σ2
z
, λut =

σ2
v

σ2
v + σ

2
ϵ

(4.3)

and
dΣt

dt
= Σ0 −

Σ2
t β

2
t

σ2
z
, (4.4)

in addition, Σt = E[(vt − pt)2] is called residual information [1] with Σ0 =
σ2
ϵ0σ

2
v0

σ2
v0+σ

2
ϵ0

.

5. Existence and uniqueness for equilibrium

In the following section, we will investigate the risk-seeking linear equilibrium. Let ms = vs − ps,
combine (3.1) with (3.6), then

dmt = −λytβtmtdt + (σv(1 − λut),−λytσz, λutσϵ)


dBvt

dBzt

dBϵt

 (5.1)

Let (β, (λy, λu)) be a linear equilibrium. From Definition 3.1, the insider’s value function for t ∈
[0, 1] is given by

V(t,mt) = max
β̃∈U(t,β)

E[exp
∫ 1

t β̃sms
2ds |F I

t ] = E[exp
∫ 1

t βsm2
sds |F I

t ], (5.2)

where U(t, β) is the collection of the functions β̃, such that β̃s = βs for 0 ≤ s ≤ t, and the two
conditions for (5.2) are ensured

lim
t→1−

V(t,mt) = 1, Σ0 =
σ2

z

2

∫ 1

0
λ2

ytdt. (5.3)
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It is obvious that the first result is immediate, and the second can be deduced from Eqs (4.2) and (4.4),
along with the equality limt→1− Σt = 0.

In fact, it is straightforward to apply Bellman’s principle to the stochastic version of the insider
trading problem.

Proposition 5.1. Given t ∈ [0, 1), for t̂ ∈ [t, 1],

V(t,mt) = max
β̃∈U(t,β)

E[exp
∫ 1

t β̃sms
2ds(1 − exp−

∫ t̂
t β̃sms

2ds) + V(t̂,mt̂)|F I
t ]. (5.4)

Proof. Omit. □

With the help of dynamic programming principle [27], we derive the following Hamilton-Jacobi-
Bellman (HJB) equation.

Proposition 5.2. If the insider’s value function is V(t,mt) in Proposition 5.1, then the HJB equation is

sup
β∈R

[Vt +
1
2

Vmm(σ2
v(1 − λut)2 + λ2

ytσ
2
z + λ

2
utσ

2
ϵ ) + β(λtmt(mtV − λytVm)] = 0. (5.5)

Proof. By Proposition 5.1 with t̂ − t → o and Itôs formula, we obtain

V(t̂,mt̂) − V(t,mt)
t̂ − t

+
exp

∫ 1
t β̃sms

2ds(1 − exp−
∫ t̂

t β̃sms
2ds)

t̂ − t
= 0,

obviously,

dV(t,mt) = Vtdt − λytβtmtVmdm + Vm((σv(1 − λut),−λytσz, λutσϵ)


dBvt

dBzt

dBϵt

)
+

1
2

Vmm(σ2
v(1 − λut)2 + λ2

ytσ
2
z + λ

2
utσ

2
ϵ )dt

or
E(dV(t,mt)) = Vtdt + λytβtmtVmdt +

1
2

Vmm(σ2
v(1 − λut)2 + λ2

ytσ
2
z + λ

2
utσ

2
ϵ )dt,

and 1−exp−
∫ t̂
t βsms2ds

t̂−t ∼ βtmt
2 as t̂ → t. Hence, we have

sup
β∈R

[Vt +
1
2

Vmm(σ2
v(1 − λut)2 + λ2

ytσ
2
z + λ

2
utσ

2
ϵ ) + βmt(mtV − λytVm)] = 0. (5.6)

□

Proposition 5.3. If the insider’s value function satisfies (5.5), then it can be portrayed as

V(t,mt) = g0(tan(c1 − σ
2
zτt)cotc1)1/2 exp

m2
t

2λyt ,

where
λyt =

τ

tan(c1 − σ2
zτt)
, (5.7)
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g0 = (tan(c1 − σ
2
zτ)cotc1)1/2, (5.8)

τ = (
σ2

v

σ2
z
(1 − λut)2 +

σ2
ϵ

σ2
z
λ2

ut)
1/2, (5.9)

and the constant c1 satisfies the following equation,

cot(c1 − σ
2
zτ) − cot c1 =

2Σ0

τ
+ σ2

zτ.

Proof. We know that the HJB equation (5.5) is equivalent to the following system:

Vt +
1
2

Vmm(σ2
v(1 − λut)2 + λ2

ytσ
2
z + λ

2
utσ

2
ϵ ) = 0,

βmt(mtV − λytVm) = 0. (5.10)

In the system (5.10), the second equation can be viewed as an ordinary differential equation in terms
of mt, which leads to the following:

V(t,mt) = g(t) exp
m2

t
2λyt , (5.11)

where g(t) is a deterministic function on [0,1].
Substituting (5.11) into the first equation in system (5.10), we obtain

dg(t)
dt
+ g(t)

m2
t

2

d( 1
λyt

)

dt
+

g(t)
2

(
m2

t

λ2
yt
+

1
λyt

)(σ2
v(1 − λut)2 + λ2

ytσ
2
z + λ

2
utσ

2
ϵ ) = 0,

and it is equivalent to the following two equations

dg(t)
dt
+

g(t)
2

1
λyt

(σ2
v(1 − λut)2 + λ2

ytσ
2
z + λ

2
utσ

2
ϵ ) = 0, (5.12)

g(t)m2
t

2

d( 1
λyt

)

dt
+

g(t)m2
t

2
1
λ2

yt
(σ2

v(1 − λut)2 + λ2
ytσ

2
z + λ

2
utσ

2
ϵ ) = 0. (5.13)

From the Eq (5.13), we get

d( 1
λyt

)

dt
= −σ2

z − (σ2
v(1 − λut)2 + λ2

utσ
2
ϵ )(

1
λyt

)2.

Let τ = (σ
2
v
σ2

z
(1 − λut)2 +

σ2
ϵ

σ2
z
λ2

ut)
1/2, then we have

λyt =
τ

tan(c1 − σ2
zτt)

(5.14)

where c1 = arctan( τ
λy0

). We take it into the Eq (5.12), then

gt = g0 exp
−
σ2

z
2

∫ t
0

tan(c1−σ
2
z τs)

τ (τ2+ τ2

tan2(c1−σ
2
z τs)

)ds
= g0(tan(c1 − σ

2
zτt)cotc1)1/2, (5.15)
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where g0 = exp
σ2

z
2

∫ 1
0

tan(c1−σ
2
z τs)

τ (τ+ τ2

tan2(c1−σ
2
z τs)

)ds
= (tan(c1 − σ

2
zτ)cotc1)1/2. According to the boundary

conditions in (5.3), the constant c1 can be solved by

cot(c1 − σ
2
zτ) − cot c1 =

2Σ0

τ
+ σ2

zτ. (5.16)

□

Theorem 5.1. Let −π2 < c1 − τσ
2
z t < π2 , then there is a unique linear equilibrium (β, λ) satisfying

βt =
σ2

zτ cot(c1 − τσ
2
z t)

(Σ0 + τ2σ2
z )(t − 1) + τ(cot(c1 − τσ2

z ) − cot(c1 − τσ2
z t)).
,

λyt =
τ

tan(c1 − σ2
zτt)
, λut =

σ2
v

σ2
v + σ

2
ϵ

.

At the equilibrium, the residual information Σt is

Σt = (Σ0 + τ
2σ2

z )(t − 1) + τ(cot(c1 − τσ
2
z ) − cot(c1 − τσ

2
z t)).

and the insider’s total ex-ante utility

E[V(0,m0)] =

√
λy0

λy0 − Σ0
(tan(c1 − σ

2
zτ)cotc1)1/2,

where c1 is satisfied with the following equation:

cot(c1 − σ
2
zτ) − cot c1 =

2Σ0

τ
+ σ2

zτ

Proof. From the Eq (4.4), we have
dΣt

dt
= Σ0 − σ

2
zλ

2
yt, (5.17)

Taking (5.14) into it, we have

Σt = (Σ0 + τ
2σ2

z )(t − 1) + τ(cot(c1 − τσ
2
z ) − cot(c1 − τσ

2
z t)).

Again, together with λyt =
Σtβt

σ2
z

in (4.3), we obtain

βt =
σ2

zτ cot(c1 − τσ
2
z t)

(Σ0 + τ2σ2
z )(t − 1) + τ(cot(c1 − τσ2

z ) − cot(c1 − τσ2
z t)).
.

By the properties of expectation, we have

E[V(0,m0)] =

√
λy0

λy0 − Σ0
(tan(c1 − σ

2
zτ)cotc1)1/2,

where
cot(c1 − σ

2
zτ) − cot c1 =

2Σ0

τ
+ σ2

zτ.

The proof is complete. □

Corollary 5.1. In Theorem 5.1, the following result holds:
As time progresses, both market liquidity and optimal trading intensity increase simultaneously; the

partial observation coefficient remains constant, whereas residual information decreases.

Proof. Omit. □
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6. Numerical simulation

In Theorem 5.1 and Corollary 5.1, we provide some theoretical characteristics of equilibrium. Next,
we will present numerical simulations for the equilibrium. In order to understand the equilibrium
characteristics of dynamic assets, we will compare them with the equilibrium of static assets [23]. In
Xiao’s article [23], a unique linear equilibrium (β, λ) is presented, satisfying

βt =
c1 − σ

2
z

1 − t
, λyt =

1
c1 − σ2

z t
, λut = 0,

Σt =
1

c1 − σ2
z
−

1
c1 − σ2

z t
.

where

Σ0 =
σ2
ϵ0σ

2
v0

σ2
v0 + σ

2
ϵ0

, c1 =
σ2

z +

√
σ4

z +
4σ2

z
Σ0

2
.

In the following, we will examine the various characteristics of market equilibrium individually. To
simplify the calculations, we assume that σ2

v = σ
2
v0, σ

2
ϵ0 = σ

2
ϵ . For more intuitive, Table 1 provides

some special parameters. We mainly compared Xiao’s model [23], which is a static risky asset.

Table 1. Partial special parameters in market equilibrium.

Author (Volatility parameters) Market characteristic parameters
Σ0 c1 λut

Our(σ2
v = σ

2
v0 = 0.4, σ2

ϵ0 = σ
2
ϵ = 0.2) 0.1333 0.679 0.1333

Xiao(σ2
v = σ

2
v0 = 0.4, σ2

ϵ0 = σ
2
ϵ = 0.2) 0.1333 1.3299 0

Our(σ2
v = σ

2
v0 = 1, σ2

ϵ0 = σ
2
ϵ = 0.5) 0.3333 0.8526 0.6667

Xiao(σ2
v = σ

2
v0 = 1, σ2

ϵ0 = σ
2
ϵ = 0.5) 0.3333 1.5 0

Our(σ2
v = σ

2
v0 = 4, σ2

ϵ0 = σ
2
ϵ = 1) 0.8 1.2083 0.8

Xiao(σ2
v = σ

2
v0 = 4, σ2

ϵ0 = σ
2
ϵ = 1) 0.8 1.7248 0

Our(σ2
v = σ

2
v0 = 6, σ2

ϵ0 = σ
2
ϵ = 1) 0.8571 1.234 0.8571

Xiao(σ2
v = σ

2
v0 = 6, σ2

ϵ0 = σ
2
ϵ = 1) 0.8571 1.6902 0

In Figure 1, we intuitively illustrate the characteristics of equilibrium and observe how market
liquidity evolves over time. It is evident that market liquidity increases exponentially. When comparing
dynamic and static risky asset, market liquidity in dynamic assets is higher than in static assets when
the volatility of risky asset is low. However, as the volatility of risky asset increases, market liquidity in
dynamic risky asset initially becomes lower than in static assets, but eventually surpasses that of static
assets. This suggests that the volatility of dynamic risky asset is a key factor in determining the level
of market liquidity and the activity of the risk market.
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Figure 1. λy Varying with time t.

In Figure 2, whether the risk assets are dynamic or static, the partial observation coefficient
remains constant over time. Moreover, as the volatility of risk assets increases, the partial observation
coefficient steadily increases. However, the partial observation coefficient always remains zero in the
case of static assets. In fact, the partial observation information in static assets will be integrated
into market pricing initially, hence the partial observation coefficient remains zero. Unlike static
assets, dynamic risk assets are continuously changing, which leads to partial observation coefficients
fluctuating with volatility.
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Figure 2. Partial observation coefficient varying with time t.

In Figure 3, it is evident that the insider’s residual information consistently decreases when the risky
asset remains static. Furthermore, when the volatility of the risky asset is low, the insider’s residual
information gradually decreases. However, as the volatility of the risky asset increases, at the beginning
of trading, the insider’s residual information not only fails to decrease but also increases, which
contradicts our initial intuition. This phenomenon can be explained by the insider’s characteristics and
the fundamental significance of residual information. First, the insider is generally risk-seeking, and a
risk-seeking insider is less likely to release private information early in the trading process. Moreover,
considering the expression for residual information, Σt = E[(vt − pt)2], where pt = E[vt|F

M
t ], we

can see that an increase in residual information Σt must arise from one of two conditions: (1) the
market maker’s pricing deviates from the true price, or (2) the risky asset vt experiences significant
volatility. Hence, this explains why the release of private information is reduced initially and why
residual information increases when volatility is high.
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Figure 3. Σ Varying with time t.

In Figure 4, when the volatility of risk assets is low, the trading intensity of dynamic risk assets
is higher than that of static risk assets. However, as the volatility of risk assets increases, the trading
intensity of dynamic risk assets gradually decreases, eventually falling below that of static risk assets.
When volatility is low, the insider can more effectively control the information, resulting in relatively
high trading intensity. In contrast, as volatility increases, the insider becomes more cautious, leading
to a lower trading intensity. This suggests that the stability of information plays a crucial role in
influencing the insider’s trading behavior.
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Figure 4. β Varying with time t.

7. Conclusions

In this paper, we establish the existence and uniqueness of the linear equilibrium in a continuous-
time insider trading model, where the insider is assumed to be risk-seeking, and market makers observe
partial signals on the risky asset; moreover, the risky asset is assumed to be driven by Brownian motion.

This paper has found the above conclusion: (i) the partial observation coefficient remains constant
over time for both dynamic and static risk assets. It increases with volatility in dynamic assets but stays
zero for static ones, as their partial observation information is quickly integrated into market pricing.
In contrast, dynamic assets cause fluctuations in the coefficient.

(ii) In a risk-seeking trading market, dynamic risky assets play a key role in influencing market
equilibrium. When the volatility of these assets is low, market liquidity remains relatively stable,
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with a steady, albeit slight, increase over time. However, as the volatility of risky assets increases,
market liquidity undergoes exponential changes, significantly enhancing liquidity and fostering market
development. This aligns with economic intuition: when volatility is high, the insider finds it
more difficult to manage these assets, which in turn makes it harder for them to generate profits.
In comparison to risk-averse and risk-neutral agents, liquidity traders reduced losses, and their
participation becomes more pronounced in a risk-seeking environment. To maximize potential profits,
insider is also more likely to engage actively in trading.

(iii) The insider’s residual information decreases when the risky asset remains unchanged. Under
low volatility, the residual information steadily declines. However, as the volatility increases, the
residual information initially increases, which contradicts intuition. This can be attributed to the
insider’s risk-seeking behavior, as they are less inclined to disclose private information early in trading.
The residual information will increase if market makers’ pricing deviates from the true value or when
asset volatility is high, explaining the delayed release of information and the corresponding increase in
residual information with higher volatility.

(iv) When volatility is low, dynamic risk assets trading intensity is higher than that of in static
assets. However, as volatility increases, the trading intensity of dynamic assets diminishes, eventually
falling below that of static assets. In a low-volatility environment, insiders can more effectively manage
information, leading to greater trading activity. In contrast, rising volatility prompts insiders to adopt
a more cautious stance, reducing trading intensity. This highlights the crucial role of information
stability in influencing insider trading behavior.

On the whole, at equilibrium, as time goes by, both market liquidity and trading intensity
increase rapidly in the later, while residual information decreases slowly at the beginning, and partial
observation coefficient is only related to randomness but independent of time. Specifically, the market
liquidity characteristic suggests that the insider is more willing to trade and has a stronger desire to
trade when less residual information is available.

Note that, our model extends Kyle’s (1985) framework [1] by incorporating a risk-seeking
perspective. In Kyle’s original model, market liquidity is assumed to be constant. In contrast in
risk aversion [6, 7, 12] models, the market liquidity typically decreases over time. Different from the
models mentioned above, in our model, market liquidity is an increasing function with time. From a
broader perspective, it is beneficial for market development when the insider adjusts their risk appetite
appropriately.
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