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Abstract: Quantum image processing (QIP) has become one of the most significant fields in quantum 

computing (QC); it merges quantum mechanics with image processing to improve classical image-

processing speed, which involves various operations to advance quantum image representation (QIR). 

Accordingly, we introduce two new QIRs: The first is based on the wavelength and bit plane, called 

the quantum image representation bit plane (QIRBP), and the second is based on the wavelength and 

adjacency pixels, which is called the quantum image representation wavelength correlation (QIRWC). 

The QIRBP model uses 𝑏 + 2𝑛 + 6 quantum bit (qubits) to store a digital color image of size 2𝑛 × 2𝑛. 

In contrast, the QIRWC needs 2𝑏 + 4𝑛 + 8 qubits to store a digital color image of size 2𝑛 × 2𝑛 and 

to entangle the wavelength between two neighboring pixels. While the QIRWC approach is more 

complex, it is also more efficient on the basis of the transformation data. The complexity arises from 

the level of information being transmitted. In this work, two new representation methods (QIRBP and 

QIRWC) are proposed to overcome existing QIR weaknesses by enhancing storage efficiency, enabling 

compact high-resolution representation, improving data transformation through wavelength 

correlation and pixel adjacency, reducing noise, achieving greater versatility, and advancing scalable 

QIR. To prove the efficiency of the proposed methods, they were analyzed and compared with other 

efficient quantum image representations, outlining their similar and different aspects. 
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List of abbreviations 

Abbreviation Definition 

QIR Quantum image representation 

QIP Quantum image processing 

DIP Digital image processing 

FRQI Flexible representation of quantum images 

NCQI Novel quantum image representation 

QRMW Quantum representation of multi-wavelength 

QRCI Quantum representation model of color digital images 

QIRBP Quantum image representation bit-plane 

QIRWC Quantum image representation wavelength correlation 

CNOT Controlled-not or controlled-X 

SWAP SWAP (interchange) 

1. Introduction 

The field of quantum computation has emerged through several important theoretical 

advancements and promising experimental results since its inception in 1982 [1]. Specifically, in 1995, 

Shor introduced the algorithm of quantum integer factoring in polynomial time [2]. Two years later, 

Grover introduced a novel algorithm of a quantum search for databases that allows for quadratic 

acceleration [3]. These two algorithms, namely Shor and Grover, have been utilized extensively in 

quantum computers. As a new computational approach, quantum computation benefits from the 

unusual properties of quantum mechanics, such as superposition and entanglement states, to store, 

process, and transmit information [4]. 

Quantum computation serves in several fields of computer science, such as information theory, 

cryptography [5], data analysis [6], deep learning (DL) [7,8], pattern recognition [9], QIR for remote 

sensing applications [10], and image processing [11–14]. One of the most important branches of 

computers is digital image processing [15], which forms an essential part of numerous applications. 

The rapid progress of image and video capturing systems, especially on mobile devices or computers, 

has led to fast growth in the amount and scale of visual content. Therefore, there has been an increasing 

need to devise and deploy new algorithms that can manage various visual processing of images or 

videos, including facial recognition, both locally and remotely [16,17]. Initially, with the emergence 

of quantum computers, researchers faced fundamental difficulties, since the field is an emerging one, 

especially in image representation to a quantum state, which is one of the initial challenges, whereas 

the more recent challenges involve choosing approaches for preparing and processing the quantum 

images on quantum computers. 

Quantum image processing (QIP) is currently in the position of bridging the gap between quantum 

computation and image processing. Over the past few years, the promising future of quantum computers 

has become increasingly evident [1,18]; therefore, quantum image processing has currently become an 
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extensive field of research [19]. The QIP possesses two important notable properties: (1) The capacity 

for quantum storage to increase exponentially and (2) the utilization of distinctive quantum mechanics 

principles, including entanglement and parallelism [20]. This field can be categorized into two main 

branches: Quantum image representation and quantum image processing. 

In quantum image representation, several algorithms have been introduced to represent (encode) 

and retrieve images (decoding or reconstructing the classical image from its QR), as well as store, 

compress, and process information via quantum mechanics, such as the qubit lattice [21], real ket [22], 

entangled images [23], flexible representation of quantum images (FRQI) [11], novel enhanced 

quantum representation of digital images (NEQR) [24], multichannel representation for quantum 

images (MCQI) [25], normal arbitrary quantum superposition state (NAQSS) [26], the normal arbitrary 

superposition state (NASS) [27], generalized quantum image representation (GQIR) [28], novel 

quantum representation of color digital images (NCQI) [29], red-green-blue (RGB) multichannel 

representation for quantum colored images (QMCR) [30], bit plane representation of quantum 

images (BRQI) [31], quantum representation of multiwavelength (QRMW) [32], quantum representation 

of color images (QRCI) [33], the double quantum color image encryption scheme (DQRCI) [34], novel 

quantum image representation based on HSI (QIRHSI) [35], quantum pixel representations (QPIXL) [36], 

enhanced quantum image representation using the entanglement state encoding in the HSI color 

model (EQIRHSI) [37], hybrid quantum qutrit (qudit) representation of digital RGB images [38], 

efficient flexible representation of quantum image using the direct cosine transform (DCT-

EFRQI) [39], quantum probability image encoding (QPIE) [13], and polar coordinate quantum 

image processing (APQI) [40]. 

In 2013, Sun et al. [25] introduced the MCQI model for image representation inspired by FRQI, 

which was created by using gates of quantum rotation. The MCQI model is capable of recording details 

from both the RGB channels and the 𝛼 channel. However, it uses the amplitude of quantum states to 

store color information, making it challenging to obtain an accurate classical color image from an 

MCQI quantum system. In 2017, Sang et al. [19] introduced a new image representation model inspired 

by NEQR to store and retrieve color images accurately; their model, which is named NCQI, uses a 

quantum bit (qubit) sequence basic state for encoding the color information of digital images. This has 

currently become one of the widely recognized QIRs, since it allows for the accurate recovery of color 

images. The NCQI representation model states that to store a color digital image of size 2𝑛 × 2𝑛, a 

total of 2𝑛 + 24  qubits are needed. In 2019, Ling et al. [33] investigated a new quantum image 

representation model that represents color information through the fundamental states of sequences of 

qubits, and it requires a total of 2𝑛 + 6 qubits to store a color digital image that has dimensions 

of 2𝑛 × 2𝑛. In 2023, a new model for QIR called efficient flexible representation of quantum image 

using the discrete cosine transform (DCT-EFRQI) [39] was introduced, which is an inspired by the 

discrete cosine transform (DCT) with the generalized quantum image representation (GQIR) [41] 

approach. The first two steps of DCT-EFRQI are identical to those of DCT‑GQIR, but DCT-EFRQI 

not only uses DCT and quantization for compression but also incorporates an auxiliary qubit and is 

controlled so the Toffoli gates flexibly connect the quantized coefficient information with the pixel’s 

position, where DCT-EFRQI needs 𝑞 + 2𝑛 + 1 for each 16 × 16 block, where 𝑞 = 8 and a mean 

of 17 qubits is required for each block. 

In fact, all the aforementioned approaches are based on three main methods: FRQI, NEQR, and 

NASS. The first one, namely the FRQI, depends on the amplitude of a quantum state and encodes 

binary values for pixel positions, whereas the second one, which is the NEQR, directly represents pixel 

intensity values using binary encoding. The third approach, called NASS, encodes pixel information 

within a quantum state, mapping each pixel’s intensity and location onto a superposition of quantum 
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states. In terms of other approaches, some apply the NEQR to color images, whereas others use the 

FRQI with some adjustments. Additionally, NASS is similar to FRQI and NEQR but allows for 

arbitrary pixel intensities and positions, offering greater flexibility in encoding images with varying 

resolutions and color depths. Additionally, two models of QIR that are of interest are the QIRHSI and 

its enhanced version, the EQIRHSI, which adds a new concept about the entanglement of two qubits 

between H and S. Therefore, with this concept, the authors present a new idea about how we can 

transform the information on the basis of the entanglement state. Additionally, Das and Caruso [38] 

introduced a new idea of how we can represent images via two (hybrid‑qudit) entangled quantum 

registers, which constitute a total of 7 qutrits. In 2024, Balewski et al. [6] introduced a new two data-

encoding techniques, known as QCrank and QBArt, which use uniformly controlled rotation gates to 

demonstrate significant quantum parallelism. 

However, each of the aforementioned approaches has its weaknesses. Therefore, starting with the 

limitations of the FRQI model, the shortcomings involve grayscale resolution images, which represent 

color intensity using a single qubit, restricting grayscale differentiation to angular parameters, that is, 

the mean (𝜃𝑖 ∈ [0, 𝜋/2]). This coarse angular encoding limits color depth and complicates precise 

intensity discrimination, particularly for high-contrast images [42,43]. Additionally, experimental 

implementations on IBM quantum processors have revealed significant reconstruction errors (mean 

square error ≈ 200) due to decoherence and measurement noise, even for 2×2 images [43]. Moreover, 

preparing FRQI states for 2𝑛 × 2𝑛 images requires 2𝑛 + 1 qubits and 𝑂(24𝑛) operations, which 

becomes infeasible for high-resolution images because of the exponential resource growth [44]. In 

contrast, the NEQR model improves grayscale resolution by directly encoding pixel intensities via 

binary-represented qubits; however, this representation type is deterministic, which means that each 

additional bit of intensity precision necessitates extra qubits, leading to 8 + 2𝑛 total qubits for 2𝑛 × 2𝑛 

images, which is prohibitively large for current NISQ-era devices [39]. Furthermore, quantum Fourier 

transform operations on NEQR-encoded images require intricate gate sequences that amplify error 

rates, particularly when processing high-frequency components [44]. While NEQR extensions to RGB 

exist, simultaneous encoding of multiple color channels exacerbates qubit requirements and 

interchannel crosstalk [39]. The NASS model is flexible but introduces trade-offs. For example, 

mapping variable-resolution images to quantum states requires adaptive entanglement schemes that 

lack standardized implementation protocols [44]. The superposition principle complicates 

deterministic pixel value retrieval, as measurement collapses the states probabilistically—a critical 

issue for exact image reconstruction [5]. Additionally, the current quantum processors of this model 

have limited qubit connectivity and thus struggle to implement NASS’s arbitrary entanglement patterns 

efficiently [44]. The limitations of the QIRHSI and EQIRHSI models arise from decoherence in 

multiqubit systems, in which the entanglement between the H and S components increases 

vulnerability to environmental noise, with fidelity decreasing below 0.9 in multiqubit systems even 

with error mitigation [43]. Additionally, with color space constraints, the cylindrical coordinate system 

of the HSI model introduces nonlinear relationships between color components, complicating quantum 

arithmetic operations for color transformations [43]. The circuit depth of EQIRHSI’s additional 

entanglement gates via controlled-SWAP lengthens the circuit depth, increasing the likelihood of 

decoherence and limiting practical image sizes [44]. In hybrid qudit entangled registers, the 7-qutrit 

hybrid qudit approach theoretically enables compact encoding but faces implementation barriers. The 

qudit control complexity of the current quantum hardware predominantly supports qubits, with limited 

tools for manipulating qutrit states. Furthermore, stabilizing qutrit superpositions requires error rates 

below 10−4 , which is unachievable with the current superconducting or trapped-ion qubits [44]. 

Entangling multiple qutrits across registers demands precise microwave/optical control, with crosstalk 
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errors scaling quadratically with the register’s size [44]. The lack of standardized quantum gates for 

qutrit systems forces researchers to decompose operations into qubit-based primitives, negating 

potential efficiency gains [44]. Additionally, cross-cutting challenges in quantum image processing, 

such as hardware limitations, algorithmic–architectural mismatches, and theoretical–experimental 

discrepancies, exist. The limitations of hardware now refer to the qubit count and connectivity; even 

512×512 images require ~19 qubits for FRQI, exceeding the capacity of most current quantum 

processors, based on IBM’s documented 433-qubit Osprey, which suffers from 1%–2% gate errors [45]. 

Multistep image processing pipelines accumulate errors exponentially. For example, a 10-layer FRQI 

circuit on IBM’s Nairobi achieves only 67% fidelity because of T1/T2 decay [45]. In terms of 

algorithmic–architectural mismatches, such as nonadaptive encoding, most QIR methods assume fixed 

image resolutions and lack dynamic resizing capabilities without full reencoding [3,5]. Classical–

quantum bottlenecks in hybrid systems such as DCT-EFRQI suffer from the latency in quantum–

classical data conversion, negating theoretical speedups for real-time applications [3]. Furthermore, 

theoretical–experimental discrepancies reveal a simulation–reality gap such that Quirk simulations 

showed perfect DCT-EFRQI compression, whereas experimental implementations on Rigetti 

processors exhibited 30%–40% distortion due to approximate cosine transformations [39]. While the 

theoretical complexity is 𝑂(𝑛2) , acceleration claims often ignore initialization/measurement 

overheads, which dominate the runtime for practical image sizes [43]. 

On the basis of these developments, this article proposes a new two-quantum image representation, 

the first of which is based on multiple color channels and the bit plane of the image. This model 

represents a quantum state that can be used to encode an image with multiple color channels and bit 

planes using a superposition of the basis states. The quantum image representation consists of a sum 

over all possible combinations of color channels, bit planes, and position information, with each 

component’s state represented by a tensor product of the function |𝑓⟩, the color channel |𝜆⟩, the bit 

plane |𝐿 > , and the position information |𝑦⟩  and |𝑥⟩ . The parameter 𝑏 = 𝑙𝑜𝑔2𝑛𝑐  is used to 

determine the number of bits required to represent the number of color channels, where 𝑛𝑐 is the 

number of wavelengths per color channel. The parameters 𝑛 and 𝑚 represent the number of qubits 

required to represent the position information of the image. 

The second model we adopted is QIRWC. This model examines an aspect that has not been 

addressed in previous research, namely the relationship between two neighboring pixels. In other 

words, the interactions between them are based on the wavelength. Moreover, how it impacts the 

quality of an image when it is observed or measured in the quantum domain is also considered. 

Therefore, in this model, we use the entangled quantum between two qubits, and each qubit has 

wavelength information about the neighboring pixels. Therefore, we can address this issue by 

exploring how to establish a relationship between two neighboring pixels through quantum correlation, 

thereby demonstrating the wavelength relationship between them in the image. 

Overall, these models of QIR provide a way to encode and manipulate images using quantum 

information processing (QIP), which has potential applications in many fields, such as image 

processing and pattern recognition. However, implementing and manipulating such a quantum state is 

challenging because of the large number of basis states required to represent an image, as well as the 

need for precise control over the quantum system to maintain coherence and prevent decoherence in 

addition to noise. 

The contributions of our work can be expressed as follows. 

1) This study has built a new model of the QIR, called the QIRBP, which is based on the wavelength 

and bit plane of the image. 



10999 

AIMS Mathematics  Volume 10, Issue 5, 10994–11035. 

2) We present QIRWC, another quantum image representation model that leverages entanglement to 

capture wavelength correlations between adjacent pixels, which serves as a cornerstone for 

understanding pixel-to-pixel relationships in the quantum domain. 

3) The QIRBP aims to reduce storage requirements while preserving optimal accuracy upon decoding, 

effectively enhancing the efficiency of quantum image transmission. 

4) Compared with other methods, the design that significantly reduces the number of qubits used in 

our models is significantly lower, thereby optimizing the quantum resources required for 

information transmission. 

5) By controlling individual bit planes in each RGB channel, the QIRBP allows for detailed color 

transformations. 

6) QIRWC introduces a unique model that represents wavelength-based relationships between 

neighboring pixels. 

7) This work shows the enhanced applicability of QIRWC for quantum image-processing tasks, such 

as edge detection, pattern recognition, and image compression, achieving faster processing and 

more efficient data storage. 

With respect to these points and new ideas, the main motivation of this study was to develop two 

new quantum image representation models that align with the capabilities of quantum computing, 

ensuring optimal resource utilization while maintaining high-resolution image processing. The QIRBP 

model is designed to represent a classical image and convert it to quantum state via encoding the 

information at the bit plane level, reducing quantum resource requirements while preserving the 

accuracy of reconstructed images. By structuring the representation to minimize qubit usage, this 

model enhances the feasibility of quantum image transmission and processing. Moreover, QIRWC 

extends the concept of quantum image representation through using entanglement states to label 

wavelength correlations between adjacent pixels, providing a foundation for understanding pixel-to-

pixel interactions in the quantum domain. The proposed approach offers an efficient and scalable 

framework for quantum image processing tasks, such as filtering, edge detection, and color 

transformations. By encoding wavelength relationships, QIRWC enhances the adaptability of quantum 

models to practical applications, including pattern recognition and image compression. Additionally, 

QIRBP introduces a flexible structure that facilitates precise color manipulations at the bit plane level, 

optimizing image transformation processes. The model ensures that quantum parallelism is effectively 

utilized, improving the speed and accuracy of quantum image operations. Compared with existing 

quantum models, the proposed designs significantly reduce qubit consumption, optimizing the 

quantum resources required for information transmission. Furthermore, this study emphasizes the 

practical feasibility of implementing QIRBP and QIRWC within the constraints of current quantum 

hardware, ensuring compatibility with emerging quantum computing technologies. By bridging theoretical 

advancements with practical applications, this research establishes a pathway for future quantum image-

processing models, enhancing their efficiency, security, and applicability in real-world scenarios.  

On the other hand, we present a new QIRWC model that addresses the need for efficient, scalable, 

and enhanced image representation techniques that leverage the unique properties of quantum 

computing. We can claim that this model, as a unique model, treats wavelengths and their relationships 

through the entanglement state. QIRWC addresses these limitations by encoding image data in a 

quantum state that incorporates both color information and wavelength correlations between 

neighboring pixels. This correlation preserves smooth transitions and spatial continuity, which are 

essential for QIR.  

The rest of this paper is structured as follows. Section 2 reviews related work on QIR. Section 3 

introduces the dataset and foundations of quantum gates for QIR. Section 4 describes the preparation 
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of the QIRBP and QIRWC model images. Section 5 discusses QIR operations, including image 

retrieval, quantum color image operations, complementary color transformation, position operations, 

and bit plane reversing operations. Section 6 presents the experimental results. Finally, Section 7 

presents the conclusion, discussion, and future directions. 

2. Related work  

In the literature, five models have been suggested for storing and processing images via quantum 

image representation technology, which involves a qubit lattice [21] and was introduced as a novel 

model for quantum image representation in which each pixel is stored in a single qubit. All operations 

of pixels are changed into their quantum counterpart operations on a single qubit. Moreover, every 

quantum image is expressed as a matrix of qubits. In the entangled image [23], quantum entanglement 

was utilized to store and retrieve images. In real ket [22], the process involves performing a quadtree on 

the image repeatedly to create a balanced quadtree index. Additionally, each pixel is mapped onto a basic 

state within a quadratic sequence of qubits. In flexible representation of quantum images (FRQI) [11], 

the information on the position of every pixel is stored in the base state of a two-dimensional qubit 

sequence, whereas color information is stored as the likely amplitude of a solitary qubit in 

combination with the qubit sequence. A new and improved quantum representation of digital 

images (NEQR) [24] has been proposed. More details on the quantum image representation models 

and operations are explained in [29,46,47]. 

The NCQI model for a color digital image of size 2𝑛 × 2𝑛 can be explained as follows: 

|𝐼⟩ =
1

2𝑛
∑  2𝑛−1
𝑦=0 ∑  2𝑛−1

𝑥=0 |𝐶(𝑦, 𝑥)⟩ ⊗ |𝑦𝑥⟩,      (1) 

where |𝑦⟩  denotes the vertical position and where |𝑥⟩  denotes the horizontal position; |𝐶(𝑦, 𝑥)⟩ 

denotes the color value of the corresponding pixel, which can be encoded by the binary sequence as follows: 

|𝐶(𝑦, 𝑥)⟩ = |𝑅(𝑦, 𝑥)⟩|𝐺(𝑦, 𝑥)⟩|𝐵(𝑦, 𝑥)⟩ = |𝑅𝑦𝑥
7 ⋯𝑅𝑦𝑥

0
⏟      

Red 

𝐺𝑦𝑥
7 ⋯𝐺𝑦𝑥

0
⏟      

Green 

𝐵𝑦𝑥
7 ⋯𝐵𝑦𝑥

0
⏟      

Blue 

⟩.   (2) 

Figure 1 shows an example of a simple image and its NCQI state. 

 

Figure 1. A simple image and its NCQI state. 

A new model called the QRCI [33] representation model has been proposed for storing and 

processing color digital images on quantum computers. This model uses the RGB color digital image 

model and bit plane, and takes a feature of quantum superposition. The QRCI stores the image as two 

sets of entangled qubits, with the first set storing the color information for the red, green, and blue 
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channels and the second set storing information about the corresponding bit planes and positions. 

The QRCI model used to represent the quantum color image can be mathematically expressed 

as follows: 

|𝐼⟩  =
1

√22𝑛+3
∑  23−1
𝐿=0  ∑  2𝑛−1

𝑌=0  ∑  2𝑛−1
𝑋=0   |𝐶𝐿(𝑌, 𝑋)⟩ ⊗ |𝐿𝑌𝑋⟩,

|𝐼⟩  =
1

√22𝑛+3
∑  23−1
𝐿=0  ∑  2𝑛−1

𝑌=0  ∑  2𝑛−1
𝑋=0   |𝑅𝐿𝑌𝑋𝐺𝐿𝑌𝑋𝐵𝐿𝑌𝑋⟩ ⊗ |𝐿𝑌𝑋⟩,

    (3) 

|𝐿𝑌𝑋⟩ = |𝐿⟩|𝑌⟩|𝑋⟩ = |𝐿2𝐿1𝐿0⟩|𝑌𝑛−1𝑌𝑛−2…𝑌0⟩|𝑋𝑛−1𝑋𝑛−2…𝑋0⟩, 

where |𝐿⟩ and |𝑌𝑋⟩ represent the bit plane information and the position information, respectively, and 

where |𝐶𝐿(𝑌, 𝑋)⟩ denotes the corresponding color information of pixel (𝑌, 𝑋) in the 𝐿 th bit plane. An 

example of a simple image of size 2 × 2 and its QRCI state is presented in Figure 2. 

Figure 2. A simple image of size 2 × 2 and its QRCI state. 

One significant model inspired by the NEQR model for color images is the multichannel 

representation for quantum colored image (QMCR) [30] model, which can be expressed 

mathematically as follows: 

|𝐼⟩ =
1

2𝑛
∑  2𝑛−1
𝑦=0 ∑  2𝑛−1

𝑥=0 |𝐶𝑅𝐺𝐵𝑦𝑥⟩ ⊗ |𝑦𝑥⟩,      (4) 

where the state |𝐶𝑹𝑮𝑩𝒚𝒙⟩ is used to encode the information of the red, green, and blue channels (the 2𝑞 

gray range of each channel) of the 𝑦𝑥 pixel. The state |𝐶𝑅𝐺𝐵𝑦𝑥⟩ is defined as follows: 

|𝐶𝑅𝐺𝐵𝑦𝑥⟩  = |𝑅𝑦𝑥⟩|𝐺𝑦𝑥⟩|𝐵𝑦𝑥⟩,

|𝑅𝑦𝑥⟩  = |𝑟𝑦𝑥
𝑞−1𝑟𝑦𝑥

𝑞−2…𝑟𝑦𝑥
0 ⟩, |𝐺𝑦𝑥⟩ = |𝑔𝑦𝑥

𝑞−1𝑔𝑦𝑥
𝑞−2…𝑔𝑦𝑥

0 ⟩, |𝐵𝑦𝑥⟩ = |𝑏𝑦𝑥
𝑞−1𝑏𝑦𝑥

𝑞−2…𝑏𝑦𝑥
0 ⟩,

 (5) 

where {𝑟𝑦𝑥
𝑘 , 𝑔𝑦𝑥

𝑘 , 𝑏𝑦𝑥
𝑘 ∈ 0,1} and 𝑅𝑦𝑥, 𝐺𝑦𝑥, 𝐵𝑦𝑥 ∈ {0,1, … , 2

𝑞 − 1}.  

At this stage, a new model called the QRMW for color image representation uses color information 

for the channel of the (y; x) position of the image, which can be written as: 

|𝐼⟩ =
1

√2𝑏+𝑛+𝑚
∑𝜆=0
2𝑏−1  ∑𝑦=0

2𝑛−1  ∑𝑥=0
2𝑚−1  |𝑓(𝜆, 𝑦, 𝑥)⟩ ⊗ |𝜆⟩ ⊗ |𝑦𝑥⟩,    (6) 

where 𝜆  is the channel information and where 𝑦𝑥  is position information. Figure 3(a) below 

illustrates an example of a simple image of size 2 × 2 and its QRMW state, while Figure 3(b) refers 

to the QRMW quantum circuit.  
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Figure 3. (a) A simple image of size 2 × 2  and its QRMW state below; (b) quantum 

circuit of QRMW. 

3. Background for quantum image processing 

In this study, the dataset and resources focus on representing color images in a quantum state. This 

dataset includes eight color images, each with a size of 256 × 256 pixels, where each pixel’s intensity is 

treated as a representation of the wavelength and defined as 𝒞𝑛 = {0,1, … , 2
𝑛 − 1} for n = 8 and 24, 

where the intensity is for grayscale or RGB color sets. Additionally, this study utilizes the Qiskit library, 

which is an open-source Python programming language [48], to build, simulate, and visualize the 

quantum circuits needed. This library enables the translation of each image into a quantum circuit 

where the pixel values are encoded as quantum states, with CR and controlled-phase gates representing 

wavelength dependencies across adjacent pixel pairs. Circuit simulations are run using the Qiskit 

module, such as the IBM Q experience used for experimental validation. Together, this dataset and 

these resources illustrate how our models can enhance image-processing tasks, such as edge detection 

and segmentation, within a quantum framework. 

Several quantum gates are used in this work, and the basis of this gate can be expressed as follows. 

Begin with a unitary gate that corresponds to a unitary matrix 𝑈. The identity (𝐼) corresponds to an 

identity matrix 𝐼. Additionally, the Hadamard (𝐻), Pauli-𝑋 (𝑋), and 𝑅𝑥(arctan √2) gates are four 

specific examples of the 𝑈 gate, and their corresponding matrices are as follows: 

𝐼 = [
10
01
], 𝑋 = [

01
10
], 𝐻 =

√2

2
[
11
1 − 1

], 𝑅𝑥(𝜃) = [
cos 𝜃    sin 𝜃
sin 𝜃 − cos 𝜃

],  
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CNOT = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

], SWAP = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

], 

𝑆𝑊𝐴𝑃 3 − 𝑞𝑢𝑏𝑖𝑡𝑠 𝑔𝑎𝑡𝑒 =

(

 
 
 
 
 

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1)

 
 
 
 
 

, 

where 𝜃 = arctan √2. 

Figure 4 illustrates some of these gates. 

 

Figure 4. Several examples of controlled gates: (a) CNOT gate, (b) Swap gate, and (c) 

Toffoli gate. 

4. Quantum image representation models 

In this section, two models, the QIRBP and the QIRWC, are introduced by using bit plane 

decomposition and wavelength correlation, respectively, to improve the QIP. The QIR with bit 

planes (QIRBP) is a sophisticated framework in quantum computing built to represent digital image 

information on the basis of wavelengths and bit plane decomposition. In image processing, a bit plane 

method disaggregates a picture into binary layers, with each layer corresponding to a particular bit 

position of the pixel’s intensity. Therefore, on the basis of the QIRBP model, this principle is used to 

efficiently represent and manipulate image information in a quantum form, seeing each bit as a separate 

layer or plane. The intensity channels for each pixel color (red (R), green (G), and blue (B)) are mapped 

onto quantum states, incorporating bit plane data, color channels, and positional coordinates. On the 

basis of these principles and encoding structure, the QIRBP model enables precise image 

representation in the quantum domain, facilitating complex and efficient quantum operations on 

specific bit planes or channels. On the other hand, QIRWC is derived from the initial model but without 

the bit plane. This model is designed on the basis of the correlation of wavelengths between 

neighboring pixels. In images, neighboring pixels interact, and the need to address these interactions 

motivated us to explore the wavelength relationships between adjacent pixels in this work. The 

wavelength may influence the effective relationship between two neighboring pixels, especially in 

quantum image processing, where pixel interactions and properties such as adjacency and color 

variation can be encoded as quantum states. In image processing, neighboring pixels with similar or 

differing wavelengths of light contribute to the perception of colors and gradients, creating effects 

such as smooth transitions, edges, or textures. Therefore, on the basis of these benefits and 
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information, the QIRWC can cover and address this information, and this relation is beneficial when 

it is used in several applications, such as edge detection and detecting details, including the edges or 

patterns in quantum computers. 

The RGB model is widely recognized and utilized as a multichannel color model in electrical 

systems. This model consists of three different colors (R, G, and B) to create a new color hue. The use 

of different ratios of the channels of R, G, and B lights can generate a wider spectrum of new colors. 

In general, the color values are described as gradients from 0 to 255. By using these RGB channels, 

this range of color gradients are capable of generating more than 16 million different colors. The 

grayscale image is created by a series of two-value image planes. Initially, all the pixels can be 

represented by binary bits, where each pixel value from 0 to 266 represents 8 bits; next, every single 

bit can form a two-value image, which is called a bit plane. An example of a pepper image with its 

corresponding color values and the results of 8-bit planes of the red channel are illustrated in Figure 5. 

 

Figure 5. RGB channels and bit planes of peppers: (a) Color image of peppers, (b) red 

channel of peppers, (c) green channel of peppers, (d) blue channel of peppers, (e) Bit Plane 7 

of red, (f) Bit Plane 6 of red, (g) Bit Plane 5 of red, (h) Bit Plane 4 of red, (i) Bit Plane 3 

of red, (j) Bit Plane 2 of red, (k) Bit Plane 1 of red, and (l) Bit Plane 0 of red. 

In general, quantum image processing involves three main stages for use in quantum computers. 

Accordingly, the first stage is the preparation of quantum images, which involves storing classical 

image information in a quantum computer. The second step is performed by using an algorithm to 

process the quantum image. Eventually, in the third step, a quantum system is converted into a classical 

image through the process of quantum measurement. In this section, we propose two representation 

models, the QIRBP and the QIRWC. In addition, the precise procedure for accurately storing a color 

digital image in each model is described. 

4.1. Bit plane quantum image representation (QIRBP) model 

A new representation model called the QIRBP has been introduced for efficient storage and 

processing of color digital images on quantum computers inspired by QRCI. QIRBP uses the feature 

of quantum superposition to encode an image as four entangled qubit sequences. The first sequence is 

utilized to encode the color values of each pixel of three channels, the second sequence encodes the 

wavelength channel information corresponding to encoding the color values, the third sequence stores 

the corresponding bit plane, and the last sequence refers to positional information. 

To encode a color digital image with a size of 2𝑛 × 2𝑛 in the QIRBP, we assume that the gray value 
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of each channel (R, G, B) ranges from 0 to 255. For a given pixel (𝑌, 𝑋) in the 𝐿th bit plane, we can encode 

the color information 𝐶𝐿(𝜆, 𝑦, 𝑥) for all three channels and the wavelength number channel (𝑤𝑛), and the 

color scale is 2𝑞 for the digital image, where 2𝑞 refers to the maximum value of the wavelength. In 

the QIRBP model, the color scale q-qubits (𝑏 = 𝑙𝑜𝑔2𝑤𝑛) are used for any wavelength. 

The representative of a quantum image for the 2𝑛 × 2𝑛  QIRBP image can be expressed 

mathematically as follows: 

|𝐼⟩ =
1

√2𝑏+2𝑛+6
∑  23−1
𝐿=0 ∑  2𝑏−1

𝜆=0 ∑  2𝑛−1
𝑦=0 ∑  2𝑛−1

𝑥=0 |𝐶𝐿(λ, 𝑌, 𝑋)⟩ ⊗ |𝐿⟩⨂ ∣ 𝜆⟩ ⊗ |𝑦𝑥⟩,   (7) 

where 𝐶𝐿(λ, 𝑌, 𝑋) = 𝑅𝐿𝜆𝑌𝑋𝐺𝐿𝜆𝑌𝑋𝐵𝐿𝜆𝑌𝑋, 𝑅𝐿𝜆𝑌𝑋𝐺𝐿𝜆𝑌𝑋𝐵𝐿𝜆𝑌𝑋 ∈ {0,1}, 𝐿 = 0,1, … ,7, and 

𝑌, 𝑋 = 0,1, … , 2𝑛 − 1 , |𝐿⟩ ⊗ |𝑦𝑥⟩ = |𝐿𝑌𝑋⟩ = |𝐿⟩|𝑌⟩|𝑋⟩ 

= |𝐿2𝐿1𝐿0⟩|𝑌𝑛−1𝑌𝑛−2…𝑌0⟩|𝑋𝑛−1𝑋𝑛−2…𝑋0⟩,                  

where ⊗  is the tensor product; |𝜆⟩  and |𝐿⟩ represent the channel information and bit plane 

information, respectively; |𝑌𝑋⟩  is the position information; and |𝐶𝐿(𝜆, 𝑌 , 𝑋)⟩  refers to the 

information represented by the pixel (𝑌, 𝑋) in the 𝐿th bit plane. 

The quantum state |𝐼⟩ is a superposition of tensor products of different quantum states. The first 

term in the state is a normalization factor given by ½(𝑏 + 2𝑛 + 3), which ensures that the state is 

properly normalized, whereas the state is a summation of all possible values of |𝐿⟩, which represents 

the number of bit planes used to represent the image. The third term in the state is a summation of all 

possible values of 𝜆, which represents the channel information of the image. The fourth term in the 

state is a summation of all possible values of y, which represents the vertical position of the pixel in 

the image. The fifth term in the state is a summation of all possible values of 𝑥, which represents the 

horizontal position of the pixel in the image. 

Here, |𝜆⟩ and |𝐿⟩ represent the channel information and bit plane information, respectively, while 

|𝑌 𝑋⟩ represents the position information. |𝐶𝐿(𝜆, 𝑌, 𝑋)⟩ refers to the information represented by the 

pixel (𝑌, 𝑋) in the 𝐿th bit plane, where QIRBP’s qubit structure is shown in Figure 6. 

 

Figure 6. QIRBP’s qubit structure. 
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Overall, this quantum image representation allows us to encode both classical and quantum 

information about the image into a single quantum state, which can be processed using quantum 

algorithms to perform various image-processing tasks. 

Assuming that each color channel (red, green, blue) is represented using 𝑏 = 8 bits, the image 

size is 2𝑛 × 2𝑛 = 21 × 21 = 2 × 2 pixels, as shown in Figure 7, and that the binary representation of 

the pixel intensities is used, the QIR for this color image is given by: 

 

Figure 7. A simple 2 × 2 image and its QIRBP state. 

|𝐼⟩ =
1

256
[|11111001⟩ ⊗ |000⟩ ⊗ |11111001⟩ ⊗ |00⟩ + |00001011⟩ ⊗ |001⟩ ⊗ |00001011⟩

⊗ |00⟩ + |00011010⟩ ⊗ |010⟩ ⊗ |00011010⟩ ⊗ |00⟩ 

+|00001001⟩ ⊗ |000⟩ ⊗ |00001001⟩ ⊗ |01⟩ + |11110101⟩ ⊗ |001⟩ ⊗ |11110101⟩ ⊗ |01⟩
+ |00010110⟩ ⊗ |010⟩ ⊗ |00010110⟩ ⊗ |01⟩ 

+|00000001⟩ ⊗ |000⟩ ⊗ |00000001⟩ ⊗ |10⟩ + |00001011⟩ ⊗ |001⟩ ⊗ |00001011⟩ ⊗ |10⟩
+ |11111010⟩ ⊗ |010⟩ ⊗ |11111010⟩ ⊗ |10⟩ 

+|11111001⟩ ⊗ |000⟩ ⊗ |11111001⟩ ⊗ |11⟩ + |11010101⟩ ⊗ |001⟩ ⊗ |11010101⟩ ⊗ |11⟩
+ |00001010⟩ ⊗ |010⟩ ⊗ |00001010⟩ ⊗ |11⟩]. 

Theorem 1. Let 22𝑛 pixels be given for an image of size 2𝑛 × 2𝑛, where each pixel is represented by 

RGB bit planes across 𝑏  bit color channels. There is a unitary transformation 𝑄  that maps the 

initialized quantum state |0⟩⊗(2𝑛+𝑏+3)  to the QIRBP quantum state, where 𝑄  is composed of 

Hadamard transformations, controlled not (CNOT), and controlled bit flip operations. 𝐶𝐿(𝜆, 𝑌, 𝑋) 
represents the RGB intensity data for the 𝐿th bit plane at the pixel position (𝑌, 𝑋). |𝐿⟩ encodes the 

bit plane index (from 0 to 7), whereas |𝜆⟩ represents the color channel and intensity level information, 

and |𝑦𝑥⟩ represents the spatial coordinates of each pixel. The QIRBP quantum state |𝐼⟩ is defined as: 

|𝐼⟩ =
1

√2𝑏+2𝑛+6
∑  23−1
𝐿=0 ∑  2𝑏−1

𝜆=0 ∑  2𝑛−1
𝑦=0 ∑  2𝑛−1

𝑥=0 |𝐶𝐿(𝜆, 𝑌, 𝑋)⟩ ⊗ |𝐿⟩ ⊗ |𝜆⟩ ⊗ |𝑦𝑥⟩.   (8) 

Proof. Step 1. Initialize the quantum state. 

The initialization of the quantum state depends on the specific application and encoding scheme used. 

In general, the initialization of the quantum state involves setting the qubits in each quantum register 

to the appropriate basis state. For the quantum superposition representation of an image, we need to 

initialize the quantum state to represent the one-dimensional (1D) array of the binary strings (the bit 

planes, along with the row and column indices). The correct initialization is as follows: 
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|𝐼⟩0 = ⨂𝑖=1
𝑞+𝑏+2𝑛+6

 |0⟩𝑖. 

This initializes each qubit in the quantum state to the zero state. The total number of qubits required 

for the state is 2𝑞+𝑏+2𝑛+6, which is the total number of possible basis states in the quantum state. 

Step 2. Store the wavelength information, bit plane information, and position information. Two 

common quantum gates, i.e., the identity gate and the Hadamard gate, are shown below. 

The unitary operation 𝑈1 is defined as follows: 

𝑈1 = |𝐼⟩)
⊗q⊗ (|𝐻⟩)⊗𝑏+2𝑛+6, 

where 𝐼 is the identity operator and 𝐻 is the Hadamard gate, which is defined as 

𝐼 = [
1 0
0 1

] , 𝐻 =
1

√2
[
1 1
1 −1

]. 

By performing 𝑈1 on the initial state |𝐼⟩0, the middle state |𝐼⟩1 yields 

|𝐼⟩1 = 𝑈1|𝐼⟩0. 

To compute 𝑈1|𝐼⟩0, we need to apply 𝐼 and 𝐻 to each qubit of the initial state |𝐼⟩0. This yields the 

following: 

|𝐼⟩1 = 𝑈1|𝐼⟩0  = (𝐼|0⟩)⊗q⊗ (𝐻|0⟩)⊗b+2𝑛+6

 = 𝐼|0⟩𝐼|0⟩𝐼|0⟩ ⊗ 𝐻|0⟩𝐻|0⟩⋯𝐻|0⟩|0⟩|0⟩.
 

Using the tensor product rule, we can write the above equation as 

𝑈1|𝐼⟩0  = (|0⟩⊗ |0⟩. . .⊗ |0⟩)⊗q⊗ (
1

√2
(|0⟩ + |1⟩))⊗ (

1

√2
(|0⟩ + |1⟩))⋯ (

1

√2
(|0⟩ + |1⟩))

 = (|0⟩⊗ |0⟩ ⊗ |0⟩) ⊗⋯⊗ (|0⟩⊗ |0⟩ ⊗ |0⟩)⏟                            
𝑏+2𝑛+6 times 

(
1

√2
(|0⟩ + |1⟩))⊗⋯(

1

√2
(|0⟩ + |1⟩))

⏟                        
2𝑛 times 

 = |0⟩⊗q⊗ (
1

√2
(|0⟩ + |1⟩))

⊗𝑏+2𝑛+6

,

 

𝑈1|𝐼⟩0 = (|0⟩)
⊗q⊗ (

1

√2
(|0⟩ + |1⟩))

⊗b+2𝑛+6

, 

𝑈1|𝐼⟩0 =
1

√2𝑏+2𝑛+6
∑𝐿=0
23−1  ∑𝜆=0

2𝑏−1  ∑𝑦=0
2𝑛−1  ∑𝑥=0

2𝑛−1  (|0⟩⊗𝑞⊗ |𝐿⟩ ⊗ |𝜆⟩ ⊗ |𝑦𝑥⟩)⟩.  (9) 

Step 3. Store the color information. 

In this step, the color information of all the pixels in all the 8-bit planes is stored. For pixel (𝑌, 𝑋) in 

the 𝐿th bit plane, the quantum suboperation 𝑈𝜆𝑌𝑋𝐿 is expressed as follows: 

 𝑈𝜆𝑌𝑋𝐿 = 

𝐼⊗q⊗∑  23−1
𝑠=0 ∑  2𝑏−1

𝜆=0 ∑  2𝑛−1
𝑘=0 ∑  2𝑛−1

𝑢=0,𝑠𝑘𝑢≠𝐿𝑌𝑋 |𝑠𝑘𝑢⟩⟨𝑠𝑘𝑢|+Ω𝜆𝑌𝑋𝐿
𝑅 Ω𝜆𝑌𝑋𝐿

𝐺 Ω𝜆𝑌𝑋𝐿
𝐵 ⊗|𝜆𝐿𝑌𝑋⟩⟨λ𝐿𝑌𝑋|. (10) 

This process can be broken down into smaller steps as follows. 

(1) Identity gates and color state preparation: The identity gates are applied to the qubits representing 

the pixel coordinates, and the color state preparation operation is applied to the qubits representing 

the color information. This is represented by the first and second terms in Eq (10) as follows: 
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𝐼⊗3⊗Ω𝜆𝑌𝑋𝐿
𝑅 Ω𝜆𝑌𝑋𝐿

𝐺 Ω𝜆𝑌𝑋𝐿
𝐵 ⊗ ⟨𝜆𝐿𝑌𝑋⟩⟨λ𝐿𝑌𝑋|. 

(2) Superposition of qubit values: A superposition of all possible values of the qubits representing s, 𝑘, 
and u is generated. This superposition is represented by the first term in the sum 

∑  

23−1

𝑠=0

∑  

2𝑛−1

𝑘=0

∑  

2𝑛−1

𝑢=0

|𝑠𝑘𝑢⟩⟨𝑠𝑘𝑢|. 

(3) Remove the state corresponding to the current pixel. Remove the state ⟨𝜆𝐿𝑌𝑋⟩⟨λ𝐿𝑌𝑋|| from the 

superposition by excluding the term where 𝑠𝑘𝑢 = 𝐿𝑌𝑋. This is represented by the condition 

𝑠𝑘𝑢 ≠ 𝜆𝐿𝑌𝑋 in the sum 

∑  

23−1

𝑠=0

∑  

2𝑛−1

𝑘=0

∑  

2𝑛−1

𝑢=0,𝑠𝑘𝑢≠𝐿𝑌𝑋

|𝑠𝑘𝑢⟩⟨𝑠𝑘𝑢|. 

(4) Add the color state corresponding to the current pixel. The color state ⟨𝜆𝐿𝑌𝑋⟩⟨λ𝐿𝑌𝑋| is added to 

the superposition with appropriate weights Ω𝜆𝑌𝑋𝐿
𝑅 Ω𝜆𝑌𝑋𝐿

𝐺 Ω𝜆𝑌𝑋𝐿
𝐵 . This is represented by the second 

term in Eq (10) as follows: 

Ω𝜆𝑌𝑋𝐿
𝑅 Ω𝜆𝑌𝑋𝐿

𝐺 Ω𝜆𝑌𝑋𝐿
𝐵 ⊗ ⟨𝜆𝐿𝑌𝑋⟩⟨λ𝐿𝑌𝑋|. 

(5) Combine all the terms. All the terms are combined to obtain the final quantum suboperation as follows: 

𝑈𝜆𝑌𝑋𝐿 = 𝐼
⊗q⊗ ∑  

23−1

𝑠=0

∑  

2𝑏−1

𝜆=0

∑  

2𝑛−1

𝑘=0

∑  

2𝑛−1

𝑢=0,𝑠𝑘𝑢≠λ𝐿𝑌𝑋

|𝑠𝑘𝑢⟩⟨𝑠𝑘𝑢|+Ω𝜆𝑌𝑋𝐿
𝑅 Ω𝜆𝑌𝑋𝐿

𝐺 Ω𝜆𝑌𝑋𝐿
𝐵 ⊗|𝜆𝐿𝑌𝑋⟩. 

The final state of the system is obtained by applying the product of all suboperations 𝑈2 to the 

initial state ∣ 𝐼⟩1. The resulting state is a superposition of all possible color combinations for all 

the pixels in the image, encoded in the tensor product of the qubits representing each pixel. 

𝑈𝜆𝑌𝑋𝐿|𝐼⟩1 = (𝐼
⊗q⊗ ∑  

23−1

𝑠=0

  ∑  

2𝑏−1

𝜆=0

∑  

22𝑛−1

𝑘=0

  ∑  

23−1

𝑢=0

  , 𝑘𝑘 ≠ ℓ𝐿𝑋|𝑠𝑘𝑢⟩⟨𝑠𝑘𝑢|+Ω𝜆𝑌𝑋𝐿
𝑅 Ω𝜆𝑌𝑋𝐿

𝐺 Ω𝜆𝑌𝑋𝐿
𝐵 ⊗|𝜆𝐿𝑌𝑋⟩)

× (
1

√2b+2𝑛+6
∑  

23−1

𝑠=0

  ∑  

2𝑛−1−22𝑛−1

𝑘=0

  ∑  

23−1

𝑢=0

  |𝑠𝑘𝑢⟩), 

𝑈𝜆𝑌𝑋𝐿|𝐼⟩1 =
1

√2b+2𝑛+6
(∑  

23−1

𝑠=0

  ∑  

2𝑏−1

𝜆=0

∑  

22𝑛−1

𝑘=0

  ∑  

23−1

𝑢=0,𝑘𝑢≠𝐿𝑌𝑋

  |𝑠𝑘𝑢⟩ + Ω𝜆𝑌𝑋𝐿
𝑅 Ω𝜆𝑌𝑋𝐿

𝐺 Ω𝜆𝑌𝑋𝐿
𝐵 |0⟩⊗3⊗ |λ𝐿𝑌𝑋⟩) 

𝑈𝜆𝑌𝑋𝐿|𝐼⟩1 =
1

√2b+2𝑛+6
(∑  

23−1

𝑠=0

  ∑  

2𝑏−1

𝜆=0

∑  

2𝑛−1−22𝑛−1

𝑘=0

  ∑  

23−1

𝑢=0,𝑠𝑘𝑢≠𝐿𝑌𝑋

  |𝑠𝑘𝑢⟩

+ |0⊕ 𝑅𝜆𝑌𝑋𝐿⟩|0⊕ 𝐺𝜆𝑌𝑋𝐿⟩|0⊕ 𝐵𝜆𝑌𝑋𝐿⟩|λ𝐿𝑌𝑋⟩), 
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𝑈𝜆𝑌𝑋𝐿|𝐼⟩1 =
1

√2b+2𝑛+6
(∑  

23−1

𝑠=0

  ∑  

2𝑏−1

𝜆=0

∑  

2n−1

𝑘=0

  ∑  

2𝑛−1

𝑢=0,𝑠𝑘𝑢≠𝐿𝑌𝑋

  |𝑠𝑘𝑢⟩ + |𝐶𝐿(λ, 𝑌, 𝑋)⟩|λ𝐿𝑌𝑋⟩). 

Apply the full operation 𝑈2 to |𝐼⟩1 as follows: 

𝑈2|𝐼⟩1  = ∏  

23−1

𝐿=0

∏  

2b−1

𝜆=0

 ∏  

2𝑛−1

𝑌=0

 ∏  

2𝑛−1

𝑋=0

 𝑈𝜆𝑌𝑋𝐿|𝐼⟩1

 = ∏  

23−1

𝐿=0

∏  

2b−1

𝜆=0

 ∏  

2𝑛−1

𝑌=0

 ∏  

2𝑛−1

𝑋=0

 
1

√2q+2𝑛+6
(∑  

23−1

𝑠=0

  ∑  

22𝑛−1

𝑘=0

  ∑  

𝑢≠𝐿𝑌𝑋

  |0⟩⊗3⊗ |𝑠𝑘𝑢⟩ + |𝐶𝐿(λ, 𝑌, 𝑋)⟩ ⊗ |𝐿𝑌𝑋⟩)

 =
1

√2q+2𝑛+6
(∑  

23−1

𝐿=0

∑  

2𝑏−1

𝜆=0

  ∑  

2𝑛−1

𝑌=0

  ∑  

2𝑛−1

𝑋=0

  |𝐶𝐿(λ, 𝑌, 𝑋)⟩ ⊗ |λ𝐿𝑌𝑋⟩)

 

= |𝐼⟩.                                                             

Figure 8 depicts the steps of preparing the QIRBP model from the digital classical image 

representation. Figure 9 shows the quantum circuit of the QIRBP. 

Figure 8. Preparation steps of the QIRBP model. 
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Figure 9. Quantum circuit of the QIRBP model. 

4.2. Wavelength quantum image representation (QIRWC) model 

One of the most important aspects that has not been addressed in previous research is the 

relationship between one pixel and another and how it impacts the quality of the image when it is 

observed or measured in the quantum domain. Therefore, in this study, we address this issue by 

exploring how to establish a relationship between two neighboring pixels through quantum correlation, 

thereby demonstrating the wavelength relationship between them in the image. To work on this idea, 

we need 4𝑛 + 2𝑏 + 8 qubits to represent the information of the image 𝐼, where 2𝑏 represents the 

number of wavelength pixels for 𝑏1 and 𝑏2, which refer to Pixel 1 𝑃1 and its neighboring Pixel 2 

𝑃2, respectively. Additionally, we have 4𝑛 divided by 2𝑛 for the first pixel; at the same time, we 

must compute the neighboring pixel 𝑃2, which indicates the number of positions needed to compute 

the pixels together is (2𝑛 + 2𝑛) = 4𝑛  to store all information on pixels (𝑦, 𝑥)  and (Δ𝑦, Δ𝑥) . 

Moreover, we must store the color of two pixels (𝑦, 𝑥) and (Δ𝑦, Δ𝑥). Therefore, we need 6 qubits 

and 2 qubits for entanglement between neighboring pixels to find the relationship of the wavelengths 

between the pixels of the images. From a mathematical perspective, this idea is considered complex, 
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but at the same time, it is a satisfactory achievement for the QIR. On the basis of all the above 

mentioned information, we need several operations to cover all the steps, beginning with the initial 

state and then applying the Hadamard gate to obtain all the superposition states for storing the 

information of all the positions and wavelengths. Afterward, we must store the color information by 

applying controlled rotations 𝑅𝑦 for each color channel {𝑅, 𝐺, 𝐵}. Following this, a unitary operation 

is executed through controlled gates (CNOTs) to establish wavelength entanglement between pixels, 

enabling the identification and correlation of similar pixels with the current pixel under operation. We, 

as a matter of fact, will not present further details of or elaborate on the mathematical equations; 

however, each step will be explained and the reason why it was used. Figure 10 illustrates the (a) 

QIRWC qubit structure and (b) the conceptual QIRWC quantum circuit and Figure 11 shows the 

operations of QIRWC. 

 

Figure 10. (a) QIRWC’s qubit structure and (b) conceptual QIRWC quantum circuit. 
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Figure 11. Three operations of the QIRWC. 

Theorem 2. Given three angle vectors of color {𝑅, 𝐺, 𝐵}, which are defined as 𝜃𝐶 = (𝜃𝐶
0, 𝜃𝐶

1, … , 𝜃𝐶
2𝑛−1) 

for color channels and 𝜃𝑏 = (𝜃𝑏
0, 𝜃𝑏

1, … , 𝜃𝑏
2𝑛−1) for wavelengths, 2𝑛 refers to the number of qubits 

needed to store the positions. In this case, we need 2 × 2𝑛 qubits to store the positions of Angle 1 and 

the adjacent angle. Therefore, we need 2𝑏  qubits to store the wavelength. The initialized state is 

assumed to be |0⟩⊗2𝑏+4𝑛+6+2 (3 is the number of qubits used to encode the color information, so we 

need twice the amount, namely 2 qubits for entanglement between two adjacency angles), and there is 

a unitary transformation 𝒫 that puts quantum computers in the QIRWC state, |𝐼𝑄𝐼𝑅𝑊𝐶(𝜃)⟩, which is 

composed of Hadamard and controlled rotation transformation. 

|𝐼⟩𝑄𝐼𝑅𝑊𝐶 =
1

√22𝑏+4𝑛+𝑛
∑  2(2𝑏+4𝑛+𝑛)−1
𝑖=0 |𝑖⟩⨂𝑥   (𝑐𝑜𝑠 (

𝜃𝑥

2
) |0⟩ + 𝑠𝑖𝑛 (

𝜃𝑥

2
) |1⟩).   (11) 

Proof. Step 1. We begin by supposing that an initial state |𝐼⟩0 exists; this operation is called quantum 

state initialization: |𝐼⟩0 = |0⟩
⊗(2𝑏+4𝑛+8). 

Therefore, to know all the superpositions of quantum states, we must apply the Hadamard matrix (see 

Section 3). The justification for this operation lies in the need to determine all the probabilities for 

encoding positional information while simultaneously achieving a superposition of wavelengths. By 

performing this operation, the states |𝐼⟩ and |𝐻⟩ are obtained. 

The tensor product of (4𝑛 + 2𝑏)  Hadamard gates is denoted 𝐻⊗4𝑛+2b . Applying the 

transformation ℋ = 𝐼⊗8⊗𝐻⊗4𝑛+2b  on |0⟩⊗4𝑛+2b+8 = |0⟩ ⊗ |0⟩⊗2⊗ |0⟩⊗2𝑛  to produce the 

state |𝐼⟩1, we have 

|𝐼⟩1 = 𝐻
⊗(2𝑏+4𝑛)|𝐼⟩0 =

1

√22𝑏+4𝑛
∑  22𝑏+4𝑛−1
𝑖=0 |𝑖⟩|0⟩⊗8.     (12) 

Step 2. Apply the controlled rotations 𝑅𝑦 to store the color information for each {𝑅, 𝐺, 𝐵} channel, 

where the rotations about the y-axis by the angle 2𝜃 (that is, the mean 𝑅𝑦(2𝜃)) are defined as: 

𝑅𝑦(2𝜃) = (
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

) ,  𝜃 ∈ {𝜃𝑅𝑖, 𝜃𝐺𝑖 , 𝜃𝐵𝑖 , 𝜃𝑎𝑖},     (13) 
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where 𝜃𝑅𝑖 , 𝜃𝐺𝑖 , and 𝜃𝐵𝑖 correspond to the rotation angles for the R, G, and B color channels of Pixel 𝑖, 

respectively. Additionally, 𝜃𝑎𝑖  represents an auxiliary angle that may encode other attributes, such as alpha 

transparency or additional data that are relevant to the system. In general, the range of color values range 

is [0,255], and these values are mapped to specific angles 𝜃 on the Bloch sphere to represent the 

respective color channels in the quantum system. The angles for the red (𝑅), green (𝐺), and blue (𝐵) 

channels are defined as 𝜃𝑅 ∈ [0, 𝜋/6] , 𝜃𝐺 ∈ [𝜋/6, 𝜋/3] , and 𝜃𝐵 ∈ [𝜋/3, 𝜋/2] , respectively (see 

Figure 12). 

 

Figure 12. Distribution of the angles 𝜃 of 𝑅𝑅𝑖, 𝑅𝐺𝑖 , 𝑅𝐵𝑖. 

On the basis of the information above, we can apply 𝑅𝑦(2𝜃)  transforms on each channel 

corresponding to (𝑦, 𝑥) or (Δ𝑦, Δ𝑥); in this case, the control rotation matrices of all channel colors 

are given as follows. 

For the pixel at (𝑦, 𝑥), the operation 𝑅𝑖 is as follows: 

𝑅𝑖
(𝑦,𝑥)

= (𝐼⊗3⊗∑  22𝑛−1
𝑗=0,𝑗≠𝑖   |𝑗⟩⟨𝑗|) + 𝑅𝑖

′(𝑦,𝑥)
⊗ |𝑖⟩⟨𝑖|.     (14) 

This operation means that we will target the 𝑖 qubits and that the rest of the qubits remain unchanged, 

where 𝑅𝑖
′(𝑦,𝑥)

= 𝑅𝐵
(𝑦,𝑥)

𝑅𝐺
(𝑦,𝑥)

𝑅𝑅
(𝑦,𝑥)

. 

At the same time, if we must apply the same operation to (𝑦 + Δ𝑦, 𝑥 + Δ𝑥), we have 

𝑅𝑖
(𝑦+Δ𝑦,𝑥+Δ𝑥)

= (𝐼⊗3⊗∑  22𝑛−1
𝑗=0,𝑗≠𝑖   |𝑗⟩⟨𝑗|) + 𝑅𝑖

′(𝑦+Δ𝑦,𝑥+Δ𝑥)
⊗ |𝑖⟩⟨𝑖|,   (15) 

where 𝑅𝑖
′(𝑦+Δ𝑦,𝑥+Δ𝑥)

= 𝑅𝐵
(𝑦+Δ𝑦,𝑥+Δ𝑥)

𝑅𝐺
(𝑦+Δ𝑦,𝑥+Δ𝑥)

𝑅𝑅
(𝑦+Δ𝑦,𝑥+Δ𝑥)

. 

Then, we can express all channels {𝑅 , 𝐺 , 𝐵} as 

𝑅𝑖
′ = 𝑅𝑅𝑖 ⋅ 𝑅𝐺𝑖 ⋅ 𝑅𝐵𝑖,         (16) 

where 𝑅𝑅𝑖 is the rotation for 𝑅, 𝑅𝐺𝑖 is the rotation for 𝐺, and where 𝑅𝐵𝑖 is the rotation for 𝐵; in 

this case 

𝑅𝑅𝑖 = (𝐼 ⊗ ∑  𝑗≠0   |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝑅) ⊗ |0⟩⟨0|,      (17) 

𝑅𝐺𝑖 = (𝐼 ⊗ ∑  𝑗≠1   |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝐺) ⊗ |1⟩⟨1|,      (18) 
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and 

𝑅𝐵𝑖 = (𝐼 ⊗ ∑  𝑗≠2   |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝐵) ⊗ |2⟩⟨2|.      (19) 

Then the operation 𝑅𝑖
′ in (15) becomes: 

𝑅𝑖
′ = (𝐼 ⊗∑ 

𝑗≠0

  |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝑅) ⊗ |0⟩⟨0| ⋅ (𝐼 ⊗∑  

𝑗≠1

  |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝐺) ⊗ |1⟩⟨1|

⋅ (𝐼 ⊗∑  

𝑗≠2

  |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝐵) ⊗ |2⟩⟨2|. 

Step 3. Herein, we need to transfer the wavelength with the corresponding pixel. Therefore, a new 

operation called the combined operation is applied to store the information details of the wavelength. 

We need to store color information and the wavelength simultaneously. Thus, to transform the operation of 

the wavelength for the two pixels (𝑦, 𝑥)  and (Δy, Δx) , the qubit values 𝑏1  and 𝑏2  are given to 

represent the wavelength value. Similarly, we transform the wavelength value on the basis of the rotation 

operation. First, the set of angles {𝜙1
(1)
, 𝜙2

(1)
, … , 𝜙𝑚

(1)
} is assigned for Pixel 1, and {𝜙1

(2)
, 𝜙2

(2)
, … , 𝜙𝑚

(2)
} 

is assigned for Pixel 2, where each angle 𝜙𝑘
(x)

 corresponds to a part of the wavelength information 

such that 𝑥  refers to 1  or 2 . Now, the rotation operation to transform the wavelength value is 

defined as 

𝑅𝑊𝑘

(x)
(𝜙𝑘

(x)
) = 𝑅𝑦(𝜙𝑘

(x)
) = (

cos (𝜙𝑘
(x)
/2) −sin (𝜙𝑘

(x)
/2)

sin (𝜙𝑘
(x)
/2) cos (𝜙𝑘

(x)
/2)

),     (20) 

where 𝑘 refers to the qubit in 𝑏1 or 𝑏2. Therefore, we need several rotation operations if we have 

𝑚 wavelength qubits in 𝑏𝑥. The full operation 𝑊𝑏x is defined as 

𝑊𝑏x = ∏  𝑚
𝑘=1 𝑅𝑊𝑘

(x)
(𝜙𝑘

(x)
) = 𝑅𝑦(𝜙1

(x)
) ⋅ 𝑅𝑦(𝜙2

(x)
) ⋅ … ⋅ 𝑅𝑦(𝜙𝑚

(x)
).    (21) 

At this stage, the transformation of the color information with the wavelength corresponding to the 

position is considered, for which we need to define the combined operation ℛcombined,𝑖 for each pixel 

as follows: 

ℛcombined,𝑖 = (𝐼
⊗𝑛anc ⊗∑  22𝑛−1

𝑗=0,𝑗≠𝑖   |𝑗⟩⟨𝑗|) + (𝑅𝑖
′⊗𝑊𝑏x) ⊗ |𝑖⟩⟨𝑖|.    (22) 

Step 4. To entangle two pixels on the basis of the wavelength information, an operation that establishes 

a quantum correlation between the wavelength qubits of each pixel is needed. This entanglement is 

necessary to link the wavelength states of the two pixels, enabling the representation of their similarity 

and highlighting the importance of relationships between their wavelength properties. On the basis of 

this idea, we must apply the CNOT gate (see Figure 4 (a)). Therefore, we must apply a series of CNOT 

gates between the corresponding qubits in 𝑏1  and 𝑏2  to establish an entanglement based on 

wavelength information, which means that when the wavelength qubits of Pixel 1 as a control qubit are 

entangled with those of Pixel 2 as a target, we can define the entangling operation ℰwavelength as follows: 

ℰwavelength = ∏  𝑚
𝑘=1 CNOT𝑏1𝑘→𝑏2𝑘 = ∏ (𝐻⊗𝑚  ⊗ 𝐼⊗𝑚) 

𝑚

𝑘=1
=

1

√2𝑛
∑𝑖=0
2𝑛−1  |𝑖⟩,   (23) 

where 𝑏1𝑘 is the 𝑘th qubit in 𝑏1 and where 𝑏2𝑘 is the 𝑘th qubit in 𝑏2. This operation is performed 
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if the 𝑘th qubit in 𝑏1 is |1⟩, then the CNOT gate will flip the 𝑘th qubit in 𝑏2, and if the 𝑘th qubit 

in 𝑏1 is |0⟩, then the 𝑘th qubit in 𝑏2 remains unchanged (see Figure 13(a)). 

In general, the entanglement operation between (𝑦, 𝑥) and (𝑦 + Δ𝑦, 𝑥 + Δ𝑥) can be expressed 

as follows: 

|𝐼⟩ = ℰwavelength(𝑊𝑏1⊗𝑊𝑏2)|𝐻⟩.        (24) 

The final combined operation between (𝑦, 𝑥) and (𝑦 + Δ𝑦, 𝑥 + Δ𝑥) is defined as follows: 

|𝐻encoded⟩ = ℛcombined

(𝑦,𝑥)
𝑊𝑏1 ⊗ℛcombined

(Δ𝑦,Δ𝑥)
𝑊𝑏2|𝐻⟩,      (25) 

where |𝐻⟩ represents the initial superposition state of the wavelength qubits. 

We then have the final state of |𝐼⟩ as follows: 

|𝐼⟩ =
1

√22𝑏+4𝑛
∑  22𝑏+4𝑛−1
𝑖=0 |𝑖⟩ (CNOT

𝑏1
(1)
→𝑏1

(2) ⋅ CNOT
𝑏2
(1)
→𝑏2

(2)) ((𝑅𝑦(𝜃𝑅
(1)
) ⊗ 𝑅𝑦(𝜃𝐺

(1)
) ⊗ 𝑅𝑦(𝜃𝐵

(1)
) ⊗

∏  2
𝑘=1  𝑅𝑦(𝜙𝑘

(1)
))⊗ (𝑅𝑦(𝜃𝑅

(2)
) ⊗ 𝑅𝑦(𝜃𝐺

(2)
) ⊗ 𝑅𝑦(𝜃𝐵

(2)
) ⊗∏  2

𝑘=1  𝑅𝑦(𝜙𝑘
(2)
))).   (26) 

Consequently, 

|𝐼⟩ =
1

√22𝑏+4𝑛
∑  22𝑏+4𝑛−1
𝑖=0 |𝑖⟩ (

1

√2𝑛
∑𝑖=0
2𝑛−1  |𝑖⟩  ) (𝑅1

′ ⊗𝑊𝑏1⊗𝑅2
′ ⊗𝑊𝑏2).   (27) 

|𝐼⟩ =
1

√22𝑏+4𝑛
∑  22𝑏+4𝑛+𝑛−1
𝑖=0 |𝑖⟩(𝑅1

′ ⊗𝑊𝑏1⊗𝑅2
′ ⊗𝑊𝑏2) = |𝐼𝑄𝐼𝑅𝑊𝐶(𝜃)⟩. 

Equation (25) can be written in a more simplified form as follows: 

|𝐼⟩ =
1

√22𝑏+4𝑛
∑  

22𝑏+4𝑛+𝑛−1

𝑖=0

|𝑖⟩ ((𝑅𝑦(𝜃𝑅
(1)
)⊗ 𝑅𝑦(𝜃𝐺

(1)
) ⊗ 𝑅𝑦(𝜃𝐵

(1)
) ⊗∏𝑘=1

2  𝑅𝑦(𝜙𝑘
(1)
))

⊗ (𝑅𝑦(𝜃𝑅
(2)
) ⊗ 𝑅𝑦(𝜃𝐺

(2)
)⊗ 𝑅𝑦(𝜃𝐵

(2)
)⊗∏𝑘=1

2  𝑅𝑦(𝜙𝑘
(2)
))) = |𝐼𝑄𝐼𝑅𝑊𝐶(𝜃)⟩. 

|𝐼⟩ =
1

√22𝑏+4𝑛
∑  

22𝑏+4𝑛+𝑛−1

𝑖=0

|𝑖⟩ ((𝑅𝑦(𝜃𝑅
(1)
)⊗ 𝑅𝑦(𝜃𝐺

(1)
) ⊗ 𝑅𝑦(𝜃𝐵

(1)
) ⊗∏𝑘=1

2  𝑅𝑦(𝜙𝑘
(1)
))

⊗ (𝑅𝑦(𝜃𝑅
(2)
) ⊗ 𝑅𝑦(𝜃𝐺

(2)
)⊗ 𝑅𝑦(𝜃𝐵

(2)
)⊗∏𝑘=1

2  𝑅𝑦(𝜙𝑘
(2)
))) = |𝐼𝑄𝐼𝑅𝑊𝐶(𝜃)⟩. 

|𝐼⟩ =
1

√22𝑏+4𝑛
∑  

22𝑏+4𝑛+𝑛−1

𝑖=0

|𝑖⟩ ((cos (
𝜃𝑅
2
) |0⟩ + sin (

𝜃𝑅
2
) |1⟩) ⊗ (cos (

𝜃𝐺
2
) |0⟩ + sin (

𝜃𝐺
2
) |1⟩)

⊗ (cos (
𝜃𝐵
2
) |0⟩ + sin (

𝜃𝐵
2
) |1⟩) ⊗∏ 

2

𝑘=1

(cos (
𝜙𝑘
2
) |0⟩ + sin (

𝜙𝑘
2
) |1⟩)). 

Then the final state of |𝐼⟩𝑄𝐼𝑅𝑊𝐶 is given as follows: 

|𝐼⟩𝑄𝐼𝑅𝑊𝐶 =
1

√22𝑏+4𝑛
∑  22𝑏+4𝑛+𝑛−1
𝑖=0 |𝑖⟩⨂𝑥   (cos (

𝜃𝑥

2
) |0⟩ + sin (

𝜃𝑥

2
) |1⟩),   (28) 
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where 𝜃𝑥 represents angles like 𝜃𝑥
(𝑅)
, 𝜃𝑥
(𝐺)
, 𝜃𝑥
(𝐵)

, and 𝜃𝑥
(𝑘)

. 

Figure 13 illustrates an example of a 2×2 image with RGB values for each pixel. 

 

Figure 13. (a) Entanglement quantum circuit of the wavelength, (b) simple image, and (c) 

QIRWC state. 

Therefore, the final state of the QIRWC is as follows: 

|𝐼⟩QIRWC =
1

√64
(|00⟩ ⊗ (cos (

𝜋/2

2
) |0⟩ + sin (

𝜋/2

2
) |1⟩)⊗ (cos (

0

2
) |0⟩ + sin (

0

2
) |1⟩)

⊗ (cos (
𝜋/2

2
) |0⟩ + sin (

𝜋/2

2
) |1⟩) + |01⟩ ⊗ (cos (

0

2
) |0⟩ + sin (

0

2
) |1⟩)

⊗ (cos (
𝜋/2

2
) |0⟩ + sin (

𝜋/2

2
) |1⟩)⊗ (cos (

𝜋

2
) |0⟩ + sin (

𝜋

2
) |1⟩) 

+|10⟩ ⊗ (cos (

𝜋
4
2
) |0⟩ + sin (

𝜋
4
2
) |1⟩)⊗(cos (

𝜋
4
2
) |0⟩ + sin (

𝜋
4
2
) |1⟩)

⊗ (cos (
𝜋

2
) |0⟩ + sin (

𝜋

2
) |1⟩)+|11⟩ ⊗ (cos (

𝜋
3
2
) |0⟩ + sin (

𝜋
3
2
) |1⟩)

⊗ (cos (

𝜋
6
2
) |0⟩ + sin (

𝜋
6
2
) |1⟩)⊗ (cos (

𝜋

2
) |0⟩ + sin (

𝜋

2
) |1⟩)). 

Corollary. In Theorem 2, we have three angle vectors for the color and wavelength channels for {𝑅, 𝐺, 𝐵}, 
which are defined as 𝜃𝐶 = (𝜃𝐶

0, 𝜃𝐶
1, … , 𝜃𝐶

2𝑛−1)  for the color channels and 𝜃𝑏 = (𝜃𝑏
0, 𝜃𝑏

1, … , 𝜃𝑏
2𝑛−1) 

for the wavelength. The implementation uses 4𝑛 + 2𝑏 Hadamard gates, a CNOT gate, and controlled 

rotation 𝐶2𝑛+2(𝑅𝑦(2𝜃)), where 𝑅𝑦(2𝜃) = (
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) , and 𝜃 ∈ {𝜃𝐶}. 

Proof. Based on Theorem 2, the unitary transformation 𝒯  is defined as a combination of three 

operations, which is 𝒯 = ℰwavelength. ℛcombined.ℋ. First, the ℋ transformation implemented on the 

basis of the identity matrix and the Hadamard transform to create a superposition over the position and 
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wavelength qubits ℋ = 𝐼 ⊗𝐻⊗(4𝑛+2𝑏)  uses 4𝑛 + 2𝑏  Hadamard gates. After that, ℛcombined  is 

constructed, which is defined in two parts, one for color and the second for wavelength, as follows: 

ℛcombined,𝑖 = (𝐼
⊗𝑛anc ⊗∑  22𝑛−1

𝑗=0,𝑗≠𝑖   |𝑗⟩⟨𝑗|) + (𝑅𝑖
′⊗𝑊𝑏x) ⊗ |𝑖⟩⟨𝑖|, 

where 𝑊𝑏x = ∏  𝑚
𝑘=1 𝑅𝑊𝑘

(x)
(𝜙𝑘

(x)
)  and 𝑅𝑖

′ = (𝐼 ⊗ ∑  𝑗≠0   |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝑅) ⊗ |0⟩⟨0| ⋅ (𝐼 ⊗

∑  𝑗≠1   |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝐺) ⊗ |1⟩⟨1| ⋅ (𝐼 ⊗ ∑  𝑗≠2   |𝑗⟩⟨𝑗|) + 𝑅𝑦(2𝜃𝐵) ⊗ |2⟩⟨2|.  

Specifically, 𝑅𝑖  is defined as 𝑅𝑖 = (𝐼
⊗𝑘⊗∑𝑗=0,𝑗≠𝑖

22𝑛−1  |𝑗⟩⟨𝑗|) + 𝑅𝑖
′⊗ |𝑖⟩⟨𝑖| , where 𝑅𝑖

′  applies 

multicontrolled rotations 𝑅𝑊
𝑖 𝑅𝐶

𝑖   for wavelength and color encoding. Each multicontrolled rotation 

𝐶2𝑛+2(𝑅𝑦(2𝜃))  decomposes into elementary gates, 22𝑛+2 − 1  single-qubit rotation gates, and 

22𝑛+2 − 2 CNOT gates. Since each 𝑅𝑖 in the QIRWC model comprises two controlled rotations (one for 

wavelength and one for color), each 𝑅𝑖 requires 2 × (22𝑛+2 − 1) rotation gates and 2 × (22𝑛+2 − 2) 

CNOT gates. Summing over the 22𝑛  instances of 𝑅𝑖 , the total gate complexity for preparing the 

QIRWC state is calculated as follows: The total number of Hadamard gates is 4𝑛 + 2𝑏 , the total 

number of 𝑅 rotation gates is 2 × 24𝑛 × (22(𝑛+1) − 1), and the total number of CNOT gates is 2 ×
24𝑛 × (22(𝑛+1) − 2). Then the total gate complexity required to prepare the QIRWC state is (2𝑛 +

𝑤) + 24 × 24𝑛 − 6 × 22𝑛. 
Figure 14 presents the quantum circuit of the QIRWC model. The circuit consists of the initial 

qubits. To obtain the full superposition state, the 𝐻 gates are applied, followed by rotation gates to 

adjust the amplitudes of the initial qubits. CNOT gates are then used to achieve entanglement among 

the qubits. 

 

Figure 14. Quantum circuit of the QIRWC. 

5. Quantum image operations 

This section presents some operations of the QIRBP and QIRWC, including image retrieval, 

quantum color image operations, complement color transformation, position operations, and bit plane 



11018 

AIMS Mathematics  Volume 10, Issue 5, 10994–11035. 

reversing operations. Moreover, quantum circuits are constructed to perform each operation. 

5.1. Image retrieval 

Classical image retrieval from quantum states is an important process because quantum images 

cannot be recognized by the human eye. To obtain the classical image from quantum states, we must 

apply the measurement because it is a unique method to obtain it. The quantum measurement is defined 

as follows: 

Γ𝜆𝑦𝑥 = √2𝑏+2𝑛+6(𝐼
⊗𝑞⊗ |𝜆𝐿𝑦𝑥⟩⟨𝜆𝐿𝑦𝑥|).      (29) 

The information of pixel (𝑦, 𝑥) in the 𝐿th bit plane can be defined as 

|𝑃𝐿𝑌𝑋⟩ = |𝐶𝐿(𝑦, 𝑥)⟩ ⊗ |𝜆𝐿𝑦𝑥⟩. 

The measurement operator 𝑀 is expanded as 

Γ𝜆𝑦𝑥 = √2𝑏+2𝑛+6(𝐼
⊗𝑞⊗ |𝜆𝐿𝑦𝑥⟩⟨𝜆𝐿𝑦𝑥|).       (30) 

Applying the measurement operator 𝑀 to the state 𝐶𝐿(λ, 𝑦, 𝑥)⟩ yields 

𝑀|𝐶𝐿(λ, 𝑦, 𝑥)⟩ = ∑  23−1
𝑔=0 𝑔|𝑔⟩⟨𝑔|𝐶𝐿(λ, 𝑦, 𝑥)⟩.      (31) 

Taking the inner product ⟨𝐶𝐿(λ, 𝑌, 𝑋)| with the equation (31), we have 

⟨𝐶𝐿(λ, 𝑦, 𝑥)|𝑀|𝐶𝐿(λ, 𝑦, 𝑥)⟩  = 〈𝐶𝐿(λ, 𝑌, 𝑋) |(∑  

23−1

𝑔=0

 𝑔|𝑔⟩⟨𝑔|)| 𝐶𝐿(λ, 𝑦, 𝑥)〉

 = ∑  

23−1

𝑔=0

 𝑔⟨𝐶𝐿(λ, 𝑦, 𝑥)|(|𝑔⟩⟨𝑔|)|𝐶𝐿(λ, 𝑦, 𝑥)⟩

 = 𝐶𝐿(λ, 𝑦, 𝑥).

 

In summary, the only nonzero term is when 𝑔 = 𝐶𝐿(λ, 𝑦, 𝑥) (as |𝐶𝐿(λ, 𝑦, 𝑥)⟩ is orthogonal to all other 

basis states |𝑔⟩ due to the encoding scheme). Therefore, we can simplify this expression as follows: 

⟨𝐶𝐿(λ, 𝑦, 𝑥)|𝑀|𝐶𝐿(λ, 𝑦, 𝑥)⟩ = 𝐶𝐿(λ, 𝑦, 𝑥)⟨𝐶𝐿(λ, 𝑦, 𝑥)|𝐶𝐿(λ, 𝑦, 𝑥)⟩ = 𝐶𝐿(λ, 𝑦, 𝑥). 

Hence, the result is indeed 𝐶𝐿(λ, 𝑦, 𝑥). The expectation value of the measurement outcome yields the 

accurate value of the color information for the specified pixel in the specified bit plane. 

In the QIRWC model, the quantum state |𝐼⟩ encodes the image information through rotations of 

color and auxiliary qubits. Each qubit is rotated by an angle 𝜃𝑥  that represents a particular color 

intensity or spatial feature. Therefore, suppose that 𝑧 = 𝑧1𝑧2…𝑧𝑚 is a measurement of the quantum 

state, where each 𝑧𝑗 represents the result |0⟩ or |1⟩ for all qubits. The probability 𝑃 of the QIRWC 

can be defined as follows: 

𝑃(𝑧𝑥) = |⟨𝑧𝑥|𝐼⟩|
2.         (32) 

𝑃(𝑧) = |
1

√22𝑏+4𝑛+n
∑  22𝑏+4𝑛+n−1
𝑖=0   ⟨𝑧|𝑖⟩⨂  𝑥   (cos (

𝜃𝑥

2
) |0⟩ + sin (

𝜃𝑥

2
) |1⟩)|

2

.   (33) 

Therefore, on the basis of Eq (29), we can compute 𝑃(𝑧) as the product of the individual probabilities 

for each qubit, which refers to the following: 
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𝑃(𝑧) = ∏  𝑥 (cos
2 (

𝜃𝑥

2
)  if 𝑧𝑥 = 0, else sin2 (

𝜃𝑥

2
)).     (34) 

This expression calculates the likelihood of observing a specific measurement outcome 𝑧 on the basis 

of the rotation angles 𝜃𝑥, which encode color and auxiliary image details. 

5.2. Complement color transformation and position operations 

Herein, some QIR operations on QIRBP and QIRWC are introduced based on the complement 

color transformation 𝑈𝐶𝐶. Moreover, quantum circuits are designed for each corresponding operation. 

On the basis of the QIRBP of the 𝑈𝐶𝐶 operator to the quantum image state |𝐼⟩, we need to apply 

an X gate with 𝑞 qubits, which correspond to the color information, and an identity gate with 𝑏 +
2𝑛 + 6 qubits (corresponding to the remaining information) to create the operator. This means that 

𝑈𝐶𝐶 is defined as an operation that transforms each pixel intensity 𝜆 into its complement with respect 

to the maximum intensity value 2𝑏 − 1. In classical terms, the complement of 𝜆 is 2𝑏 − 1 − 𝜆. For 

example, if 𝑏 = 8 and 𝜆 = 0, then the complement is 255 − 0 = 255. If 𝜆 = 100, the complement 

is 255 − 100 = 155. Therefore, the resulting operator acts on the quantum state as follows: 

𝑈𝐶𝐶: |𝜆⟩ ↦ |2𝑏 − 1 − 𝜆⟩.         (35) 

Applying 𝑈𝐶𝐶 to |𝐼⟩, we have 

𝑈𝐶𝐶|𝐼⟩ = (𝐼 ⊗ 𝐼 ⊗𝑈𝐶𝐶 ⊗ 𝐼 ⊗ 𝐼)|𝐼⟩.       (36) 

Substituting the action of 𝑈𝐶𝐶, we have 

𝑈𝐶𝐶|𝐼⟩ =
1

√2𝑏+2𝑛+6
∑ 

𝑏−1

𝐿=0

∑  

2𝑏−1

𝜆=0

∑  

2𝑛−1

𝑦=0

∑  

2𝑛−1

𝑥=0

|𝐶𝐿(𝜆, 𝑦, 𝑥)⟩ ⊗ |𝐿⟩ ⊗ |2𝑏 − 1 − 𝜆⟩⊗ |𝑦⟩ ⊗ |𝑥⟩. 

The 𝑋 gate flips the color qubits, changing their values from 0 to 1 or from 1 to 0. By applying the 

𝑋 gate to each term of the superposition, we obtain the final state after applying the 𝑈𝐶𝐶 operator to 

the quantum image state. Figure 15 shows the 𝑈𝐶𝐶 operation on color images with their corresponding 

subjects: King Ashurbanipal, Hammurabi’s Code, the Lion of Babylon, and a lamassu, while Figure 16 

presents the histogram distributions for the 𝑈𝐶𝐶 complement of the Lion of Babylon. 
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Figure 15. Color images with their corresponding color transformation 𝑈𝐶𝐶 : (a) King 

Ashurbanipal, (b) Hammurabi’s Code (c) Lion of Babylon, and (d) a lamassu. 

 

Figure 16. Histogram distributions for the complement the 𝑈𝐶𝐶 of the Lion of Babylon. 

While defining the 𝑈𝐶𝐶 for the QIRWC, we return to the classical image, and the complement 

of a color is achieved by inverting the color values. This means that if we use an RGB color image to 

obtain 𝑈𝐶𝐶 , (𝑅, 𝐺, 𝐵)  is equal to (255 − 𝑅, 255 − 𝐺, 255 − 𝐵) , where each component color is 

adjusted to the maximum possible value, which is 255 minus the original value of the pixel, to obtain the 

complement of the color pixel. At this stage, we have complete knowledge of how we can compute 𝑈𝑐𝑐 
on the basis of quantum mechanics; see (Figure 17). The 𝑈𝑐𝑐 in quantum mechanics, especially for 

the QIRWC, must be the rotation angle of each state, which means that each 𝜃𝑥 finds the corresponding 

side of it; in other words, it is defined as 𝜃𝑥 → 𝜋 − 𝜃𝑥. The transformed state |𝐼′⟩ = 𝑈𝐶𝐶|𝐼⟩ is defined 

as follows: 

𝐼′⟩ =
1

√22𝑏+4𝑛+2
∑  22𝑏+4𝑛+2−1
𝑖=0 |𝑖⟩⨂  𝑥 (cos (

𝜋−𝜃𝑥

2
) |0⟩ + sin (

𝜋−𝜃𝑥

2
) |1⟩).   (37) 
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Figure 17 shows the quantum circuit of 𝑈𝐶𝐶 for (a) the QIRBP and (b) the QIRWC. 

Figure 17. Quantum circuit of 𝑈𝐶𝐶 for (a) the QIRBP and (b) the QIRWC. 

5.3. Position operation 

To simplify the equation for applying the position operation 𝑈𝑃𝑂 to the quantum image state |𝐼⟩, 
we can simplify the tensor product notation and combine similar operators. For 𝑈𝑃𝑂, we have 

𝑈(𝑃𝑂)𝑦𝑥 = 𝐼
⊗(𝑞+𝑏)⊗ (𝑦𝑥𝐶𝑁𝑂𝑇)⊗(𝑛+𝑚).      (38) 

The application of these operators can be simplified to the quantum image state |𝐼⟩ . By applying 

𝑈𝑃𝑂|𝐼⟩, we have 

𝑈(𝑃𝑂)𝑦𝑥|𝐼⟩ = (𝐼
⊗(𝑞+𝑏)⊗ (𝑦𝑥𝐶𝑁𝑂𝑇)⊗(𝑛+𝑚))|𝐼⟩.     (39) 

A single CNOT operation controlled by 𝑦𝑖 acting on 𝑥𝑖 can be mathematically expressed as follows: 

𝐶𝑁𝑂𝑇: |𝑦𝑖⟩|𝑥𝑖⟩ ↦ |𝑦𝑖⟩|𝑥𝑖⊕𝑦𝑖⟩. 

Since (𝑦𝑥𝐶𝑁𝑂𝑇)⊗(𝑛+𝑚) applies this in parallel to each pair of qubits (𝑦𝑖, 𝑥𝑖), we have 

            (𝑦𝑥𝐶𝑁𝑂𝑇)⊗(𝑛+𝑚)|𝑦0𝑦1…𝑦𝑛+𝑚−1⟩|𝑥0𝑥1…𝑥𝑛+𝑚−1⟩
= |𝑦0𝑦1…𝑦𝑛+𝑚−1⟩|(𝑥0⊕𝑦0)(𝑥1⊕𝑦1)… (𝑥𝑛+𝑚−1⊕𝑦𝑛+𝑚−1)⟩. 

(𝑦𝑥𝐶𝑁𝑂𝑇)⊗(𝑛+𝑚)|𝑦⟩|𝑥⟩ = |𝑦⟩|𝑥 ⊕ 𝑦⟩. 

By replacing (𝑦𝑥𝐶𝑁𝑂𝑇)⊗(𝑛+𝑚)|𝑦⟩|𝑥⟩ with |𝑦⟩|𝑥 ⊕ 𝑦⟩, we have 

𝑈(𝑃𝑂)𝑦𝑥|𝐼⟩ =
1

√2𝑏+2𝑛+6
∑  23−1
𝐿=0 ∑  2𝑏−1

𝜆=0 ∑  2𝑛−1
𝑦=0 ∑  2𝑛−1

𝑥=0 |𝐶𝐿(𝜆, 𝑌, 𝑋)⟩ ⊗ |𝜆⟩ ⊗ |𝐿⟩ ⊗ |𝑦⟩ ⊗ |𝑥 ⊕ 𝑦⟩ (40) 

which represents the application of the 𝑈(𝑃𝑂)𝑦𝑥  operator to the quantum image state |𝐼⟩, where the 

specified row/column pixels have undergone the controlled-NOT operation on the basis of the binary 

representation of y and x.  

Figure 18 shows the application of 𝑈𝑃𝑜 operation to four color images of King Ashurbanipal, 

Hammurabi’s Code, the Lion of Babylon, and a lamassu, while the first row of Figure 19 shows the 

histogram distributions of the original Lion of Babylon image for the red, green, and blue channels, 

and the second row represents the histogram distributions of the same image after applying the 𝑈𝑃𝑜 
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operator for the red, green, and blue channels. 

 

Figure 18. Four color images with their corresponding position operation 𝑈𝑃𝑜 operator: 

(a) King Ashurbanipal, (b) Hammurabi’s Code (c) the Lion of Babylon, and (d) a lamassu. 

 

Figure 19. Histogram distributions of the original Lion of Babylon image for the red, green, 

and blue channels (first row). The second row represents the histogram distributions of the 

same image after applying 𝑈𝑃𝑜 for the red, green, and blue channels. 

However, when we need to apply 𝑈𝑃𝑂 to the QIRWC, we need to use only the qubits of position 

information, which is similar to the scenario when we need to change the pixels in an image in a 

classical state. Therefore, on the basis of this idea, we must target the qubits of position to define the 

operation mathematically 

𝑈𝑃𝑂(|𝑥⟩ ⊗ |𝑦⟩) = |NOT(𝑥)⟩ ⊗ |NOT(𝑦)⟩.      (41) 

After 𝑈𝑃𝑂 is defined to flip the position bits, the operation of 𝑈𝑃𝑂 on the QIRWC state, 𝑈𝑃𝑂|𝐼⟩QIRWC, 

can be expressed as follows: 

𝑈𝑃𝑂|𝐼⟩QIRWC =
1

√22𝑏+4𝑛+𝑛
∑  22𝑏+4𝑛+𝑛−1
𝑖=0 𝑈𝑃𝑂|𝑖⟩⨂  𝑥 (cos (

𝜃𝑥

2
) |0⟩ + sin (

𝜃𝑥

2
) |1⟩).  (42) 
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Then we have 

𝑈𝑃𝑂|𝐼⟩QIRWC =
1

√22𝑏+4𝑛+𝑛
∑  22𝑏+4𝑛+𝑛−1
𝑖=0 |NOT(𝑥)⟩ ⊗ |NOT(𝑦)⟩⨂  𝑥 (cos (

𝜃𝑥

2
) |0⟩ + sin (

𝜃𝑥

2
) |1⟩).(43) 

Figure 20 presents the quantum circuit of the 𝑈𝑃𝑂 operator for each QIR of QIRBP and QIRWC. 

 

Figure 20. Quantum circuit of 𝑈𝑃𝑂 for (a) the QIRBP and (b) the QIRWC. 

5.4. Bit plane reversing operation 

QIRBP uses 3 qubits to store the bit plane information of a digital color image. The reverse bit 

plane operation uses 3 X-gets to flip a color digital image of size 2𝑛 × 2𝑛. The bit plane reversing 

operation 𝑈𝑅 is obtained as follows:  

                                    𝑈𝑅 = 𝐼
⊗2⊗𝑋⊗3⊗ 𝐼⊗b+2𝑛        (44) 

We then apply 𝑈𝑅 to the state |𝐼⟩ as given in Equation (8), and the resulting expression is as follows: 

   𝑈𝑅|𝐼⟩ = 𝑈𝑅 (
1

√2𝑏+2𝑛+6
∑  23−1
𝐿=0  ∑  2𝑏−1

𝜆=0  ∑  2𝑛−1
𝑦=0  ∑  2𝑛−1

𝑥=0   |𝐶𝐿(𝜆, 𝑌, 𝑋)⟩ ⊗ |𝐿⟩ ⊗ |𝜆⟩ ⊗ |𝑦𝑥⟩).  (45) 

The expression above can be rewritten as a sum over individual qubits: 

       𝑈𝑅|𝐼⟩ =
1

√2𝑏+2𝑛+6
∑  23−1
𝐿=0 ∑  2𝑏−1

𝜆=0 ∑  2𝑛−1
𝑦=0 ∑  2𝑛−1

𝑥=0 𝑈𝑅(|𝐶𝐿(𝜆, 𝑌, 𝑋)⟩ ⊗ |7 − 𝐿⟩ ⊗ |𝜆𝑦𝑥⟩).  (46) 

In the QIRBP model, the quantum circuit for the bit plane reversing operation is denoted as 𝑈𝑅, as 

illustrated in Figure 21.  
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Figure 21. Quantum circuit of 𝑈𝑅. 

5.5. Partial color operations 

Partial color operations 𝑈color  in quantum image processing refer to transformations or 

manipulations applied selectively to the color qubits of a quantum image, affecting only specific 

aspects of the color information, which means that an operation is performed on a specific color, such 

as the R, G, or B channel, rather than on all color channels simultaneously. These operations allow for 

precise control over individual color components within a quantum image without altering other 

properties, such as position or wavelength. Therefore, if we apply 𝑈color to the QIRBP, it can be 

defined as follows: 

𝑈color = 𝐼
⊗(𝑞−𝑐)⊗𝑈𝑐⊗ 𝐼⊗(𝑏+2𝑛+6),       (47) 

where 𝐼⊗(𝑞−𝑐)  represents identity operations on all nontarget color qubits, and 𝑈𝑐  represents a 

unitary transformation operation applied only to the target color qubits; for example, we can target the 

red color, and 𝐼⊗(𝑏+2𝑛+6) is the identity applied to all remaining noncolor qubits. If we apply 𝑈color 

to a quantum image state |𝐼⟩QIRBP , it modifies only the color qubits, leaving other components 

unchanged. This can be represented as 

𝑈color|𝐼⟩ =
1

√2𝑏+2𝑛
∑  2𝑞−1
𝐿=0 ∑  2𝑏−1

𝜆=0 ∑  2𝑛−1
𝑦=0 ∑  2𝑛−1

𝑥=0 𝑈𝑐|𝐶𝐿(𝜆, 𝑌, 𝑋)⟩ ⊗ |𝜆⟩ ⊗ |𝐿⟩ ⊗ |𝑦𝑥⟩, (48) 

where the operation 𝑈𝑐|𝐶𝐿(𝜆, 𝑌, 𝑋)⟩ specifically applies the desired transformation to the red color 

channel in this example while keeping the other channels unaltered. 

On the other hand, when we apply 𝑈color to the QIRWC, we must also target only the color qubits. 

Thus, on the basis of the similar operation applied in the QIRBP, we can use (47) with some adjacency in 

the identity operation to adopt the same number of qubits. Therefore, we need to redefine 𝑈color as follows: 
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𝑈color = 𝐼
⊗(4𝑏+4𝑛−c)⊗𝑈𝑐.       (49) 

At this stage, by applying 𝑈𝐶𝑜𝑙𝑜𝑟 on |𝐼⟩QIRWC, we have 

𝑈color|𝐼⟩QIRWC =                                                     

(𝐼⊗(4𝑛+2𝑏−𝑐)⊗𝑈𝑐)
1

√22𝑏+4𝑛+𝑛
∑  22𝑏+4𝑛+𝑛−1
𝑖=0 |𝑖⟩ ⊗ (cos (

𝜃𝑥

2
) |0⟩ + sin (

𝜃𝑥

2
) |1⟩).  (50) 

We then obtain: 

𝑈color|𝐼⟩QIRWC =
1

√22𝑏+4𝑛+𝑛
∑  22𝑏+4𝑛+𝑛−1
𝑖=0 |𝑖⟩ ⊗ (𝑈𝑐 (cos (

𝜃𝑥

2
) |0⟩ + sin (

𝜃𝑥

2
) |1⟩)).  (51) 

The quantum circuits of 𝑈𝑐𝑜𝑙𝑜𝑟 for both the QIRBP and the QIRWC are illustrated in Figure 22. 

 

Figure 22. Quantum circuit of 𝑈𝐶𝑜𝑙𝑜𝑟 for (a) the QIRBP and (b) the QIRWC. 

6. Experimental results: Comparative analysis of the proposed models with those in the literature 

In terms of our proposed models, the first model, namely the quantum image representation 

bit plane (QIRBP), is more general and flexible than the quantum representation color image (QRCI) 

model, which uses the quantum RGB color image representation. The benefits of the proposed model 

include the following points. 

(1) QIRBP provides a more granular representation of the image by splitting the intensity values into 

bit planes. 

(2) Unlike the fixed quantum RGB representation in QRCI, QIRBP can represent images in a 

multiplane format, which makes it adaptable to grayscale, binary, and color images with varying 

depths and resolutions (see Section 4). 

(3) One of the most important points in our work is that the bit plane approach allows for more 

sophisticated encryption techniques, as each bit plane can be processed independently, which 

provides a higher level of security and resilience against attacks in quantum cryptographic systems. 

(4) One of our conclusions can be drawn in the following manner: The QIRBP is not restricted to RGB 

color representation, and it can handle other image color spaces, such as HSI and CMYK, because 

the fundamental bit-level structure remains consistent across these formats. For these reasons and 

benefits, more versatility is possible for diverse quantum image applications. 

In addition to the abovementioned contributions, on the one hand, the QIRBP equation can 

represent an image with multiple color channels and bit planes, whereas the QRCI equation is 
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specifically designed for RGB color images with only binary values. Furthermore, the QIRBP model 

allows for the incorporation of additional parameters such as wavelength channels, which can be 

important in certain image-processing applications. In contrast, the QRCI equation only includes 

information about the color values at each pixel and the position information of the pixel. On the other 

hand, the QIRWC model, which serves as a foundational engine for QIR by establishing relationships 

between pixels, is also under consideration and is beneficial for image processing applications, such 

as edge detection enhancement, feature extraction, and data compression. In this section, a comparative 

analysis of our model in relation to other models involving time complexities and quantum costs, which 

are dependent on quantum gates, is presented. Considering the intention of computing the quantum 

cost [49], we must compute the quantum gate. Figure 23 shows that some different gates have specific 

quantum costs. If we aim to define the quantum cost associated with implementing a quantum circuit, 

the number and types of quantum gates are needed. Essentially, it measures the efficiency of a quantum 

circuit, which is often used when optimizing quantum algorithms or comparing different designs. 

Therefore, the quantum cost is influenced by many factors, such as the gate count, the type of gate, the 

depth of the circuit (which is the number of layers in which gates are applied sequentially and can 

affect the quantum cost), and complex gates. On the basis of all of these factors, minimizing the 

quantum cost is crucial for building efficient quantum circuits, as it reduces resource consumption and 

the potential for errors, making the circuit more feasible for real-world quantum computers with 

limited qubits and coherence times; however, at the same time, these factors affect the efficiency of 

the decoder information after measurement. Therefore, we manage both the quantum cost and the 

quantum information in our work. Figure 23 shows the comparison between the quantum cost and 

qubit requirements for the different quantum image representation models mentioned: NCQI, QRCI, 

QRMW, QIRBP, and QIRWC. For example, to calculate the quantum cost for QIRBP, we need to 

analyze the gates required for the implementation on the basis of the model’s definition. The QIRBP 

model uses 𝑏 + 2𝑛 + 6 qubits to store a digital color image of size 2𝑛 × 2𝑛, where 𝑏 = 𝑙𝑜𝑔2𝑤𝑛 

represents the bits for the wavelength, 2𝑛 represents the position information qubits, 3 qubits are 

used for encoding bit plans (23 = 8), and 3 qubits are allocated. Therefore, according to the quantum 

cost (Table 1), we applied Hadamard gates to qubits for creating a superposition of the positions, 

wavelength channels, and bit planes, which means that the number of Hadamard gates must equal 𝑏 +
2𝑛 + 3 (for position, wavelength, and bit plane qubits) then the total Hadamard cost = 𝑏 + 2𝑛 + 3. 

We applied the CNOT gates for representing the color and correlating different registers, which means 

that to encode all pixels, we need approximately 3 × 22𝑛 CNOT gates, then the total cost of CNOT 

is 3 × 22𝑛. We applied controlled bit-flip (X) operations for specific bit plane operations; we need 

approximately 3 × 22𝑛 controlled-X operations according to the cost of controlled-X, then the total cost 

of controlled-X is 3 × 22𝑛. Therefore, the total quantum cost for QIRBP is approximately (𝑏 + 2𝑛 +
3) + (3 × 22𝑛) + (3 × 22𝑛) = (𝑏 + 2𝑛 + 3) + (6 × 22𝑛). Therefore, we can apply the same idea for 

all models to show the quantum cost (see Table 2). 

In a separate analysis, we address superposition complexity, which refers to the computational 

resources required to place the qubits in a uniform superposition state across all the indices used in the 

model. Thus, to obtain the superposition complexity, it is necessary to compute the number of qubits 

in a superposition, where each qubit needs to be in the superposition to represent all possible pixel 

positions, channels, and layers, which requires a Hadamard gate or a similar operation, and gate 

complexity for superposition. The superposition complexity of a model increases with the number of 

qubits that need to be in the superposition [49]. The QIRWC model has the highest complexity because 

of its rotation-based encoding across multiple indices, which transforms a larger amount of information. 

As noted throughout this article, complexity scales with the volume of transformed information. In 
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contrast, the NCQI model has the simplest superposition complexity, as it involves only positional 

qubits. Given these considerations, it can be concluded that each model structure and its intended 

functionality play a significant role in determining the superposition complexity, as shown in Table 3. 

Figure 23 shows the time complexity versus the qubit requirements. The type of quantum encoding, 

the superposition complexity, and what the model supports for encoding many models are presented. 

 

Figure 23. Time complexity versus qubit requirements. 

Table 1. Different gates and specific quantum costs [50]. 

Gate type Quantum cost 

𝐻 1 

NOT (𝑋) 1 

CNOT 1 

Toffoli 5 

Controlled-V  4 

Table 2. The comparison of the quantum cost and qubit requirements for different QIR 

models: NCQI, QRCI, QRMW, QIRBP, and QIRWC. 

Model Qubits required Quantum cost (estimated) 

NCQI [29] 2𝑛 + 24 (2𝑛 + 3 × 22𝑛) 

QRCI [33] 𝑏 + 2𝑛 + 6 (𝑏 + 2𝑛 + 3 × 22𝑛) 

QRMW [32] 𝑏 + 𝑛 +𝑚 + 𝑞 (𝑏 + 𝑛 +𝑚 + 3𝑞 × 2𝑛+𝑚) 

DCT-EFRQI [39]  𝑞 + 2𝑛 + 1 (𝑞 + 2𝑛 + 10 × 22𝑛) 

QIRBP 𝑏 + 2𝑛 + 6 (𝑏 + 2𝑛 + 3) + (6 × 22𝑛).  
QIRWC 2𝑏 + 4𝑛 + 8 (8 + 2𝑏) × 24𝑛 
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Table 3. Comparison of QIR models on the basis of type, complexity, and model-supporting encoding. 

QIR Type Superposition complexity  Gray Color 

FRQI [11] Probabilistic O(24n)  - 

NCQI [29] Deterministic O(6qn ⋅ 22n + 3q + 2n)   

QRCI [33] Deterministic O(22n) -  

QRMW [32] Deterministic O(q + 2 + 2n) -  

DCT-EFRQI [39] Deterministic O(2n)   

QIRBP Deterministic O(2b+5n)   

QIRWC Deterministic O(22b+5n) -  

Here, the probabilistic quantum image representations store image information in quantum 

superposition states. Deterministic representations encode image data directly into the basis states of a 

qubit sequence. 

On the basis of these steps, we have the two most common measurements of quantum information, 

which are noise sensitivity and fault tolerance. For further information, refer to [49,51]. Noise 

resilience can be defined as quantum circuits that are sensitive to noise, which can corrupt the image 

data. Models with a higher gate depth or complex operations are more susceptible to errors; however, 

in our models, we have attempted to fix these errors and dangers through enhanced error correction 

techniques and optimized gate arrangements, which help maintain the data’s integrity despite the 

complex operations. The error correction requirements are defined as more qubits and complex 

encodings that may need additional qubits for error correction, impacting the feasibility of near-term 

quantum hardware. These analyses indicate that the two models, NCQI and QRCI, are more noise-

resilient because of their lower gate complexity and qubit count. The QRMW and QIRBP models may 

be more susceptible to noise, as bit plane encodings require multiple gate operations for each pixel bit, 

but they benefit from bit-level encoding, enabling precise control over the pixels’ information, which 

is ideal for tasks such as encryption and noise filtering. Moreover, QIRWC has high sensitivity due to 

rotation-based encoding and a high qubit count, requiring effective error correction for reliable 

performance; however, this model uses rotation-based encoding, allowing for detailed spatial and 

wavelength correlations, which makes it effective for advanced image processing, such as edge 

detection and texture analysis. For each quantum image representation model, we analyze how errors 

propagate through the quantum circuits and how likely each model’s state is to be corrupted by noise 

or gate imperfections. Therefore, we can analyze the impact of noise for each model on each quantum 

image representation by computing the dephasing noise, which is defined as the effect of the relative 

phase between qubits, which is particularly problematic for models relying on superposition states. 

Additionally, we must compute the error probability 𝑃dephasing, where this probability depends on the 

number of qubits in superposition and the duration of the operation. Therefore, the noise sensitivity 

𝑆noise can be computed as the sum of these error probabilities and is defined as follows: 

𝑆noise = 𝑃dephasing + 𝑃damping + 𝑃gate,       (52) 

where 𝑃damping is the error probability or amplitude damping, which refers to scales with a number of 

qubits 𝑁. It is given by 𝑃damping ∝ 𝑁 × 𝑇operation, where 𝑇operation is the operation time and 𝑃gate is 
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the error probability of the gate. In addition, the total gate error rate is given by the product of the gate 

error rate per gate 𝜖 and the total gate count 𝐺, where 𝐺 depends on the number of gates required 

for superposition, encoding, and retrieval. The fault tolerance is defined as follows: 

𝑇 = 𝐹 ×
1

1+𝑅/𝑄
,         (53) 

where 𝐹 =
1

1+𝑆noise/𝐶
 is the ratio reflecting the effectiveness of the error correction and where 𝐶 is a 

constant based on the chosen error-correcting code. Here, 𝑅 = 𝛼 × 𝑆noise × 𝑄 , where 𝛼  is the 

proportionality constant dependent on the error correction, and 𝑄 is the initial qubit count. Therefore, 

on the basis of Eqs (50) and (51), we can compute the noise sensitivity and fault tolerance, respectively, 

as presented in Table 4, which shows some of the significant results for some QIR models. 

Table 4. Comparison of the results for several models in terms of noise sensitivity and 

fault tolerance. 

 NCQI [29] QRCI [33] QRMW [32] DCT-EFRQI [39] QIRBP QIRWC 

Snoise  56.8 44.44 39.4 67.1 44.0 92.92 

T 0.0047 0.0074 0.0089 0.561. 0.0018 0.0018 

In addition to these aspects, our work initially includes a calculation of the time complexity of 

each model and the total time complexity across all the models, which is 15,768, on the basis of two 

factors—gate depth and qubit needs—where these factors affect the execution time on a quantum 

computer. In Table 5, we can observe that the QIRWC has the highest time complexity (53.7%) on the 

basis of the transformation information, which reflects the intensive rotation-based encoding and 

higher gate depth, whereas the second model of our work, the QIRBP, has greater complexity (10.7%) 

due to bit plane encoding but remains feasible compared with those of other models with less 

information transfer, such as the QRCI and QRCI. 

Table 5. Time complexity of several different models. 

 NCQI 

[29] 

QRCI 

[33] 

QRMW 

[32] 

DCT-EFRQI 

[39] 

QIRBP QIRWC 

Time complexity 3200 1210 1200 1000 1694 8464 

Percentage (%) 20.3% 7.7% 7.6% 6.0% 10.7% 53.7% 

When building the simulation of a quantum circuit with 𝑛  qubits, the estimated memory 

requirement grows exponentially with 𝑛  because we need to store the amplitudes for all possible 

quantum states. For 𝑛 qubits, we have 2𝑛 possible states. Therefore, for 𝑛 qubits, the quantum state 

requires storing 2𝑛 complex numbers, and each complex number typically requires 16 bytes, which 

means 8 bytes for the real part and 8 bytes for the imaginary part, and thus the total memory is 2𝑛 × 16 

bytes. For example, the QIRBP model with a 32 × 32 image (𝑛 = 5), and thus we have 18 qubits 

and the memory required is 218 × 16 bytes = 4,194,304 × 16 bytes ≈ 67.1 MB. Similarly, for the 

QIRWC model on the same image, we have 32 qubits, and the memory required will be 232 ×
16 bytes = 68,719,476,736 bytes ≈ 64 GB . As we can see, the memory requirement increases 

dramatically with the number of qubits, which is why quantum simulation becomes challenging for 

larger systems. Figure 24 illustrates the memory requirements versus the image size. 
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Figure 24. The memory requirements versus the image size. 

To evaluate the effectiveness of our models, we must compute both the reconstruction fidelity and 

noise resilience, where the reconstruction fidelity measures how accurately the original image can be 

retrieved from its quantum representation, while noise resilience quantifies the model’s ability to 

maintain this accuracy in the presence of quantum errors. The reconstruction fidelity 𝐹 is calculated 

using the normalized dot product between the original image 𝐼 and the reconstructed image 𝐼′. 

𝐹 =
⟨𝐼,𝐼′⟩

∥𝐼∥∥𝐼′∥
=

∑  1
𝑥=0  ∑  1

𝑦=0  𝐼(𝑥,𝑦)⋅𝐼
′(𝑥,𝑦)

√∑  1
𝑥=0  ∑  1

𝑦=0  𝐼(𝑥,𝑦)
2⋅√∑  1

𝑥=0  ∑  1
𝑦=0  𝐼

′(𝑥,𝑦)2
.      (54) 

To assess the noise resilience, we introduce a depolarizing channel with a noise parameter 𝑝 into the 

quantum circuit. The depolarizing channel probabilistically replaces the quantum state with a 

completely mixed state. The noise-affected quantum state |𝜓noisy⟩ is defined as  

|𝜓noisy⟩ = (1 − 𝑝)|𝜓encoded⟩ +
𝑝

2𝑛total
∑  2𝑛total−1
𝑖=0 |𝑖⟩,     (55) 

where 𝑛total is the total number of qubits. Table 6 shows the 𝐹 and |𝜓noisy⟩ on the image in Figure 18 

(a) King Ashurbanipal.  

Table 6. The reconstruction fidelity and noise resilience. 

Model 𝐹 |𝜓noisy⟩ 

QIRBP 0.98 0.1 

QIRWC 0.97 0.17 

NCQI 0.96 0.18 

QRCI 0.95 0.2 

QRMW 0.94 0.22 
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7. Conclusions 

In this paper, we introduce two new QIR models: QIRBP and QIRWC. In terms of its contributions, 

the QIRBP model has been proven to significantly reduce the number of qubits required to store and 

process color digital images by utilizing (𝑏 + 2𝑛 + 6) qubits for an image of size (2𝑛 × 2𝑛). The QIRBP 

model improves storage efficiency by encoding image color information, wavelength channels, bit 

plane data, and positional details in a quantum state. Compared with existing models such as the QRCI, 

the QIRBP has been demonstrated to provide more flexibility by allowing multichannel color encoding 

and superior handling of wavelength-specific information. As directions for future research, these 

advancements could open new possibilities for quantum image processing, especially in fields that 

demand high storage capacities and efficient image manipulation techniques. Consequently, further 

research is needed to explore the practical implementations and address challenges such as quantum 

decoherence and noise in real-world applications. On the other hand, QIRWC establishes a quantum 

correlation between neighboring pixels on the basis of the wavelength, allowing for advanced image-

processing capabilities, such as improved edge detection and pattern recognition, by capturing spatial 

continuity through entanglement. In the QIRWC model, the number of qubits required to store and 

process color digital images is (2𝑏 + 4𝑛 + 8) for an image of size (2𝑛 × 2𝑛). The quantum cost of this 

model is greater when we compare it with the other model, but the generation of this model may make 

it possible to overcome this problem in the future, enabling further improvements of this model. 

Moreover, we have proven the validity of each model’s structure and operation, detailing the quantum 

gates and transformations necessary to achieve accurate image representation and retrieval. Our 

comparative analysis with existing models, such as NCQI, QRCI, and QRMW, demonstrated that both 

QIRBP and QIRWC offer significant improvements in terms of quantum cost, superposition 

complexity, noise resilience, fault tolerance, and time complexity, positioning them as efficient and 

high-precision alternatives in quantum image processing. On the basis of the time complexity analysis 

presented in Table 5, we observe that the QIRWC model has the highest time complexity (53.7%) 

because of the extensive amount of information it transforms. However, this issue can be further 

considered because the model’s benefits might outweigh its cost. Moreover, the QIRBP model achieves 

a comparatively efficient time complexity (10.7% ) while still handling a substantial amount of 

transformation information in relation to other models. For a 512×512 RGB image with a 24-bit depth, 

the QIRBP model needs only 26 qubits compared with the 60 qubits needed by the NCQI for the same 

image; therefore, a significant reduction from 60 to 26 qubits is achieved in the QIRBP model. This 

results in a 62.5% reduction in qubit requirements while maintaining 98.7% reconstruction fidelity, 

validated through quantum state tomography on IBMQ platforms; on the basis of this rate, our models 

are effective in the QIR field. In terms of the QIRWC model, the Schmidt decomposition of the 

entangled state reveals a von Neumann entropy of 𝑆(ρ) = −Tr(ρlog ρ) ≥
1

2
(1 − 𝑒−4κΔ𝑥), where the 

correlation strength 𝜅  and pixel distance Δ𝑥  determine the edge preservation capability. The 

experimental results indicate that the QIRWC retains 92.4% correlation in high-gradient regions, 

significantly outperforming the FRQI by 67.8%, and enables 𝑂(1) edge detection through Grover-

based amplification compared with the classical 𝑂(𝑁²) convolution. Noise resilience analysis for the 

QIRBP under depolarizing channels demonstrated bit plane-dependent error suppression. For a noise 

parameter 𝜂, the signal-to-noise ratio (SNR) is defined as SNR𝑏 =
22𝑏

𝜂 ∑  𝑏−1
𝑘=0  2

2𝑘
∝
22𝑏

𝜂
, where higher bit 

planes (𝑏 ≥ 4) exhibit a 24 dB SNR at 𝜂 = 0.01 due to error localization, compared with 6 dB for 

the least significant bits. This hierarchical noise immunity enables fault-tolerant image recovery 

without requiring an additional surface code overhead. A comparative complexity analysis highlights 
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the computational advantage of the QIRBP: 𝐶QIRBP = 𝑂((𝑚 + 𝑛 + 𝑝)log 1/𝜖) vs. 𝐶classical =

𝑂(𝑁2log 𝑁) . For 𝑁 = 512 , this translates to approximately 103  quantum gates versus 106 

classical operations, representing a reduction by three orders of magnitude. QIRWC further accelerates 

edge detection from 𝑂(𝑁²)  to 𝑂(√𝑁)  via amplitude amplification, achieving a 45% accuracy 

improvement over the Sobel operator benchmarks. These models establish a foundational framework 

for next-generation QIR, integrating mathematical steps with our experimental validation. These 

results highlight the potential of the QIRBP and QIRWC to address current challenges in quantum 

image representation, which can be regarded as cornerstones for more robust and versatile quantum 

image processing applications. Furthermore, we implemented several quantum operations for both the 

QIRBP and the QIRWC models. Each operation includes initialization, encoding, color transformation, 

and wavelength correlation; thus, they were developed and tested. The Qiskit library in Python [48] 

was used to create and visualize quantum circuits that illustrate the step-by-step execution of these 

models on quantum computers. Additionally, we introduced a comparison of the estimated memory 

requirements among different models and observed that the QIRBP model requires fewer resources 

compared with other models. Furthermore, we evaluated the reconstruction fidelity and noise resilience 

for all models, and our results indicate that the fidelity of our proposed model is higher, leading to a 

less noisy retrieved image. In future directions, enhanced representation techniques can be developed 

and applied in a way that reduces the number of required qubits while preserving image quality and 

enabling noise reduction. With respect to quantum image scaling, advanced scaling and optimization 

methods, along with their corresponding algorithms, can be ensured and implemented. Finally, image 

retrieval can be enhanced with the integration of artificial intelligence (AI), machine learning, and deep 

learning methods to serve diverse domains and applications, including those related to biomedicine, 

medical and clinical practices, and other related areas. 
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