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Abstract: Interneurons modulate the excitability of neural networks and maintain neural activity 

balance via inhibitory or excitatory synaptic connections. Here, we studied the formation of patterns 

of interneuronal networks with inhibitory synaptic coupling. We found that both electrical synaptic 

coupling and inhibitory synaptic coupling play a crucial role in the formation of neural network 

patterns. In addition, delayed inhibitory synapses can also affect the transition of target waves to 

chaotic states. As the strength of electrical synaptic coupling increases, the firing behavior of neurons 

gradually becomes highly ordered. When the inhibitory synaptic delay reaches a critical value, we 

observe a transition in oscillatory patterns from an ordered state to a synchronized state. We further 

investigated how inhibitory synaptic conductance influences the formation of oscillatory patterns in 

the network. The study reveals that increasing synaptic conductance disrupts the structure of target 

waves, inducing chaotic states such as spiral wave fragmentation, while simultaneously elevating 

neuronal firing rates. 
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1. Introduction  

As a fundamental spatiotemporal ordered pattern in neural networks, target waves can serve as 

persistent pacemakers that precisely regulate the spatial distribution of neuronal activity and maintain 

global rhythmic synchronization [1–3]. This wave-dynamic phenomenon can be initiated by local 
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electrical stimulation and propagate across the neural network [4]. Research demonstrates that the 

formation and propagation of target waves are critically dependent on the network's coupling 

strength and topological connectivity [5]. Under optimized parameters, target waves can fully 

dominate the network space, driving highly synchronized electrical activity in neuronal populations 

[6–8]. Remarkably, target waves exhibit exceptional noise robustness, maintaining stable propagation 

even under significant noise interference while effectively suppressing pathological patterns like 

spiral waves and spatiotemporal chaos [9]. Physiologically, this process bears a striking similarity to 

the cardiac conduction system, where pacemaker signals from the sinoatrial node propagate as target 

waves through myocardial tissue to coordinate rhythmic contraction-relaxation cycles [10,11]. 

In-depth investigation of target wave mechanisms not only provides novel insights into neural 

network dynamics but also holds translational potential, and the targeted induction of target waves to 

intervene in abnormal neural activities such as epileptic seizures may pioneer new therapeutic 

approaches for neurological disorders [12–15]. 

In recent years, significant progress has been made in the study of intermediate neural networks, 

particularly in their role in regulating neural rhythms and network dynamics [16–18]. Research 

demonstrates that interneurons can modulate the synchrony and periodicity of neural activity not 

only through intricate network architectures but also via inhibitory chemical synapses and electrical 

synapses [19,20]. For instance, cutting-edge studies have identified that specific interneuron subtypes 

play pivotal roles in generating high-frequency gamma oscillations [21]. Furthermore, computational 

modeling and experimental evidence indicate that dynamic modifications in synaptic plasticity and 

connection strength within interneuron networks can substantially impact the stability of neural 

oscillations and information processing efficiency [22–24]. Notably, emerging research has 

uncovered the crucial involvement of interneuron networks in neurodevelopmental disorders. 

Functional abnormalities in these networks may underlie rhythm disturbances and cognitive 

impairments observed in autism spectrum disorders and schizophrenia [25]. These findings collectively 

highlight how interneurons serve as master regulators of network synchronization and rhythmic 

activities through their diverse connectivity patterns and dynamic regulatory mechanisms [26]. 

The delay in information transmission is a fundamental characteristic of neuronal dynamics, 

primarily arising from the physical constraints of conduction velocity in neural electrical signals and 

the inherent temporal delays during dendritic integration and synaptic transmission [27]. Research 

indicates that electrical synapses, due to their direct electrical coupling properties, typically exhibit 

shorter synaptic delays [28–30]. Moreover, the functional synergy between electrical and chemical 

synapses can significantly enhance the synchronization efficiency of neural networks and achieve 

sub-millisecond precision in temporal coding [31,32]. This dual-synaptic cooperative mechanism 

plays a critical role in neural circuits requiring rapid information processing. From the perspective of 

information processing, synaptic delay is not merely a simple conduction lag but also a crucial 

parameter for spatiotemporal encoding of neural information [33]. Hybrid synapse modeling 

uncovers their joint control over neural synchronization and complexity. [34,35]. Experimental 

evidence demonstrates that synaptic delay dynamically regulates synaptic weights by precisely 

modulating the window of spike-timing-dependent plasticity. This mechanism is considered the 

foundational neural basis for working memory formation and associative learning [36]. Under 

pathological conditions, abnormalities in synaptic delay are closely associated with various 

neuropsychiatric disorders. Recent studies have found that the dispersion of synaptic delays in the 

prefrontal cortex of autism patients increases by approximately 40%, impairing gamma oscillation 
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synchronization, which may underlie their executive dysfunction [37]. Similarly, abnormal 

fluctuations in synaptic delays have been observed in the hippocampal-prefrontal circuits of 

schizophrenia patients. Notably, the dynamic regulation of synaptic delays during 

development—particularly during critical periods—is essential for the functional optimization of 

neural networks. Dysregulation of this process may contribute to neurodevelopmental disorders [38]. 

Although the pivotal role of interneuron networks in generating rhythmic activity has been 

extensively studied, the impact of delays in inhibitory coupling on synchronization properties, wave 

propagation, and network stability remains unclear. Investigating how these delays govern the 

generation and modulation of rhythmic oscillations is thus critical, providing insights into both 

normal brain function and pathological states such as epilepsy. Therefore, we investigated the pattern 

dynamics in a two-dimensional interneuron network coupled by delayed inhibitory synapses and fast 

electrical synapses, with a particular focus on how inhibitory synaptic delays affect the propagation 

of target waves in the network. In our research, we discovered that when the delay time of inhibitory 

synapses reaches a certain threshold, the neural network abruptly transitions from a resting state to a 

highly ordered state, accompanied by the emergence of target waves. Further analysis revealed that 

both the synaptic conductance strength and delay time of inhibitory synapses play crucial roles in the 

formation of this ordered network state. This finding not only provides compelling evidence once 

again for the central role of time delays in the dynamic behavior of neural networks but also 

highlights the key driving function of synaptic mechanisms in the generation of target waves. 

2. Materials and methods 

The dynamics of fast-spiking interneurons is described by the Wang-Buzsaki (WB) model [39]. 

It has a form similar to the classical Hodgkin–Huxley model [40,41], with details as follows: 
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The system variables include membrane potential (V), sodium current inactivation parameter (h), 

and potassium current activation parameter (n). The six kinetic equations governing channel gating 

dynamics are defined as: 
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The parameter C denotes the membrane capacitance. The parameters gNa, gK, and gL are the 

maximum conductances for sodium, potassium, and leak ion channels, respectively. Meanwhile, ENa, 

EK, and EL denote Nernst equilibrium potentials for respective ionic species. The parameters are set 

as follows: C = 1 μF/cm2, gNa = 35 mS/cm2, gK = 9 mS/cm2, gL = 0.1 mS/cm2, ENa = 55 mV, EK = 

−90 mV, EL = −65 mV, and φ = 5. The parameter Iext represents an external stimulus current. 

 

Figure 1. Dynamics of the WB model versus the external stimulus current Iext. (a) The 

bifurcation diagram. Time series of membrane potential: (b1) Iext = 0.12 μA/cm2; (b2) Iext 

= 0.17 μA/cm2; (b3) Iext = 1.0 μA/cm2. As the stimulus current increases, the neuron 

transitions from a resting state to periodic firing, with progressively shorter interspike 

intervals, indicating that external current significantly enhances neuronal activity, and 

firing frequency is positively correlated with current intensity. 

The WB model has a saddle-node bifurcation on an invariant cycle at Iext ≈ 0.16 μA/cm2. From 

the bifurcation diagram in Figure 1(a), it can be clearly observed that as the external stimulus current 

gradually increases, neurons transition from a resting state to a state of periodic firing. Meanwhile, 

the interspike intervals become progressively shorter. This indicates that external stimuli can 

significantly promote neuronal firing, and the firing frequency is positively correlated with the 
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intensity of the external stimulus current. From the time series diagram, it can be observed that when 

the stimulation current is 0.12 μA/cm2, the neuron remains in a resting state [Figure 1(b1)]; however, 

when the current increases above 0.16 μA/cm2, the neuron begins to enter a firing state, as shown in 

Figure 1(b2). Previous studies have shown that when the stimulus current approaches 1.0 μA/cm2, as 

shown in Figure 1(b3), the firing frequency of neurons reaches 60 Hz within the gamma range [39]. 

We constructed a neural network model consisting of N×N fast-spiking interneurons with 

nearest-neighbor coupling. For simplicity, neurons are interconnected via inhibitory synapses and 

electrical synapses. All synapses are bidirectionally conductive, and self-connections of neurons are 

excluded. Building on the instantaneous transmission properties of electrical synapses, while 

specifically considering signal latency effects in inhibitory pathways, the network employs the WB 

model (Eq 1) to describe neuronal dynamics. This model inherits the theoretical framework of the 

classical Hodgkin–Huxley model [40], and the specific dynamical equations are as follows: 
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where the subscript i, j stands for the (i, j)th neuron in the networks. In the present paper, the total 

number of neurons is N = 100. The three variables of the (i, j) neuron correspond to the three 

variables in Eq 1. In particular, Iel,ij and Iche,ij denote the electrical coupling current and the inhibitory 

synaptic current received by the neuron at position (i, j), respectively. These currents are 

characterized as follows: 
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In this equation, D is the electrical synaptic strength from neuron (k, l) to neuron (i, j). gche and 

Eche are the synaptic conductance and the reversal potential, respectively. In this study, the reversal 

potential is Eche = −75 mV, to make sure that the synaptic current is inhibitory. The factor of 1/4 in 

the expression for Iche,ij is due to the two-dimensional regular network structure, where each node has 

four nearest neighbors. The variables sche,kl in Eq (4) represent the fractions of open synaptic channels, 

and are modeled as follows: 
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Where α is the opening rate of the synaptic channel, and θ represents the synaptic threshold. In the 

study, α and θ are set to 12 ms-1 and 0 mV. To measure the formation of patterns in neuronal 



10981 

AIMS Mathematics  Volume 10, Issue 5, 10976–10993. 

networks, we have introduced synchronization factors that statistically characterize collective 

dynamical behaviors. These factors aim to quantify the coordinated activity of neuronal networks 

and their spatiotemporal dynamical properties, thereby revealing the mechanisms and principles 

underlying pattern formation.  
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By calculating the mean field activity of the neuronal network, we assess the overall 

synchronization. The mean field synchronization factor reflects the consistency of collective 

behavior among neurons in the network, with higher values indicating stronger synchronization. 

3. Results 

The study employs the Euler difference method for numerical simulation of differential 

equations, with a time step of 0.02 ms. The network adopts no-flux boundary conditions, and for 

simplicity, the initial values of the network nodes are set to 0.1. For target wave generation in 

neuronal networks, we applied 1.0 μA/cm2 to the central [48,52]×[48,52] region versus 0.12 μA/cm2 

peripherally, exploiting symmetric stimulation for controlled pattern formation. This setup aims to 

induce neuronal activity in specific areas through localized high stimulation currents, thereby 

observing the formation and propagation mechanisms of patterns within the network. We first 

present the fundamental simulation results, analyzing the impact of fast electrical synaptic coupling 

on the generation and propagation of target waves in intermediate neuronal networks in the absence 

of delayed inhibitory synaptic coupling.  

In Figure 2, typical patterns of neuronal networks are plotted under different electrical coupling 

strengths in the absence of chemical synaptic coupling (gche = 0). The results clearly demonstrate that 

electrical synaptic coupling plays a significant role in the pattern formation process within the 

neuronal network. In the absence of fast electrical synaptic coupling in Figure 2(a), when D = 0, due 

to the heterogeneity in externally applied currents across different regions of the network, only 

neurons within the region (i, j)∈(48, 52)×(48, 52) exhibit firing activity, while neurons in other 

regions remain in a resting state. As the strength of electrical coupling increases, the neuronal network 

begins to display disordered patterns. This phenomenon arises because the electrical coupling strength 

within the network is weak, and the interactions between neurons are insufficient to establish an 

ordered activity pattern. However, when the electrical coupling strength reaches a certain threshold 

[e.g., D = 0.2 ms/cm2 in Figure 2(c)], regular target waves emerge in the neuronal network. Further 

increasing the coupling strength to 0.3 does not cause the target waves to break up during 

propagation; instead, their propagation speed significantly increases.  

In Figure 3, we present the membrane potential firing sequences of two sampling points, (30, 30) 

and (50, 50), in the neuronal network. An external current of 1.0 μA/cm2 is applied at the position 

(50, 50). The numerical simulation results indicate that, in addition to the influence of the external 

current, electrical coupling also significantly affects the firing states of the neurons. When the 

coupling strength is weak, target waves do not emerge in the neuronal network, meaning that the 
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membrane potential firing of neurons at the network center is insufficient to drive the firing of 

surrounding neurons. This is corroborated by the resting state of the sequence at the (30, 30) 

sampling point, as shown in Figure 3 (a2). As the coupling strength D increases to 0.1 ms/cm2, the 

propagating target wave undergoes rupture, driving the network into a chaotic state [Figure 2 (b)]. 

This chaotic state further influences the firing behavior of neurons [Figure 3(b1), (b2)], which may 

be attributed to the bidirectional nature of electrical coupling. In other words, neurons interact with 

and alter each other's dynamical properties through mutual influence. As the electrical coupling 

strength further increases, a regular target wave pattern gradually forms in the neural network, 

leading to a highly ordered state in the entire system. The discharge behavior of neurons also exhibits 

almost periodic oscillation characteristics [see Figure 3 (c1), (c2)]. When the coupling strength 

increases from 0.2 ms/cm2 to 0.3 ms/cm2 [Figure 3(d1), (d2)], the waveform of target waves in the 

system gradually becomes sparse. From the time series of sampling points, it can be observed that 

the firing frequency of neurons has undergone significant changes, and the distance traveled by 

waves per unit time has significantly increased. This phenomenon indicates that the enhancement of 

electrical coupling strength can significantly accelerate the propagation of target waves in the system. 

In addition, the results in Figure 3 indicate that electrical synaptic coupling provides strong 

mechanistic support for promoting the formation of ordered states in the network. To validate this 

mechanism, the dependence of target wave dynamics on the strength of electrical coupling was 

quantitatively analyzed. The wave speed was calculated as follows: the propagation time required for 

the wavefront to reach different radial distances was measured from the network center (50, 50), and 

the speed was computed using speed = distance/propagation time. Finally, the average speed was 

determined across four principal directions (up, down, left, right) to obtain a robust estimate. The 

results are shown in Figure 4. 

 

Figure 2. Time evolution of spatial patterns is calculated at gche = 0. For electrical 

coupling strength (a) D = 0, localized neuronal firing only; (b) D = 0.1 ms/cm2, 

disorganized firing pattern; (c) D = 0.2 ms/cm2, emergence of regular target waves; (d) D 

= 0.3 ms/cm2, target wave accelerates propagation and maintains stability. 



10983 

AIMS Mathematics  Volume 10, Issue 5, 10976–10993. 

 

 

Figure 3. Time series of sampling point (50, 50) and (30, 30) positions in neural networks at 

gche = 0. For electrical coupling strength (a1)(a2) D = 0; (b1)(b2) D = 0.1 ms/cm2; (c1)(c2) D 

= 0.2 ms/cm2; (d1)(d2) D = 0.3 ms/cm2. Electrical coupling governs wave formation and 

propagation efficiency, and ordered patterns require critical coupling strength. 

 

Figure 4. Dependence of target wave propagation speed on electrical coupling strength. 

The data demonstrate a significant increase in wave speed with enhanced coupling 

strength. 
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As demonstrated in Figure 4, the propagation speed of target waves in the system was observed 

to increase significantly with enhanced electrical coupling strength, which is consistent with the 

conclusion drawn from Figure 3 that electrical synaptic coupling facilitates the formation of ordered 

states. Next, we focused on analyzing the impact of inhibitory synapses on pattern formation in 

neuronal networks and the underlying mechanisms. The results are shown in Figure 5. 

 

Figure 5. Time evolution of spatial patterns and time series of sampling points in neural 

networks at τ = 10 ms and electrical coupling strength D = 0. For the synaptic 

conductance (a) gche = 0.02 ms/cm2; (b) gche = 0.1 ms/cm2; (c) time series of sampling 

point (30, 30) and gche = 0.02 ms/cm2; (d) time series of sampling point (50, 50) and gche 

= 0.02 ms/cm2; (e) time series of sampling point (30, 30) and gche = 0.1 ms/cm2; (f) time 

series of sampling point (50, 50) and gche = 0.1 ms/cm2. Target wave modes cannot be 

generated in the absence of electrical coupling, and the network consequently loses its 

spatiotemporal self-organization capability. 

Figure 5 illustrates the pattern dynamics in the neuronal network with only inhibitory synaptic 

coupling. For simplicity, the delay of inhibitory synaptic coupling was set to a fixed value of 10 ms. 

The results indicate that, in the absence of electrical synaptic coupling, the neuronal network fails to 

form target wave patterns. When electrical synaptic coupling is activated, high-quality target wave 

patterns can still be observed even under the condition of gche = 0. As the strength of electrical 

synaptic coupling increases, the firing behavior of neurons gradually becomes highly ordered. In fact, 

existing studies have shown that electrical synaptic coupling is more effective than chemical 

coupling in achieving ordered states in the system [42]. A possible mechanism for this phenomenon 

is that chemical synapses only function when the presynaptic neuron fires, whereas electrical 

synapses can continuously and efficiently transmit the membrane potential of presynaptic neurons to 

postsynaptic neurons, thereby more effectively regulating the overall dynamical behavior of the 

network. Therefore, we comprehensively considered the combined effects of electrical synaptic 

coupling and inhibitory coupling on pattern formation in the neuronal networks; the results are 

shown in Figures 6 and 7. 
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Figure 6. Time evolution of spatial patterns is calculated at τ = 10 ms. For (a) D = 0.2 

ms/cm2, gche = 0.02 ms/cm2; (b) D = 0.2 ms/cm2, gche = 0.1 ms/cm2; (c) D = 0.3 ms/cm2, 

gche = 0.02 ms/cm2; (d) D = 0.3 ms/cm2, gche = 0.1 ms/cm2. The network can only 

maintain stable target wave patterns when the electrical coupling strength reaches 0.3 

ms/cm2, and increased inhibitory conductance accelerates target wave propagation. 

In the presence of only electrical synaptic coupling, when the coupling strength is 0.2 ms/cm2, 

the system can form perfect target wave patterns. However, when inhibitory chemical synaptic 

coupling is introduced, this ordered state is disrupted. Under the influence of inhibitory synaptic 

coupling, the target waves break during propagation, leading the system into a chaotic state, as 

shown in Figure 6(a). In this state, as the inhibitory synaptic conductance increases, the system 

further exhibits dynamic behaviors characterized by spiral wave fragments [see Figure 6(b)]. 

Electrical synaptic coupling tends to promote synchronization and ordered states in the neuronal 

network, while inhibitory chemical synaptic coupling disrupts this order through its delayed and 

nonlinear effects, resulting in the breakdown of target waves and the emergence of chaotic states. 

With the increase in inhibitory conductance, the system's dynamics become more complex, 

ultimately manifesting as the formation of spiral wave fragments. This phenomenon reveals the 

intricate mechanisms of competition and synergy between electrical and chemical synapses in 

neuronal networks. Furthermore, by comparing Figures 2 and 6(c) and (d), it can be observed that the 

introduction of inhibitory synaptic coupling significantly enhances the propagation speed of the 

original target waves. As the inhibitory synaptic conductance increases from 0 to 0.02 ms/cm2 and 

further to 0.1 ms/cm2, the wave rings of the target waves gradually become sparser. 
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Figure 7. Time series of sampling points (50, 50) in panels (a1), (b1), (c1), (d1), and (30, 

30) in panels (a2), (b2), (c2), (d2) within neural networks at τ = 10 ms. (a1)(a2) D = 0.2 

ms/cm2, gche = 0.02 ms/cm2; (b1)(b2) D = 0.2 ms/cm2, gche = 0.1 ms/cm2; (c1) (c2) D = 

0.3 ms/cm2, gche = 0.02 ms/cm2; (d1)(d2) D = 0.3 ms/cm2, gche = 0.1 ms/cm2. Inhibitory 

synapses reduce neuronal firing amplitude but increase firing frequency during target 

wave states.  

Similarly, we calculated and analyzed the membrane potential time series of the sampling points 

(30, 30) and (50, 50) in the neuronal network. Figure 7 indicates that inhibitory synapses 

significantly suppress the firing behavior of neurons, manifested as a reduction in the amplitude of 

membrane potentials. However, when the system is in the ordered state of target wave patterns, an 

increase in inhibitory synaptic conductance promotes a rise in neuronal firing frequency. This finding 

is consistent with the aforementioned results, suggesting that an increase in inhibitory synaptic 

conductance can accelerate the propagation speed of target waves in the neuronal network. The 

research results indicate that inhibitory synaptic conductance significantly enhances the 

synchronicity of neuronal firing activity in neural networks. Building upon this discovery, we further 

conducted a quantitative analysis of the dependency between the synchronization factor R and gche 

with different electrical synaptic coupling strength D; the results are shown in Figure 8. 
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Figure 8. Dependence of the synchronization factor R of the coupled network at τ = 10 

ms. The black, red, and blue line segments correspond to the coupling strengths D = 0.1 

ms/cm2, D = 0.2 ms/cm2, and D = 0.3 ms/cm2, respectively. 

As gche increases from 0 to 1.0 mS/cm2, under different electrical coupling strengths, the value 

of the synchronization factor R exhibits a trend of sharply rising from a minimal value to near 1 

before stabilizing (Figure 8). It is noteworthy that the critical value of gche (inflection point) required 

for the system to achieve complete synchronization is closely related to the electrical synaptic 

coupling strength D: the larger the D value, the greater the gche value needed for the system to attain 

complete synchronization. This phenomenon further confirms the enhancing effect of synaptic 

conductance on the synchronization of neuronal networks. When the synchronization factor of the 

system is at a low value, it indicates that the system may be in a chaotic state or an ordered state 

dominated by target waves; when the synchronization factor increases to 1, it signifies that the 

neuronal firing activities within the system have reached a high degree of synchronization, at which 

point the target wave patterns will no longer emerge in the system. Previous studies have 

demonstrated that the oscillatory patterns of neural networks are significantly modulated by 

inhibitory synaptic delays [43]. Building upon this foundation, the present research further 

investigates the regulatory mechanisms and the underlying principles of how synaptic delays 

influence the pattern dynamics in neuronal networks. The results are shown in Figure 9. 

The results depicted in Figure 9 elucidate that the oscillatory pattern is significantly influenced 

by the inhibitory synaptic delay. For appropriate values of τ, a well-ordered oscillatory pattern can be 

discerned. However, if the delay τ is sufficiently small, we can observe the absence of target waves in 

the network, which implies that the neurons within the system are in a state of quiescence, and a 

sufficiently large external stimulus current does not induce oscillations in the neuronal membrane 

potential. It is only when the delay increases to a certain extent that perfect target waves emerge in 

the network, and the system enters an ordered state at this point. Numerical simulation results further 
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indicate that the greater the delay, the faster the propagation speed of the target waves, that is, the 

smaller the oscillation period of the neuronal membrane potential.  

 

Figure 9. Time evolution of spatial patterns is calculated at D = 0.3 ms/cm2, gche = 0.02 

ms/cm2. (a) τ = 0.01 ms (no target wave formation); (b) τ = 0.05 ms (target wave patterns 

emerge); (c) τ = 0.4 ms (well-defined target waves appear); (d) τ = 20 ms (large 

waveform interval). 

Theoretically, the emergence of target wave patterns in the network occurs only when the 

inhibitory synaptic delay is sufficiently long. Under these conditions, the firing frequency of neurons 

within the network increases. It is evident that the longer the inhibitory synaptic delay τ, the shorter 

the firing period of each neuron becomes. Furthermore, once the inhibitory synaptic currents induced 

by the first neuron begin to take effect, these currents tend to reduce the membrane potential of the 

neurons and prolong their firing cycle. During the course of numerical simulations, we observed that 

in the absence of robust synaptic coupling strength, even with adjustments to the inhibitory synaptic 

delay, the oscillatory modes within the neuronal network are unlikely to undergo significant abrupt 

changes (see Figure 10). 

When the inhibitory synaptic parameter gche is small, the system exhibits a characteristic weak 

synchronization. As shown in Figure 11(b) and (c), with increasing synaptic delay time (D = 0.3 

ms/cm2), the synchronization factor R remains within a low range (0.006~0.014), indicating that 

neuronal clusters fail to establish effective synchronous firing patterns. When gche increases to 0.3 

ms/cm2, the system demonstrates significant synchronization enhancement. Numerical results in 
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Figure 11 reveal a three-stage transition in R values with progressive delay time: rapid progression 

from weak (R ≈ 0.1) through intermediate (R ≈ 0.5) to strong synchronization (R = 1). Notably, the 

system maintains stable R values under prolonged delays after achieving strong synchronization, 

demonstrating robust behavior. These results demonstrate the dual regulatory function of inhibitory 

synaptic delays as a critical parameter for oscillation mode selection; their temporal characteristics 

directly determine network synchronization states, and sustained inhibitory delays establish stable 

phase-locking mechanisms that provide the necessary dynamical foundation for spatiotemporal 

pattern formation, particularly target waves. This discovery offers new theoretical insights into 

pattern selection mechanisms in neural information encoding. 

 

Figure 10. Dependence of the synchronization factor R of the coupled network at gche = 

0.02 ms/cm2 for the coupling strengths (a) D = 0.1 ms/cm2; (b) D = 0.2 ms/cm2; (c) D = 

0.3 ms/cm2. 

 

Figure 11. Dependence of the synchronization factor R of the coupled network at gche = 

0.3 ms/cm2. Coupling strengths (a) D = 0.1 ms/cm2; (b) D = 0.2 ms/cm2; (c) D = 0.3 

ms/cm2. 
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4. Discussion 

This study employs numerical simulations to elucidate the synergistic regulatory mechanisms of 

electrical synaptic coupling and inhibitory chemical synaptic coupling in the formation of 

spatiotemporal patterns in neuronal networks. Electrical synaptic coupling strength is a critical factor 

in target wave formation. When the coupling strength reaches 0.2 ms/cm2, the network generates 

regular target wave patterns, with wave propagation speed significantly increasing as D rises. This 

demonstrates that electrical synapses, through continuous and efficient membrane potential 

transmission, effectively promote the emergence of ordered network states. Increasing the time delay 

τ markedly accelerates target wave propagation, with the system transitioning to an ordered state 

when τ > 0.4 ms. Enhancing synaptic conductance disrupts target wave structures, inducing chaotic 

states such as spiral wave fragments, while simultaneously increasing neuronal firing frequency. As 

the coupling strength D increases, the system undergoes a distinct three-stage phase transition in 

synchronization: evolving from an initially desynchronized state (R ≈ 0) to a critical transition 

regime before reaching complete synchronization (R ≈ 1). Electrical synaptic coupling establishes 

rapid phase synchronization as the foundational framework for pattern formation, while inhibitory 

synapses enable plasticity-driven pattern modulation through spatiotemporal tuning. This regulatory 

paradigm may underpin dynamic information processing in neural computations. 

This study employed computational neuroscience modeling to systematically investigate the 

regulatory mechanisms of inhibitory chemical and electrical synaptic coupling on spatiotemporal 

pattern formation in interneuron networks. By constructing a biophysical neural network based on 

the WB model, we demonstrated that inhibitory synapses can induce diverse firing patterns—from 

synchronous oscillations to traveling wave propagation—through modulation of postsynaptic current 

dynamics. Notably, our results elucidate the synergistic regulation of inhibitory synaptic strength and 

temporal delay in selecting network dynamic patterns. These findings not only advance our 

understanding of neural information–encoding mechanisms but, more importantly, establish a novel 

theoretical framework for explaining abnormal neural oscillations in epilepsy and other brain 

disorders. This work provides important insights for developing targeted synaptic modulation 

strategies in neurological disease treatment. 
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