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Abstract: Interneurons modulate the excitability of neural networks and maintain neural activity
balance via inhibitory or excitatory synaptic connections. Here, we studied the formation of patterns
of interneuronal networks with inhibitory synaptic coupling. We found that both electrical synaptic
coupling and inhibitory synaptic coupling play a crucial role in the formation of neural network
patterns. In addition, delayed inhibitory synapses can also affect the transition of target waves to
chaotic states. As the strength of electrical synaptic coupling increases, the firing behavior of neurons
gradually becomes highly ordered. When the inhibitory synaptic delay reaches a critical value, we
observe a transition in oscillatory patterns from an ordered state to a synchronized state. We further
investigated how inhibitory synaptic conductance influences the formation of oscillatory patterns in
the network. The study reveals that increasing synaptic conductance disrupts the structure of target
waves, inducing chaotic states such as spiral wave fragmentation, while simultaneously elevating
neuronal firing rates.
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1. Introduction

As a fundamental spatiotemporal ordered pattern in neural networks, target waves can serve as
persistent pacemakers that precisely regulate the spatial distribution of neuronal activity and maintain
global rhythmic synchronization [1-3]. This wave-dynamic phenomenon can be initiated by local
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electrical stimulation and propagate across the neural network [4]. Research demonstrates that the
formation and propagation of target waves are critically dependent on the network's coupling
strength and topological connectivity [5]. Under optimized parameters, target waves can fully
dominate the network space, driving highly synchronized electrical activity in neuronal populations
[6-8]. Remarkably, target waves exhibit exceptional noise robustness, maintaining stable propagation
even under significant noise interference while effectively suppressing pathological patterns like
spiral waves and spatiotemporal chaos [9]. Physiologically, this process bears a striking similarity to
the cardiac conduction system, where pacemaker signals from the sinoatrial node propagate as target
waves through myocardial tissue to coordinate rhythmic contraction-relaxation cycles [10,11].
In-depth investigation of target wave mechanisms not only provides novel insights into neural
network dynamics but also holds translational potential, and the targeted induction of target waves to
intervene in abnormal neural activities such as epileptic seizures may pioneer new therapeutic
approaches for neurological disorders [12—15].

In recent years, significant progress has been made in the study of intermediate neural networks,
particularly in their role in regulating neural rhythms and network dynamics [16—18]. Research
demonstrates that interneurons can modulate the synchrony and periodicity of neural activity not
only through intricate network architectures but also via inhibitory chemical synapses and electrical
synapses [19,20]. For instance, cutting-edge studies have identified that specific interneuron subtypes
play pivotal roles in generating high-frequency gamma oscillations [21]. Furthermore, computational
modeling and experimental evidence indicate that dynamic modifications in synaptic plasticity and
connection strength within interneuron networks can substantially impact the stability of neural
oscillations and information processing efficiency [22-24]. Notably, emerging research has
uncovered the crucial involvement of interneuron networks in neurodevelopmental disorders.
Functional abnormalities in these networks may underlie rhythm disturbances and cognitive
impairments observed in autism spectrum disorders and schizophrenia [25]. These findings collectively
highlight how interneurons serve as master regulators of network synchronization and rhythmic
activities through their diverse connectivity patterns and dynamic regulatory mechanisms [26].

The delay in information transmission is a fundamental characteristic of neuronal dynamics,
primarily arising from the physical constraints of conduction velocity in neural electrical signals and
the inherent temporal delays during dendritic integration and synaptic transmission [27]. Research
indicates that electrical synapses, due to their direct electrical coupling properties, typically exhibit
shorter synaptic delays [28-30]. Moreover, the functional synergy between electrical and chemical
synapses can significantly enhance the synchronization efficiency of neural networks and achieve
sub-millisecond precision in temporal coding [31,32]. This dual-synaptic cooperative mechanism
plays a critical role in neural circuits requiring rapid information processing. From the perspective of
information processing, synaptic delay is not merely a simple conduction lag but also a crucial
parameter for spatiotemporal encoding of neural information [33]. Hybrid synapse modeling
uncovers their joint control over neural synchronization and complexity. [34,35]. Experimental
evidence demonstrates that synaptic delay dynamically regulates synaptic weights by precisely
modulating the window of spike-timing-dependent plasticity. This mechanism is considered the
foundational neural basis for working memory formation and associative learning [36]. Under
pathological conditions, abnormalities in synaptic delay are closely associated with various
neuropsychiatric disorders. Recent studies have found that the dispersion of synaptic delays in the
prefrontal cortex of autism patients increases by approximately 40%, impairing gamma oscillation
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synchronization, which may underlie their executive dysfunction [37]. Similarly, abnormal
fluctuations in synaptic delays have been observed in the hippocampal-prefrontal circuits of
schizophrenia patients. Notably, the dynamic regulation of synaptic delays during
development—particularly during critical periods—is essential for the functional optimization of
neural networks. Dysregulation of this process may contribute to neurodevelopmental disorders [38].
Although the pivotal role of interneuron networks in generating rhythmic activity has been
extensively studied, the impact of delays in inhibitory coupling on synchronization properties, wave
propagation, and network stability remains unclear. Investigating how these delays govern the
generation and modulation of rhythmic oscillations is thus critical, providing insights into both
normal brain function and pathological states such as epilepsy. Therefore, we investigated the pattern
dynamics in a two-dimensional interneuron network coupled by delayed inhibitory synapses and fast
electrical synapses, with a particular focus on how inhibitory synaptic delays affect the propagation
of target waves in the network. In our research, we discovered that when the delay time of inhibitory
synapses reaches a certain threshold, the neural network abruptly transitions from a resting state to a
highly ordered state, accompanied by the emergence of target waves. Further analysis revealed that
both the synaptic conductance strength and delay time of inhibitory synapses play crucial roles in the
formation of this ordered network state. This finding not only provides compelling evidence once
again for the central role of time delays in the dynamic behavior of neural networks but also
highlights the key driving function of synaptic mechanisms in the generation of target waves.

2. Materials and methods

The dynamics of fast-spiking interneurons is described by the Wang-Buzsaki (WB) model [39].
It has a form similar to the classical Hodgkin—Huxley model [40,41], with details as follows:

C%—YZ—gNami(\/)h(\/ _ENa)_gKn4(\/ —E)—9g.(V —E )+ 1,

dh

&= pla, (V)L -, 0
& pla, v)a-m)-4,0)nl

The system variables include membrane potential (V), sodium current inactivation parameter (%),
and potassium current activation parameter (n). The six kinetic equations governing channel gating
dynamics are defined as:
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m, (V) = a, (V) /[, (V) + £, V)],
a,(V)=0.1(V —35) /[{1-exp[-0.1(V +35)]},
(V) = dexp[~(V +60)/18],
a,(V)=0.07exp[-(V +58)/20],

B, (V) =1/{exp[-0.1(V +28)]+1},
a,(V)=0.01V +34) /[{1-exp(V +34)},
B,V)=0.125exp[—(V +44)/80].

2

The parameter C denotes the membrane capacitance. The parameters gna, gk, and gL are the
maximum conductances for sodium, potassium, and leak ion channels, respectively. Meanwhile, ENa,
Ex, and EL denote Nernst equilibrium potentials for respective ionic species. The parameters are set

as follows: C = 1 pF/cm?, gna = 35 mS/cm?, gk = 9 mS/cm?, g = 0.1 mS/cm?, Ena =
=90 mV, EL =—-65 mV, and ¢ = 5. The parameter l..: represents an external stimulus current.
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The WB model has a saddle-node bifurcation on an invariant cycle at Jev = 0.16 nA/cm?. From
the bifurcation diagram in Figure 1(a), it can be clearly observed that as the external stimulus current
gradually increases, neurons transition from a resting state to a state of periodic firing. Meanwhile,
the interspike intervals become progressively shorter. This indicates that external stimuli can
significantly promote neuronal firing, and the firing frequency is positively correlated with the
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intensity of the external stimulus current. From the time series diagram, it can be observed that when
the stimulation current is 0.12 pA/cm?, the neuron remains in a resting state [Figure 1(b1)]; however,
when the current increases above 0.16 pA/cm?, the neuron begins to enter a firing state, as shown in
Figure 1(b2). Previous studies have shown that when the stimulus current approaches 1.0 pA/cm?, as
shown in Figure 1(b3), the firing frequency of neurons reaches 60 Hz within the gamma range [39].

We constructed a neural network model consisting of NxN fast-spiking interneurons with
nearest-neighbor coupling. For simplicity, neurons are interconnected via inhibitory synapses and
electrical synapses. All synapses are bidirectionally conductive, and self-connections of neurons are
excluded. Building on the instantaneous transmission properties of electrical synapses, while
specifically considering signal latency effects in inhibitory pathways, the network employs the WB
model (Eq 1) to describe neuronal dynamics. This model inherits the theoretical framework of the
classical Hodgkin—Huxley model [40], and the specific dynamical equations are as follows:

dv;

C d_tu = _gNami,u (Vihy (V —Ey.) - gKng(\/ij —E) =90V —ED) iy + Ve  Lepesi

dh.

d_tuz(o[ah,ij (Vij)(l_hij)_ﬂh,ij (Vij)hij]’ 3)
dn,

E = (P[an,ij (Vij)(l_ N;; ) _ﬂn,ij (Vij )nij I

where the subscript 7, j stands for the (7, j)th neuron in the networks. In the present paper, the total
number of neurons is N = 100. The three variables of the (i, j) neuron correspond to the three
variables in Eq 1. In particular, Ze.; and Icie;; denote the electrical coupling current and the inhibitory
synaptic current received by the neuron at position (i, j), respectively. These currents are
characterized as follows:

Iel,ij =D Z(Vkl _Vij)’
(K,1eN(i, )
Iche,ij =—0che % Sche ki (Vij - Eche)l 4)
(k,IeN(i, )
NG, 1) ={i+1 0).G-17).G, i+, G j-D)}

In this equation, D is the electrical synaptic strength from neuron (k, /) to neuron (i, j). gche and
Ecre are the synaptic conductance and the reversal potential, respectively. In this study, the reversal
potential is Ecie= —75 mV, to make sure that the synaptic current is inhibitory. The factor of 1/4 in
the expression for Iere,j is due to the two-dimensional regular network structure, where each node has
four nearest neighbors. The variables sciex in Eq (4) represent the fractions of open synaptic channels,
and are modeled as follows:

ds,, 1 1
hekl _ (04 (1_Sche,kl)__sche,k|'
dt 1+exp[-0.5(V,, —0)] ¢

()

Where a is the opening rate of the synaptic channel, and @ represents the synaptic threshold. In the
study, a and 6 are set to 12 ms' and 0 mV. To measure the formation of patterns in neuronal
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networks, we have introduced synchronization factors that statistically characterize collective
dynamical behaviors. These factors aim to quantify the coordinated activity of neuronal networks
and their spatiotemporal dynamical properties, thereby revealing the mechanisms and principles
underlying pattern formation.

(F?)-(F) 1

N N F= Ziivijzvij' 6
wdsli) VRSO

j=1 i=1

R=

j=1 i=1

By calculating the mean field activity of the neuronal network, we assess the overall
synchronization. The mean field synchronization factor reflects the consistency of collective
behavior among neurons in the network, with higher values indicating stronger synchronization.

3. Results

The study employs the Euler difference method for numerical simulation of differential
equations, with a time step of 0.02 ms. The network adopts no-flux boundary conditions, and for
simplicity, the initial values of the network nodes are set to 0.1. For target wave generation in
neuronal networks, we applied 1.0 pA/cm? to the central [48,52]x[48,52] region versus 0.12 pA/cm?
peripherally, exploiting symmetric stimulation for controlled pattern formation. This setup aims to
induce neuronal activity in specific areas through localized high stimulation currents, thereby
observing the formation and propagation mechanisms of patterns within the network. We first
present the fundamental simulation results, analyzing the impact of fast electrical synaptic coupling
on the generation and propagation of target waves in intermediate neuronal networks in the absence
of delayed inhibitory synaptic coupling.

In Figure 2, typical patterns of neuronal networks are plotted under different electrical coupling
strengths in the absence of chemical synaptic coupling (gcre = 0). The results clearly demonstrate that
electrical synaptic coupling plays a significant role in the pattern formation process within the
neuronal network. In the absence of fast electrical synaptic coupling in Figure 2(a), when D = 0, due
to the heterogeneity in externally applied currents across different regions of the network, only
neurons within the region (i, j) € (48, 52)x(48, 52) exhibit firing activity, while neurons in other
regions remain in a resting state. As the strength of electrical coupling increases, the neuronal network
begins to display disordered patterns. This phenomenon arises because the electrical coupling strength
within the network is weak, and the interactions between neurons are insufficient to establish an
ordered activity pattern. However, when the electrical coupling strength reaches a certain threshold
[e.g., D = 0.2 ms/cm? in Figure 2(c)], regular target waves emerge in the neuronal network. Further
increasing the coupling strength to 0.3 does not cause the target waves to break up during
propagation; instead, their propagation speed significantly increases.

In Figure 3, we present the membrane potential firing sequences of two sampling points, (30, 30)
and (50, 50), in the neuronal network. An external current of 1.0 pA/cm? is applied at the position
(50, 50). The numerical simulation results indicate that, in addition to the influence of the external
current, electrical coupling also significantly affects the firing states of the neurons. When the
coupling strength is weak, target waves do not emerge in the neuronal network, meaning that the
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membrane potential firing of neurons at the network center is insufficient to drive the firing of
surrounding neurons. This is corroborated by the resting state of the sequence at the (30, 30)
sampling point, as shown in Figure 3 (a2). As the coupling strength D increases to 0.1 ms/cm?, the
propagating target wave undergoes rupture, driving the network into a chaotic state [Figure 2 (b)].
This chaotic state further influences the firing behavior of neurons [Figure 3(bl), (b2)], which may
be attributed to the bidirectional nature of electrical coupling. In other words, neurons interact with
and alter each other's dynamical properties through mutual influence. As the electrical coupling
strength further increases, a regular target wave pattern gradually forms in the neural network,
leading to a highly ordered state in the entire system. The discharge behavior of neurons also exhibits
almost periodic oscillation characteristics [see Figure 3 (cl), (c2)]. When the coupling strength
increases from 0.2 ms/cm?to 0.3 ms/cm? [Figure 3(d1), (d2)], the waveform of target waves in the
system gradually becomes sparse. From the time series of sampling points, it can be observed that
the firing frequency of neurons has undergone significant changes, and the distance traveled by
waves per unit time has significantly increased. This phenomenon indicates that the enhancement of
electrical coupling strength can significantly accelerate the propagation of target waves in the system.
In addition, the results in Figure 3 indicate that electrical synaptic coupling provides strong
mechanistic support for promoting the formation of ordered states in the network. To validate this
mechanism, the dependence of target wave dynamics on the strength of electrical coupling was
quantitatively analyzed. The wave speed was calculated as follows: the propagation time required for
the wavefront to reach different radial distances was measured from the network center (50, 50), and
the speed was computed using speed = distance/propagation time. Finally, the average speed was
determined across four principal directions (up, down, left, right) to obtain a robust estimate. The
results are shown in Figure 4.
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Figure 2. Time evolution of spatial patterns is calculated at gece = 0. For electrical
coupling strength (a) D = 0, localized neuronal firing only; (b) D = 0.1 ms/cm?,
disorganized firing pattern; (c) D = 0.2 ms/cm?, emergence of regular target waves; (d) D
= 0.3 ms/cm?, target wave accelerates propagation and maintains stability.
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Figure 3. Time series of sampling point (50, 50) and (30, 30) positions in neural networks at
gehe = 0. For electrical coupling strength (al)(a2) D = 0; (b1)(b2) D = 0.1 ms/cm?; (c1)(c2) D
= 0.2 ms/cm?; (d1)(d2) D = 0.3 ms/cm?. Electrical coupling governs wave formation and
propagation efficiency, and ordered patterns require critical coupling strength.
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As demonstrated in Figure 4, the propagation speed of target waves in the system was observed
to increase significantly with enhanced electrical coupling strength, which is consistent with the
conclusion drawn from Figure 3 that electrical synaptic coupling facilitates the formation of ordered
states. Next, we focused on analyzing the impact of inhibitory synapses on pattern formation in
neuronal networks and the underlying mechanisms. The results are shown in Figure 5.
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Figure 5. Time evolution of spatial patterns and time series of sampling points in neural
networks at 7 = 10 ms and electrical coupling strength D = 0. For the synaptic
conductance (a) gehe = 0.02 ms/cm?; (b) gere = 0.1 ms/cm?; (c) time series of sampling
point (30, 30) and gcre = 0.02 ms/cm?; (d) time series of sampling point (50, 50) and gene
= 0.02 ms/cm?; (e) time series of sampling point (30, 30) and geke = 0.1 ms/cm?; (f) time
series of sampling point (50, 50) and gere = 0.1 ms/cm?. Target wave modes cannot be
generated in the absence of electrical coupling, and the network consequently loses its
spatiotemporal self-organization capability.

Figure 5 illustrates the pattern dynamics in the neuronal network with only inhibitory synaptic
coupling. For simplicity, the delay of inhibitory synaptic coupling was set to a fixed value of 10 ms.
The results indicate that, in the absence of electrical synaptic coupling, the neuronal network fails to
form target wave patterns. When electrical synaptic coupling is activated, high-quality target wave
patterns can still be observed even under the condition of gecie = 0. As the strength of electrical
synaptic coupling increases, the firing behavior of neurons gradually becomes highly ordered. In fact,
existing studies have shown that electrical synaptic coupling is more effective than chemical
coupling in achieving ordered states in the system [42]. A possible mechanism for this phenomenon
is that chemical synapses only function when the presynaptic neuron fires, whereas electrical
synapses can continuously and efficiently transmit the membrane potential of presynaptic neurons to
postsynaptic neurons, thereby more effectively regulating the overall dynamical behavior of the
network. Therefore, we comprehensively considered the combined effects of electrical synaptic

coupling and inhibitory coupling on pattern formation in the neuronal networks; the results are
shown in Figures 6 and 7.
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Figure 6. Time evolution of spatial patterns is calculated at 7 = 10 ms. For (a) D = 0.2
ms/cm?, gere = 0.02 ms/cm?; (b) D = 0.2 ms/cm?, gere = 0.1 ms/cm?; (c) D = 0.3 ms/cm?,
geche = 0.02 ms/cm?; (d) D = 0.3 ms/cm?, gere = 0.1 ms/cm?. The network can only
maintain stable target wave patterns when the electrical coupling strength reaches 0.3
ms/cm?, and increased inhibitory conductance accelerates target wave propagation.

In the presence of only electrical synaptic coupling, when the coupling strength is 0.2 ms/cm?,
the system can form perfect target wave patterns. However, when inhibitory chemical synaptic
coupling is introduced, this ordered state is disrupted. Under the influence of inhibitory synaptic
coupling, the target waves break during propagation, leading the system into a chaotic state, as
shown in Figure 6(a). In this state, as the inhibitory synaptic conductance increases, the system
further exhibits dynamic behaviors characterized by spiral wave fragments [see Figure 6(b)].
Electrical synaptic coupling tends to promote synchronization and ordered states in the neuronal
network, while inhibitory chemical synaptic coupling disrupts this order through its delayed and
nonlinear effects, resulting in the breakdown of target waves and the emergence of chaotic states.
With the increase in inhibitory conductance, the system's dynamics become more complex,
ultimately manifesting as the formation of spiral wave fragments. This phenomenon reveals the
intricate mechanisms of competition and synergy between electrical and chemical synapses in
neuronal networks. Furthermore, by comparing Figures 2 and 6(c) and (d), it can be observed that the
introduction of inhibitory synaptic coupling significantly enhances the propagation speed of the
original target waves. As the inhibitory synaptic conductance increases from 0 to 0.02 ms/cm? and
further to 0.1 ms/cm?, the wave rings of the target waves gradually become sparser.
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Figure 7. Time series of sampling points (50, 50) in panels (al), (bl), (cl), (d1), and (30,
30) in panels (a2), (b2), (c2), (d2) within neural networks at z = 10 ms. (al)(a2) D = 0.2
ms/cm?, gere = 0.02 ms/cm?; (b1)(b2) D = 0.2 ms/cm?, geche = 0.1 ms/cm?; (c1) (c2) D =
0.3 ms/cm?, gehe = 0.02 ms/cm?; (d1)(d2) D = 0.3 ms/cm?, gere = 0.1 ms/cm?. Inhibitory
synapses reduce neuronal firing amplitude but increase firing frequency during target
wave states.

Similarly, we calculated and analyzed the membrane potential time series of the sampling points
(30, 30) and (50, 50) in the neuronal network. Figure 7 indicates that inhibitory synapses
significantly suppress the firing behavior of neurons, manifested as a reduction in the amplitude of
membrane potentials. However, when the system is in the ordered state of target wave patterns, an
increase in inhibitory synaptic conductance promotes a rise in neuronal firing frequency. This finding
is consistent with the aforementioned results, suggesting that an increase in inhibitory synaptic
conductance can accelerate the propagation speed of target waves in the neuronal network. The
research results indicate that inhibitory synaptic conductance significantly enhances the
synchronicity of neuronal firing activity in neural networks. Building upon this discovery, we further
conducted a quantitative analysis of the dependency between the synchronization factor R and gcre
with different electrical synaptic coupling strength D; the results are shown in Figure 8.
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Figure 8. Dependence of the synchronization factor R of the coupled network at z = 10
ms. The black, red, and blue line segments correspond to the coupling strengths D = 0.1
ms/cm?, D = 0.2 ms/cm?, and D = 0.3 ms/cm?, respectively.

As gehe increases from 0 to 1.0 mS/cm?, under different electrical coupling strengths, the value
of the synchronization factor R exhibits a trend of sharply rising from a minimal value to near 1
before stabilizing (Figure 8). It is noteworthy that the critical value of gere (inflection point) required
for the system to achieve complete synchronization is closely related to the electrical synaptic
coupling strength D: the larger the D value, the greater the gcre value needed for the system to attain
complete synchronization. This phenomenon further confirms the enhancing effect of synaptic
conductance on the synchronization of neuronal networks. When the synchronization factor of the
system is at a low value, it indicates that the system may be in a chaotic state or an ordered state
dominated by target waves; when the synchronization factor increases to 1, it signifies that the
neuronal firing activities within the system have reached a high degree of synchronization, at which
point the target wave patterns will no longer emerge in the system. Previous studies have
demonstrated that the oscillatory patterns of neural networks are significantly modulated by
inhibitory synaptic delays [43]. Building upon this foundation, the present research further
investigates the regulatory mechanisms and the underlying principles of how synaptic delays
influence the pattern dynamics in neuronal networks. The results are shown in Figure 9.

The results depicted in Figure 9 elucidate that the oscillatory pattern is significantly influenced
by the inhibitory synaptic delay. For appropriate values of 7, a well-ordered oscillatory pattern can be
discerned. However, if the delay 7 is sufficiently small, we can observe the absence of target waves in
the network, which implies that the neurons within the system are in a state of quiescence, and a
sufficiently large external stimulus current does not induce oscillations in the neuronal membrane
potential. It is only when the delay increases to a certain extent that perfect target waves emerge in
the network, and the system enters an ordered state at this point. Numerical simulation results further

AIMS Mathematics Volume 10, Issue 5, 10976-10993.



10988

indicate that the greater the delay, the faster the propagation speed of the target waves, that is, the
smaller the oscillation period of the neuronal membrane potential.
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Figure 9. Time evolution of spatial patterns is calculated at D = 0.3 ms/cm?, gese = 0.02
ms/cm?. (a) 7= 0.01 ms (no target wave formation); (b) 7 = 0.05 ms (target wave patterns
emerge); (c) 7 = 0.4 ms (well-defined target waves appear); (d) 7 = 20 ms (large
waveform interval).

Theoretically, the emergence of target wave patterns in the network occurs only when the
inhibitory synaptic delay is sufficiently long. Under these conditions, the firing frequency of neurons
within the network increases. It is evident that the longer the inhibitory synaptic delay 7, the shorter
the firing period of each neuron becomes. Furthermore, once the inhibitory synaptic currents induced
by the first neuron begin to take effect, these currents tend to reduce the membrane potential of the
neurons and prolong their firing cycle. During the course of numerical simulations, we observed that
in the absence of robust synaptic coupling strength, even with adjustments to the inhibitory synaptic
delay, the oscillatory modes within the neuronal network are unlikely to undergo significant abrupt
changes (see Figure 10).

When the inhibitory synaptic parameter gcre is small, the system exhibits a characteristic weak
synchronization. As shown in Figure 11(b) and (c), with increasing synaptic delay time (D = 0.3
ms/cm?), the synchronization factor R remains within a low range (0.006~0.014), indicating that
neuronal clusters fail to establish effective synchronous firing patterns. When gcre increases to 0.3
ms/cm?, the system demonstrates significant synchronization enhancement. Numerical results in
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Figure 11 reveal a three-stage transition in R values with progressive delay time: rapid progression
from weak (R = 0.1) through intermediate (R = 0.5) to strong synchronization (R = 1). Notably, the
system maintains stable R values under prolonged delays after achieving strong synchronization,
demonstrating robust behavior. These results demonstrate the dual regulatory function of inhibitory
synaptic delays as a critical parameter for oscillation mode selection; their temporal characteristics
directly determine network synchronization states, and sustained inhibitory delays establish stable
phase-locking mechanisms that provide the necessary dynamical foundation for spatiotemporal
pattern formation, particularly target waves. This discovery offers new theoretical insights into
pattern selection mechanisms in neural information encoding.
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4, Discussion

This study employs numerical simulations to elucidate the synergistic regulatory mechanisms of
electrical synaptic coupling and inhibitory chemical synaptic coupling in the formation of
spatiotemporal patterns in neuronal networks. Electrical synaptic coupling strength is a critical factor
in target wave formation. When the coupling strength reaches 0.2 ms/cm?, the network generates
regular target wave patterns, with wave propagation speed significantly increasing as D rises. This
demonstrates that electrical synapses, through continuous and efficient membrane potential
transmission, effectively promote the emergence of ordered network states. Increasing the time delay
7 markedly accelerates target wave propagation, with the system transitioning to an ordered state
when 7 > 0.4 ms. Enhancing synaptic conductance disrupts target wave structures, inducing chaotic
states such as spiral wave fragments, while simultaneously increasing neuronal firing frequency. As
the coupling strength D increases, the system undergoes a distinct three-stage phase transition in
synchronization: evolving from an initially desynchronized state (R = 0) to a critical transition
regime before reaching complete synchronization (R = 1). Electrical synaptic coupling establishes
rapid phase synchronization as the foundational framework for pattern formation, while inhibitory
synapses enable plasticity-driven pattern modulation through spatiotemporal tuning. This regulatory
paradigm may underpin dynamic information processing in neural computations.

This study employed computational neuroscience modeling to systematically investigate the
regulatory mechanisms of inhibitory chemical and electrical synaptic coupling on spatiotemporal
pattern formation in interneuron networks. By constructing a biophysical neural network based on
the WB model, we demonstrated that inhibitory synapses can induce diverse firing patterns—from
synchronous oscillations to traveling wave propagation—through modulation of postsynaptic current
dynamics. Notably, our results elucidate the synergistic regulation of inhibitory synaptic strength and
temporal delay in selecting network dynamic patterns. These findings not only advance our
understanding of neural information—encoding mechanisms but, more importantly, establish a novel
theoretical framework for explaining abnormal neural oscillations in epilepsy and other brain
disorders. This work provides important insights for developing targeted synaptic modulation
strategies in neurological disease treatment.
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