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1. Introduction

The study of the exact solutions and dynamical behavior of nonlinear equations not only helps
to explain the essential properties and algebraic structure of soliton theory [1–3], but also plays
an important role in the rational explanation and practical application of corresponding natural
4093 phenomena [4–6]. For instance, the Biswas-Milovic equation (BME) has attracted a lot of
attention because it may explain the generation of modes and nonlinear wave dynamics in a range
of physical systems [7–9]. With its enlarged version that accounts for the effects of noise or random
perturbations, the stochastic BME provides a more realistic description of dynamic behaviors in
complex environments in real-world applications [10]. The discovery of soliton solutions in nonlinear
differential equations is a compelling area of research [11, 12]. Multiple methodologies can be used
to examine the soliton solutions. The translation of the Making NLDE into non-linear ordinary
differential equations (ODE) is an innovative methodology [13–15]. Solitons have the remarkable
ability to traverse extensive distances in optical fibers without undergoing distortion [16, 17]. The
fiber’s precise dispersion and nonlinearity equilibrium, which ensure the soliton maintains its form
throughout transit, contribute to its distinctive quality [18–20]. Utilizing this phenomenon, optical
solitons significantly enhance data transmission over long distances, thereby promoting global
communication. Localized electromagnetic waves, termed optical solitons, sustain a uniform intensity
despite the effects of nonlinearity and dispersion. This property renders them highly advantageous for
this application [21, 22], Kudryashov’s enhanced approach [23, 24], Kudryashov’s auxiliary equation
method [25], the new Kudryashov method [26–28]-Hirota bilinear method [29]. Recent developments
in a number of approaches have improved soliton solutions for NLDEs. The methods used are
the following: Lie symmetry analysis method and the exploration of bifurcation analysis [30, 31],
Perturbation Binary Salp Swarm Algorithm [32], modified extended tanh method [33], extended
transformed rational function algorithm [34] and the F-expansion scheme [35], the auxilary equation
method, nonstandard finite difference discretization method [36–38], and the general projective Riccati
equations approach [39–41]. The multiple exp-function method [42,43]- the Riccati modified extended
simple equation method [44], contain a description of the integrable (2+1)-dimensional nonlinear
Schrödinger (NLS) equation by Radha and Lakshmanan [45]- ∂p

∂t −
∂2 p
∂x∂y − pq = 0,

∂q
∂x − 2 ∂

∂x

(
|p|2

)
= 0.

(1)

According to the researchers in [46], the extended modified auxiliary equation mapping method
is used to create a number of optical soliton solutions for the system. For the integrable (2+1)-
dimensional NLS, Hossieni et al. investigated the exact solutions [47]. Akinyemi et al. [48]
employed three novel techniques to search for analytical solutions to the integrable generalized
(2+1)-dimensional NLS equations. Exploring the temporal evolution of bifurcation behavior and
chaos analysis in the generalized integrable (2+1)-dimensional NLS is our primary objective of this
work. Furthermore, several optical soliton solutions with a conformable derivative for the generalized
integrable (2+1)-dimensional NLS were created using the novel Kudryashov approach. i∂

αp
∂tα + a1

∂2 p
∂x∂y + a2 pq = 0,

a3
∂q
∂x + a4

∂
∂y

(
|p|2

)
= 0,

(2)
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where a1, a2, a3, and a4 are real constants, and α denotes the variable fractional exponent. The most
recent study of this model entailed the improved modified Tanh expansion method, which led to the
creation of several optical soliton solutions [49]. Fractional calculus serves as a potent instrument for
elucidating many physical phenomena. Modern fractional-order models provide greater flexibility and
adaptability compared to traditional integer-order models. Our main aim of this research is to examine
the fundamental principles of conformable derivatives, which are essential for comprehending the
dynamics of many physical processes. Various applications in physics, engineering, economics, and
biology demonstrate the potential of conformable derivatives as an effective analytical instrument for
complex systems [50, 51].
Definition 1. Let d : (0,∞)→ R, α order conformable derivatives will be

Aα(d)(x) = lim
l→0

d(x + lx1−α) − d(x)
l

, (3)

for all x > 0 and l ∈ (0, 1] [52].

2. EDAM methodology

In this section, the EDAM approach is described. We examine the FPDE with the following
form [53–55]:

P(w, ∂αt w, ∂βy1
w, ∂γy2

w,w2, . . .) = 0, 0 < α, β, γ ≤ 1, (4)

where w is determined by y1, y2, y3, . . . , yr, and t. (4) is solved using the following steps:
Step 1.
Start by transforming the variables w(y1, y2, y3, . . . , yr) into W(Π), where Π is specified in a variety of
ways. (4) is changed by this transformation into a nonlinear ODE of the following form:

Q(W,W ′W,W ′, . . . ) = 0, (5)

where W in (5)) has derivatives with respect to Π. The constant(s) of integration can be obtained by
integrating (5) once or more times.
Step 2.
Next, we presume that the solution to (5) is as follows:

W(Π) =
M∑

l=−M

dl(ζ(Π))l, (6)

where dl (l = −M, . . . , 0, 1, 2, . . . ,M) are constants to be determined, and ζ(Π) is the general solution
of the following ODE:

ζ′(Π) = ln(℧)(a + eζ(Π) + f (ζ(Π))2), (7)

The constants a, e, and f are represented as ℧ , 0, 1.
Step 3.
By establishing the homogeneous balance between the highest order derivative and the largest
nonlinear term in (5), the positive integer M in (6) is obtained. More specifically, the two equations
provided in [33] can be used to estimate the balance number:

D(
dkW
dξk ) = M + k and D(W j(

dkW
dξk )l) = M j + l(k + M),
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In this case, D represents the degree of W(ξ) since D[W(ξ)] = m and j, k, and l are whole numbers.
Step 4.
Next, we integrate (5) to obtain (6), or the equation that results, and all the terms of ζ(Π) are arranged
in the same order.

The system of algebraic equations for dl(l = −M, ..., 0, 1, 2, ...,M) and other parameters is then
obtained by setting all the coefficients of the following polynomial to zero thereafter.
Step 5.
MAPLE is used to solve this collection of algebraic equations.
Step 6.
With the ζ(Π) (solution of Eq (7)), the unknown values are then found and inserted into (6) to obtain
the analytical answers to (4). It is possible to get the following families of solutions using the generic
solution of (7).
Family. 1: Assuming that f , 0 and Λ < 0, then, we have

ζ1(Π) = −
e

2 f
+

√
−Λ tan℧

(
1
2

√
−ΛΠ

)
2 f

,

ζ2(Π) = −
e

2 f
−

√
−Λ cot℧

(
1
2

√
−ΛΠ

)
2 f

,

ζ3(Π) = −
e

2 f
+

√
−Λ

(
tan℧

(√
−ΛΠ

)
+ sec℧

(√
−ΛΠ

))
2 f

,

ζ4(Π) = −
e

2 f
−

√
−Λ

(
cot℧

(√
−ΛΠ

)
+ csc℧

(√
−ΛΠ

))
2 f

,

and

ζ5(Π) = −
e

2 f
+

√
−Λ

(
tan℧

(
1
4

√
−ΛΠ

)
− cot℧

(
1
4

√
−ΛΠ

))
4 f

.

Family. 2: f , 0 and Λ < 0 are present.

ζ6(Π) = −
e

2 f
−

√
Λ tanh℧

(
1
2

√
ΛΠ

)
2 f

,

ζ7(Π) = −
e

2 f
−

√
Λ coth℧

(
1
2

√
ΛΠ

)
2 f

,

ζ8(Π) = −
e

2 f
−

√
Λ

(
tanh℧

(√
ΛΠ

)
+ isech℧

(√
ΛΠ

))
2 f

,

ζ9(Π) = −
e

2 f
−

√
Λ

(
coth℧

(√
ΛΠ

)
+ csch℧

(√
ΛΠ

))
2 f

,

and

ζ10(Π) = −
e

2 f
−

√
Λ

(
tanh℧

(
1
4

√
ΛΠ

)
− coth℧

(
1
4

√
ΛΠ

))
4 f

.
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Family. 3: For a f > 0 and e = 0, then, we have

ζ11(Π) =
√

a
f

tan℧
( √

a fΠ
)
,

µ12(Π) = −
√

a
f

cot℧
( √

a fΠ
)
,

ζ13(Π) =
√

a
f

(
tan℧

(
2

√
d fη

)
+ sec℧

(
2

√
a fΠ

))
,

ζ14(Π) = −
√

a
f

(
cot℧

(
2

√
a fΠ

)
+ csc℧

(
2

√
a fΠ

))
,

and

ζ15(Π) =
1
2

√
a
f

(
tan℧

(
1
2

√
a fΠ

)
− cot℧

(
1
2

√
a fΠ

))
.

Family. 4: For a f < 0 and e = 0, then, we have

ζ16(Π) = −
√
−

a
f

tanh℧
( √
−a fΠ

)
,

ζ17(Π) = −
√
−

a
f

coth℧
( √
−a fΠ

)
,

ζ18(Π) = −

√
−

d
f

(
tanh℧

(
2

√
−a fΠ

)
+ isech℧

(
2

√
−a fΠ

))
,

ζ19(Π) = −
√
−

a
f

(
coth℧

(
2

√
−a fΠ

)
+ csch℧

(
2

√
−d fΠ

))
,

and

ζ20(Π) = −
1
2

√
−

a
f

(
tanh℧

(
1
2

√
−a fΠ

)
+ coth℧

(
1
2

√
−a fΠ

))
.

Family. 5: For f = a and e = 0, then, we have

ζ21(Π) = tan℧ (aΠ) ,

ζ22(Π) = − cot℧ (aΠ) ,

µ23(Ω) = tan℧ (2 aΠ) + sec℧ (2 dΩ) ,

ζ24(Π) = − cot℧ (2 aΠ) + csc℧ (2 aΠ) ,

and

ζ25(Π) =
1
2

tan℧

(
1
2

aΠ
)
−

1
2

cot℧

(
1
2

aΠ
)
.

Family. 6: f = −a and e = 0, then, we have

ζ26(Π) = − tanh℧ (aΠ) ,
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ζ27(Π) = − coth℧ (aΠ) ,

ζ28(Π) = − tanh℧ (2 a) + isech℧ (2 aΠ) ,

ζ29(Π) = − coth℧ (2 aΠ) + csch℧ (2 aΠ) ,

and

ζ30(Π) = −
1
2

tanh℧

(
1
2

aΠ
)
−

1
2

coth℧

(
1
2

aΠ
)
.

Family. 7: Λ = 0, then, we have

ζ31(Π) = −2
a (eΩ ln℧ + 2)

e2 ln(℧)Ω
.

Family. 8: f = 0, e = ς and a = nς (with n , 0).

ζ32(Π) = ℧ςΠ − n.

Family. 9: For e = f = 0, then, we have

ζ33(Π) = aΩ ln(℧).

Family. 10: e = a = 0, then, we have

ζ34(Π) = −
1

fΠ ln(℧)
.

Family. 11: e , 0, f , 0 and a = 0:

ζ35(Π) = −
e

f (cosh℧ (eΠ) − sinh℧ (eΠ) + 1)
,

and
ζ36(Π) = −

e (cosh℧ (eΠ) + sinh℧ (eΠ))
f (cosh℧ (eΠ) + sinh℧ (eΠ) + 1)

.

Family. 12: e = ς, f = nς (with n , 0), and a = 0:

ζ37(Π) =
℧ςΠ

1 − n℧ςΠ
.

In the above solutions, Λ = e2 − 4d f .

sin℧ (Π) =
℧iΠ −℧−iΠ

2i
, cos℧ (Π) =

℧iΠ +℧−iΠ

2
,

sec℧ (Π) =
1

cos℧ (Π)
, csc℧ (Π) =

1
sin℧ (Π)

,

tan℧ (Π) =
sin℧ (Π)
cos℧ (Π)

, cot℧ (Π) =
cos℧ (Π)
sin℧ (Π)

.

Similarly,

sinh℧ (Π) =
℧Π −℧−Π

2
, cosh℧ (Π) =

℧Ω +℧−Π

2
,

sech℧ (Π) =
1

cosh℧ (Π)
, csch℧ (Π) =

1
sinh℧ (Π)

,

tanh℧ (Π) =
sinh℧ (Π)
cosh℧ (Π)

, coth℧ (Π) =
cosh℧ (Π)
sinh℧ (Π)

.
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3. Problem formulation

Using the method, we investigate several optical solutions for the generalized integrable (2+1)-
dimensional nonlinear conformable Schrodinger system (NLCS). Here, we begin by transforming the
following: {

p(x, y, t) = K(η)eιζ(x,t),

q(x, y, t) = W(η),
(8)

where η = f1x + s1y + c1
tα
α

and ζ(x, t) = f2x + s2y + c2
tα
α

are included. Here, the wave’s speed is
represented by f1 and f2, while the soliton’s wave number and frequency are represented by s1 and s2,
respectively. The following real and imaginary components, respectively, are obtained by replacing the
aforementioned transformations into (2):

(c1 + a1( f1s2 + f2s1))K′ = 0, (9)

−c2K − a1 f2s2K + a1 f1s1K′′ + a2KW = 0, (10)

and
a3 f1W ′ + a4s1 + (K2)′ = 0. (11)

After setting the integration constant to zero and integrating (11), we obtain the following:

W =
a4s1

a3 f1
K2. (12)

From (9), we have
c1 = −a1( f1s2 + f2s1). (13)

By substituting (12) into (10), we find

−(c2 + a1 f2s2)K + a1 f1s1K′′ −
s1a2a4

f1a3
K3 = 0. (14)

When K and K3 are balanced in (14), M = 1. Enter M=1 in (6) to solve the NODE in (14) produced
by the fractional coupled Higgs system using mEDAM:

K(η) =
1∑

i=−1

di(K(η))i = d−1(K(η))−1 + d0 + d1(K(η))1, (15)

The coefficients that will be determined are d−1, d0, and d1.
Using (7) to put (15) into (14), we can collect terms that have the same power of ζ(η) and generate

a polynomial in ζ(η). The polynomial’s coefficients can be set to zero to produce a system of nonlinear
algebraic equations: After solving the system with Maple, we were able to identify the following two
different solution cases.
Case 1.

d−1 =
√

2
√

a1a3

a2a4
ρ ln (β) f1, d0 =

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

,

d1 = 0, s1 = −2
c2 + a1 f2s2

a1 f1 (ln (A))2Ω
.

(16)
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10950

Case 2.

d−1 = 0, d0 =
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

, d1 =
√

2
√

a1a3

a2a4
κ ln (β) f1,

s1 = 2
c2 + a1 f2s2

a1 f1 (ln (A))2 (
−µ2 + 4 η ν

) . (17)

Assuming scenario 1, we obtain the following families of soliton solutions for (14).
Family. 1: With Ω < 0 and κ , 0, the following solitary wave solutions are obtained for (2) using (8)
and (12):

K1(x, y, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω tan

(
1
2

√
−Ωη

)
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(18)

W1(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω tan

(
1
2

√
−Ωη

)
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(19)

K2(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
−

1
2

√
−Ω cot

(
1
2

√
−Ωη

)
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(20)

W2(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
−

1
2

√
−Ω cot

(
1
2

√
−Ωη

)
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(21)

K3(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω

(
tan

(√
−Ωη

)
±

(
sec

(√
−Ωη

)))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(22)
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W3(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω

(
tan

(√
−Ωη

)
±

(
sec

(√
−Ωη

)))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(23)

K4(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω

(
cot

(√
−Ωη

)
±

(
csc

(√
−Ωη

)))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(24)

W4(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω

(
cot

(√
−Ωη

)
±

(
csc

(√
−Ωη

)))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(25)

and

K5(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
4

√
−Ω

(
tan

(
1
4

√
−Ωη

)
− cot

(
1
4

√
−Ωη

))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
.

(26)

W5(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
4

√
−Ω

(
tan

(
1
4

√
−Ωη

)
− cot

(
1
4

√
−Ωη

))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

.

(27)

Family. 2: Using (8) and (12) the following solitary wave solutions are obtained for (2), when Ω > 0,
and κ , 0:

K6(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
−

1
2

√
Ω tanh

(
1
2

√
−Ωη

)
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(28)

W6(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
−

1
2

√
Ω tanh

(
1
2

√
−Ωη

)
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(29)
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K7(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
−

1
2

√
Ω coth

(
1
2

√
−Ωη

)
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(30)

W7(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
−

1
2

√
Ω coth

(
1
2

√
−Ωη

)
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(31)

K8(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
Ω

(
tanh

(√
−Ωη

)
±

(
sech

(√
−Ωη

)))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(32)

W8(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
Ω

(
tanh

(√
−Ωη

)
±

(
sech

(√
−Ωη

)))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(33)

K9(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
Ω

(
coth

(√
−Ωη

)
±

(
sech

(√
−Ωη

)))
γ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(34)

W9(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
+

1
2

√
Ω

(
coth

(√
−Ωη

)
±

(
sech

(√
−Ωη

)))
γ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(35)

and

K10(x, y, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
−

1
4

√
Ω

(
tanh

(
1
4

√
Ωη

)
− coth

(
1
4

√
Ωη

))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
.

(36)
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W10(x, y, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

−1
2
σ

κ
−

1
4

√
Ω

(
tanh

(
1
4

√
Ωη

)
− coth

(
1
4

√
Ωη

))
κ


−1

+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(37)

Family. 3: Using (8) and (12), the following solitary wave solutions are derived for (2) for κρ > 0 and
σ = 0:

K11(x, y, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
tan

(√
ρ κη

))−1
)
, (38)

W11(x, y, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
tan

(√
ρ κη

))−1
)2

, (39)

K12(x, y, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
cot

(√
ρ κη

))−1
)
, (40)

W12(x, y, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
cot

(√
ρ κη

))−1
)2

, (41)

K13(x, y, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
tan

(
2
√
ρ κη

)
±

(
sec

(
2
√
ρ κη

)))−1
)
, (42)

W13(x, y, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
tan

(
2
√
ρ κη

)
±

(
sec

(
2
√
ρ κη

)))−1
)2

, (43)

K1,14(x, y, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
cot

(
2
√
ρ κη

)
±

(
csc

(
2
√
ρ κη

)))−1
)
, (44)

W14(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
cot

(
2
√
ρ κη

)
±

(
csc

(
2
√
ρ κη

)))−1
)2

, (45)
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and

K15(x, y, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
tan

(
1
2

√
f κη

)
− cot

(
1
2
√
ρ κη

))−1 )
. (46)

W15(x, y, t) =
a4s1

a3 f1

(
2
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
ρ

κ

(
tan

(
1
2

√
f κη

)
− cot

(
1
2
√
ρ κη

))−1 )2

. (47)

Family. 4: Using (8) and (12), the following solitary wave solutions are obtained for (2) as κρ < 0 and
σ = 0.

K16(x, y, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
tanh

(√
−ρ κη

))−1
)
, (48)

W16(x, y, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
tanh

(√
−ρ κη

))−1
)2

, (49)

K17(x, y, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
coth

(√
−ρ κη

))−1
)
, (50)

W17(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
coth

(√
−ρ κη

))−1
)2

, (51)

K18(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
tanh

(
2
√
−ρ κη

)
±

(
isech

(
2
√
−ρ κη

)))−1
)
, (52)

W18(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
tanh

(
2
√
−ρ κη

)
±

(
isech

(
2
√
−ρ κη

)))−1
)2

, (53)

K19(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
coth

(
2
√
−ρ κη

)
±

(
csch

(
2
√
−ρ κη

)))−1
)
, (54)

W19(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
coth

(
2
√
−ρ κη

)
±

(
csch

(
2
√
−ρ κη

)))−1
)2

, (55)
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and

K20(x, t) = eιζ(x,t)
(
− 2
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
tanh

(
1
2
√
−ρ κη

)
+ coth

(
1/2
√
−ρ κη

))−1 )
. (56)

W20(x, t) =
a4s1

a3 f1

(
− 2
√

2
√

a1a3

a2a4
ρ ln (β) f1

1√
−
ρ

κ

(
tanh

(
1
2
√
−ρ κη

)
+ coth

(
1
2
√
−ρ κη

))−1 )2

. (57)

Family. 5: Assuming κ = ρ and σ = 0, the following solitary wave solutions for (2) are found by
applying (8) and (12):

K21(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 (tan (ρ η))−1

)
, (58)

W21(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 (tan (ρ η))−1

)2

, (59)

K22(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (cot (ρ η))−1

)
, (60)

W22(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (cot (ρ η))−1

)2

, (61)

K23(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 (tan (2 ρ η) ± (sec (2 ρ η)))−1

)
, (62)

W23(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 (tan (2 ρ η) ± (sec (2 ρ η)))−1

)2

, (63)

K24(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 (− cot (2 ρ η) ± (csc (2 ρ η)))−1

)
, (64)

W24(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 (− cot (2 ρ η) ± (csc (2 ρ η)))−1

)2

, (65)

and

K25(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

(
1
2

tan
(
1
2
ρ η

)
−

1
2

cot
(
1
2
ρ η

))−1 )
. (66)

W25(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

(
1
2

tan
(
1
2
ρ η

)
−

1
2
, cot

(
1
2
ρ η

))−1 )2

. (67)
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Family. 6: Once κ = −ρ and σ = 0 are used, the following solitary wave solutions for (2) are found by
applying (8) and (12):

K26(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (tanh (ρ η))−1

)
, (68)

W26(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (tanh (ρ η))−1

)2

, (69)

K27(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (coth (ρ η))−1

)
, (70)

W27(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (coth (ρ η))−1

)2

, (71)

K28(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 (− tanh (2 ρ η) ± (isech (2 ρ η)))−1

)
, (72)

W28(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 (− tanh (2 ρ η) ± (isech (2 ρ η)))−1

)2

, (73)

K29(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 (− coth (2 ρ η) ± (cech (2 ρ η)))−1

)
, (74)

W29(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 (− coth (2 ρ η) ± (cech (2 ρ η)))−1

)2

, (75)

and

K30(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

(
−

1
2

tanh
(
1
2
ρ η

)
−

1
2

coth
(
1
2
ρ η

))−1 )
. (76)

W30(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

(
−

1
2

tanh (1/2 ρ η) −
1
2

coth
(
1
2
ρ η

))−1 )2

. (77)

Family. 7: If Ω = 0, then using (8) and (12) yields the following solitary wave solutions for (2):

K31(x, t) = eιζ(x,t)
(
−

1
2

√
2
√

a1a3

a2a4
ρ (ln (β))2 f1σ

2η (ρ (σψ ln (β)) + 2)−1 +

1/2 a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
.

(78)

W31(x, t) =
a4s1

a3 f1

(
−

1
2

√
2
√

a1a3

a2a4
ρ (ln (β))2 f1σ

2η (ρ (σψ ln (β)) + 2)−1 +

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

.
(79)
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Family. 8: When σ = ϱ, f = ϑ, ϱ, κ = 0, as a result of utilizing (8) and (12), the subsequent solitary
wave solutions are obtained for (2):

K32(x, t) =
√

2
√

a1a3

a2a4
ρ ln (β)ϑ ϱ1 (βϱ η − ϑ)−1 +

1
2

a1ϑ ϱ1 ln (β) ϱ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
. (80)

W32(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β)ϑ ϱ1 (βϱ η − ϑ)−1 +

1
2

a1ϑ ϱ1 ln (β) ϱ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

.
(81)

Family. 9: Using (8) and (12), the following solitary wave solutions are obtained for (2) for σ = 0, κ =
0:

K33(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
f1η
−1

)
. (82)

W1,33(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
f1η
−1

)2

. (83)

Family. 10: After applying (8) and (12), the following solitary wave solutions are obtained for (2) for
ρ = 0, σ , 0, κ , 0:

K34(x, t) = eιζ(x,t)
(1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
. (84)

W34(x, t) =
a4s1

a3 f1

(1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

. (85)

K35(x, t) = eιζ(x,t)
(1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
. (86)

W35(x, t) =
a4s1

a3 f1

(1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

. (87)

Family. 11: When σ = ϱ, κ = ϑ, ϱ, ρ = 0, as a result of utilizing (8) and (12), the subsequent solitary
wave solutions are obtained for (2):

K36(x, t) = eιζ(x,t)
(1
2

a1 f1 ln (β) ϱ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
. (88)

W36(x, t) =
a4s1

a3 f1

(1
2

a1 f1 ln (β) ϱ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

. (89)
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Considering scenario number two, we obtain the subsequent sets of soliton solutions for Eq (14).
Family. 12: When Ω < 0 κ , 0, as a result of utilizing (8) and (12), the subsequent solitary wave
solutions are obtained for (2):

K90(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω tan

(
1
2

√
−Ωη

)
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(90)

W37(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω tan

(
1
2

√
−Ωη

)
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(91)

K38(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
−

1
2

√
−Ω cot

(
1
2

√
−Ωη

)
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(92)

W38(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
−

1
2

√
−Ω cot

(
1
2

√
−Ωη

)
κ

+
1/2 a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(93)

K39(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω

(
tan

(√
−Ωη

)
±

(
sec

(√
−Ωη

)))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(94)

W39(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω

(
tan

(√
−Ωη

)
±

(
sec

(√
−Ωη

)))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(95)

K40(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω

(
cot

(√
−Ωη

)
±

(
csc

(√
−Ωη

)))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(96)
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W40(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
−Ω

(
cot

(√
−Ωη

)
±

(
csc

(√
−Ωη

)))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(97)

and

K41(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
4

√
−Ω

(
tan

(
1
4

√
−Ωη

)
− cot

(
1
4

√
−Ωη

))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
.

(98)

W41(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
4

√
−Ω

(
tan

(
1
4

√
−Ωη

)
− cot

(
1
4

√
−Ωη

))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

.

(99)

Family.13: When Ω > 0, κ , 0,

K42(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
−

1
2

√
Ω tanh

(
1
2

√
−Ωη

)
κ

+
1/2 a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(100)

W42(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
−

1
2

√
Ω tanh

(
1
2

√
−Ωη

)
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(101)

K43(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
−

1
2

√
Ω coth

(
1
2

√
−Ωη

)
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(102)

W43(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
−

1
2

√
Ω coth

(
1
2

√
−Ωη

)
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(103)
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K44(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
Ω

(
tanh

(√
−Ωη

)
±

(
sech

(√
−Ωη

)))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(104)

W44(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
Ω

(
tanh

(√
−Ωη

)
±

(
sech

(√
−Ωη

)))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(105)

K45(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
Ω

(
coth

(√
−Ωη

)
±

(
sech

(√
−Ωη

)))
γ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
,

(106)

W45(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
+

1
2

√
Ω

(
coth

(√
−Ωη

)
±

(
sech

(√
−Ωη

)))
γ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

,

(107)

and

K46(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
−

1
4

√
Ω

(
tanh

(
1
4

√
Ωη

)
− coth

(
1
4

√
Ωη

))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
.

(108)

W46(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

−1
2
σ

κ
−

1
4

√
Ω

(
tanh

(
1
4

√
Ωη

)
− coth

(
1
4

√
Ωη

))
κ

+
1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

.

(109)

Family. 14: When κρ > 0 and σ = 0, as a result of utilizing (8) and (12), the subsequent solitary wave
solutions are obtained for (2):

K47(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ
tan

(√
ρ κη

) )
, (110)

W47(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ
tan

(√
ρ κη

) )2

, (111)
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K48(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ
cot

(√
ρ κη

) )
, (112)

W48(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ
cot

(√
ρ κη

) )2

, (113)

K49(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ

(
tan

(
2
√
ρ κη

)
±

(
sec

(
2
√
ρ κη

))) )
, (114)

W49(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ

(
tan

(
2
√
ρ κη

)
±

(
sec

(
2
√
ρ κη

))) )2

, (115)

K50(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ

(
cot

(
2
√
ρ κη

)
±

(
csc

(
2
√
ρ κη

))) )
, (116)

W50(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ

(
cot

(
2
√
ρ κη

)
±

(
csc

(
2
√
ρ κη

))) )2

, (117)

and

K51(x, t) = eιζ(x,t)
(1
2

√
2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ

(
tan

(
1
2

√
f κη

)
− cot

(
1
2
√
ρ κη

)) )
. (118)

W51(x, t) =
a4s1

a3 f1

(1
2

√
2
√

a1a3

a2a4
κ ln (β) f1

√
ρ

κ

(
tan

(
1
2

√
f κη

)
− cot

(
1
2
√
ρ κη

)) )2

. (119)

Family. 15: When κρ < 0 and σ = 0, as a result of utilizing (8) and (12), the subsequent solitary wave
solutions are obtained for (2):

K52(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ
tanh

(√
−ρ κη

) )
, (120)

W52(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ
tanh

(√
−ρ κη

) )2

, (121)

K53(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ
coth

(√
−ρ κη

) )
, (122)

W53(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ
coth

(√
−ρ κη

) )2

, (123)

K54(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ

(
tanh

(
2
√
−ρ κη

)
v
(
isech

(
2
√
−ρ κη

))) )
, (124)

W54(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ

(
tanh

(
2
√
−ρ κη

)
±

(
isech

(
2
√
−ρ κη

))) )2

, (125)

K55(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ

(
coth

(
2
√
−ρ κη

)
±

(
csch

(
2
√
−ρ κη

))) )
, (126)

W55(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ

(
coth

(
2
√
−ρ κη

)
±

(
csch

(
2
√
−ρ κη

))) )2

, (127)
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and

K56(x, t) = eιζ(x,t)
(
−

1
2

√
2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ

(
tanh

(
1
2
√
−ρ κη

)
+ coth

(
1
2
√
−ρ κη

)) )
. (128)

W56(x, t) =
a4s1

a3 f1

(
−

1
2

√
2
√

a1a3

a2a4
κ ln (β) f1

√
−
ρ

κ

(
tanh

(
1
2
√
−ρ κη

)
+ coth

(
1
2
√
−ρ κη

)) )2

. (129)

Family. 16: When ρ = κ and σ = 0,

K57(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 tan (ρ η)

)
, (130)

W57(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 tan (ρ η)

)2

, (131)

K58(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 cot (ρ η)

)
, (132)

W58(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 cot (ρ η)

)2

, (133)

K59(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 (tan (2 ρ η) ± (sec (2 ρ η)))

)
, (134)

W59(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 (tan (2 ρ η) ± (sec (2 ρ η)))

)2

, (135)

K60(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 (− cot (2 ρ η) ± (csc (2 ρ η)))

)
, (136)

W60(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 (− cot (2 ρ η) ± (csc (2 ρ η)))

)2

, (137)

and

K61(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1

(
1
2

tan
(
1
2
ρ η

)
−

1
2

cot
(
1
2
ρ η

)) )
. (138)

W61(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1

(
1
2

tan
(
1
2
ρ η

)
−

1
2

cot
(
1
2
ρ η

)) )2

. (139)

Family. 17: When κ = −ρ and σ = 0,

K62(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 tanh (ρ η)

)
, (140)

W62(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 tanh (ρ η)

)2

, (141)

K63(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ρ ln (β) f1 coth (ρ η)

)
, (142)
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W63(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ρ ln (β) f1 coth (ρ η)

)2

, (143)

K64(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (− tanh (2 ρ η) ± (isech (2 ρ η)))

)
, (144)

W64(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (− tanh (2 ρ η) ± (isech (2 ρ η)))

)2

, (145)

K65(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1 (− coth (2 ρ η) ± (cech (2 ρ η)))

)
, (146)

and

W65(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ρ ln (β) f1

(
−

1
2

tanh
(
1
2
ρ η

)
−

1
2

coth
(
1
2
ρ η

)) )2

. (147)

Family. 18: When Ω = 0, as a result of utilizing (8) and (12), the subsequent solitary wave solutions
are obtained for (2):

K66(x, t) = eιζ(x,t)
(
− 2
√

2
√

a1a3

a2a4
κ f1 (ρ (σψ ln (β)) + 2)σ−2η−1+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
.

(148)

W66(x, t) =
a4s1

a3 f1

(
− 2
√

2
√

a1a3

a2a4
κ f1 (ρ (σψ ln (β)) + 2)σ−2η−1+

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

.
(149)

Family. 19: When σ = ϱ, f = ϑ, ϱ, κ = 0,

K67(x, t) = eιζ(x,t)
(1
2

a1ϑ ϱ1 ln (β) ϱ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
. (150)

W67(x, t) =
a4s1

a3 f1

(1
2

a1ϑ ϱ1 ln (β) ϱ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

. (151)

Family. 20: When σ = 0, ρ = 0,

K68(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
f1η
−1

)
. (152)

W68(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
f1η
−1

)2

, (153)
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Family. 21: When ρ = 0, σ , 0, κ , 0,

K69(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ln (β) f1σ (cosh (ση) − sinh (ση) + 1)−1 +

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

−
ln (Π)Ω

(
l2 − n2

)
q
√

2 n2 − 2 l2

)
.

(154)

W69(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ln (β) f1σ (cosh (ση) − sinh (ση) + 1)−1 +

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

−
ln (Π)Ω

(
l2 − n2

)
q
√

2 n2 − 2 l2

)2

.
(155)

K70(x, t) = eιζ(x,t)
(
−
√

2
√

a1a3

a2a4
ln (β) f1σ (cosh (ση) + sinh (ση)) (cosh (ση) + sinh (ση) + 1)−1 +

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
.

(156)

W70(x, t) =
a4s1

a3 f1

(
−
√

2
√

a1a3

a2a4
ln (β) f1σ (cosh (ση) + sinh (ση)) (cosh (ση) + sinh (ση) + 1)−1 +

1
2

a1 f1 ln (β)σ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

.

(157)

Family. 22: When σ = ϱ; κ = ϑ, ϱ, ρ = 0,

K71(x, t) = eιζ(x,t)
(√

2
√

a1a3

a2a4
ϑ ϱ ln (β) f1β

ϱ η (1 − ϑ βϱ η)−1 +

1
2

a1 f1 ln (β) ϱ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)
.

(158)

W71(x, t) =
a4s1

a3 f1

(√
2
√

a1a3

a2a4
ϑ ϱ ln (β) f1β

ϱ η (1 − ϑ βϱ η)−1 +

1
2

a1 f1 ln (β) ϱ a3

√
2a2

−1a4
−1 1√

a1a3
a2a4

)2

.
(159)

4. Discussion & graphs

Figure 1(a) is a 3D surface plot, where the wave function is represented in three dimensions, with
the x-axis and y-axis showing space and the z-axis representing the amplitude (strength) of the wave at
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different points. The sharp peaks and valleys in the plot indicate wave-like behavior, with alternating
high and low intensities. This type of plot is useful for visualizing the dynamics of waves in a spatial
domain over time. The pattern indicates periodicity and may suggest the behavior of solitons or
nonlinear waves that maintain their form over time.

Figure 1(b) is a contour plot, where the intensity of the wave is represented with colored regions
and contour lines. The contours indicate areas with the same intensity, showing how the wave’s energy
distribution changes across space. The regions with closely packed contour lines show areas where the
wave’s energy is concentrated. This plot highlights the focus points of the wave, helping to identify
where the wave has higher or lower intensity. The pattern suggests a localized wave that may be
affected by nonlinear interactions.

Figure 1(c) is a line plot that shows the wave’s intensity along the x-axis at a specific y-position.
The wave intensity is plotted for different values of x, showing how the wave’s amplitude changes
over space at a particular moment in time. Physical meaning: The sharp spikes in the plot suggest
discontinuities or singularities in the wave, which are typical of solitons or shock waves in nonlinear
systems. The wave shows strong localized changes in intensity, which might indicate interactions
between different parts of the wave or wave collisions.

Figure 1. The two-dimensional, three-dimensional and contour soliton solution stated in (18)
are graphed for σ = 4, κ = 1, ρ = 11, β = e, a1 = .5, f1 = 0.3, a2 = .3, a3 = .9, a4 =

1, α = 1, and t = 1.

Figure 2(a) is a 3D plot that displays the wave’s amplitude (height) over x and y space. The sharp
peaks and valleys suggest a wave with strong intensity variations at different points.

Figure 2(b) is a contour plot showing lines of equal wave strength. The closely spaced contours
indicate areas with higher energy, while the wider spaced contours show regions of lower energy.

Figure 2(c) is a simple line plot that shows how the wave’s strength (amplitude) changes along the
x-axis at a fixed y-value. The spikes suggest sharp changes or discontinuities in the wave’s behavior.
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Figure 2. The two-dimensional, three-dimensional and contour soliton solution stated in
(20)are graphed for σ = 4, κ = 1, ρ = 11, β = e, a1 = .05, f1 = 0.03, a2 = .3, a3 = .9, a4 =

11, α = 1, and t = 1.

Figure 3(a) is a 3D surface plot with waves oscillating in both x and y directions. The waves have
alternating peaks and valleys. This represents a complex wave pattern with high-frequency oscillations,
which could be related to a nonlinear wave or a wave in a medium with periodic behavior.

Figure 3(b) is a contour plot that shows areas of equal intensity, with most of the plot being red,
indicating high intensity, and a small part having contours representing lower intensities. The wave has
a concentrated energy region in the red area, with the intensity rapidly changing. This suggests that the
wave’s energy is localized or has sharp transitions in space.

Figure 3(c) is a line plot that shows the wave’s intensity along the x-axis, with two curves showing
the positive and negative parts of the wave. The wave has sharp changes in intensity along the x-axis,
indicating a nonlinear response, where the intensity quickly increases and decreases, similar to a shock
wave or soliton behavior.

Figure 3. The two-dimensional, three-dimensional and contour soliton solution stated in (28)
are graphed for σ = .4, κ = 1, ρ = 11, β = e, a1 = 5, f1 = 0.03, a2 = .03, and a3 = .9.
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Figure 4(a) is a 3D surface plot with two wave components that intersect and create a pattern of
alternating positive and negative values. The plot represents two oscillating waves that interfere with
each other. The red and green regions indicate different wave intensities, which suggest constructive
and destructive interferences where the waves combine.

Figure 4(b) is a contour plot that shows areas of equal intensity (contours) with a gradient of colors
from yellow to red, indicating changes in wave intensity. This plot shows how the wave’s energy is
distributed across space, with stronger energy represented by red areas and weaker energy in the yellow
areas. This helps visualize the wave’s variation in space.

Figure 4(c) is a line plot showing the wave’s intensity along the x-axis at a fixed y-value, with
two curves (one positive and one negative). The two curves represent the oscillation of the wave at
a specific location in space (y) over time or position along the x-axis. The green curve is the wave’s
positive intensity, and the red curve represents the negative part of the wave.

Figure 4. The two-dimensional, three-dimensional, and contour soliton solution stated in
(30) are graphed for σ = 8, κ = 1, ρ = 11, β = e, a1 = .75, f1 = 0.03, a2 = .03, a3 =

.79, a4 = 4, α = .1, and t = 1.

Figure 5 shows a nonlinear wave system where the wave has localized energy regions (such
as solitons or shock waves). The 3D plot shows the wave’s overall structure, the contour plot
illustrates the concentration of energy, and the line plot reveals sharp intensity changes. This kind
of behavior is typical in systems where the wave interacts nonlinearly, leading to energy localization
and discontinuous wave behavior.

AIMS Mathematics Volume 10, Issue 5, 10943–10975.



10968

Figure 5. The two-dimensional, two-dimensional, three-dimensional, and contour soliton
solution stated in (90) are graphed for σ = 4, κ = 1, ρ = 11, β = e, a1 = .75, f1 = 0.7, a2 =

.3, a3 = .3, a4 = 4, and t = 11.

Figure 6 shows a nonlinear wave system that exhibits localized energy structures, sharp intensity
variations, and high-energy regions. The 3D plot indicates the overall shape and behavior of the
wave, the contour plot reveals the concentration of energy, and the line plot highlights the abrupt
intensity changes. These characteristics are typical of systems involving solitons, shock waves, or
other nonlinear wave phenomena where the wave retains its structure over time, despite the sharp
intensity variations.

Figure 6. The two-dimensional, three-dimensional and contour soliton solution stated in (92)
are graphed for σ = 4, κ = 1, ρ = 11, β = e, a1 = .5, f1 = 0.03, a2 = .03, a3 = .9, a4 = .11,
and t = .7.

Figure 7 illustrates a nonlinear wave system where energy is localized in specific regions, as shown
by the sharp peaks in the 3D plot and the contour plot. The line plot indicates discontinuities or sudden
changes in the wave’s behavior, which are characteristic of solitons or shock waves. These types of
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waves maintain their structure over time, even as they exhibit localized intensity variations.

Figure 7. The two-dimensional, three-dimensional and contour soliton solution stated in
(100) are graphed for σ = 8, κ = 11, ρ = 1, β = e, a1 = .5, f1 = 0.03, a2 = .93, a3 =

.99, a4 = .911, and t = .5.

Figure 8 represents a nonlinear wave system where the wave exhibits localized high-amplitude
regions (likely solitons or other stable wave forms). The 3D plot shows the overall oscillating nature of
the wave with sharp intensity spikes, the contour plot illustrates the concentration of energy in specific
regions, and the line plot highlights the discontinuous intensity changes in the wave. This is indicative
of a wave system that supports nonlinear phenomena, such as solitons or shock waves, where energy
can become localized, and the wave exhibits sharp transitions in intensity.

Figure 8. The two-dimensional, three-dimensional and contour soliton solution stated in
(102) are graphed for σ = 8, κ = 11, ρ = 1, β = e, a1 = .5, f1 = 0.03, a2 = .3, a3 =

.9, a4 = 11, and t = .1.
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5. Conclusions

Using a conformable derivative and the extended direct algebraic method, we successfully derived
novel optical soliton solutions for the generalized integrable (2+1)-dimensional nonlinear Schrödinger
system. Wave and single solitons make up the resulting solutions. Our thorough analysis of the
impact of the conformable derivative and temporal parameters on optical solutions yields important
new information. However, it is essential to acknowledge the limitations and potential shortcomings
of the method and results. Furthermore, the results obtained in this study are based on a specific
model, and the applicability of these results to other nonlinear optical systems remains to be
explored. Additionally, we focus primarily on the theoretical aspects of optical soliton solutions,
and experimental verification of these results is necessary to confirm their validity. Furthermore it
is unknown whether the findings from this study can be applied to other nonlinear optical systems
because they are based on a particular model. Furthermore, we concentrate on the theoretical features
of optical soliton solutions, and to validate these findings, experimental verification is required.
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