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1. Introduction

Neural networks (NNs) have been the subject of many studies because of their successful
applications in various areas such as associative memory [1], autonomous navigation [2], data
encryption [3], intelligent control [4], optimization [5,6], controller design [7], pattern recognition [8],
spacecraft formation flying [9], and so on. In practice, time delays can cause NNs to oscillate, become
unstable, or perform poorly [10, 11]. Researchers have identified several types of delays, including
leakage delays [12–14], distributed delays, transmission delays, and neutral delays. In recent years,
a number of topics related to delayed NNs, such as stability and stabilization [15–18], dissipativity
analysis and control [19,20], passivity and passification [21], state estimation [22], and synchronization
control [23–25], have attracted attention from many researchers.

The Cohen–Grossberg NNs (CGNNs) were proposed by Cohen and Grossberg in 1983 [26]. In
the past few years, increasing intension in analyzing and control of CGNNs have appeared [27–30].
In 2008, Stanley R. Williams and his team found the practical memristor [31], which verifies Chua’s
prediction in 1971 [32]. Since the memristor mimics the forgetting and remembering processes in
human brains, it has potential to be used as brain-like computers and future computers. In order
to more accurately mimic the human brain via NNs, the ordinary resistor of connection weights of
CGNNs is replaced by the memristor, resulting in memristive CGNNs. Therefore, memristive CGNNs
have more significance in the study of human brain simulation.

Synchronization issues have garnered significant attention and research [33–35], thanks to their
applications in image encryption, audio encryption, and secure communication [36–38]. In [39], finite-
time synchronization criteria of memristive CGNNs involving time-varying delays were obtained by
constructing the appropriate nonlinear transformations and employing the differential inclusion theory.
For reaction-diffusion memristive CGNNs, a new definition of quasi-fixed-time synchronization was
proposed in [40], and quasi-fixed-time synchronization theorem was investigated by designing an
effective controller. In [28], using the reduced-order method based on the differential inclusion
theory, the adaptive feedback controller was proposed to achieve global asymptotic synchronization
of proportional delay inertial memristive CGNNs. In [41], the exponential synchronization conditions
of quaternion-valued memristive CGNNs involving time-varying delays were presented by employing
the differential inclusion theory, an improved one-norm method, and the set-valued map theory.
For coupled memristive multi-stable CGNNs involving mixed delays, some sufficient conditions
guaranteeing multi-synchronization were investigated by utilizing the M-matrix theory, the state-space
decomposition, and the fixed point theory [42]. The synchronization issues of fractional-order delayed
memristive CGNNs are addressed in [43, 44].

In the above references about finite-time synchronization problem of NNs, the settling-time formula
was derived by employed the different radial unbounded function. When the time is larger than the
settling time, state variances of error system are always equal to zero in theoretically; however, due
to the network noises, model approximation, DoS attacks, and so on, they realistically converge into
a small domain containing the origin [45]. In [34], a parameter ϵ > 0 was introduced to describe the
small domain. From the angle of application, the positive number ϵ can be viewed as a preassigned
accuracy, which should be satisfied whenever considering a finite-time synchronization issue. The
relationship between accuracy-preassigned finite-time exponential synchronization in neutral-type
Cohen–Grossberg memristive neural networks and Keller-Segel models lies in the exploration of
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complex dynamical systems and the synchronization phenomena in NNs, particularly under the
influence of delays and spatial interactions. Specifically, the concept of accuracy-preassigned finite-
time exponential synchronization in the context of neutral-type Cohen–Grossberg memristive neural
networks provides a framework for understanding and analyzing synchronization behaviors in Keller-
Segel models, particularly in the presence of time-varying delays. Both fields involve the study
of complex systems characterized by nonlinear interactions and delays, and they share common
mathematical methodologies, including Lyapunov functions, stability theory, and bifurcation analysis,
for their theoretical analysis [46, 47]. Therefore, it is great to address the accuracy-preassigned finite-
time synchronization issue of NNs.

As stated, several researchers have studied the subject on the finite-time synchronization of time-
delay memristive CGNNs. Nevertheless, there is no study on the finite-time synchronization of
neutral-type delayed memristive CGNNs. We seek to address this gap by investigating the accuracy-
preassigned finite-time exponential synchronization problem of neutral-type memristive CGNNs
involving multiple time-varying leakage and transmission delays. We summarize the significance and
contributions of this article below:

• Compared with the current literature, the memristive CGNN model addressed in this article is
more general. The model is not only neutral-type but also involves more time-varying delays.
Moreover, we provide a new idea to solve the problems related to synchronization of neutral-type
memristive delayed CGNNs.
• We introduce a novel method that is ground on the upper-right derivative of solutions of the

error system. Especially, instead of the derivative, the upper-right derivative is employed in the
theoretical derivation, which is compatible with a new controller that is different from ones in
studies.
• The derived synchronization conditions are comprised of simple scalar inequalities that is

convenient to implement via the common software tools. Moreover, the synchronization condition
can guarantee that the states of the error system converge exponentially into a small range
containing the origin under the preassigned accuracy.

The structure of the article is designed below: In Section 2, we provide preliminary results,
including the drive and response neutral-type delayed memristive CGNNs model, necessary
assumptions, definitions, and lemmas. In Section 3, we present the design method of controller to
achieve accuracy-preassigned finite-time exponential synchronization between the drive and response
neutral-type delayed memristive CGNNs. In Section 4, we validate the major results through numerical
examples. Finally, the conclusions are given in Section 5.
Notations: Let ⟨n⟩ be the set {1, 2, . . . , n}, where n is a positive integer. The symbol R represents
the real number field. The symbols C(S1,S2) and C1(S1,S2) denote the linear spaces over R of all
continuous and continuously differential functions f : S1 → S2, respectively. The column-vectorizing
operator is denoted by col(·). The symbol D+ represents the upper-right derivative of functions. The
Euclidean norm is denoted by ∥ · ∥.
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2. Preliminaries

The considered neutral-type memristive CGNN involving multiple time-varying leakage and
transmission delays can be written as:

ẋi(t) =ψi(xi(t))
[
− φi(xi(t − πi(t))) +

∑
j∈⟨n⟩

ai j(xi(t))p j(x j(t))

+
∑
j∈⟨n⟩

bi j(xi(t))q j(x j(t − ηi j(t)))
]
+

∑
j∈⟨n⟩

si j ẋ j(t − εi j), t ≥ 0, i ∈ ⟨n⟩, (2.1a)

xi(s) =ϕx
i (s), s ∈ [−ρ, 0], i ∈ ⟨n⟩, (2.1b)

where n is the number of neurons, εi j > 0, πi ∈ C([0,+∞), [π̌i, π̂i]) and ηi j ∈ C([0,+∞), [η̌i j, η̂i j]) are
the neutral, leakage, and transmission delays, respectively, 0 ≤ π̌i, 0 ≤ η̌i j, xi : [−ρ,+∞) → R are the
neuronal states, ρ = max{ε̂, π̂, η̂}, ε̂ = max

i, j∈⟨n⟩
εi j, π̂ = max

i∈⟨n⟩
π̂i, η̂ = max

i, j∈⟨n⟩
η̂i j, ψi ∈ C(R, [Ψ̌i, Ψ̂i]) are the

amplification functions, 0 < Ψ̌i, φi ∈ C(R,R) are the self-signal functions, ϕx
i ∈ C1([−ρ, 0],R) refer to

the initial functions, si j ∈ R, and p j, q j ∈ C(R,R) represent the activation functions. In addition, the
connection weights have the form as follows:

ai j(·) =

ǎi j, if | · | > ϖi,

âi j, if | · | ≤ ϖi,
bi j(·) =

b̌i j, if | · | > ϖi,

b̂i j, if | · | ≤ ϖi,
(2.2)

here, ϖi > 0 are the threshold constants, and âi j, ǎi j,b̂i j, and b̌i j are known scalars.

Remark 1. When si j = 0, πi(·) ≡ 0 and ηi j(·) = η j(·) for all i, j ∈ ⟨n⟩, the NN model (2.1) simplifies
to memristive CGNNs with time-varying delays [39]. When πi(·) ≡ 0, si j = 0, ai j(·) = ai j, bi j(·) = bi j

and ηi j(·) = η(·) for any i, j ∈ ⟨n⟩, the NN model (2.1) reduces to CGNNs with one time-varying
transmission delay [48].

Remark 2. In some NNs, there are a large number of synapses with different sizes and parallel paths
with different lengths, which limits the space range [49]. Therefore, there is always a representative
time delay, which is essentially different from the conventional delays, and it broadly exists in the
negative feedback terms of the system, which are identified as leakage terms, named leakage delay.
The leakage delay is usually incorporated in the study of network modeling. Such a type of time delay
often has a tendency to destabilize the NNs and is difficult to handle. Therefore, it is of great practical
significance to study the stability of NNs with leakage delays.

We take the neutral-type memristive CGNN (2.1) as the drive system, which devises a neutral-type
memristive CGNN (response system) as follows:

ẏi(t) =ψi(yi(t))
[
− φi(yi(t − πi(t))) +

∑
j∈⟨n⟩

ai j(yi(t))p j(y j(t))

+
∑
j∈⟨n⟩

bi j(yi(t))q j(y j(t − ηi j(t)))
]
+

∑
j∈⟨n⟩

si jẏ j(t − εi j)
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+ ui(t), t ≥ 0, i ∈ ⟨n⟩, (2.3a)

yi(s) = ϕy
i (s), s ∈ [−ρ, 0], i ∈ ⟨n⟩, (2.3b)

where yi : [−ρ,+∞) → R represent the neuronal states, ϕy
i ∈ C1([−ρ, 0],R) stand for the initial

functions, and ui : [0,+∞)→ R refer to the control inputs.
The error system related to the drive-response neutral-type memristive CGNNs (2.1) and (2.3) is

expressed as:

ėi(t) =[−ψi(yi(t))φi(yi(t − πi(t))) + ψi(xi(t))φi(xi(t − πi(t)))]

+
∑
j∈⟨n⟩

[
ψi(yi(t))ai j(yi(t))p j(y j(t)) − ψi(xi(t))ai j(xi(t))p j(x j(t))

]
+

∑
j∈⟨n⟩

[
ψi(yi(t))bi j(yi(t))q j(y j(t − ηi j(t))) − ψi(xi(t))bi j(xi(t))q j(x j(t − ηi j(t)))

]
+

∑
j∈⟨n⟩

si jė j(t − εi j) + ui(t), t ≥ 0, i ∈ ⟨n⟩, (2.4a)

ei(s) = ϕi(s), s ∈ [−ρ, 0], i ∈ ⟨n⟩, (2.4b)

where ϕi(s) = ϕy
i (s) − ϕx

i (s) and ei(t) = yi(t) − xi(t).

Definition 1. For any initial function ϕ(·), we say that the neutral-type memristive CGNNs (2.1) and
(2.3) achieve accuracy-preassigned finite-time exponential synchronization, if for given an accuracy
ϵ > 0, there are T̂ > 0 and ui(t) (i ∈ ⟨n⟩) such that the state vector, e(t) := col

(
e1(t), . . . , en(t)

)
satisfies

∥e(t)∥ < ϵ whenever t > T̂ . The constant T̂ is called the settling time.

The following assumptions are required.
A1: [44] For every i ∈ ⟨n⟩, there are positive numbers Pi, Qi, P̂i, and Q̂i satisfying:
|pi(κ)| ≤ P̂i, |pi(κ) − pi(ι)| ≤ Pi|κ − ι|,
|qi(κ)| ≤ Q̂i, |qi(κ) − qi(ι)| ≤ Qi|κ − ι|, κ, ι ∈ R.

A2: For every i ∈ ⟨n⟩, there are positive numbers Ψi and Φi, satisfying:
|ψi(κ1)φi(κ2) − ψi(ι1)φi(ι2)| ≤ Ψi|κ1 − ι1| + Φi|κ2 − ι2|, κ1, κ2, ι1, ι2 ∈ R.
In the case without the leakage delay, it is chosen that κ1 = κ2 and ι1 = ι2 [44].

Remark 3. In Assumptions A1 and A2, we require the amplification function or activation functions
to be bounded continuous and satisfy Lipschitz continuity. Otherwise, the NN system may experience
problems such as gradient explosion or model degradation. There are also many research results that
can handle discontinuous activation functions [44].

We aim to design controllers ui(t) (i ∈ ⟨n⟩) such that the drive-response neutral-type memristive
CGNNs (2.1) and (2.3) achieve accuracy-preassigned finite-time exponential synchronization. To this
end, the following conclusion is needed.

Lemma 1. Set b̄i j = max{|b̌i j|, |b̂i j|} and āi j = max{|ǎi j|, |âi j|}. Then, under assumption A1, there are:

|ψi(yi(s))ai j(yi(s))p j(y j(s)) − ψi(xi(s))ai j(xi(s))p j(x j(s))|
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≤Ψ̂iāi jP j|e j(s)| + Ψ̂iP̂ j|âi j − ǎi j| + P̂ jāi j(Ψ̂i − Ψ̌i), i, j ∈ ⟨n⟩, s ≥ 0, (2.5)

|ψi(yi(s))bi j(yi(s))q j(y j(s − ηi j(s))) − ψi(xi(s))bi j(xi(s))q j(x j(s − ηi j(s)))|

≤Ψ̂ib̄i jQ j|e j(s − ηi j(s))| + Ψ̂iQ̂ j|b̂i j − b̌i j| + Q̂ jb̄i j(Ψ̂i − Ψ̌i), i, j ∈ ⟨n⟩, s ≥ 0. (2.6)

Proof. We prove only (2.5), since the other is similar. It follows from ψi ∈ C(R, [Ψ̌i, Ψ̂i]), āi j =

max{|ǎi j| |âi j|}, (2.2) and assumption A1 that

|ψi(yi(s))ai j(yi(s))p j(y j(s)) − ψi(xi(s))ai j(xi(s))p j(x j(s))|
=|ψi(yi(s))ai j(yi(s))p j(y j(s)) − ψi(yi(s))ai j(yi(s))p j(x j(s))
+ ψi(yi(s))ai j(yi(s))p j(x j(s)) − ψi(yi(s))ai j(xi(s))p j(x j(s))
+ ψi(yi(s))ai j(xi(s))p j(x j(s)) − ψi(xi(s))ai j(xi(s))p j(x j(s))|

≤Ψ̂iāi jP j|e j(s)| + Ψ̂iP̂ j|âi j − ǎi j| + P̂ jāi j(Ψ̂i − Ψ̌i), i, j ∈ ⟨n⟩, s ≥ 0.

□

3. Accuracy-preassigned fixed-time exponential synchronization

Throughout this section, we assume that assumptions A1 and A2 hold. To realize accuracy-
preassigned finite-time exponential synchronization between neutral-type memristive CGNNs (2.1)
and (2.3), we design the following controllers:

ui(t) = −Ki

ei(t) −
∑
j∈⟨n⟩

si je j(t − εi j)

 , i ∈ ⟨n⟩, t ≥ 0, (3.1)

where Ki > 0 represent the controller gains.

Theorem 1. Under the controller (3.1), each solution of the error system (2.4) meets the following
relation:

|ei(t)| ≤
5∑
ℓ=0

∂iℓ(t) + Υi
Ki
, i ∈ ⟨n⟩, t ≥ 0, (3.2)

where
∂i0(t) = e−Kit∥ϕ∥ρ

(
1 +

∑
j∈⟨n⟩ |si j|

)
, ∥ϕ∥ρ = max

i∈⟨n⟩
sup

s∈[−ρ,0]
max

{
|ϕi(s)|, |ϕ̇i(s)|

}
,

∂i1(t) =
∑

j∈⟨n⟩ |si j||e j(t − εi j)|,
∂i2(t) = Ψi

∫ t

0
eKi(s−t)|ei(s)|ds,

∂i3(t) = Φi

∫ t

0
eKi(s−t)|ei(s − πi(s))|ds,

∂i4(t) = Ψ̂i
∑

j∈⟨n⟩

∫ t

0
eKi(s−t)āi jP j|e j(s)|ds,

∂i5(t) = Ψ̂i
∑

j∈⟨n⟩

∫ t

0
eKi(s−t)b̄i jQ j|e j(s − ηi j(s))|ds,

Υi = (Ψ̂i − Ψ̌i)
∑

j∈⟨n⟩

(
āi jP̂ j + b̄i jQ̂ j

)
+ Ψ̂i

∑
j∈⟨n⟩

(
|âi j − ǎi j|P̂ j + |b̂i j − b̌i j|Q̂ j

)
.
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Remark 4. The inequality (3.2) is different from the respective conclusions in [11, 24, 25].

Proof. It is obvious from (2.4a) that

D+

∣∣∣∣∣∣∣∣ei(t) −
∑
j∈⟨n⟩

si je j(t − εi j)

∣∣∣∣∣∣∣∣
=Ei(t)

ėi(t) −
∑
j∈⟨n⟩

si jė j(t − εi j)


=Ei(t)[−ψi(yi(t))φi(yi(t − πi(t))) + ψi(xi(t))φi(xi(t − πi(t)))] + Ei(t)

∑
j∈⟨n⟩

[
ψi(yi(t))ai j(yi(t))p j(y j(t))

− ψi(xi(t))ai j(xi(t))p j(x j(t))
]
+ Ei(t)

∑
j∈⟨n⟩

[
ψi(yi(t))bi j(yi(t))q j(y j(t − ηi j(t)))

− ψi(xi(t))bi j(xi(t))q j(x j(t − ηi j(t)))
]
+ Ei(t)ui(t), t ≥ 0, i ∈ ⟨n⟩,

where Ei(t) = sgn
(
ei(t) −

∑
j∈⟨n⟩ si je j(t − εi j)

)
, and hence,

D+

eKit

∣∣∣∣∣∣∣∣ei(t) −
∑
j∈⟨n⟩

si je j(t − εi j)

∣∣∣∣∣∣∣∣


=eKit

Ki

∣∣∣∣∣∣∣∣ei(t) −
∑
j∈⟨n⟩

si je j(t − εi j)

∣∣∣∣∣∣∣∣ + Ei(t)[−ψi(yi(t))φi(yi(t − πi(t))) + ψi(xi(t))φi(xi(t − πi(t)))]

+ Ei(t)
∑
j∈⟨n⟩

[
ψi(yi(t))ai j(yi(t))p j(y j(t)) − ψi(xi(t))ai j(xi(t))p j(x j(t))

]
+ Ei(t)ui(t)

+Ei(t)
∑
j∈⟨n⟩

[
ψi(yi(t))bi j(yi(t))q j(y j(t − ηi j(t))) − ψi(xi(t))bi j(xi(t))q j(x j(t − ηi j(t)))

] , t ≥ 0, i ∈ ⟨n⟩.

(3.3)

This, together with (3.1), assumption A2, and Lemma 1, derives that

D+

eKit

∣∣∣∣∣∣∣∣ei(t) −
∑
j∈⟨n⟩

si je j(t − εi j)

∣∣∣∣∣∣∣∣


≤eKit
(∣∣∣ψi(yi(t))φi(yi(t − πi(t))) − ψi(xi(t))φi(xi(t − πi(t)))

∣∣∣
+

∑
j∈⟨n⟩

∣∣∣ψi(yi(t))ai j(yi(t))p j(y j(t)) − ψi(xi(t))ai j(xi(t))p j(x j(t))
∣∣∣

+
∑
j∈⟨n⟩

∣∣∣ψi(yi(t))bi j(yi(t))q j(y j(t − ηi j(t))) − ψi(xi(t))bi j(xi(t))q j(x j(t − ηi j(t)))
∣∣∣)

≤eKitΨi|ei(t)| + eKitΦi|ei(t − πi(t))| + eKitΨ̂i

∑
j∈⟨n⟩

āi jP j|e j(t)|

+ eKitΨ̂i

∑
j∈⟨n⟩

b̄i jQ j|e j(t − ηi j(t))| + eKitΥi, t ≥ 0, i ∈ ⟨n⟩. (3.4)
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Taking an integration on both sides of (3.4) from 0 to t, we have

|ei(t)| ≤ e−Kit

∣∣∣∣∣∣∣∣ei(0) −
∑
j∈⟨n⟩

si je j(−εi j)

∣∣∣∣∣∣∣∣ +
5∑
ℓ=1

∂iℓ(t) + Υi
Ki
, i ∈ ⟨n⟩, t ≥ 0,

and hence (3.2) holds. □

Theorem 2. For given positive numbers ς, ϵ and λ, assume that g = (1−ς)ϵ
√

n , and there are scalars li(> 1)
and Ki(> λ) such that

ln li + ln ∥ϕ∥ρ − ln ςϵ
√

n > 0, i ∈ ⟨n⟩, (3.5a)

∑
j∈⟨n⟩

( 1
n+|si j |

li
+

l jΩi j

li

)
+ Ψi+Φieλπ̂i

Ki−λ
< 1, i ∈ ⟨n⟩, (3.5b)

∑
j∈⟨n⟩

|si j| +

Υi
g +Ψi+Φi+Ψ̂i

∑
j∈⟨n⟩(āi jP j+b̄i jQ j)

Ki
< 1, i ∈ ⟨n⟩, (3.5c)

where Ωi j = |si j|eλεi j +
Ψ̂i

(
āi jP j+b̄i jQ je

λη̂i j
)

Ki−λ
. Then,

(i) |ei(t)| ≤ li∥ϕ∥ρe−λt + g for any t ≥ −ρ and i ∈ ⟨n⟩;

(ii) The controller (3.1) can guarantee that the neutral-type memristive CGNNs (2.1) and (2.3) achieve
accuracy-preassigned finite-time exponential synchronization within the settling time:

T̂ :=
ln L+ln ∥ϕ∥ρ−ln

ςϵ
√

n
λ

, (3.6)

where L = max
i∈⟨n⟩

li.

Proof. In the proof, we suppose that ϕi ∈ C1([−ρ, 0],R), i ∈ ⟨n⟩ are finite but can be chosen arbitrarily,
and ei(t) (i ∈ ⟨n⟩) is the corresponding solution of the error system (2.4).

(i) It is obvious when t ∈ [−ρ, 0]. We assert that (i) is correct for t ≥ −ρ; otherwise, there exist
T > 0 and v ∈ ⟨n⟩, satisfying

|ei(t)| ≤ li∥ϕ∥ρe−λt + g, t ∈ [−ρ,T ], i ∈ ⟨n⟩, (3.7)

|ev(T )| = lv∥ϕ∥ρe−λT + g. (3.8)

For any given s ∈ [0,T ], we can obtain from (3.7) and (3.8), εv j > 0, πv(·) ∈ [π̌v, π̂v] and ηv j(·) ∈
[η̌v j, η̂v j] that

|e j(s − εv j)| ≤ eλεv jl j∥ϕ∥ρe−λs + g,
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|e j(s − ηv j(s))| ≤ eλη̂v jl j∥ϕ∥ρe−λs + g,

|ev(s − πv(s))| ≤ eλπ̂vlv∥ϕ∥ρe−λs + g. (3.9)

Noting that ∫ T

0
eKv(s−T )ds ≤ 1

Kv
,

∫ T

0
e(Kv−λ)s−KvT ds = e−λT

∫ T

0
e(Kv−λ)(s−T )ds ≤ e−λT

Kv−λ
,

we have from (3.9) that
∂v1(T ) ≤

∑
j∈⟨n⟩
|sv j|eλεv jl j∥ϕ∥ρe−λT + g

∑
j∈⟨n⟩
|sv j|,

∂v2(T ) ≤ Ψv
1

Kv−λ
lv∥ϕ∥ρe−λT + gΨv

1
Kv

,

∂v3(T ) ≤ Φv
eλπ̂v

Kv−λ
lv∥ϕ∥ρe−λT + gΦv

1
Kv

,

∂v4(T ) ≤ Ψ̂v
∑

j∈⟨n⟩

āv jP j

Kv−λ
l j∥ϕ∥ρe−λT + gΨ̂v

∑
j∈⟨n⟩

āv jP j
1

Kv
,

∂v5(T ) ≤ Ψ̂v
∑

j∈⟨n⟩

b̄v jQ je
λη̂v j

Kv−λ
l j∥ϕ∥ρe−λT + gΨ̂v

∑
j∈⟨n⟩

b̄v jQ j
1

Kv
.

It follows from (3.2) that

|ev(T )| ≤lv∥ϕ∥ρe−λT

Ψv+Φveλπ̂v

Kv−λ
+

∑
j∈⟨n⟩

( 1
n+|sv j |

lv
+

l jΩv j

lv

)
+ g

∑
j∈⟨n⟩

|sv j| +

Υv
g +Ψv+Φv+Ψ̂v

∑
j∈⟨n⟩(āv jP j+b̄v jQ j)

Kv

 .
This, combined with (3.5c), means that |ev(T )| < lv∥ϕ∥ρe−λT + g, which contradicts (3.8). Therefore, (i)
holds.

(ii) When t > T̂ , one has from (i) and (3.6) that

|ei(t)| ≤ L∥ϕ∥ρe−λt + g ≤ L∥ϕ∥ρe−λT̂ +
(1−ς)ϵ
√

n < ςϵ
√

n +
(1−ς)ϵ
√

n =
ϵ
√

n , i ∈ ⟨n⟩,

hence,

∥e(t)∥ < ϵ, t > T̂ .

In accordance with Definition 1, the controller (3.1) can guarantee that the neutral-type memristive
CGNNs (2.1) and (2.3) achieve accuracy-preassigned finite-time exponential synchronization within
the settling time given by (3.6). □

Remark 5. Theorem 2 presents the existence and design approach of a novel controller that can
be used to establish accuracy-preassigned finite-time exponential synchronization between the drive-
response neutral-type memristive CGNNs (2.1) and (2.3).

Remark 6. The error system (2.4) contains multiple delays and some coupling terms of two or three
functions, which becomes hard for synchronizing CGNNs (2.1) and (2.3). To overcome this difficult
problem, we design controller (3.1) to deal with the neutral delays and introduce the parameter ς to
eliminate the couplings among amplification functions, self-signal functions, and activation functions.
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Remark 7. As mentioned in the Introduction section, the positive number ϵ is viewed as a preassigned
accuracy, which has to be satisfied considering a finite-time synchronization issue. Thus, ϵ is usually a
small positive number, which implies that ln ςϵ

√
n < 0, and hence for given initial functions, the feasibility

of (3.5a) can be easily guaranteed. Then, (3.5b) and (3.5c) can be satisfied by choosing appropriately
the positive numbers li and Ki, i ∈ ⟨n⟩.

Noting that the nonlinear inequalities in (3.5) are not convenient to solve, we provide the following
conclusion:

Corollary 1. For given positive constants ς, ϵ, and λ, assume that there are positive numbers τ, ri, and
hi (i ∈ ⟨n⟩) such that

r j ≤ riτ, i, j ∈ ⟨n⟩, (3.10a)

hi

1 −∑
j∈⟨n⟩

τ|si j|eλεi j

 − λ
ri −

∑
j∈⟨n⟩

r j|si j|eλεi j

 − ri(Ψi + Φieλπ̂i) −
∑
j∈⟨n⟩

r jΨ̂i

(
āi jP j + b̄i jQ jeλη̂i j

)
> 0, i ∈ ⟨n⟩,

(3.10b)

hi

1 −∑
j∈⟨n⟩

|si j|

 − ri

 √nΥi
(1−ς)ϵ + Ψi + Φi + Ψ̂i

∑
j∈⟨n⟩

(
āi jP j + b̄i jQ j

) > 0, i ∈ ⟨n⟩. (3.10c)

Then, the controller (3.1) with Ki = hir−1
i (i ∈ ⟨n⟩) can ensure that the neutral-type memristive

CGNNs (2.1) and (2.3) achieve accuracy-preassigned finite-time exponential synchronization within
the settling time given in (3.6).

Proof. For any i ∈ ⟨n⟩, it follows from (3.10) and Ki = hir−1
i that (3.5c) holds, and

Ki

ri −
∑
j∈⟨n⟩

r j|si j|eλεi j

 − λ
ri −

∑
j∈⟨n⟩

r j|si j|eλεi j

 − ri(Ψi + Φieλπ̂i) −
∑
j∈⟨n⟩

r jΨ̂i

(
āi jP j + b̄i jQ jeλη̂i j

)
> 0,

and hence,

(Ki − λ)ri − ri(Ψi + Φieλπ̂i) − (Ki − λ)
∑
j∈⟨n⟩

r j|si j|eλεi j −
∑
j∈⟨n⟩

r jΨ̂i

(
āi jP j + b̄i jQ jeλη̂i j

)
> 0,

that is,

(Ki − λ)ri − ri(Ψi + Φieλπ̂i) − (Ki − λ)
∑
j∈⟨n⟩

r jΩi j > 0. (3.11)

Furthermore,

ri − ri
Ψi+Φieλπ̂i

Ki−λ
−

∑
j∈⟨n⟩

r jΩi j > 0,
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that is, ∑
j∈⟨n⟩

r jΩi j

ri
+ Ψi+Φieλπ̂i

Ki−λ
< 1.

Thus, there exist li > 1 (i ∈ ⟨n⟩) such that (3.5a) and (3.5b) hold. By Theorem 2, the controller
(3.1) with Ki = hir−1

i (i ∈ ⟨n⟩) can guarantee that the neutral-type memristive CGNNs (2.1) and (2.3)
achieve accuracy-preassigned finite-time exponential synchronization within the settling time given in
(3.6). □

Remark 8. From Theorem 2 and Corollary 1, one can conclude that the positive numbers li (i ∈ ⟨n⟩)
in the settling time can be obtained based on the following steps:

Step 1. Take appropriate values of positive numbers ς, ϵ, and λ;

Step 2. Find positive numbers τ, ri and hi (i ∈ ⟨n⟩) such that the linear scalar inequalities in (3.10) are
feasible;

Step 3. Calculate the controller gains Ki by Ki = hir−1
i , i ∈ ⟨n⟩;

Step 4. Find positive numbers li (i ∈ ⟨n⟩) such that the scalar inequalities in (3.5a) and (3.5b) are
feasible.

When si j = 0, πi(t) ≡ 0, and ηi j(t) = η j(t) for all t ≥ 0 and i, j ∈ ⟨n⟩, the NN models (2.1) and (2.3)
simplify to memristive CGNNs with time-varying delays:

ẋi(t) =ψi(xi(t))
[
− φi(xi(t)) +

∑
j∈⟨n⟩

ai j(xi(t))p j(x j(t))

+
∑
j∈⟨n⟩

bi j(xi(t))q j(x j(t − η j(t)))
]
, t ≥ 0, i ∈ ⟨n⟩, (3.12a)

xi(s) =ϕx
i (s), s ∈ [−ρ, 0], i ∈ ⟨n⟩, (3.12b)

and

ẏi(t) =ψi(yi(t))
[
− φi(yi(t)) +

∑
j∈⟨n⟩

ai j(yi(t))p j(y j(t))

+
∑
j∈⟨n⟩

bi j(yi(t))q j(y j(t − η j(t)))
]
+ ui(t), t ≥ 0, i ∈ ⟨n⟩, (3.13a)

yi(s) = ϕy
i (s), s ∈ [−ρ, 0], i ∈ ⟨n⟩, (3.13b)

respectively. Furthermore, the error system is as follows:

ėi(t) =[−ψi(yi(t))φi(yi(t)) + ψi(xi(t))φi(xi(t))]
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+
∑
j∈⟨n⟩

[
ψi(yi(t))ai j(yi(t))p j(y j(t)) − ψi(xi(t))ai j(xi(t))p j(x j(t))

]
+

∑
j∈⟨n⟩

[
ψi(yi(t))bi j(yi(t))q j(y j(t − η j(t))) − ψi(xi(t))bi j(xi(t))q j(y j(t − η j(t)))

]
+ ui(t), i ∈ ⟨n⟩, t ≥ 0, (3.14a)

ei(s) = ϕi(s), i ∈ ⟨n⟩, s ∈ [−ρ, 0], (3.14b)

where

ui(t) = − Kiei(t), t ≥ 0, i ∈ ⟨n⟩, (3.15)

and Ki > 0 stand for the controller gains.
Now, we can obtain the following conclusion.

Corollary 2. For given positive constants ς, ϵ, and λ, assume that there are positive numbers l̃i and h̃i,
such that

h̃i − λl̃i − Ψ̂i

∑
j∈⟨n⟩

(l̃ j + 1)
(
āi jP j + b̄i jQ jeλη̂ j

)
− (Ψi + Φi)(l̃i + 1) > 0, i ∈ ⟨n⟩, (3.16a)

ln(l̃i + 1) + ln ∥ϕ∥ρ − ln ςϵ
√

n > 0, i ∈ ⟨n⟩, (3.16b)

h̃i − l̃i

 √nΥi
(1−ς)ϵ + Ψi + Φi + Ψ̂i

∑
j∈⟨n⟩

(
āi jP j + b̄i jQ j

) > 0, i ∈ ⟨n⟩. (3.16c)

Then, the controller (3.15) with Ki = h̃il̃−1
i (i ∈ ⟨n⟩) can guarantee that the memristive CGNNs (3.12)

and (3.13) achieve accuracy-preassigned finite-time exponential synchronization within the settling
time given in (3.6) with L = maxi∈⟨n⟩(l̃i + 1).

Proof. In light of (3.16a) and Ki = h̃il̃−1
i (i ∈ ⟨n⟩), we have

(Ki − λ)l̃i − Ψ̂i

∑
j∈⟨n⟩

(l̃ j + 1)
(
āi jP j + b̄i jQ jeλη̂ j

)
− (Ψi + Φi)(l̃i + 1) > 0, i ∈ ⟨n⟩.

Set li = l̃i + 1, i ∈ ⟨n⟩. Then,

(Ki − λ)(li − 1) − Ψ̂i

∑
j∈⟨n⟩

l j

(
āi jP j + b̄i jQ jeλη̂ j

)
− (Ψi + Φi)li > 0, i ∈ ⟨n⟩,

that is,

1
li
+

∑
j∈⟨n⟩

l jΩ̃i j

li
+ Ψi+Φi

Ki−λ
< 1, i ∈ ⟨n⟩, (3.17)

where Ω̃i j =
Ψ̂i

(
āi jP j+b̄i jQ je

λη̂ j
)

Ki−λ
. By Theorem 2, (3.16b) and (3.16c), the controller (3.15) with

Ki = h̃il̃−1
i (i ∈ ⟨n⟩) can guarantee that the memristive CGNNs (3.12) and (3.13) achieve accuracy-

preassigned finite-time exponential synchronization within the settling time given in (3.6) with L =
maxi∈⟨n⟩(l̃i + 1). □
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Remark 9. In [39], finite-time synchronization criteria of memristive CGNNs (3.12) and (3.13) are
derived by employing the differential inclusion theory and constructing the appropriate nonlinear
transformations. Compared with the results obtained in [39], Corollary 2 provides a simpler
synchronization criterion. In addition, our method can cause the states of the error system to move
directly to the preassigned range containing the origin, which avoids the two-stage procedures required
in [39].

4. Numerical examples

To verify the applicability of the results obtained in this article, the following two examples are
provided.

Example 1. In neutral-type memristive CGNNs (2.1) and (2.3), we choose n = 2, and

ψ1(·) = 0.01 sin2(·) + 0.01, ψ2(·) = 0.01 cos2(·) + 0.02,
φ1(·) = 0.5 + 0.1 sin(·), φ2(·) = 0.7 + 0.1 cos(·),

[ǎi j]2×2 =

[
2.5 −0.1
−1.9 2

]
, [âi j]2×2 =

[
2.3 −0.13
−1.7 1.8

]
,

[b̌i j]2×2 =

[
−1.1 0.22
1.15 −3.5

]
, [b̂i j]2×2 =

[
−1.3 0.3
1.2 −3.7

]
,

[si j]2×2 =

[
0.1 0.02
−0.03 01

]
, ϖ1 = 0.3, ϖ2 = 0.2,

ε11 = 0.01, ε12 = 0, ε21 = 0.02, ε22 = 0.03,
π1(·) = 0.1| sin(·)|, π2(·) = 0.1| cos(·)|,
η11(t) = et

1+10et , η12(t) = et

1+20et , η21(t) = et

1+30et , η22(t) = et

1+40et ,
p j(v) = q j(v) = 0.1

1+e−v , j = 1, 2, t ≥ 0, v ∈ R,
ϕx

1(s) ≡ 0.6, ϕx
2(s) ≡ −0.4, ϕy

1(s) ≡ −0.6, ϕy
2(s) ≡ −0.4, s ∈ [−0.1, 0].

It is clear that ε̂ = 0.03, ρ = π̂ = η̂ = 0.1, Ψ̂1 = 0.02, Ψ̌1 = 0.01, Ψ̂2 = 0.03, Ψ̌2 = 0.02, ā11 = 2.5,
ā12 = 0.13, ā21 = 1.9, ā22 = 2, b̄11 = 1.3, b̄12 = 0.3, b̄21 = 1.2, b̄22 = 3.7, and ∥ϕ∥ρ = 1.2. Set
Φ1 = 0.002, Φ2 = 0.003, Ψ1 = 0.006, Ψ2 = 0.008, and Pi = P̂i = Qi = Q̂i = 0.1, i ∈ ⟨2⟩. Then,
assumptions A1 and A2 are satisfied. For ς = 0.001, λ = 1.5, and ϵ = 0.04, using the software tool
YALMIP, one can gain the following feasible solution to the inequalities in (3.10):

τ = 1.0100, r1 = r2 = 0.0010, h1 = 0.0019, h2 = 0.0016,

hence, K1 = 1.9494 and K2 = 1.6471. Then, it can be obtained that l1 = 1.5299 and l2 = 1.6353
by solving the inequalities in (3.5a) and (3.5b), hence, L = 1.6353 and T̂ = 7.4316. By Corollary
1, the controller (3.1) can guarantee that the neutral-type memristive CGNNs (2.1) and (2.3) achieve
accuracy-preassigned finite-time exponential synchronization within the settling time T̂ .

Under the designed controller (3.1), the state trajectories of the considered neutral-type memristive
CGNNs are presented in Figures 1 and 2, and the corresponding errors and their norms are given in
Figures 3 and 4. From these four figures, it can be observed that the errors with the controller exhibit
a gradual convergence towards zero. In addition, without the controller, Figures 5 and 6 illustrate
the state trajectories of the considered neutral-type memristive CGNNs. Consequently, to resolve the
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synchronization issue, it is of paramount importance to design an appropriate controller to ensure that
the states of considered error system gradually reduce the origin.

Figure 1. State trajectories x1(t) and y1(t) of the considered CGNNs with the controller in
Example 1.
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Figure 2. State trajectories x2(t) and y2(t) of the considered CGNNs with the controller in
Example 1.
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Figure 3. Error curves with the controller in Example 1.

Figure 4. Norm curves of errors in Example 1.
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Figure 5. State trajectories x1(t) and y1(t) of the considered CGNNs without the controller
in Example 1.

Figure 6. State trajectories x2(t) and y2(t) of the considered CGNNs without the controller
in Example 1.

It is seen from (3.6) that the settling time T̂ is affected by parameter ς, the preassigned accuracy ϵ,
the norm ∥ϕ∥ρ of initial function, and the decay rate λ, which is explained by Tables 1–4. From which,
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it is concluded that the settling time T̂ is positively dependent on the norm ∥ϕ∥ρ of initial function, and
negatively dependent on parameter ς, the preassigned accuracy ϵ, or the decay rate λ.

Table 1. The relation between the settling time T̂ and ς when ϵ = 0.04, ∥ϕ∥ρ = 1.2, λ = 1.5,
and ∥ϕ∥ρ = 1.2.

Parameter Parameter value
ς 0.001 0.002 0.003 0.004 0.005 0.006
T̂ 7.4316 6.9695 6.9692 6.5074 6.3587 6.2371

Table 2. The relation between the settling time T̂ and ϵ when ς = 0.001, ∥ϕ∥ρ = 1.2, and
∥ϕ∥ρ = 1.2.

Parameter Parameter value
ϵ 0.03 0.04 0.05 0.06 0.07 0.08
T̂ 7.5792 7.4316 7.2828 7.1613 7.0585 6.9695

Table 3. The relation between the settling time T̂ and ∥ϕ∥ρ when ς = 0.001, ϵ = 0.04, and
λ = 1.5.

Parameter Parameter value
∥ϕ∥ρ 1.2 12 120 1200 12000 12000
T̂ 7.4316 8.9666 10.5016 12.0367 13.5717 15.1068

Table 4. The relation between the settling time T̂ and λ when ς = 0.001, ϵ = 0.04, and
∥ϕ∥ρ = 1.2.

Parameter Parameter value
λ 1.0 1.1 1.2 1.3 1.4 1.5
T̂ 11.0848 10.0798 9.3218 8.5938 7.9707 7.4316

Example 2. In memristive CGNNs (3.12) and (3.13), we choose n = 2, and

ψ1(·) = 0.15 − 0.01 sin(·), ψ2(·) = 0.03 cos2(·),
φ1(·) = 0.2 + 0.1 sin(·), φ2(·) = 0.2 + 0.1 cos(·),
ϖ1 = 0.3, ϖ2 = 0.2,

[ǎi j]2×2 =

[
2.2 −0.12
−1.9 2

]
, [âi j]2×2 =

[
2.0 −0.15
−2.1 1.8

]
,

[b̌i j]2×2 =

[
−1.15 0.24
1.05 −2.5

]
, [b̂i j]2×2 =

[
−0.95 0.2
0.95 −2.7

]
,

p j(·) = q j(·) = 0.1 tanh(·), η j(t) = et

1+10et , j = 1, 2, t ≥ 0,
ϕx

1(s) ≡ 6, ϕx
2(s) ≡ −4, ϕy

1(s) ≡ −6, ϕy
2(s) ≡ −4, s ∈ [−0.1, 0].

It is clear that ρ = η̂ j = 0.1, Ψ̂1 = 0.16, Ψ̌1 = 0.14, Ψ̂2 = 0.03, Ψ̌2 = 0, ā11 = 2.2, ā12 = 0.15,
ā21 = 2.1, ā22 = 2.0, b̄11 = 1.15, b̄12 = 0.24, b̄21 = 1.05, b̄22 = 2.7, and ∥ϕ∥ρ = 12. Set Φ1 = 0.016,
Φ2 = Ψ1 = 0.003, Ψ2 = 0.009 and Pi = P̂i = Qi = Q̂i = 0.1, i ∈ ⟨2⟩. Then, assumptions A1 and A2
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are satisfied. For ς = 0.001, λ = 1.4, and ϵ = 0.04, using the software tool YALMIP, one can gain the
following feasible solution to the inequalities in Corollary 2:

l̃1 = 0.8581, l̃2 = 0.6604, h̃1 = 1.4189, h̃2 = 1.3082,

hence, K1 = 1.6536, K2 = 1.9809, L = 0.8581, and T̂ = 9.6983. By Corollary 2, the controller
(3.15) can guarantee that the considered memristive CGNNs achieve accuracy-preassigned finite-time
exponential synchronization within the settling time T̂ .

Under the designed controller (3.15), the state trajectories of the considered memristive CGNNs
are presented in Figures 7 and 8, and the corresponding errors and their norms are given in Figures
9 and 10. From these four figures, it can be observed that the errors with the controller exhibit a
gradual convergence towards zero. In addition, without the controller, Figures 11 and 12 illustrate the
state trajectories of the considered memristive CGNNs. Consequently, to resolve the synchronization
issue, it is of paramount importance to design an appropriate controller to ensure that the states of the
considered error system gradually reduce the origin.

Figure 7. State trajectories x1(t) and y1(t) of the considered CGNNs with the controller in
Example 2.
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Figure 8. State trajectories x2(t) and y2(t) of the considered CGNNs with the controller in
Example 2.

Figure 9. The error curves with the controller in Example 2.
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Figure 10. The norm curves with the errors in Example 2.

Figure 11. State trajectories x1(t) and y1(t) of the considered CGNNs without the controller
in Example 2.
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Figure 12. State trajectories x2(t) and y2(t) of the considered CGNNs without the controller
in Example 2.

5. Conclusions

For a class of neutral-type memristive CGNNs with time-varying multiple leakage and transmission
delays, we examine the problem of accuracy-preassigned finite-time exponential synchronization
control. By proposing an upper-right derivative-based direct method, a novel controller that is related to
neutral delays is presented to achieve accuracy-preassigned finite-time exponential synchronization of
the drive and response neutral-type memristive CGNNs. The investigated synchronization conditions
are composed of several scalar inequalities that can be checked via the standard software tools. Finally,
two numerical examples present the effectiveness of the designed controller. This study fills the
gap by presenting sufficient conditions guaranteeing the accuracy-preassigned finite-time exponential
synchronization of neutral-type memristive CGNNs with multiple time-varying leakage delays and
transmission delays.
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