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Abstract: We studied the problem of accuracy-preassigned finite-time exponential synchronization
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formula for solutions of the error system. Then, the estimation formula was used to establish
sufficient conditions guaranteeing accuracy-preassigned finite-time exponential synchronization of
the considered memristive Cohen—Grossberg neural networks. The obtained sufficient conditions
were composed of some linear scalar inequalities that was easy to solve by employing standard
tool softwares. Moreover, the approach proposed here was based on the concept of accuracy-
preassigned finite-time exponential synchronization, and Lyapunov—Krasovskii functionals or model
transformations were not involved, simplifying the theorematic proof. Finally, two numerical examples
were given to present the validity of theorematic results.
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1. Introduction

Neural networks (NNs) have been the subject of many studies because of their successful
applications in various areas such as associative memory [l], autonomous navigation [2], data
encryption [3], intelligent control [4], optimization [5, 6], controller design [7], pattern recognition [8],
spacecraft formation flying [9], and so on. In practice, time delays can cause NNs to oscillate, become
unstable, or perform poorly [10, 11]. Researchers have identified several types of delays, including
leakage delays [12—-14], distributed delays, transmission delays, and neutral delays. In recent years,
a number of topics related to delayed NNs, such as stability and stabilization [15-18], dissipativity
analysis and control [19,20], passivity and passification [21], state estimation [22], and synchronization
control [23-25], have attracted attention from many researchers.

The Cohen—Grossberg NNs (CGNNs) were proposed by Cohen and Grossberg in 1983 [26]. In
the past few years, increasing intension in analyzing and control of CGNNs have appeared [27-30].
In 2008, Stanley R. Williams and his team found the practical memristor [31], which verifies Chua’s
prediction in 1971 [32]. Since the memristor mimics the forgetting and remembering processes in
human brains, it has potential to be used as brain-like computers and future computers. In order
to more accurately mimic the human brain via NNs, the ordinary resistor of connection weights of
CGNNs is replaced by the memristor, resulting in memristive CGNNSs. Therefore, memristive CGNNs
have more significance in the study of human brain simulation.

Synchronization issues have garnered significant attention and research [33-35], thanks to their
applications in image encryption, audio encryption, and secure communication [36—-38]. In [39], finite-
time synchronization criteria of memristive CGNNSs involving time-varying delays were obtained by
constructing the appropriate nonlinear transformations and employing the differential inclusion theory.
For reaction-diffusion memristive CGNNs, a new definition of quasi-fixed-time synchronization was
proposed in [40], and quasi-fixed-time synchronization theorem was investigated by designing an
effective controller. In [28], using the reduced-order method based on the differential inclusion
theory, the adaptive feedback controller was proposed to achieve global asymptotic synchronization
of proportional delay inertial memristive CGNNSs. In [41], the exponential synchronization conditions
of quaternion-valued memristive CGNNs involving time-varying delays were presented by employing
the differential inclusion theory, an improved one-norm method, and the set-valued map theory.
For coupled memristive multi-stable CGNNs involving mixed delays, some sufficient conditions
guaranteeing multi-synchronization were investigated by utilizing the M-matrix theory, the state-space
decomposition, and the fixed point theory [42]. The synchronization issues of fractional-order delayed
memristive CGNNs are addressed in [43,44].

In the above references about finite-time synchronization problem of NNs, the settling-time formula
was derived by employed the different radial unbounded function. When the time is larger than the
settling time, state variances of error system are always equal to zero in theoretically; however, due
to the network noises, model approximation, DoS attacks, and so on, they realistically converge into
a small domain containing the origin [45]. In [34], a parameter € > 0 was introduced to describe the
small domain. From the angle of application, the positive number € can be viewed as a preassigned
accuracy, which should be satisfied whenever considering a finite-time synchronization issue. The
relationship between accuracy-preassigned finite-time exponential synchronization in neutral-type
Cohen—Grossberg memristive neural networks and Keller-Segel models lies in the exploration of
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complex dynamical systems and the synchronization phenomena in NNs, particularly under the
influence of delays and spatial interactions. Specifically, the concept of accuracy-preassigned finite-
time exponential synchronization in the context of neutral-type Cohen—Grossberg memristive neural
networks provides a framework for understanding and analyzing synchronization behaviors in Keller-
Segel models, particularly in the presence of time-varying delays. Both fields involve the study
of complex systems characterized by nonlinear interactions and delays, and they share common
mathematical methodologies, including Lyapunov functions, stability theory, and bifurcation analysis,
for their theoretical analysis [46,47]. Therefore, it is great to address the accuracy-preassigned finite-
time synchronization issue of NNs.

As stated, several researchers have studied the subject on the finite-time synchronization of time-
delay memristive CGNNs. Nevertheless, there is no study on the finite-time synchronization of
neutral-type delayed memristive CGNNs. We seek to address this gap by investigating the accuracy-
preassigned finite-time exponential synchronization problem of neutral-type memristive CGNNs
involving multiple time-varying leakage and transmission delays. We summarize the significance and
contributions of this article below:

e Compared with the current literature, the memristive CGNN model addressed in this article is
more general. The model is not only neutral-type but also involves more time-varying delays.
Moreover, we provide a new idea to solve the problems related to synchronization of neutral-type
memristive delayed CGNNEs.

e We introduce a novel method that is ground on the upper-right derivative of solutions of the
error system. Especially, instead of the derivative, the upper-right derivative is employed in the
theoretical derivation, which is compatible with a new controller that is different from ones in
studies.

e The derived synchronization conditions are comprised of simple scalar inequalities that is
convenient to implement via the common software tools. Moreover, the synchronization condition
can guarantee that the states of the error system converge exponentially into a small range
containing the origin under the preassigned accuracy.

The structure of the article is designed below: In Section 2, we provide preliminary results,

including the drive and response neutral-type delayed memristive CGNNs model, necessary
assumptions, definitions, and lemmas. In Section 3, we present the design method of controller to
achieve accuracy-preassigned finite-time exponential synchronization between the drive and response
neutral-type delayed memristive CGNNs. In Section 4, we validate the major results through numerical
examples. Finally, the conclusions are given in Section 5.
Notations: Let (n) be the set {1,2,...,n}, where n is a positive integer. The symbol R represents
the real number field. The symbols C(S;,S,) and C!(S;,S,) denote the linear spaces over R of all
continuous and continuously differential functions f : S; — S,, respectively. The column-vectorizing
operator is denoted by col(-). The symbol D" represents the upper-right derivative of functions. The
Euclidean norm is denoted by || - ||.
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2. Preliminaries

The considered neutral-type memristive CGNN involving multiple time-varying leakage and
transmission delays can be written as:

x;(1) :lﬁi(xi(f))[ — @i(xi(t — (1)) + Z a;(xi(1)p(x;(1))

JEn)
+ Z bij(xi(0)q (x;(t — n;;(1) | + Z 5;xi(t — &), t 20, i €(n), (2.1a)
Jen) JEmn)
x;(s) =¢:(s), s € [-p,0], i € (n), (2.1b)

where 7 is the number of neurons, &; > 0, m; € C([0, +00), [7;, #;]) and n;; € C([0, +00), [7;}, ;1) are
the neutral, leakage, and transmission delays, respectively, 0 < 7;, 0 < 7;;, x; : [—p, +oo) — R are the

neuronal states, p = max{&, a1, 7}, &€ = mezx)sw = m<a)>( i, = rnaxn,j, v € C(R, [‘P,,‘I’]) are the
i,je(n i€(n i,je(

amplification functions, 0 < ‘P,, ¢; € C(R,R) are the self-signal functlons, ¢ € C'([-p, 0], R) refer to
the initial functions, s;; € R, and p;,q; € C(R,R) represent the activation functions. In addition, the
connection weights have the form as follows:

a;j, if[-|> @, bij, if|-]> @y,
a;;(-) = . - bij() = 5. (2.2)

alj’ 1f||§w, ijs lf||§?ﬂ'l,

here, @; > 0 are the threshold constants, and &, J,b, j» and b are known scalars.

Remark 1. When s;; = 0, n;(-) = 0 and n;;(:) = n;(-) for all i, j € (n), the NN model (2.1) simplifies
to memristive CGNNs with time-varying delays [39]. When mr;i(-) = 0, s;; = 0, a;;(*) = a;j, bi;(-) = b;j
and n;j(-) = n(-) for any i,j € (n), the NN model (2.1) reduces to CGNNs with one time-varying
transmission delay [48].

Remark 2. In some NNs, there are a large number of synapses with different sizes and parallel paths
with different lengths, which limits the space range [49]. Therefore, there is always a representative
time delay, which is essentially different from the conventional delays, and it broadly exists in the
negative feedback terms of the system, which are identified as leakage terms, named leakage delay.
The leakage delay is usually incorporated in the study of network modeling. Such a type of time delay
often has a tendency to destabilize the NNs and is difficult to handle. Therefore, it is of great practical
significance to study the stability of NNs with leakage delays.

We take the neutral-type memristive CGNN (2.1) as the drive system, which devises a neutral-type
memristive CGNN (response system) as follows:

yi(®) :'J’i()’i(f))[ — @i(yi(t — mi(1))) + Z a;;(yi(®)p;(y(®)

Jj&(m)

+ ) bi(i0)g (vt - ni](r)))] I )

J&(n) Jje(m)
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+ u;(t), t > 0,i € (n), (2.3a)

yi(s) = ¢;(s), s € [-p,01, i € (n), (2.3b)

where y; : [-p,+00) — R represent the neuronal states, (ﬁ € C'([-p,0],R) stand for the initial
functions, and u; : [0, +00) — R refer to the control inputs.

The error system related to the drive-response neutral-type memristive CGNNs (2.1) and (2.3) is
expressed as:

(1) =[—¢i(yi()piyi(t — mi(0))) + Yi(xi(1)pi(x;(t — 7;(2)))]
+ Z [lﬁi()’i(l))aij()’i(f))Pj()’j(f)) - l//i(xi(f))aij(xi(f))l?j(xj(f))]

JEm)

+ Z [lﬁi()’i(t))bij(yi(f))%()’j(f = 1;j(1)) — Yi(xi(D)b;j(xi(1))q j(x;(t — Uij(f)))]
JEm)

+ Y sijest = &) + wi(t), 120, i € (n), (2.4a)
JEm)

ei(s) = ¢i(s), s € [-p,0], i € (n), (2.4b)

where ¢(s) = ¢,(s) — ¢;(s) and e;(t) = yi(t) — x,().

Definition 1. For any initial function ¢(-), we say that the neutral-type memristive CGNNs (2.1) and
(2.3) achieve accuracy-preassigned finite-time exponential synchronization, if for given an accuracy
€ > 0, there are T > 0 and u;(¢) (i € (nY) such that the state vector, e(t) = col (el(t), cee, e,,(t)) satisfies

lle()|| < € whenever t > T. The constant T is called the settling time.

The following assumptions are required.

Ajp: [44] For every i € (n), there are positive numbers P;, Q;, P;, and Qi satisfying:
pi() < Pi, Ipi(x) = pi)] < Pilk 1,
lg:(| < O, 1gi(k) — qi(D)] < Qilk — ¢, k, e € R.

A,: For every i € (n), there are positive numbers ¥; and ®;, satisfying:
lri(kD)i(k2) — Yi(t)ei()] < Wilki — ul + Dilkr — ol k1, k2, 81,12 €R.
In the case without the leakage delay, it is chosen that k; = «, and ¢; = 1, [44].

Remark 3. In Assumptions A, and A,, we require the amplification function or activation functions
to be bounded continuous and satisfy Lipschitz continuity. Otherwise, the NN system may experience
problems such as gradient explosion or model degradation. There are also many research results that
can handle discontinuous activation functions [44].

We aim to design controllers u;(f) (i € (n)) such that the drive-response neutral-type memristive
CGNN s (2.1) and (2.3) achieve accuracy-preassigned finite-time exponential synchronization. To this
end, the following conclusion is needed.

Lemma 1. Set Bij = maX{llvaijl, |l;,~j|} and a;; = max{|d;jl, |a;;|}. Then, under assumption A,, there are:
i (i(s)aij(vi($)p (v (5)) — i(xi(s))a;(xi(5)pj(x;(s))]
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<Wa;;Pjle;(s)| + WViP)la;; — a;j| + Pia (¥, = V), i, j € (n),s >0, (2.5)

Wi (i()bi i i())q,; (i (s = 1ij(5))) = Wixi()bij(xi()q(x;(s = 7i;(s)))]
<P:b;;Qlei(s — () + Vi 0jlbij — bijl + Q;bi;(¥; =), i, j € (n),s > 0. (2.6)

Proof. We prove only (2.5), since the other is similar. It follows from ¢; € C(R, [‘i’i,‘i’i]), aj =
max{|d;j| |a;;l}, (2.2) and assumption A; that

i (i(s)aijyi($)p (v (s) — i(xi(s))aij(xi($)pj(x;())]
=l i(yi()ai;(yi()p (v (s)) — i(yi(s)ai(yi(s)p,(x;(s))

+ lﬁi(yi(S))aij(yi(S))Pj(xj(S)) - 'ﬁi()’i(S))aij(xi(s))Pj(xj(S))

+ ‘/’i()’i(S))aij(xi(s))Pj(xj(S)) - iﬁi(xi(S))aij(xi(S))Pj(xj(s))|
<Pa;;Pjle,(s)| + WP la;; — &) + Pia (¥, — ), i, j € (ny,s > 0.

3. Accuracy-preassigned fixed-time exponential synchronization

Throughout this section, we assume that assumptions A; and A, hold. To realize accuracy-
preassigned finite-time exponential synchronization between neutral-type memristive CGNNs (2.1)
and (2.3), we design the following controllers:

wi(t) = =Kifeit) = > syejt— &) |, i € (m), 120, (3.1)

JEn)
where K; > 0 represent the controller gains.

Theorem 1. Under the controller (3.1), each solution of the error system (2.4) meets the following
relation:

5
e < ) ult) + 5, i € (n), 120, (32)
=0

where
Bio(®) = e X Ill, (1 + Zjeqry I5ifl). gl = max sup max {|g;(s)], 1,51},
1€ se[-p,0]
0i1(D) = X jeny I8ijlle;(t — &)l
(1) = F; [ KO Dley(s)lds,
di3(t) = B; [ X0 Dley(s — mi(s))lds,
0u() = ¥ D jeqny fo €5070a5P le ()]s,
A f e\ T
Bis(t) = Wi X jeny Ji €50 DyiQjlej(s — myj())lds,
Ti=M:-¥) X (C_liij + biij) +¥ X (|&ij — a;j|P; + |b;j — bilej)-

JEn) J&n)
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Remark 4. The inequality (3.2) is different from the respective conclusions in [11,24,25].
Proof. 1t is obvious from (2.4a) that

D leit) = > syt — &)
J&ln)
=E;(1) [éi(l) - Z() sije(t — 8ij)]
ietn
=E(D[-¢i(yi(0)ei(yi(t — mi(1))) + ¥i(xi(0))pi(xi(t — ()] + E(2) Z(]) [Wi(vi(D)a;;(yi()p(y (1)
jetn
— i(x(O)ai(x (D)pj(x ()] + Ei (1) Z (i) (yi()q (v j(t — 1i(1)))

Jje(m)

= Yi(xi ()i j(x(D)q (x;(t = ni()))] + EOu(t), t > 0, i € (n),

where E;(f) = sgn (e,-(t) = X e Sije (t — & j)), and hence,

|

D+ eKit

ei(r) — Z sijei(t — &)

Jje(m)

="' | K; |ei(t) — Z sijej(t — &ip| + EO[—i(yi(0)ei(yi(t — mi(0))) + &i(xi(0)pi(xi(t — m;(2)))]
JEn)
+ Ei(1) Z [lﬁi(yi(f))aij()’i(f))Pj()’j(f)) - lﬂi(xi(f))aij(xi(f))l?j(xj(f))] + Ei(Du;(1)

Jjem)

+E;(1) Z (i i) j(yi(0)q; (vt — n;j(1)) — Yi(x: ()i j(xi(D))q j(x;(t = i) |, £ =0, i € (n).
Jen)

(3.3)

This, together with (3.1), assumption A,, and Lemma 1, derives that

|

SeKit(|l/’i(yi(t))90i()’i(t = m(1)) = Yi(xi(O)pi(xilt — 7(2))))|
+ 3 i) (i) 03,(1) = v )as(x(0)px(0)]

Jj&(m)

+ Z |Wi(yi(f))bij(}’i(f))qj'(}’j(f —1;j(1)) — ¥i(xi(D)b;j(xi()q ;j(x;(t - Th‘j(l‘)))|)

Jjen)

e(r) — Z sijei(t — &)

JE(n)

D+ [eK,'t

< Wile(n) + N Dilei(t - m()] + XYy Y @;Ple ;)]
JEn)
+ 59 3" ByQjlej(t = my ()] + 1T, 120, i € (), (3.4)

J&n)
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Taking an integration on both sides of (3.4) from O to 7, we have

5
lei(t)] < e |e(0) — Z sijej(—€ij)| + Z 0ie(1) + %, i€ny, t>0,

jen) =1
and hence (3.2) holds. O
Theorem 2. For given positive numbers ¢, € and A, assume that g = %, and there are scalars [;(> 1)
and K;(> ) such that

Inl; + In[|gll, - In <5 > 0, i € (n), (3.52)
l Sii .0 - Art;
Z (—”+l| i "l&) + —Tf;(‘l_lfjl’ <1, ie{n, (3.5b)
Jetn)

v R _
< PO Yoy (@ Pi+i;05)
Z |5l + K;

<1,ien), (3.5¢)
Jjen)

W@ Py+biy Qe )

- . Then,

where Q;; = |Sl‘j|e/18ij +
() le:@)| < Lllgll,e™" + g for any t > —p and i € (n);

(ii) The controller (3.1) can guarantee that the neutral-type memristive CGNNs (2.1) and (2.3) achieve
accuracy-preassigned finite-time exponential synchronization within the settling time:

G€E
In L+In ¢, ~In 7~
/I b

(3.6)

where L = max /;.
ie(ny

Proof. In the proof, we suppose that ¢; € C!([—p, 0],R), i € (n) are finite but can be chosen arbitrarily,
and ¢;(¢) (i € (n)) is the corresponding solution of the error system (2.4).

(i) It is obvious when t € [—p,0]. We assert that (i) is correct for t > —p; otherwise, there exist
T > 0 and v € (n), satisfying

(0] < Lligll,e™" + g1 € [=p, T, i € (n), (3.7

le(D)] = Lllgll,e™" +g. (3.8)

For any given s € [0, T], we can obtain from (3.7) and (3.8), &,; > 0, m,(*) € [#,,7,] and 1,;(-) €
[ﬁvj’ ﬁvj] that

ey -1
lej(s — &)l < e™ilj|lpll,e™ + g,
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lej(s —m,i($)] < eﬁﬁv_flj||¢”pe—/1s +g,
leo(s = ()] < e Llglle™ + g (3.9)

T T T
f K- g < KL ’ f oK Ds-K,T g — o=AT f K== < }?AT/I ,
0 " Jo 0

we have from (3.9) that

0n(T) < 2 BMGMJH¢M'“T+g 2 |svjls
Jjeny JEm)
VK,-21"Y

0 (T) < ¥y 1|Ipll,e ™ + g¥, 2
0,3(T) < d)v,{‘”;l ||¢||,)e-” + gDy,
0u(T) <P, 3 Yhipgll,e + g, 3 e Pix

Noting that

VK’

Jjen) Jjen)
by;Qje'Mi
0s(T) < W, ¥ 22 igl,e T + g¥, ¥ biQj% -
jen) J&n)

It follows from (3.2) that

1
_ar | w00t “+Hsil 10,
ley(T)| <L, 8l,e {—;‘,_3 £y ( A ))

Jjem)

T, . . _
?‘+\Pv+tbv+‘l’v 3 jeiny (avjPj+by; Q)
+g Z sy + X .

jem)

This, combined with (3.5¢), means that |e,(T)| < lvll¢||pe‘” + g, which contradicts (3.8). Therefore, (i)
holds.
(ii) When 7 > T, one has from (i) and (3.6) that

leD] < Liiglloe™ + g < Lliglloe™ + 42 < <2 + 00 = < i e (),

hence,
lle®ll <€, t>T.

In accordance with Definition 1, the controller (3.1) can guarantee that the neutral-type memristive
CGNNs (2.1) and (2.3) achieve accuracy-preassigned finite-time exponential synchronization within
the settling time given by (3.6). O

Remark 5. Theorem 2 presents the existence and design approach of a novel controller that can
be used to establish accuracy-preassigned finite-time exponential synchronization between the drive-
response neutral-type memristive CGNNs (2.1) and (2.3).

Remark 6. The error system (2.4) contains multiple delays and some coupling terms of two or three
functions, which becomes hard for synchronizing CGNNs (2.1) and (2.3). To overcome this difficult
problem, we design controller (3.1) to deal with the neutral delays and introduce the parameter g to
eliminate the couplings among amplification functions, self-signal functions, and activation functions.
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10926

Remark 7. As mentioned in the Introduction section, the positive number € is viewed as a preassigned
accuracy, which has to be satisfied considering a finite-time synchronization issue. Thus, € is usually a
small positive number, which implies that In == \F < 0, and hence for given initial functions, the feasibility
of (3.5a) can be easily guaranteed. Then, (3.5b) and (3.5¢) can be satisfied by choosing appropriately
the positive numbers l; and K;, i € {(n).

Noting that the nonlinear inequalities in (3.5) are not convenient to solve, we provide the following
conclusion:

Corollary 1. For given positive constants ¢, €, and A, assume that there are positive numbers T, r;, and

h; (i € (n)) such that

ri <, i, j € (n), (3.10a)

h; (1 - Z Tlsijle’lgif] - /l[r,- - Z l”jls,-jleﬁgi-f

Jjen)y JEn)

— (P + @) = 3 (aP; + biQe™) > 0,i € (),
JEn)

(3.10b)

(1 - Zw} r,[(l LW W Y (@P + By Q)| > 0, i € (). (3.10¢)

JE(n) Je(n)

Then, the controller (3.1) with K; = h,-rl.‘1 (i € (n)) can ensure that the neutral-type memristive
CGNNs (2.1) and (2.3) achieve accuracy-preassigned finite-time exponential synchronization within
the settling time given in (3.6).

Proof. For any i € (n), it follows from (3.10) and K; = h,‘rl.‘1 that (3.5¢) holds, and

Jj&(n) JE(n)

- ri(¥; + Q™) - Z r¥; (Zl,ij + Z’iijeMij) >0,

Jj&(n)

and hence,

(K; = )ry = ry(W; + D™ = (K; = ) D rjlsifle’™ = > ¥ (a;P; + bi;Qje'7) > 0,

Jeln) Jen)
that is,
(Ki - /l)l",' — ri(‘I’,- + (Die/lﬁi) - (K, — /1) Z erij > 0. (311)
Jen)
Furthermore,

Y+ ®;
ri—r l—e’— § riQ;; > 0,

JE)
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that is,

Z erij + "I",‘+¢D,‘Cﬁri < 1

14 Kl'—/l
JEn)

Thus, there exist /; > 1 (i € (n)) such that (3.5a) and (3.5b) hold. By Theorem 2, the controller
3.1) with K; = hl-rl.‘1 (i € (n)) can guarantee that the neutral-type memristive CGNNs (2.1) and (2.3)

achieve accuracy-preassigned finite-time exponential synchronization within the settling time given in
(3.6). ]

Remark 8. From Theorem 2 and Corollary 1, one can conclude that the positive numbers l; (i € (n))
in the settling time can be obtained based on the following steps:

Step 1. Take appropriate values of positive numbers ¢, €, and 4;

Step 2. Find positive numbers 7, r; and h; (i € (n)) such that the linear scalar inequalities in (3.10) are
feasible;

Step 3. Calculate the controller gains K; by K; = hirl.‘l, i €(n);

Step 4. Find positive numbers /; (i € (n)) such that the scalar inequalities in (3.5a) and (3.5b) are
feasible.

When s;; = 0, m;() = 0, and n;;(t) = n,(¢) for all t > 0 and i, j € (n), the NN models (2.1) and (2.3)
simplify to memristive CGNNs with time-varying delays:

x;(t) :%(Xi(f))[ — @i(x;(1)) + Z a;i(xi(1)p;(x;(1))

JEn)
+ Z bij(xi(0))qi(xjt —n;ON|, t =0, i €(n), (3.12a)
JE(n)
x;(s) =¢:(s), s € [-p,0], i € (n), (3.12b)

and

yi(D) :‘/’i()’i(f))[ = @i(yi(0) + Z a;(yi())p ;)

J&(n)

+ Z bij(yi(0)q;(y(t = ()| + ui(1), t 2 0,1 € (n), (3.13a)

J&n)

yi(s) = ¢3}(S)’ s € [_p’ O]’ l € <n>’ (313b)

respectively. Furthermore, the error system is as follows:
ei(1) =[—yi(i(0)pi(yi(1) + Yi(xi(1))pi(xi(1))]
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+ Z [lﬁi(Yi(f))aij()’i(t))l?j()’j(f)) - lﬁi(Xi(f))aij(xi(f))Pj(xj(f))]

Je(n)
+ Z [lﬁi(yi(l‘))bij(yi(f))qj'(}’j(f —ni(0)) = Yi(xi(D))b; j(x(1))q j(y;(t — Uj(f)))]
JE(n)
+u;(t), i €{n), t >0, (3.14a)
ei(s) = ¢i(s), i € (n), s € [—p, 0], (3.14b)
where
Mi(t) = - K,-e,-(t), t> O, i€ <I’l>, (315)

and K; > 0 stand for the controller gains.
Now, we can obtain the following conclusion.

Corollary 2. For given positive constants ¢, €, and A, assume that there are positive numbers I; and h;,
such that

hi— AL =B > (I+ 1) (@Py + 5 Qe™) = (Wi + @)(T; + 1) > 0, i € (n), (3.162)
JEn)
In(Z; + 1) + Inigll, — In <% > 0, i € (n), (3.16b)
ljli - Nl (I/—ﬁg)‘le + \P,’ + q)i + \i’i Z ((_I,JPJ + BUQJ) > 0, 1€ <l’l> (316C)
JEn)

Then, the controller (3.15) with K; = 71,-Z~i‘1 (i € (n)) can guarantee that the memristive CGNNs (3.12)
and (3.13) achieve accuracy-preassigned finite-time exponential synchronization within the settling
time given in (3.6) with L = max,-e<n>(l~,- +1).

Proof. In light of (3.16a) and K; = hl;' (i € (n)), we have

(K; = Dl =9, >0+ D) (@yPy + 5ij0,e™) = (Wi + @)(J; + 1) > 0, i € (n).
JE(m)

Setl; =1I; + 1,i € (n). Then,
(K= (= 1) =% Y 1(@yP; +biyQje™™) = (¥, + ®)l; > 0, i € (),

JEn)
that is,
Ly 370 Yot e (n), (3.17)
JE(m)
~ li’,‘(fl,‘ij+f_),'ije/lﬁj) .
where Q;; = ———F—F——. By Theorem 2, (3.16b) and (3.16¢c), the controller (3.15) with

K, = 71,-7;1 (i € (n)) can guarantee that the memristive CGNNs (3.12) and (3.13) achieve accuracy-
preassigned finite-time exponential synchronization within the settling time given in (3.6) with L =
maXieq ([l + 1). o
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Remark 9. In [39], finite-time synchronization criteria of memristive CGNNs (3.12) and (3.13) are
derived by employing the differential inclusion theory and constructing the appropriate nonlinear
transformations. Compared with the results obtained in [39], Corollary 2 provides a simpler
synchronization criterion. In addition, our method can cause the states of the error system to move
directly to the preassigned range containing the origin, which avoids the two-stage procedures required

in [39].
4. Numerical examples

To verify the applicability of the results obtained in this article, the following two examples are
provided.

Example 1. In neutral-type memristive CGNNs (2.1) and (2.3), we choose n = 2, and

Yi1(-) =0.01 sinz(-) +0.01, Y»(-) = 0.01 cos?(+) + 0.02,
©1() = 0.5+ 0.1 sin(+), ¢2(-) = 0.7 + 0.1 cos(+),

! 25 _01] 23 -0.13

liha=|_19 o [lashe=|_17 15|

) 1.1 022] -1.3 03

[Dijloxa = 115 _3_5]’ [bijlxa = [ 1.2 —3.7]’
[ 0.1 0.02

[sijlax2 = 003 01 ], w, =0.3, @, =0.2,

€11 = 001, Epp = 0, &y = 002, &y = 003,

m1() = 0.1 sin()[, m2(+) = 0.1 cos()],

M) = e M2 = 555 110 = 555 120 = 555w

pi(v) =q;v) = 12;31_” j=12,t>0,veR,

¢1(s) = 0.6, ¢5(s) = -0.4, qﬁ(s) = —0.6, gbg(s) =-04, s €[-0.1,0].

It is clear that £ = 0.03, p = # = = 0.1, ¥, = 0.02, ¥, = 0.01, ¥, = 0.03, ¥, = 0.02, a;, = 2.5,
app = 013, ap = 19, ay = 2, 1_711 = 13, 1_712 = 03, l_)z] = 12, 1_722 = 37, and ||¢||p = 1.2. Set
®, = 0.002, ®, = 0.003, ¥, = 0.006, ¥, = 0.008, and P; = P; = Q; = Q; = 0.1, i € (2). Then,
assumptions A; and A, are satisfied. For ¢ = 0.001, 2 = 1.5, and € = 0.04, using the software tool
YALMIP, one can gain the following feasible solution to the inequalities in (3.10):

7 =1.0100, r; = r, = 0.0010, A, = 0.0019, A, = 0.0016,

hence, K; = 1.9494 and K, = 1.6471. Then, it can be obtained that /; = 1.5299 and [, = 1.6353
by solving the inequalities in (3.5a) and (3.5b), hence, L = 1.6353 and T = 7.4316. By Corollary
1, the controller (3.1) can guarantee that the neutral-type memristive CGNNs (2.1) and (2.3) achieve
accuracy-preassigned finite-time exponential synchronization within the settling time 7.

Under the designed controller (3.1), the state trajectories of the considered neutral-type memristive
CGNNss are presented in Figures 1 and 2, and the corresponding errors and their norms are given in
Figures 3 and 4. From these four figures, it can be observed that the errors with the controller exhibit
a gradual convergence towards zero. In addition, without the controller, Figures 5 and 6 illustrate
the state trajectories of the considered neutral-type memristive CGNNs. Consequently, to resolve the
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synchronization issue, it is of paramount importance to design an appropriate controller to ensure that
the states of considered error system gradually reduce the origin.

—
""" yi(t) |
=
= ]
=
e
*= -
—
&
4 6 6 7 8

Figure 1. State trajectories x;(#) and y;(¢) of the considered CGNNs with the controller in
Example 1.

0.4 T T T T T T T
——xs(t)
o2f = ya(t) |
of 1

T2 (t)a Y2 (t)

Figure 2. State trajectories x,(¢) and y,(¢) of the considered CGNNs with the controller in
Example 1.
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Figure 4. Norm curves of errors in Example 1.
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Figure 5. State trajectories x;(¢) and y;(¢) of the considered CGNNs without the controller
in Example 1.

0 20 40 60 80 100 120 140 160 180 200
t

Figure 6. State trajectories x,(f) and y,(¢) of the considered CGNNs without the controller
in Example 1.

It is seen from (3.6) that the settling time 7" is affected by parameter ¢, the preassigned accuracy e,
the norm ||¢||, of initial function, and the decay rate A, which is explained by Tables 1-4. From which,
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it is concluded that the settling time 7" is positively dependent on the norm |l#ll, of initial function, and
negatively dependent on parameter ¢, the preassigned accuracy e, or the decay rate A.

Table 1. The relation between the settling time T and ¢ when € = 0.04, lell, = 1.2, 4 = 1.5,

and [|¢]|, = 1.2.
Parameter Parameter value
S 0.001 0.002 0.003 0.004 0.005 0.006
T 7.4316 6.9695 6.9692 6.5074 6.3587 6.2371

Table 2. The relation between the settling time T and € when ¢ = 0.001, llgll, = 1.2, and

I#ll, = 1.2.
Parameter Parameter value
€ 0.03 0.04 0.05 0.06 0.07 0.08
T 7.5792 7.4316 7.2828 7.1613 7.0585 6.9695

Table 3. The relation between the settling time T and ll¢ll, when ¢ = 0.001, e = 0.04, and

A=15.
Parameter Parameter value
ll#ll, 1.2 12 120 1200 12000 12000
T 7.4316 8.9666 10.5016 12.0367 13.5717 15.1068

Table 4. The relation between the settling time 7 and A when ¢ = 0.001, € = 0.04, and

llgll, = 1.2.
Parameter Parameter value
A 1.0 1.1 1.2 1.3 1.4 1.5
T 11.0848 10.0798 9.3218 8.5938 7.9707 7.4316

Example 2. In memristive CGNNs (3.12) and (3.13), we choose n = 2, and

Y1(-) = 0.15 = 0.01 sin(-), ¥(-) = 0.03 cos?(-),
¢1() = 0.2+ 0.1sin(-), @2(-) = 0.2 + 0.1 cos(-),
w) = 03, wy = 02,

§ 22 -0.12] .. 2.0 -0.15
[dijlaxo = 19 I [Gijlox2 = 21 18 I
y ~1.15 024] —0.95 0.2
Bijlex = [ 1.05 —2.5]’ [Dijlex = [ 0.95 —2.7]’

t

pi() = q;(-) = 0.1tanh(-), n;(¢) = ﬁ, j=12,t>0,

¢1(s) =6, ¢3(s) = -4, ¢{(s) = A—6, ¢§(s) = v—4, S € [—O.Al, 0]. 5

It is clear that p = #; = 0.1, ¥, = 0.16, ¥, = 0.14, ¥, = 0.03, ¥, = 0, a;; = 2.2, a;, = 0.15,
ay = 21, ar = 20, 511 = 115, 1_712 = 024, 2721 = 105, 522 = 27, and ||¢||p = 12. Set (Dl = 0016,
®, =¥, =0.003, ¥, = 0.009 and P; = P, = Q; = Q; = 0.1, i € (2). Then, assumptions A; and A,
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are satisfied. For ¢ = 0.001, 4 = 1.4, and € = 0.04, using the software tool YALMIP, one can gain the
following feasible solution to the inequalities in Corollary 2:

I, =0.8581, I, = 0.6604, h, = 1.4189, h, = 1.3082,

hence, K, = 1.6536, K, = 1.9809, L = 0.8581, and 7 = 9.6983. By Corollary 2, the controller
(3.15) can guarantee that the considered memristive CGNNs achieve accuracy-preassigned finite-time
exponential synchronization within the settling time 7.

Under the designed controller (3.15), the state trajectories of the considered memristive CGNNs
are presented in Figures 7 and 8, and the corresponding errors and their norms are given in Figures
9 and 10. From these four figures, it can be observed that the errors with the controller exhibit a
gradual convergence towards zero. In addition, without the controller, Figures 11 and 12 illustrate the
state trajectories of the considered memristive CGNNs. Consequently, to resolve the synchronization
issue, it is of paramount importance to design an appropriate controller to ensure that the states of the
considered error system gradually reduce the origin.

14 T T T T T
. xy ()|
—0)

10} 1
a -

5

~ 4T ]

il

& 2f T
ot
2F
at |
- .

) 1 2 3 4 5 6 7 a 9 10
t
Figure 7. State trajectories x;(#) and y;(¢) of the considered CGNNs with the controller in

Example 2.
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Figure 8. State trajectories x,(#) and y,(¢) of the considered CGNNs with the controller in
Example 2.

The crrors

0 1 2 3 4 5 6 Fi 8 9 10

Figure 9. The error curves with the controller in Example 2.
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The norm of error
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Figure 11. State trajectories x;(¢) and y;(¢) of the considered CGNNs without the controller

in Example 2.
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Figure 12. State trajectories x,(¢) and y,(#) of the considered CGNNs without the controller
in Example 2.

5. Conclusions

For a class of neutral-type memristive CGNNs with time-varying multiple leakage and transmission
delays, we examine the problem of accuracy-preassigned finite-time exponential synchronization
control. By proposing an upper-right derivative-based direct method, a novel controller that is related to
neutral delays is presented to achieve accuracy-preassigned finite-time exponential synchronization of
the drive and response neutral-type memristive CGNNs. The investigated synchronization conditions
are composed of several scalar inequalities that can be checked via the standard software tools. Finally,
two numerical examples present the effectiveness of the designed controller. This study fills the
gap by presenting sufficient conditions guaranteeing the accuracy-preassigned finite-time exponential
synchronization of neutral-type memristive CGNNs with multiple time-varying leakage delays and
transmission delays.
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