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Abstract: This research is aimed at finding exact soliton solutions of the nonlinear fractional Kairat-
X equation, which describes soliton behavior in nonlinear media and has applications in quantum
physics, materials science, signal processing, and telecommunications. We use a unified method that
generalizes the tanh-function method to find new exact soliton solutions in trigonometric, hyperbolic,
and plane wave forms. Computational simulations with fixed parameters are performed to produce
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the physical properties of the derived solitons. The simulations result in the identification of several
soliton types, namely kink wave solitons, dark solitons, bright solitons, and periodic wave solitons.
Our results increase the knowledge of the solution properties of the Kairat-X equation and give a
platform to interpret a variety of significant physical phenomena. The systematicity and stability of our
methodology prove its usefulness as a device for solving other nonlinear partial differential equations
in applied physics and mathematics, always returning different exact solutions.
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1. Introduction

Partial differential equations (PDEs) are core mathematical instruments used to model dynamic
processes over time, especially in populations where changes in size, birth, and death rates can be
irregular. Scientists commonly utilize these nonlinear equations to manage dispersive effects and
nonlinearity optimally while simulating the behavior of localized stationary and pulsing waves. A
well-developed understanding of these equations is a prerequisite to comprehending the differences
and physical meanings of the nonlinear behavior seen in dispersive waves. They are sometimes
called “universal equations” because they can display wave propagation across many types of materials.
Across a wide range of scientific fields, including fluid mechanics, solid-state physics, biology,
geochemistry, ocean engineering, optical fibers, and plasma physics, nonlinear partial differential
equations (NLPDEs) are of significant importance [1-4]. This group of equations is becoming more
established as an essential field of research for modern-day scientists, since it is essential to the
understanding of dynamic processes and natural phenomena. NLPDEs allow one to study the wave
behaviors and extract accurate solutions that expose the intricate structures underlying the behaviors.

Researchers tend to explore unknown functions and parameters in many NLPDEs that are found
in engineering, biology, physics, and chemistry, with the goal of developing and improving their
research. The efficiency of mathematical calculations is an important element in modeling dynamic
processes, which results in the construction of a better, more general, and more concise class of exact
solutions. The research agenda in this domain is primarily governed by two general themes: Providing
numerical stability and developing novel mathematical solvers to supplant standard computational
techniques. Second, research into fractional differential equations has come to the fore with researchers
because such equations are pivotal in dealing with real-world issues in various scientific contexts. The
importance of nonlinear partial differential equations continues to be central not just in theoretical
investigations but also in the translation of scientific wisdom to practical issues [5-8].

Analytical solutions of NLPDE:s are crucial for the obtainment of information about the qualitative
properties of these equations and for the correct interpretation of diverse phenomena. These solutions
are both symbolic and graphical representations of the underlying structures that control intricate
dynamics, e.g., the existence or nonexistence of steady states, the existence of multiple steady states,
peak regimes, and spatial localization of transfer processes. Through extensive studies using a
combination of strong and systematic methods, researchers have gained an intimate knowledge of these
phenomena. The unified approach augments the current solutions by supplementing the limitations of
conventional tangent function techniques while generalizing the tanh-function method family at the
same time [9]. This new approach not only enhances our knowledge of the behaviors these equations
demonstrate but does so without requiring large amounts of computational resources, making it very
useful. The systematic and flexible nature of the merged approach makes it more valuable for a variety
of applications compared to more complicated numerical approaches. One of the more prominent areas
of study in this discipline is solitons, which have received considerable interest from many fields of
study, ranging from ocean dynamics to optics, plasma physics, fluid dynamics, semiconductors, and
engineering. Their ability to maintain both shape and velocity upon interactions makes them extremely
interesting, which has driven intense mathematical study of solitary waves [10].

Solitons for variable coefficient nonlinear PDEs can be obtained by methods such as the ansatz
method. The unified method unifies a number of approaches related to the tanh function technique.
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Among the successful methods that have been developed in this regard are: The extended Fan sub-
equation technique [11], the method of the exponential function [12], the generalized tanh method [13],
the Kudryashov generalized method [14], the expanded Sinh-Gordon equation solving technique [15],
the novel phig-model expansion method [16], the first integral method [17], the Riccati-Bernoulli
sub ordinary differential equation method [18], the auxiliary equation method [19, 20], the extended
simple equation method [21], the bilinear Hirota method [22], the modified Kudryshov method [23],
the spectral collection method [24], the extended modified rational expansion method [25], and the
binary Bell polynomial method [26], the sardar sub equation method [27], among other methods.
These approaches, taken together, illustrate the strength and diversity of the combined strategy in
obtaining soliton solutions and comprehending the complex behavior of nonlinear systems in many
areas of science.

Solitons are unique, robust waveforms that occur in different nonlinear systems through a delicate
interplay between nonlinearity and dispersion, enabling them to propagate over long distances without
deformation or change in velocity. Solitons are mathematical solutions to certain nonlinear partial
differential equations, like the Korteweg-de Vries equation for shallow water waves and the nonlinear
Schrédinger equation, which can be used in applications such as fiber optics [28]. Among the most
characteristic aspects of solitons is how they interact with other solitons by colliding and coming back
to their original form afterward, a peculiarity not found in standard wave phenomena. This peculiarity
is an outcome of conservation laws inherent to these equations that render solitons highly tolerant
of perturbations and disruptions. Due to their fascinating characteristics, solitons are applied in a
broad range of disciplines. In ocean dynamics, they are employed to describe events like rogue waves
and shock waves in tides, which help us better understand complicated marine environments [29].
In fiber optics, solitons are important in preserving the integrity of data transmission over long
distances since they can reverse the effects of dispersion that normally cause signal degradation. In
plasma physics, solitons describe the dynamics of waves in magnetized plasmas and are essential
in the understanding of energy transmission in tokamak devices. Engineering applications are also
flourishing, with solitons being investigated for advances in communications systems and advanced
materials, where their characteristics can guide the creation of new technologies. In addition, soliton
dynamics play a role in understanding numerous biological and chemical processes, highlighting their
diversity and intrinsic importance in many scientific fields [30]. Hence, the study of solitons is not a
mere theoretical pursuit; it carries deep ramifications for theoretical work as well as actual applications
in practical situations. N-soliton solutions can typically be derived for numerous nonlinear partial
differential equations, including the Nonlinear Conformable Kairat-X Equation, by employing certain
methods like the Hirota direct method, inverse scattering transform, or other analytic methods. It
is important to find these N-soliton solutions in order to study soliton turbulence, as they provide
researchers with knowledge about interactions of several solitons and resulting dynamics within a
system. Examining how the N-soliton solutions interact may yield complicated behavior like collisions,
fusion, or the development of turbulence-like interaction among solitons. Although the calculation of
N-soliton solutions yields theoretical results, plotting or graphing these solutions may not always be
required to derive useful conclusions. Alternatively, the equations that describe these solutions may
be examined to investigate their stability, persistence, and interactions using analytical techniques.
This analysis may include studying current theoretical frameworks and using numerical simulations
to validate the analytical results. By concentrating on the properties and interactions of N-soliton
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solutions, scientists can develop a better understanding of soliton dynamics and their implications in
physical systems without having to create visual representations. This kind of approach emphasizes
the role of firm theoretical analysis to help us know more about the behavior of solitons and how they
affect phenomena such as soliton turbulence [31].

A fractional differential equation is characterized by the occurrence of derivatives that are of
fractional order. Soliton wave studies result in certain nonlinear fractional differential equations, as
well as other related challenges. Solitons, with their unique properties, are now the subject of research
interest in nonlinear science. Their novel solutions, especially those that are similar to solitons, are
of great interest because they are inherently stable; solitons do not change shape and speed even
after a collision, and they can exist as stable objects. There are a number of different types of
solitons, such as “dark solitons”, “periodic solitons”, “special solitons”, “bright solitons”, “dark-bright
solitons”, “kink solitons”, and “anti-kink solitons”. Fractional order models in the field of nonlinear
sciences are frequently preferred because they are better able to capture real-world complicated
phenomena. Though basic calculus properties like Rolle’s theorem, the chain rule, the mean value
theorem, and derivative rules for the quotient and product of two functions still hold, conformable
fractional operators are more readily compared to other fractional operators owing to some limitations.
The conformable derivative is an easy and natural derivative, serving to clarify the importance of
physical interpretations, thus being a useful tool in applications [32]. The method has real-world
implications in a wide range of fields, such as biology, computer networking, chemistry, laser optics,
nonlinear dynamics, optical fibers, and engineering. One of the earliest definitions of fractional
derivatives is the Riemann-Liouville fractional derivative [33], which is defined by the presence of an
integral limit. Another view is given by the Caputo fractional derivative, developed by Michele Caputo,
which presents a revised method to the classical derivative [34]. In addition, the Griinwald-Letnikov
fractional derivative [35] is a discretized version of fractional derivatives that uses finite difference
methods. With the help of fractional derivatives and their various uses, scientists can access the newest
research and discoveries within the growing community of fractional calculus and, thus, advance our
knowledge of sophisticated systems in numerous scientific fields.

The Kairat-X equation, in its particular form and context, well explains wave propagation and
the surface geometry of curves. The equation is used in many areas, such as optical fibers, optical
communication, quantum mechanics, and other physical systems where nonlinearity is important.
The main focus is on quantitatively investigating the Kairat-X equation, which is paramount due
to the fact that solitons, owing to their ability to maintain their shape upon propagation, are
important within various fields like ‘“signal processing”, “quantum physics”, “materials science”,
and “telecommunications”. The Kairat-X equation is important in investigating soliton solutions owing
to their fundamental dynamics. This new model is key in finding the gauge equivalency among various
models. Myrzakulova et al. have recently posted their work regarding the equations controlling the
Kairat equation with explorations on numerous wave solutions [36]. There are two versions of Kairat
equations that exist under the category of Kairat equations: The Kairat-X equation and the Kairat-1I
equation. Various authors have studied the models and presented numerous solutions. For example, to
identify exact traveling wave solutions for the Kairat-II equation, Awadalla et al. (2023) employed three
methods, namely the exp function method, the modified simple equation technique, and the generalized
Kudryashov method [37]. Igbal et al. (2024) obtained several solitary wave solutions for the governing
model by using the extended simple equation technique [38]. Moreover, Wazwaz (2024) built multi-
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soliton solutions of the explored model using the Hirota bilinear method [39]. Still, Tipu et al. (2024)
computed photonic soliton solutions via an extended modified direct algebraic approach [40]. Not
only are the results of these publications interesting and creative, but they are also enlightening from
the viewpoint of different physiological phenomena, thus putting emphasis on the applicability and
novelty of the framework of the Kairat equation.

1.1. Conformable derivative

The conformable derivative is an advanced development of the concept of the classical derivative,
specifically built to provide greater flexibility for the calculation of rates of change for functions.
Classical derivatives demand functions be differentiable as per normal criteria, while conformable
derivatives facilitate differentiation for those functions that need not adhere to these parameters. By
including a scaling factor, it allows for fractional or non-integer differentiation, which is especially
beneficial in many applications. One of the main uses of the conformable derivative is in fractional
differential equations, allowing the creation and solving of equations that have fractional orders of
differentiation. This is very useful in physics and engineering, where most systems have behaviors
described best by fractional calculus. Further, the conformable derivative is also an effective means
of simulating intricate systems that are typified by non-local phenomena or memory effects, thereby
providing better representations of their dynamics. In control theory, system design is further enhanced
through the conformable derivative in terms of accurately representing processes that do not fit into
integer-order dynamics, eventually yielding improved system stability and response. The financial
industry is also advantaged by this derivative, as it enables improved stock price movement modeling
that displays anomalous behaviors and irregular fluctuations. In biology, conformable derivatives are
applied in modeling population dynamics and disease propagation, capturing sophisticated interactions
and lags that basic models might insufficiently address. Also, in signal processing, conformable
derivatives open new avenues for filtering and analyzing signals, especially when the conventional
procedures fail. When it comes to wave propagation, they allow models of wave actions in
situations ranging from quantum mechanics to material science with more accuracy, where complicated
non-linear patterns are the norms. On the whole, the conformable derivative is a strong and
versatile instrument, having far-reaching effects on theoretical studies and real-world applications
in a broad range of fields, from science and engineering to finance and others [41]. The impact
of different fractional orders on the solution can be vast, leading to a variety of mathematical
behaviors and characteristics. Depending on the system’s fractional orders, system stability, and
oscillating tendencies, as well as rates of convergence, might be greatly varied. By scrutinizing
these differentiations, a better understanding of underlying dynamics is acquired, resulting in more
meaningful visual representations that echo the nuances initiated by different fractional orders. This
emphasis not only makes the results clearer but also enhances the knowledge of the relevance of
fractional calculus in the context of the research.

The nonlinear conformable Kairat-X equation is as follows [42]:

Dy u = 3Dy u - DR+ DR u - DY) + DY u =0, (1.1)
where, the variables x > 0 and ¢ > 0. The Mittag-Leffler function is defined as elaborated in [43]. A
review of existing literature reveals that the unified method has not yet been utilized in this context,
nor have soliton solutions been derived through this mathematical approach. It should be noted that
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the unified approach is capable of yielding solutions that are more general than those produced by
the recently developed methods, such as the hyperbolic tangent function approach or the %—expansion
methods. This observation underscores a significant gap in the current body of research, which this
study aims to address. The provision of precise solutions enables the prediction of system behavior
across various scenarios without necessitating substantial computational resources. Specifically, “exact
soliton solutions”, or simply “exact solutions”, refer to analytical solutions obtained directly through
rigorous mathematical methodologies, rather than through approximations or numerical simulations.
In the context of the nonlinear conformable Kairat-X equation, these exact soliton solutions represent
specific waveforms that not only perfectly satisfy the equation but also exhibit essential solitonic
characteristics. Such exact solutions facilitate the understanding of system dynamics under different
conditions, thereby enhancing predictive capabilities without the reliance on extensive computational
power. This aligns with the overarching goal of our study: To contribute to the field by supplying
valuable insights through the derivation of exact solutions that fill the identified research void.

The main reason for choosing the nonlinear fractional Kairat-X equation as the model for this
study lies in its relevance and applicability across diverse fields such as quantum physics, materials
science, and telecommunications. It effectively captures the intricate dynamics of solitons in nonlinear
media, making it a valuable tool for examining complex phenomena and interactions that occur
in these applications. The gap in the literature that this study focuses on includes the limited
exploration of exact soliton solutions for the nonlinear fractional Kairat-X equation. While previous
research may have addressed general properties or numerical simulations of the equation, there is
often a lack of comprehensive studies that derive and classify various exact soliton solutions, such
as kink wave solitons, dark solitons, and bright solitons. Additionally, the existing literature may
not fully utilize advanced mathematical techniques, such as the generalized tanh-function method,
to systematically obtain a wide variety of soliton solutions. By addressing these gaps, this study
contributes to the growing body of knowledge surrounding the Kairat-X equation, providing a more
detailed understanding of its soliton solutions and their physical implications. The results not only
enhance theoretical insights but also pave the way for potential applications in related fields, thereby
bridging existing gaps in the literature.

Solutions of the nonlinear conformable Kairat-X Equation must be interpreted physically with
caution, since their applicability hinges upon the context of the equation as well as the very character
of the solutions. Trivial solutions that represent simple equilibrium or constant states tend to lack
dynamical relevance. onversely, non-trivial solutions with more involved behavior, such as wave
propagation or solitonic patterns, can capture physical processes of interest to the systems they
describe. To determine their physical feasibility, it is crucial to analyze how these solutions fit into
basic principles, such as conservation laws and stability of perturbations. Further, probing parameter
dependencies and comparing these solutions with known outcomes in the literature can shed light
on their relevance and validity. This cautious scrutiny is critical to determine if the solutions add to
underlying physical phenomena or are simple mathematical artifacts. The force equation, written as
F = ma, is fundamental in describing the interplay between mass, acceleration, and the forces on
a system. Its integration into the theory of nonlinear dynamics and soliton solutions explains how
external forces influence the development and stability of solitons [44]. By using force equation
concepts, scientists can study how changing conditions of force affect systems controlled by nonlinear
partial differential equations, for example, the Kairat-X equation. This knowledge provides better
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predictions for soliton behavior under changing external conditions and consolidates the theory needed
for use in practical fields such as fluid dynamics, optics, and material science. In addition, studying
the interaction between the force equation and soliton theory can result in new approaches to solving
intricate nonlinear systems, ultimately enhancing our capacity to model real-world phenomena.

Section 2 introduces the unified approach, providing an overview of its principles and methods. In
Section 3, we discuss the application of the nonlinear conformable Kairat-X equation and its relevance
to our research objectives. Section 4 employs various visual representations, including contour plots,
density graphs, and both 2D and 3D visualizations, to illustrate the multiple solutions identified in our
analysis. Finally, Section 5 concludes the paper by summarizing the main contributions and suggesting
directions for future research. This structured approach allows for a comprehensive examination of the
nonlinear fractional Kairat-X equation and its solutions.

2. Summary of unified method

Consider the NLPDE in the form of the function u(x, f), where ¢ represents the time variable and x
denotes the spatial variable.

DUy Uy Uy Uy Upgy Uyonnnee. =0. 2.1

Let P be a polynomial in u = u(x, t) and its various partial derivatives, which includes nonlinear
terms as well as the highest-order derivative. Here, u(x, t) is an unknown function of both the spatial
variable x and the temporal variable .

The gamma function, denoted as I'(z), is a fundamental mathematical function that generalizes
the concept of factorials to non-integer values. It is defined for complex numbers and plays a
crucial role in various areas such as calculus, complex analysis, and probability theory. The gamma
function is mathematically defined for complex numbers z with a positive real part (Re(z) > 0) by the
following integral:

['(z) = f ) e dt. (2.2)
0

This integral converges for all z where the real part is positive. The factor e™ ensures that the
integral converges as ¢ approaches infinity, while #*~! allows for the extension to non-integer values.
Step 1. Consider a fractional wave transformation, which involves substituting the original variables
in a wave equation with fractional derivatives.

_Tla+1)

u(x,t) = Uly), x = —5 (1 +&x°) + 4. (2.3)

Step 2. By substituting Eq (2.3) into Eq (2.1), we derive a NLODE, which can be expressed as follows.
P U, U U, U, ) = 0. 2.4)

Step 3. The integration process introduces constants. When every term of the differential equation
includes derivatives that can be integrated, the integration should be concluded. For the specific
solution we are looking for, we assume that the constant arising from the integration is set to zero.

Step 4. Let us consider that the assumed solution to the NLPDE can be represented by the following
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ansatz [45]:

M
UG = a0+ ) [aiF (o) +biF ()] (2.5)
i=1

where afw + bﬁl # 0, and ag,a;,b; (for 1 < i < M) are unknown arbitrary parameters, the explicit
invariant solution F(y) satisfies the following equation:

F'(v) = Fx)* + Q. (2.6)

The general solution is as follows for Eq (2.1):
(a) Hyperbolic function solutions (If Q2 < O then)

TJQ(— (@ + e2)) — d@cosh(Z V-Q(f +X))

dsinh (2V=Q(f +x)) + e
+2d V-Q
d + cosh (2 V=Q(f + x)) - sinh (2 V=Q(f + x))

(b) Trigonometric function solutions (If QQ > 0 then)

F Q2 + ¢?) - d VQcos (2VQ(f + x))

dsin(2VQ(f +x)) + e

2id VQ
d + isin (2 VO(f + x)) + cos (2 VO(f +x))

(c) Rational function solutions (If 2 = 0 then)

F(y) =

B

F(y)=FV-Q+

F(y) =

’

F(X):¢i\/£_2+

1
f+x

F(y) = -
3. Application of the nonlinear conformable Kairat-X equation

By applying a fractional wave transformation to Eq (2.3) in relation to Eq (1.1), we derive
an NLODE.
AEUW + 22U - 6182U'U” = 0. (3.1)

After integrating once with regard to y, we modify Eq (3.1) as
28U + 22U - 3282 (U') = 0. (3.2)

Equation (3.2) can be solved as follows based on M = 1, which is obtained by applying the
homogeneous balancing principle.

b

. 33
Fo) (3.3)

Ul)=aiF(x)+ao+

AIMS Mathematics Volume 10, Issue 5, 10898-10916.



10906

By substituting Eq (3.3) into Eq (3.2) and incorporating the details outlined in Eq (2.6), we formulate
an algebraic system. This is achieved by setting each coefficient from the resulting expression to zero.
This approach ensures that we identify the requisite conditions for the equations to be valid, ultimately
resulting in a solvable system of equations based on the coefficients involved.

By + BiF(x)* + ByF(x)* + BsF(x)® + B4sF(x)® = 0,

where
By = —6b, 1E3Q° — 3b7A£°Q%,

B) = 64,0, AE2Q* — b1 *Q — 8b,AE3Q7 — 6bTAE°Q,
B; = 12415, A8Q + a, 1*Q + 2a, A8 Q% — 3a16°Q% — by A% — 2b,28°Q — 3bTAE%,
B3 = 6a,bAE* + a1 A + 84,487 Q — 6a71£°Q,
By = 64,08 - 3a A%

By setting all coefficients equal to zero

By =0, B, =0,
{ 0 ! (3.4)

BZZO, B3:0, B4:0.
Upon solving these algebraic equations, we obtain
a; = 26,by = =26Q, 1 = 16£°Q.

(a) Hyperbolic function solutions (If Q2 < 0 then)

zf(\/W—d@cosh(Zﬁ(f+ R )

dsinh(2@(f+w +¢))+e

2gQ(dsinh(2@(f+ M) +¢)))+e)

) 1/—(Q(af2 +e2))—d\/Ecosh(2\/E(f+ w +¢))

ui(x,t) =ap+

(3.5)

b

2d
d — sinh (2 V-Q(f +X)) + cosh (2 V=Q(f +X))

ur(x,t) = ag + 2¢ V-Q

(3.6)

1
+ -1]1.
2d -1

d—sinh(Z m(f+)())+cosh(2 m(fﬂ())
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(b) Trigonometric function solutions (If Q > 0 then)

2§(‘fﬂ(d2+€2)+d‘/ﬁCOS(2\/§_2(f+w+¢)))

= dsin (2 Vﬁ(f + —r<a+1)(2tﬁ+§xﬁ) + ¢)) +e
(3.7
2gQ(dsin(2\/§(f+ HeOred) ¢)) ; e)
’ \/m +d VQcos (2 ‘/ﬁ(f + —F(a+1)(;lﬂ+fxl3) + ¢)),
= ag - 2iEN0| - 2d
e = w2 d + cos (2 Vo (f + —r(aﬂ)(gtﬁ%xﬁ) + ¢>)) —isin (2 ‘/ﬁ(f + —F(a+1)(gtﬁ+fxﬁ) + ¢))
+ N ! 53 +1].
B d+cos[2 \/ﬁ( po ) (;’ﬁ%ﬂ) +¢))—i sin(Z \/ﬁ( I+ 7“‘””(;’&&{;) +¢))
(3.8)
(c) Rational function solutions (If 2 = 0 then)
1 C(a + 1) (17 + &xF)
us(x,t) = ag + 2&|— + fQ+Q 5 +ol]. 3.9

T(a+D)(AB+exP
o e

4. Graphical representation

The unified method has emerged as a far better improvement over classical methods for obtaining
exact soliton solutions for the nonlinear fractional Kairat-X equation. The approach presents a
generalized framework that encompasses different techniques so that a wider family of solutions such
as trigonometric, hyperbolic, and plane waves, can be obtained under a single systematic protocol.
Such a concerted effort not only streamlines the process of solution derivation, rendering it more
amenable to researchers, but is also shown to be robust in that it produces a varied set of exact solutions
consistently, thus inviting greater theoretical investigation and practical usage. But there are some
drawbacks to the unified approach, such as its complexity that could impose a learning curve on those
not familiar with the underlying math and its requirement for more computational resources than usual
methods. Additionally, this holistic approach could risk missing special properties particular to specific
equations that standard methods could treat better. Consequently, while the unified method represents
a significant step forward, researchers should carefully weigh its advantages against these complexities
to ensure its suitability for the context of their work.

In the present section, we discuss different parametric values being used in contour graphs and
compare them thoroughly in both 2D and 3D visual forms. Using Mathematica as our calculating
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software, we created Figures 1-5 to demonstrate these results. Figure 1 illustrates the hyperbolic
soliton, which is a stable, localized packet of waves that maintains its form while moving at a steady
speed. These solitons are important in many physical systems, where they take the form of rogue waves
or tsunamis in shallow water waves and signal optimization in optical fibers by avoiding dispersion. In
Figure 2, we show the dark soliton, an interesting nonlinear wave characteristic of a localized reduction
in wave amplitude in the background of a continuous structure. Dark solitons occur in various physical
situations, significantly in Bose-Einstein condensates, where they are used as a means of manipulation
of quantum states, and in nonlinear optics, where they find application in pulse manipulation within
fiber lasers and soliton lasers. Figures 3 and 4 show periodic soliton solutions, which can be interpreted
as repeating waves that can describe different phenomena in different media. The solutions appear in
plasma physics, where periodic structures occur in confined plasmas, and in nonlinear lattice systems,
including optical lattices, which find applications in the control of light propagation at the nanoscale.
Finally, Figure 5 shows the kink wave solution, which is important in field theory because it can be used
to model phase transitions in physical systems, e.g., magnetic materials experiencing phase transitions.
Kink solitons are a good example of one phase being transformed into another and have implications for
processes such as domain wall motion in ferromagnets and field configurations in scalar field theories.
In conclusion, the various soliton solutions obtained from the nonlinear Kairat-X equation demonstrate
a rich variety of nonlinear phenomena with extensive applications in various fields of fluid dynamics,
optical communications, condensed matter physics, and materials science, emphasizing the relevance
of the equation in modeling intricate real-world situations.

I
[ Y

3
2
B_1763 1 17630
| -1.7640
i -1.765 x 0 -1.7650
-1.7660
i -1.767 -1 -1.7670
-1.7680
- -2
s 1.769 -1.7690

-3-2-10 1 2 3 -3-2-10 1 2 3
t t

Figure 1. Visual representation based on the parameter values Q = -2,d = 0.78,¢e
=065 f =1, = 2.04,a = 005,88 = 0.95,¢6 = 0.04,a90 = 1.0, = 0.85,4 = 0.75 as
defined in Eq (3.5).
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Figure 2. Visual representation based on the parameter values Q = -0.2,d = 0.07,¢e

=04,f = 1.02,¢ = 07,a = 1.03,8 = 2.02,¢ = 1.04,ap = 2.09, = 1.5,4 = 0.9 as
defined in Eq (3.6).

“32-101 2 3
t

Figure 3. Visual representation based on the parameter values Q = 2,d = l,e = 2, f
=0.03,¢=13,a=15,=14,£=0.05,ap = 0.9, = 0.5,1 = 0.9 as defined in Eq (3.7).
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Figure 5. Visual representation based on the parameter values Q = 0,d = 1.09,e = 1.6, f
=1.01,¢=0.07,a =0.03,=04,6 = 1.4,ap = 2.9, = 2.5,4 = 0.9 as defined in Eq (3.9).

5. Conclusions

This study employed a unified method to investigate various types of solitary wave solutions to
the nonlinear fractional Kairat-X equation with conformable derivative, which encompasses newly
identified kink wave solitons, as well as dark, bright, and periodic wave solitons. The use of the
conformable derivative allows for a more nuanced exploration of fractional dynamics and facilitates
the handling of complex nonlinear phenomena across various applications. These solutions were given
in terms of rational, hyperbolic, and trigonometric functions. In order to graphically depict the physical
properties of the secured solitons, we performed computational simulations with constant parameters,
and we obtained contour, two-dimensional, and three-dimensional plots. The results obtained from this
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study have great potential for furthering our knowledge of nonlinear phenomena in various scientific
fields. The uses of these solutions are especially significant in fields like fiber optics, soliton wave
theory, nonlinear dynamics, geophysics, nonlinear optics, ferromagnetic material dynamics, and many
engineering applications. By taking advantage of the properties of the obtained solitons, we can further
investigate their applications in practical situations, improving the design and optimization of systems
described by nonlinear equations. In the future, further work may involve the extension of this research
to consider the investigation of more complex boundary conditions and initial value problems, perhaps
culminating in a better understanding of the stability and interactions of these soliton solutions. In
addition, it would be useful to further research the solutions with higher-dimensional systems or with
various kinds of fractional derivatives so as to expand applicability and range of knowledge gleaned
from the nonlinear fractional Kairat-X equation. In total, this research not only adds worthy new
solutions to current literature but also emphasizes the success of our strategy in tackling nonlinear
complex problems and opening up areas for further innovations in this developing field.

The investigation of different soliton solutions obtained from the nonlinear Kairat-X equation has
important implications in various disciplines, proving the relevance of these mathematical objects
to the description and utilization of wave phenomena in actual applications. Perhaps the most
significant context for the use of kink solitons is condensed matter physics, where they represent stable
structures in materials that are experiencing phase transitions. For example, in liquid crystals, the
kinks can enable the control of light, resulting in the advancement of display and optical devices. In
superconductors, too, kink solitons could be involved in vortex motion and, as such, have an impact
on the efficiency of power transmission as well as on the building of quantum computing components.
Dark solitons, or localized amplitude decreases, have seen important use in the field of nonlinear
optics, specifically in optical fiber and Bose-Einstein condensate applications. In telecommunications,
the capability of dark solitons to preserve their shape under high-speed travel can be utilized to design
more efficient data transmission systems with increased bandwidth and decreased signal degradation.
In addition, their special characteristics can facilitate the creation of sophisticated pulse generation
methods, which are very important in laser technology. Periodic soliton solutions carry essential
implications in fluid dynamics, especially in shallow water wave systems. The understanding derived
from the exploration of such waves can be used to further expand the knowledge of wave behaviors
across a range of conditions, from oceanographic research modeling storm surges and tsunami
dynamics to engineering use in coastal barrier development and wave energy collection.

Through the optimization of the shape of structures to reduce the effect of wave forces, coastal
communities can be safeguarded and sustainable energy systems can be encouraged. In addition,
plane wave solutions form a basic foundation for many physical phenomena and are the building
blocks for more complicated wave interactions. Plane wave solutions are essential in acoustics and
electromagnetic theory and are used to guide the design of devices like antennas and sensors that are
based on wave propagation principles. Generally, the broad knowledge of soliton behaviors paves
the way for innovation in applications like materials science, where soliton-like behavior can be
engineered into materials so that their performance is improved for particular purposes. Moreover,
new technologies can be developed with advances in soliton theory in quantum computing, where
solitons can be used for transferring and processing information in quantum systems. In summary, the
discoveries involving various soliton solutions not only add richness to the theoretical field of nonlinear
dynamics but also have the potential to influence a wide array of real-world applications. With
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continued development of this field of study, the incorporation of soliton solutions into technological
innovations has the potential to revolutionize the advancement of multiple fields, providing the
framework for the engineering, communications, and material design of the future.
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