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1. Introduction

1.1. Radial basis function neural networks (RBFNNs)

Many complex problems are nowadays modeled and solved by means of neural networks (NNs),
which have become a fundamental tool in machine learning and artificial intelligence. While NNs
admit many possible architectures, radial basis function neural networks (RBFNNs) may be classified
as single hidden layer, feedforward nonlinear NNs. In fact, they consist of three sequential layers: the
first or input layer, the last or output layer, and an intermediate one, referred to as the hidden layer.
Information flows only in one direction, from the input layer to the output one. Each layer is composed
of several nodes, which act as neurons in the network. Once an input is received by the neurons in the
first layer, it is processed by the neurons in the hidden layer by means of a locally biased activation
function, thus producing partial outputs that are linearly combined by the neurons in the last layer to
render a final output. The nonlinearity of the model comes from the activation function, which, in the

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025493


10853

case of RBFNNs, is some radial kernel, often a Gaussian.
More specifically, given d ∈ N, an RBFNN is any function v : Rd → R expressible as

v(x) =

N∑
i=1

wih
(
‖x − zi‖

θi

)
, (1.1)

where h : [0,∞) → R represents the activation function; x ∈ Rd is the input; N ∈ N is the quantity of
hidden layer nodes; (w1, . . . ,wN) ∈ RN is the N-tuple of weights connecting the i-th node to the output
layer; and zi ∈ R

d, θi > 0 respectively denote the centroid and width of the kernel at the i-th node
(1 ≤ i ≤ N). The kernel widths can either remain uniform across all nodes or vary individually for
each node.

1.2. The universal approximation property (UAP) of RBFNNs

Soon after their introduction by Broomhead and Lowe [1] in the 1980s, RBFNNs were applied
to supervised learning tasks like classification, pattern recognition, regression, and time series
prediction [2, 3]. Their theoretical appeal relies on their capacity of being dense in appropriate spaces
of integrable or continuous functions, which, in NNs terminology, is referred to as the universal
approximation property (UAP). A substantial corpus of literature has been devoted to studying this
property in terms of the activation function h. For instance, Park and Sandberg [4, 5] demonstrated
that relatively soft conditions on h (such as being integrable with a nonzero integral, bounded, and
a.e. continuous) are sufficient to guarantee this property in Lp(Rd) (1 ≤ p < ∞). Later on, Liao
et al. [6] established that RBFNNs can uniformly approximate any continuous function provided that
h is a.e. continuous, locally essentially bounded, and not a polynomial. Moreover, for 1 ≤ p < ∞, any
function in an Lp space with respect to a finite measure can be approximated by some RBFNN with
an essentially bounded activation function h that is not a polynomial. For further insights on p-mean
approximation capabilities of RBFNNs, see [7] and references therein. Although the nonpolynomiality
of h is clearly necessary, it has also been shown to suffice for other classes of networks to achieve the
UAP [8, 9].

1.3. RBFNNs of Hankel translates

The Hankel transformation, being particularly well-suited to handle radial functions, motivated
Arteaga and Marrero [10] to propose and study a radial basis function (RBF) interpolation scheme
where the interpolants are given by

u(x) =

n∑
i=1

αi(τaiφ)(x) +

m−1∑
j=0

β j pµ, j(x) (x ∈ I).

Here, I = (0,∞), φ is a complex basis function on I, µ ≥ −1/2, and τz = τµ,z stands for the operator
of Hankel translation with order µ and symbol z ∈ I, while, for 1 ≤ i ≤ n and 0 ≤ j ≤ m − 1, ai ∈ I
are the interpolation nodes, pµ, j(x) = x2 j+µ+1/2 are monomials of Müntz type, and αi, β j are complex
coefficients.

Details on the Hankel transformation and its associated translation and convolution operators will
be provided in Section 2 below, as the results in the present paper will delve into this approach in the

AIMS Mathematics Volume 10, Issue 5, 10852–10865.



10854

framework of NNs. In fact, by replacing the standard translation with the Hankel translation τz (z ∈ I)
in (1.1), we give the next

Definition 1.1 ([11, 12]). An RBFNN of Hankel translates is any real function v on I that can be
expressed as

v(x) =

N∑
i=1

wiτzi(λσiφ)(x) (x ∈ I),

where φ is the activation function, N ∈ N accounts for the quantity of nodes in the hidden layer, and
wi ∈ R stands for the weight from the i-th node to the output one, while zi, σi ∈ I represent the centroid
and width, respectively, of the i-th node (1 ≤ i ≤ N). Also, (λrφ)(t) = φ(rt) (t ∈ I) is a homothety of
ratio r ∈ I.

The class of all RBFNNs of Hankel translates will be denoted by S1(φ) = Sµ,1(φ).

It should be remarked that the UAP of closely related structures (termed RBFNNs of Delsarte
translates) was investigated by Arteaga and the author in a series of papers, beginning with [13].
By considering RBFNNs of Hankel (or Delsarte) translates, a new parameter µ is introduced, which
provides the practitioner with a greater variety of manageable kernels. This might be useful in handling
mathematical models built upon a class of RBFs depending on the order µ [14, 15], as network
performance can be improved just by finely tuning this extra parameter, without increasing the number
of centroids. Indeed, numerical and graphical examples illustrating the effect of µ in the approximation
of functions can be found in [12, Section 5].

1.4. A brief glossary on function spaces

Unless otherwise stated, henceforth we let µ > −1/2. The following function spaces are to be
considered:

• L∞µ,c = zµ+1/2L∞([0, c], z2µ+1dz) (c ∈ I). The usual norm of this space will be denoted by ‖ · ‖µ,∞,c.
• L∞µ,` is the space of functions belonging to L∞µ,c for all c ∈ I, topologized by the sequence of

seminorms
{
‖ · ‖µ,∞,n

}
n∈N.

• Cµ,c (c ∈ I) is the space of functions u, continuous on (0, c], for which

lim
z→0+

z−µ−1/2u(z) (1.2)

exists and is finite, normed by ‖ · ‖µ,∞,c. The correspondence u 7→ z−µ−1/2u(z) sets up an isometric
isomorphism between Cµ,c and the Banach space C[0, c] of the functions that are continuous on
the interval [0, c], with the supremum norm. Therefore, Cµ,c is Banach, too.
• Cµ is the space of functions u, continuous on I, for which (1.2) exists and is finite. Topologized

by the sequence of seminorms
{
‖ · ‖µ,∞,n

}
n∈N, Cµ becomes Fréchet.

1.5. Structure and main results

In [12], Marrero proved the following: When φ ∈ Cµ, the class S1(φ) is dense in Cµ if, and only if,
φ < πµ, where

πµ = span
{
t2r+µ+1/2 : r ∈ N0

}
. (1.3)
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This generalizes to RBFNNs of Hankel translates a result of Pinkus [9, Theorem 12] for standard
translates. Here we aim to extend to the Hankel setting the results in [6] as well: We will show that the
density of S1(φ) in Cµ (in the sense that the closure of S1(φ) as a subspace of L∞µ,` contains Cµ) can be
achieved under relaxed conditions on φ, namely, membership in L∞µ,` \ πµ and a.e. continuity, instead of
membership in Cµ.

The structure and main results of the paper are as follows: After gathering in Section 2 the basic
preliminaries on the translation and convolution operators associated with the Hankel transformation,
the UAP is addressed. In Section 3, we recall from [12] the UAP for the case of activation functions in
Cµ (Theorem 3.2) along with an auxiliary lemma, which gets slightly improved. In Section 4, the UAP
for a.e. continuous activation functions in L∞µ,` is established (Theorems 4.6 and 4.7). We remark that,
at any event, nonpolynomiality of the activation function in the hidden layer, understood as exclusion
from the class (1.3), has a pivotal role.

2. Preliminaries: the Hankel translation and the Hankel convolution

Let µ ∈ R, let Jµ denote the well-known Bessel function of the first kind and order µ, and let
Jµ(z) = z1/2Jµ(z) (z ∈ I). Whenever the involved integral exists, the Hankel transform of a function
φ = φ(x) (x ∈ I) is typically defined as

(hµφ)(x) =

∫ ∞

0
φ(t)Jµ(xt) dt (x ∈ I).

Zemanian extended the Hankel transformation to spaces of distributions by adapting the ideas
that led Schwartz [16] to produce a distributional theory of the Fourier transformation. In fact, the
Zemanian classHµ [17, 18] of all complex functions φ ∈ C∞(I) such that

νµ,r(φ) = max
0≤k≤r

sup
x∈I

∣∣∣(1 + x2)r(x−1D)kx−µ−1/2φ(x)
∣∣∣ < ∞ (r ∈ N0),

where D = d/dx, plays in the Hankel transformation setting the same role as the Schwartz space of
rapidly decreasing functions with respect to the Fourier transformation. When µ ≥ −1/2, the sequence
of norms

{
νµ,r

}
r∈N0

makesHµ into a Fréchet space, and hµ a self-isomorphism ofHµ. Hence, its adjoint
h′µ is also a self-isomorphism of the dualH ′µ when either its weak∗ or strong topologies are considered.

Zemanian [19] further introduced the class Bµ, which plays with respect to the Hankel
transformation the same role as the test space of infinitely differentiable, compactly supported functions
in the context of the Fourier transformation. Given a ∈ I, the space Bµ,a consists of all complex
functions φ ∈ C∞(I) satisfying φ(x) = 0 for x > a, and

δµ,r(φ) = sup
x∈I

∣∣∣(x−1D)r x−µ−1/2φ(x)
∣∣∣ < ∞ (r ∈ N0).

Topologized by means of the seminorms
{
δµ,r

}
r∈N0

, this space is Fréchet. The strict inductive limit Bµ
of

{
Bµ,a

}
a∈I is a dense subspace ofHµ; consequently, its dual B′µ can be viewed as a superspace ofH ′µ.

Sousa Pinto [20] pioneered in the study of the distributional Hankel convolution, although focusing
on distributions of compact support, with µ = 0. Betancor and the author [21–23] subsequently
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extended this theory to wider distribution spaces for any µ > −1/2. The definition of the Hankel
#-convolution of ϕ, φ ∈ Hµ, in the classical sense, is as follows:

(ϕ#φ)(x) =

∫ ∞

0
ϕ(y) (τxφ)(y) dy (x ∈ I),

where
(τxφ)(y) =

∫ ∞

0
φ(z) Dµ(x, y, z) dz (y ∈ I) (2.1)

is the Hankel translate of φ, with symbol x ∈ I. For x, y, z ∈ I, the nonnegative function

Dµ(x, y, z) =

∫ ∞

0
t−µ−1/2Jµ(xt)Jµ(yt)Jµ(zt) dt

=


[z2 − (x − y)2]µ−1/2 [(x + y)2 − z2]µ−1/2

23µ−1π1/2Γ(µ + 1/2) (xyz)µ−1/2 , |x − y| < z < x + y

0, otherwise

occurring in (2.1) is known as the Delsarte kernel. It is symmetric in its variables and satisfies the
duplication formula ∫ ∞

0
Jµ(zt) Dµ(x, y, z) dz = Jµ(xt)Jµ(yt) (x, y, t ∈ I)

along with the integrability property∫ ∞

0
Dµ(x, y, z) zµ+1/2 dz = c−1

µ (xy)µ+1/2 (x, y ∈ I), (2.2)

where cµ = 2µΓ(µ + 1). In particular,

(τxφ)(y) = (τyφ)(x) (φ ∈ Hµ, x, y ∈ I).

Other key results include the shifting formula

hµ(τyφ)(x) = x−µ−1/2Jµ(xy)(hµφ)(x) (φ ∈ Hµ, x, y ∈ I),

and the exchange formula

hµ(ϕ#φ)(x) = x−µ−1/2(hµϕ)(x)(hµφ)(x) (ϕ, φ ∈ Hµ, x ∈ I).

The translation operator extends up to H ′µ by transposition. Given f ∈ H ′µ and φ ∈ Hµ, their Hankel
convolution f #φ ∈ H ′µ is

( f #φ)(x) = 〈 f , τxφ〉 (x ∈ I) [23, Definition 3.1].

The shifting and exchange formulas

h′µ(τy f )(x) = x−µ−1/2Jµ(xy)(h′µ f )(x)

and
h′µ( f #φ)(x) = x−µ−1/2(hµφ)(x)(h′µ f )(x)

are valid in the distributional sense (cf. [23, Proposition 3.5]). The interested reader is especially
referred to [18, 21–23] for a more extensive study of the generalized Hankel transformation and its
associated translation and convolution.
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3. Uniform approximation with continuous activation functions

Except for the a.e. pointwise convergence stated in part (i), the next lemma is contained in [12,
Lemma 2.1].

Lemma 3.1. For z ∈ I and φ ∈ L∞µ,`, let τzφ be as in (2.1), and define

(Tzφ)(x) = φz(x) = cµz−µ−1/2(τzφ)(x) (x ∈ I).

Then, the following holds:

(i) The function x 7→ (τzφ)(x) is well defined and continuous on I. Both operators Tz and τz are linear
and continuous from L∞µ,` into itself. If, moreover, φ is a.e. continuous, then limz→0+ φz(x) = φ(x)
a.e. x ∈ I.

(ii) When restricted to Cµ, both Tz and τz define continuous linear operators into Cµ. Also, if φ ∈ Cµ,
then limz→0+ φz = φ in Cµ.

Proof. As said above, it only remains to show that limz→0+ φz(x) = φ(x) a.e. x ∈ I whenever φ ∈ L∞µ,` is
a.e. continuous, that is, the measure of the set of its discontinuity points is null.

Assume x ∈ I is a continuity point of φ; then, given any ε > 0, for some δ = δ(x, ε) > 0, the
conditions t ∈ I and |t − x| < δ imply∣∣∣t−µ−1/2φ(t) − x−µ−1/2φ(x)

∣∣∣ < ε.
Furthermore, if 0 < z < δ and t ∈ I with |t − x| ≥ δ > z, then Dµ(x, z, t) = 0. Thus, using (2.2), we may
write ∣∣∣x−µ−1/2φz(x) − x−µ−1/2φ(x)

∣∣∣
=

∣∣∣cµ(xz)−µ−1/2(τzφ)(x) − x−µ−1/2φ(x)
∣∣∣

=

∣∣∣∣∣cµ(xz)−µ−1/2
∫ ∞

0
φ(t) Dµ(x, z, t) dt − cµ(xz)−µ−1/2x−µ−1/2φ(x)

∫ ∞

0
Dµ(x, z, t) tµ+1/2dt

∣∣∣∣∣
≤ cµ(xz)−µ−1/2

∫
|t−x|<δ

∣∣∣t−µ−1/2φ(t) − x−µ−1/2φ(x)
∣∣∣ Dµ(x, z, t) tµ+1/2 dt

< ε (0 < z < δ),

which settles the lemma. �

We end this section with a main result from [12] and some comments about its proof.

Theorem 3.2 ([12, Theorem 3.3]). Let φ ∈ Cµ \ πµ. Then, S1(φ) = span {τs(λrφ) : s, r ∈ I} ⊂ Cµ is
dense in Cµ, i.e., for any f ∈ Cµ, c ∈ I and ε > 0, some g ∈ S1(φ) satisfies ‖ f − g‖µ,∞,c < ε.

Conversely, if φ ∈ πµ, then S1(φ) has finite dimension, which prevents it from being dense in Cµ.

Proof. The description of S1(φ) is clear. A proof of the converse part was given in [12, Theorem 2.5];
however, we include it here for completeness. Let

S µ = x−µ−1/2Dx2µ+1Dx−µ−1/2
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denote the Bessel differential operator of order µ. Given m ∈ N0, a distribution f ∈ H ′µ solves
the differential equation S m+1

µ f = 0 if, and only if, f ∈ πµ and the degree of the even polynomial
t−µ−1/2 f (t) is not greater than 2m [10, Theorem 2.19]. Assume φ ∈ πµ and z−µ−1/2φ(z) has degree 2m,
so that S m+1

µ φ = 0. The commutativity of S µ with Hankel translations (cf. [24]), followed by a simple
computation, yields

S m+1
µ

[
τs (λrφ)

]
= r2(m+1)τs

[
λr

(
S m+1
µ φ

)]
= 0 (s, r ∈ I).

This means that the dimension of the linear space S1(φ) is at most 2m. Being finite-dimensional and
hence closed, S1(φ) cannot be dense in infinite-dimensional spaces. �

4. Uniform approximation with locally essentially bounded, a.e. continuous activation functions

In this section, a series of lemmas will lead us to our main result. We begin with the following basic
fact.

Lemma 4.1. Assume A ⊂ Xµ, where Xµ = L∞µ,` or Xµ = Cµ, and let A, respectively A
c
, denote the

closure of A in the topology of Xµ, respectively in the norm of Xµ,c, where, for any c ∈ I, Xµ,c = L∞µ,c or
Xµ,c = Cµ,c. Then,

A =
⋂
c∈I

A
c
.

Proof. The inclusion map Xµ ↪→ Xµ,c being continuous, it is evident that A ⊂ A
c

for all c ∈ I.
Conversely, suppose g ∈ A

c
whenever c ∈ I. Then, in particular, for every n ∈ N, there exists gn ∈ A

such that ‖g − gn‖µ,∞,n < n−1. Given b ∈ I and ε > 0, choose m ∈ N with m ≥ max
{
b, ε−1}. We have

‖g − gn‖µ,∞,b ≤ ‖g − gn‖µ,∞,m

≤ ‖g − gn‖µ,∞,n <
1
n
≤

1
m
≤ ε (n ≥ m).

The arbitrariness of b ∈ I shows that limn→∞ gn = g in the topology of Xµ, so that g ∈ A. �

Lemma 4.2. Let σ ∈ L∞µ,` be a.e. continuous, and let b, c ∈ I. Then, given ρ ∈ Bµ,b, the convolution

(σ#ρ)(x) =

∫ ∞

0
(τxσ)(t)ρ(t) dt (x ∈ I) (4.1)

lies in Cµ,c and can be approximated from span {τsσ : s ∈ I} in the norm of L∞µ,c. In other words, for any
ρ ∈ Bµ we have that σ#ρ lies in Cµ and belongs to the closure of span {τsσ : s ∈ I} in L∞µ,`.

Proof. It can be adapted from that of [12, Lemma 3.1]. Fix ρ ∈ Bµ,b. By virtue of Lemma 3.1(i),
τxσ ∈ L∞µ,` for each x ∈ I; consequently, the function (4.1) is well defined.

We begin by showing the continuity of σ#ρ on (0, c]. With this purpose, pick x0 ∈ (0, c]. We have

|(σ#ρ)(x) − (σ#ρ)(x0)|

≤

∫ ∞

0

∣∣∣(τxσ)(z) − (τx0σ)(z)
∣∣∣ ∣∣∣ρ(z)

∣∣∣ dz
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≤ bµ+1/2
∫ b

0

∣∣∣(τxσ)(z) − (τx0σ)(z)
∣∣∣ ∣∣∣z−µ−1/2ρ(z)

∣∣∣ dz

≤ bµ+1/2 sup
z∈I

∣∣∣z−µ−1/2ρ(z)
∣∣∣ ∫ b

0

∣∣∣(τxσ)(z) − (τx0σ)(z)
∣∣∣ dz (x ∈ (0, c]).

Moreover, for each z ∈ (0, b], using (2.2) we may write∣∣∣(τxσ)(z) − (τx0σ)(z)
∣∣∣

≤ ess sup
t∈[0,b+c]

∣∣∣t−µ−1/2σ(t)
∣∣∣ ∫ b+c

0

∣∣∣Dµ(x, z, t) − Dµ(x0, z, t)
∣∣∣ tµ+1/2dt

≤ c−1
µ zµ+1/2 (

xµ+1/2 + xµ+1/2
0

)
ess sup
t∈[0,b+c]

∣∣∣t−µ−1/2σ(t)
∣∣∣

≤ 2 c−1
µ (bc)µ+1/2 ess sup

t∈[0,b+c]

∣∣∣t−µ−1/2σ(t)
∣∣∣ (x ∈ (0, c]).

Lemma 3.1(i) guarantees that

lim
x→x0

∣∣∣(τxσ)(z) − (τx0σ)(z)
∣∣∣ = 0 (z ∈ (0, b]) .

The desired continuity now follows from an application of the Lebesgue theorem of dominated
convergence.

Similarly, because of Lemma 3.1(i), the estimate∣∣∣∣∣∣cµx−µ−1/2(σ#ρ)(x) −
∫ ∞

0
σ(z)ρ(z) dz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ b

0
cµx−µ−1/2(τxσ)(z)ρ(z) dz −

∫ b

0
σ(z)ρ(z) dz

∣∣∣∣∣∣
≤

∫ b

0

∣∣∣cµ(xz)−µ−1/2(τxσ)(z) − z−µ−1/2σ(z)
∣∣∣ ∣∣∣ρ(z)

∣∣∣ zµ+1/2dz

=

∫ b

0

∣∣∣z−µ−1/2σx(z) − z−µ−1/2σ(z)
∣∣∣ ∣∣∣z−µ−1/2ρ(z)

∣∣∣ z2µ+1dz

≤ sup
z∈I

∣∣∣z−µ−1/2ρ(z)
∣∣∣ ∫ b

0

∣∣∣z−µ−1/2σx(z) − z−µ−1/2σ(z)
∣∣∣ z2µ+1dz (x ∈ I),

and dominated convergence:∣∣∣z−µ−1/2σx(z) − z−µ−1/2σ(z)
∣∣∣

≤
∣∣∣z−µ−1/2σx(z)| + |z−µ−1/2σ(z)

∣∣∣
≤

∣∣∣∣∣∣cµ(xz)−µ−1/2
∫ b+x

0
D(x, z, t)σ(t) dt

∣∣∣∣∣∣ +
∣∣∣z−µ−1/2σ(z)

∣∣∣
≤ 2 ess sup

t∈[0,b+c]

∣∣∣t−µ−1/2σ(t)
∣∣∣ (x ∈ (0, c], z ∈ (0, b]) ,

we arrive at
lim
x→0+

x−µ−1/2(σ#ρ)(x) = c−1
µ

∫ ∞

0
σ(z)ρ(z) dz.
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Thus, σ#ρ ∈ Cµ,c.
Next, fix x ∈ (0, c]. For each n ∈ N, consider the partition {ti = ib/n : 0 ≤ i ≤ n} of [0, b], and let

ε > 0. The following estimate is easily obtained:∣∣∣∣∣∣(σ#ρ)(x) −
n∑

i=1

bρ (ti)
n

(
τtiσ

)
(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫ ∞

0
(τxσ) (t) ρ(t) dt −

n∑
i=1

∫ ti

ti−1

t−µ−1/2
i (τxσ) (ti) tµ+1/2ρ(t) dt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

t−µ−1/2
i (τxσ) (ti) tµ+1/2ρ(t) dt −

b
n

n∑
i=1

(τxσ) (ti) ρ (ti)

∣∣∣∣∣∣∣ . (4.2)

As z2µ+1 and z−µ−1/2ρ(z) are uniformly continuous on [0, b] (cf. [18, Lemma 5.2-1]), for large enough
n, the second term on the right-hand side of (4.2) can be bounded by∣∣∣∣∣∣ n∑

i=1

∫ ti

ti−1

t−µ−1/2
i (τxσ) (ti) tµ+1/2ρ(t) dt −

b
n

n∑
i=1

(τxσ) (ti) ρ (ti)

∣∣∣∣∣∣
≤ xµ+1/2c−1

µ ess sup
z∈[0,b+c]

∣∣∣z−µ−1/2σ(z)
∣∣∣ n∑

i=1

∫ ti

ti−1

∣∣∣tµ+1/2ρ(t) − tµ+1/2
i ρ (ti)

∣∣∣ dt

≤ xµ+1/2c−1
µ ess sup

z∈[0,b+c]

∣∣∣z−µ−1/2σ(z)
∣∣∣

×

n∑
i=1

∫ ti

ti−1

[
sup
t∈I

∣∣∣t−µ−1/2ρ(t)
∣∣∣ ∣∣∣t2µ+1 − t2µ+1

i

∣∣∣ +
∣∣∣t−µ−1/2ρ(t) − t−µ−1/2

i ρ(ti)
∣∣∣ t2µ+1

i

]
dt

< xµ+1/2 ε

2
. (4.3)

Concerning the first term on the right-hand side of (4.2), recall that σ is a.e. continuous and note that
the representation (2.1), jointly with Lemma 3.1, renders the map (x, t) 7→ (xt)−µ−1/2(τxσ)(t) continuous
on (I \U)× [0,∞), where U is some open set containing the points of discontinuity of σ, with measure
less than a given λ > 0. Therefore, this map is uniformly continuous over compacta: To every α, β > 0,
there corresponds N ∈ N, independent of x ∈ [α, c] \ U, such that n ≥ N implies∣∣∣(xt)−µ−1/2 (τxσ) (t) − (xti)−µ−1/2 (τxσ) (ti)

∣∣∣ < β (t ∈ [ti−1, ti], 1 ≤ i ≤ n).

In particular, given α, η > 0, we may arrange for∣∣∣∣∣∣
∫ ∞

0
(τxσ) (t)ρ(t) dt −

n∑
i=1

∫ ti

ti−1

t−µ−1/2
i (τxσ) (ti) tµ+1/2ρ(t) dt

∣∣∣∣∣∣
≤

n∑
i=1

∫ ti

ti−1

∣∣∣t−µ−1/2 (τxσ) (t) − t−µ−1/2
i (τxσ) (ti)

∣∣∣ ∣∣∣t−µ−1/2ρ(t)
∣∣∣ t2µ+1dt

≤ xµ+1/2 sup
t∈I

∣∣∣t−µ−1/2ρ(t)
∣∣∣ n∑

i=1

∫ ti

ti−1

∣∣∣(xt)−µ−1/2 (τxσ) (t) − (xti)−µ−1/2 (τxσ) (ti)
∣∣∣ t2µ+1dt

< xµ+1/2 η (x ∈ [α, c] \ U), (4.4)
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provided that n is large enough. This way, given η, δ > 0, there exists N ∈ N such that, whenever n ≥ N,
the measure of the set of points x ∈ (0, c] for which the left-hand side of (4.4), weighted by x−µ−1/2, is
greater than or equal to η, does not exceed δ; that is, the sequence of such measures converges to zero,
or, in other words, the corresponding functional sequence converges to zero in measure. By passing to
a subsequence if necessary, a.e. convergence is achieved; thus, we obtain∣∣∣∣∣∣

∫ ∞

0
(τxσ) (t)ρ(t) dt −

n∑
i=1

∫ ti

ti−1

t−µ−1/2
i (τxσ) (ti) tµ+1/2ρ(t) dt

∣∣∣∣∣∣ < xµ+1/2 ε

2
(4.5)

for a.e. x ∈ [0, c] and sufficiently large n. A combination of (4.2), (4.3), and (4.5) results in the estimate∥∥∥∥σ#ρ −
n∑

i=1

bρ(ti)
n

τtiσ
∥∥∥∥
µ,∞,c

= ess sup
x∈[0,c]

∣∣∣∣∣∣x−µ−1/2(σ#ρ)(x) − x−µ−1/2
n∑

i=1

bρ(ti)
n

(τtiσ)(x)

∣∣∣∣∣∣ < ε
being valid for large n, which accomplishes the first part of the proof.

Now, for any ρ ∈ Bµ, we have that σ#ρ ∈ Cµ lies in the closure of span {τsσ : s ∈ I} in L∞µ,c whenever
c ∈ I. Since, by Lemma 3.1(i), span {τsσ : s ∈ I} ⊂ L∞µ,`, a direct application of Lemma 4.1 reveals that
σ#ρ belongs to the closure of span {τsσ : s ∈ I} in L∞µ,`. The proof is complete. �

Remark 4.3. Observe that, in the notation and conditions of Lemma 4.2, both n∑
i=1

bρ(ti)
n

τtiσ


n∈N

and  n∑
i=1

[
t−µ−1/2
i

∫ ti

ti−1

tµ+1/2ρ(t) dt
]
τtiσ


n∈N

are approximating sequences to σ#ρ from span {τsσ : s ∈ I}.

Lemma 4.4. Assume σ ∈ L∞µ,` is a.e. continuous and does not lie in πµ. Then, some ρ ∈ Bµ is such that
σ#ρ does not lie in πµ, either.

Proof. Lemma 4.2 allows us to argue as in the proof of [12, Lemma 3.2]. �

Lemma 4.5. If σ ∈ L∞µ,`, ρ ∈ Bµ and a ∈ I, then τa(σ#ρ) = σ#τaρ.

Proof. Defined as in (4.1), the convolution σ#τaρ makes sense, because Bµ is stable under Hankel
translations [21, Corollary 3.3].

Let b ∈ I be such that ρ(t) = 0 for t > b. There holds:∫ ∞

0
Dµ(a, x, z) dz

∫ ∞

0
|ρ(s)| ds

∫ ∞

0
|σ(t)|Dµ(z, s, t) dt

≤

∫ x+a

0
Dµ(a, x, z) dz

∫ b

0
|ρ(s)| ds

∫ x+a+b

0
|σ(t)|Dµ(z, s, t) dt

≤ sup
s∈I

∣∣∣s−µ−1/2ρ(s)
∣∣∣ ∫ ∞

0
Dµ(a, x, z) dz

∫ x+a+b

0
|σ(t)| dt

∫ ∞

0
Dµ(z, s, t) sµ+1/2ds
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= c−1
µ sup

s∈I

∣∣∣s−µ−1/2ρ(s)
∣∣∣ ∫ ∞

0
Dµ(a, x, z) zµ+1/2dz

∫ x+a+b

0

∣∣∣t−µ−1/2σ(t)
∣∣∣ t2µ+1dt

≤ c−2
µ (ax)µ+1/2 ess sup

t∈[0,x+a+b]

∣∣∣t−µ−1/2σ(t)
∣∣∣ sup

s∈I

∣∣∣s−µ−1/2ρ(s)
∣∣∣ ∫ x+a+b

0
t2µ+1dt < ∞ (x ∈ I).

Thus, the Fubini theorem may be applied to obtain

τa(σ#ρ)(x) =

∫ ∞

0
(σ#ρ)(z) Dµ(a, x, z) dz

=

∫ ∞

0
Dµ(a, x, z) dz

∫ ∞

0
ρ(s) ds

∫ ∞

0
σ(t) Dµ(z, s, t) dt

=

∫ ∞

0
σ(t) dt

∫ ∞

0
ρ(s) ds

∫ ∞

0
Dµ(a, x, z) Dµ(z, s, t) dz

=

∫ ∞

0
σ(t) dt

∫ ∞

0
ρ(s) ds

∫ ∞

0
Dµ(a, z, s) Dµ(x, z, t) dz

=

∫ ∞

0
dz

∫ ∞

0
σ(t) Dµ(x, z, t) dt

∫ ∞

0
ρ(s) Dµ(a, z, s) ds

=

∫ ∞

0
(τxσ)(z) (τaρ)(z) dz = (σ#τaρ)(x) (x ∈ I),

as claimed. �

Theorem 4.6. Let σ ∈ L∞µ,` \ πµ be a.e. continuous. Then,

S1(σ) = span
{
τs(λrσ) : s, r ∈ I

}
⊂ L∞µ,`

is dense in Cµ, i.e., for any f ∈ Cµ, c ∈ I and ε > 0, some g ∈ S1(σ) satisfies ‖ f − g‖µ,∞,c < ε.
Conversely, if σ ∈ πµ, then S1(σ) has finite dimension, which prevents it from being dense in Cµ.

Proof. The converse statement is contained in Theorem 3.2.
For the direct one, use Lemmas 4.2 and 4.4 to get some ρ ∈ Bµ such that σ#ρ ∈ Cµ \πµ. The identity

λr(τqσ) = rµ+1/2τq/r(λrσ) (r, q ∈ I) (4.6)

can be derived by simple changes of variables. A combination of Theorem 3.2 with (4.6) and
Lemma 4.5 yields the density of

S1(σ#ρ) = span
{
λr(σ#τqρ) : r, q ∈ I

}
in Cµ. Recalling that Bµ is stable under Hankel translations, invoke Lemma 4.2 again, this time to
approximate σ#τqρ from span

{
τsσ : s ∈ I

}
in the topology of L∞µ,`. After a new application of (4.6),

we are done. �

As a consequence of Theorem 4.6, the hypotheses imposed on the activation function in [12,
Theorem 4.1] can be weakened.
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Theorem 4.7. Let σ ∈ L∞µ,` be a.e. continuous, and let 1 ≤ p < ∞. Given c ∈ I, let γ be a Radon
measure on [0, c] satisfying ∫ c

0
tµ+1/2d|γ|(t) < ∞.

Then, for S1(σ) = span {τs(λrσ) : s, r ∈ I} to be dense in Lp([0, c], dγ), it is necessary and sufficient
that σ < πµ.

Proof. If σ ∈ πµ then, as shown above, S1(σ) has finite dimension, which prevents it from being dense
in Lp([0, c], dγ).

Conversely, ifσ < πµ then, from Theorem 4.6, S1(σ) is dense in Cµ,c, and hence in Lp([0, c], dγ). �

5. Conclusions

The universal approximation property (UAP) of three-layered radial basis function neural networks
of Hankel translates with varying widths has been studied. The requirement on the activation function
σ in the hidden layer for such networks to approximate continuous functions locally in the esssup-norm
has been satisfactorily weakened from continuity to local essential boundedness and a.e. continuity,
provided that z−µ−1/2σ(z) (z ∈ I) is not an even polynomial. The UAP in p-mean (1 ≤ p < ∞) with
respect to a suitable finite measure can therefore be attained under the same relaxed condition.
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