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1. Introduction

1.1. Radial basis function neural networks (RBFNNs)

Many complex problems are nowadays modeled and solved by means of neural networks (NNs),
which have become a fundamental tool in machine learning and artificial intelligence. While NNs
admit many possible architectures, radial basis function neural networks (RBFNNs) may be classified
as single hidden layer, feedforward nonlinear NNs. In fact, they consist of three sequential layers: the
first or input layer, the last or output layer, and an intermediate one, referred to as the hidden layer.
Information flows only in one direction, from the input layer to the output one. Each layer is composed
of several nodes, which act as neurons in the network. Once an input is received by the neurons in the
first layer, it is processed by the neurons in the hidden layer by means of a locally biased activation
function, thus producing partial outputs that are linearly combined by the neurons in the last layer to
render a final output. The nonlinearity of the model comes from the activation function, which, in the
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case of RBFNNSs, is some radial kernel, often a Gaussian.
More specifically, given d € N, an RBFNN is any function v : RY — R expressible as

N
W(X) = Zw,h(”x ;.z"”), (1.1)

i=1 !

where & : [0, 00) — R represents the activation function; x € R? is the input; N € N is the quantity of
hidden layer nodes; (w, ..., wy) € R" is the N-tuple of weights connecting the i-th node to the output
layer; and z; € RY, 6; > 0 respectively denote the centroid and width of the kernel at the i-th node
(1 <i < N). The kernel widths can either remain uniform across all nodes or vary individually for
each node.

1.2. The universal approximation property (UAP) of RBFNNs

Soon after their introduction by Broomhead and Lowe [1] in the 1980s, RBFNNs were applied
to supervised learning tasks like classification, pattern recognition, regression, and time series
prediction [2,3]. Their theoretical appeal relies on their capacity of being dense in appropriate spaces
of integrable or continuous functions, which, in NNs terminology, is referred to as the universal
approximation property (UAP). A substantial corpus of literature has been devoted to studying this
property in terms of the activation function /. For instance, Park and Sandberg [4, 5] demonstrated
that relatively soft conditions on 4 (such as being integrable with a nonzero integral, bounded, and
a.e. continuous) are sufficient to guarantee this property in L?(RY) (1 < p < o). Later on, Liao
et al. [6] established that RBFNNs can uniformly approximate any continuous function provided that
h is a.e. continuous, locally essentially bounded, and not a polynomial. Moreover, for 1 < p < oo, any
function in an L” space with respect to a finite measure can be approximated by some RBFNN with
an essentially bounded activation function # that is not a polynomial. For further insights on p-mean
approximation capabilities of RBFNNSs, see [7] and references therein. Although the nonpolynomiality
of h is clearly necessary, it has also been shown to suffice for other classes of networks to achieve the
UAP [8,9].

1.3. RBFNNs of Hankel translates

The Hankel transformation, being particularly well-suited to handle radial functions, motivated
Arteaga and Marrero [10] to propose and study a radial basis function (RBF) interpolation scheme
where the interpolants are given by

n m—1
u(x) = > T $)0) + ) Bipui(x) (xe D).
i=1

J=0

Here, I = (0, ), ¢ is a complex basis function on /, 4 > —1/2, and 7, = 7, stands for the operator
of Hankel translation with order 4 and symbol z € I, while, for ]| <i<nand0< j<m-1,a;, €l
are the interpolation nodes, p, j(x) = x****1/2 are monomials of Miintz type, and a;, 8; are complex
coefficients.

Details on the Hankel transformation and its associated translation and convolution operators will
be provided in Section 2 below, as the results in the present paper will delve into this approach in the
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framework of NNs. In fact, by replacing the standard translation with the Hankel translation 7, (z € I)
in (1.1), we give the next

Definition 1.1 ([11, 12]). An RBFNN of Hankel translates is any real function v on I that can be
expressed as

N
V) = ) Wit (e )®)  (re ),
i=1

where ¢ is the activation function, N € N accounts for the quantity of nodes in the hidden layer, and
w; € R stands for the weight from the i-th node to the output one, while z;, o; € I represent the centroid
and width, respectively, of the i-th node (1 < i < N). Also, (1,¢)(t) = ¢(rt) (t € I) is a homothety of
ratior € I.

The class of all RBFNNs of Hankel translates will be denoted by S(¢) = S,,1(¢).

It should be remarked that the UAP of closely related structures (termed RBFNNs of Delsarte
translates) was investigated by Arteaga and the author in a series of papers, beginning with [13].
By considering RBFNNs of Hankel (or Delsarte) translates, a new parameter yu is introduced, which
provides the practitioner with a greater variety of manageable kernels. This might be useful in handling
mathematical models built upon a class of RBFs depending on the order u [14, 15], as network
performance can be improved just by finely tuning this extra parameter, without increasing the number
of centroids. Indeed, numerical and graphical examples illustrating the effect of i in the approximation
of functions can be found in [12, Section 5].

1.4. A brief glossary on function spaces

Unless otherwise stated, henceforth we let u > —1/2. The following function spaces are to be
considered:

o L. =7""2L>([0,c],z%#*'dz) (c € I). The usual norm of this space will be denoted by || - ||,.co.-

o L7, is the space of functions belonging to L, for all ¢ € I, topologized by the sequence of
seminorms {| - [l,,con} -

e C,. (c € 1) s the space of functions u, continuous on (0, c], for which

lim 77 '2u(z) (1.2)
7—0+
exists and is finite, normed by || - ||, .. The correspondence u +— 7+~ 12u(z) sets up an isometric
isomorphism between C, . and the Banach space C[O0, c] of the functions that are continuous on
the interval [0, c], with the supremum norm. Therefore, C,, . is Banach, too.
e C, is the space of functions u, continuous on /, for which (1.2) exists and is finite. Topologized
by the sequence of seminorms {|| - [|,,.c0.1} C, becomes Fréchet.

neN?

1.5. Structure and main results

In [12], Marrero proved the following: When ¢ € C,, the class S;(¢) is dense in C, if, and only if,
¢ & m,, where
m, = span{tz”’”l/2 (1€ NO}. (1.3)
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This generalizes to RBFNNs of Hankel translates a result of Pinkus [9, Theorem 12] for standard
translates. Here we aim to extend to the Hankel setting the results in [6] as well: We will show that the
density of S;(¢) in C, (in the sense that the closure of S;(¢) as a subspace of Ly, contains C,,) can be
achieved under relaxed conditions on ¢, namely, membership in L;f( \ 7, and a.e. continuity, instead of
membership in C,.

The structure and main results of the paper are as follows: After gathering in Section 2 the basic
preliminaries on the translation and convolution operators associated with the Hankel transformation,
the UAP is addressed. In Section 3, we recall from [12] the UAP for the case of activation functions in
C. (Theorem 3.2) along with an auxiliary lemma, which gets slightly improved. In Section 4, the UAP
for a.e. continuous activation functions in L;‘jt, is established (Theorems 4.6 and 4.7). We remark that,
at any event, nonpolynomiality of the activation function in the hidden layer, understood as exclusion
from the class (1.3), has a pivotal role.

2. Preliminaries: the Hankel translation and the Hankel convolution

Let u € R, let J, denote the well-known Bessel function of the first kind and order u, and let
Ju(2) = 7V Z.Iﬂ(z) (z € I). Whenever the involved integral exists, the Hankel transform of a function
¢ = ¢(x) (x € 1) is typically defined as

%@m=l:ammmm (xe D).

Zemanian extended the Hankel transformation to spaces of distributions by adapting the ideas
that led Schwartz [16] to produce a distributional theory of the Fourier transformation. In fact, the
Zemanian class H,, [17, 18] of all complex functions ¢ € C*([) such that

V(@) = max sg) |(1 + x2)’(x_1D)kx_”_1/2¢(x)| <oo (reNy)),

where D = d/dx, plays in the Hankel transformation setting the same role as the Schwartz space of
rapidly decreasing functions with respect to the Fourier transformation. When u > —1/2, the sequence
of norms {v,, ,},.;;, makes H,, into a Fréchet space, and A, a self-isomorphism of #,,. Hence, its adjoint
hy, is also a self-isomorphism of the dual H,; when either its weak™ or strong topologies are considered.

Zemanian [19] further introduced the class $B,, which plays with respect to the Hankel
transformation the same role as the test space of infinitely differentiable, compactly supported functions
in the context of the Fourier transformation. Given a € I, the space B, , consists of all complex
functions ¢ € C*(I) satisfying ¢(x) = O for x > a, and

8ur(@) = sup |(x”' DY x#Pg(x)| < 00 (r € Np).
xel

Topologized by means of the seminorms {3, -}, this space is Fréchet. The strict inductive limit 8,
of {B,.4},; is a dense subspace of H,,; consequently, its dual 8, can be viewed as a superspace of H;,.

Sousa Pinto [20] pioneered in the study of the distributional Hankel convolution, although focusing
on distributions of compact support, with g4 = 0. Betancor and the author [21-23] subsequently
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extended this theory to wider distribution spaces for any ¢ > —1/2. The definition of the Hankel
#-convolution of ¢, ¢ € H,,, in the classical sense, is as follows:

(pHe)(x) = fo e (T:p)()dy (x€l),

where .
() = fo 6() Du(ry,)dz (e @1

is the Hankel translate of ¢, with symbol x € I. For x,y, z € I, the nonnegative function

Du(x,y,2) = f T ety o) Tzt d
0

(22— (x =2 [(x + y)2 = 212
= 23u=171 20 (e + 1/2) (xyz)#=1/2 ’
0, otherwise

x—yl<z<x+y

occurring in (2.1) is known as the Delsarte kernel. It is symmetric in its variables and satisfies the
duplication formula

f Ju@) Dy(x,y,2) dz = J,(x) T (1) - (x,y,1 € 1)
0

along with the integrability property

f ) D, (x,y,2)2" dz = ¢!y (x,y € D), (2.2)
where ¢, = 2“T'(u + 1). In pzrticular,
(T = (1,8)(x) (9 € H,, x,y €.
Other key results include the shifting formula
hu(Ty$)(x) = x 2T () (hud)(x) (€ Hy, x,y €1,
and the exchange formula
hu(#p)(x) = x V2 (h) () (up)(x) (@, ¢ € Hy, x € ).

The translation operator extends up to 4, by transposition. Given f € H; and ¢ € H,, their Hankel
convolution f#¢ € H) is

(f#p)(x) = (f,7:¢) (x €I) [23, Definition 3.1].
The shifting and exchange formulas
(2, @) = xR )()
and
H(FHD)(0) = xR $) K, (%)
are valid in the distributional sense (cf. [23, Proposition 3.5]). The interested reader is especially

referred to [18,21-23] for a more extensive study of the generalized Hankel transformation and its
associated translation and convolution.
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3. Uniform approximation with continuous activation functions

Except for the a.e. pointwise convergence stated in part (i), the next lemma is contained in [12,
Lemma 2.1].

Lemma 3.1. Forze land ¢ € L7, let T.¢ be as in (2.1), and define

(T.9)(x) = ¢.(x) = c,z " *(1,0)(x) (x€D).
Then, the following holds:

(i) The function x — (7,0)(x) is well defined and continuous on I. Both operators T, and T, are linear
and continuous from LY, into itself. If, moreover, ¢ is a.e. continuous, then lim,_,o, ¢.(x) = ¢(x)
a.e. x€l.

(ii) When restricted to C,, both T, and 7, define continuous linear operators into C,. Also, if ¢ € C,,,
then lim,_o, ¢, = ¢ in C,.

Proof. As said above, it only remains to show that lim,_,o, ¢,(x) = ¢(x) a.e. x € I whenever ¢ € LY is
a.e. continuous, that is, the measure of the set of its discontinuity points is null.

Assume x € [ is a continuity point of ¢; then, given any £ > 0, for some 6 = d6(x,&) > 0, the
conditions ¢ € I and |t — x| < 6 imply

12 — x 1 Pg(0)| < &

Furthermore, if 0 <z < dand ¢ € I with |t — x| > 6 > z, then D, (x, z,1) = 0. Thus, using (2.2), we may
write
20 = 27 ()|
= leu() ™ P p)(x) — ()|

CIJ(XZ)_II_U2 f ¢(t) DH(X, z, ) dt — C/J(xz)_ﬂ_l/zx—/l—l/2¢(x) f D,l(x, 2,0 l_/1+l/2dt
0 0

< cﬂ(xz)_“_l/2 f |t‘“_1/2¢(t) - x‘”_1/2¢(x)| D,(x,z,1) #4112 gy
|t—x|<d
<e (0<z<)9),

which settles the lemma. O
We end this section with a main result from [12] and some comments about its proof.

Theorem 3.2 ([12, Theorem 3.3]). Let ¢ € C, \ ny. Then, S\(¢) = span{t,(A.¢):s,r€l} C C, is
dense in C,, i.e., forany f € Cy, c € I and & > 0, some g € S\(¢) satisfies ||f — gllyw.c < &
Conversely, if ¢ € m,, then S,(¢) has finite dimension, which prevents it from being dense in C,,.

Proof. The description of S;(¢) is clear. A proof of the converse part was given in [12, Theorem 2.5];
however, we include it here for completeness. Let

S# — x—ﬂ—l/ZDx2y+le—/.t—l/2
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denote the Bessel differential operator of order u. Given m € Ny, a distribution f € H; solves
the differential equation S Z’“ f = 01if, and only if, f € m, and the degree of the even polynomial
#7112 £(#) is not greater than 2m [10, Theorem 2.19]. Assume ¢ € m, and z#"'/>¢(z) has degree 2m,
so that S Z’“¢ = 0. The commutativity of S, with Hankel translations (cf. [24]), followed by a simple
computation, yields

S rs ) | = P DTS )] =0 (s,re D),

This means that the dimension of the linear space S;(¢) is at most 2m. Being finite-dimensional and
hence closed, S;(¢) cannot be dense in infinite-dimensional spaces. O

4. Uniform approximation with locally essentially bounded, a.e. continuous activation functions

In this section, a series of lemmas will lead us to our main result. We begin with the following basic
fact.

Lemma 4.1. Assume A C X, where X,, = L°°[ or X, = Cy, and let A, respectively Zc, denote the
closure of A in the topology of X,,, respectively in the norm of X,, ., where, for any c € I, X, = L}, or

Xy = Cuc Then, B ﬂ—
= |A

cel

Proof. The inclusion map X, — X, . being continuous, it is evident that AcA forallcel
Conversely, suppose g e A° Whenever ¢ € I. Then, in particular, for every n € N, there exists g, € A
such that ||g — g.l| !'. Given b € I and & > 0, choose m € N with m > max {b,&™'}. We have

1,001
g — &nllyco <118 — &ullyscom
1 1
S ||g - gn”/l,oo,n <= S - S > (n Z m)
n m
The arbitrariness of b € I shows that lim,_,., g, = g in the topology of X,, so that g € A. O

Lemma 4.2. Let o € L;"[ be a.e. continuous, and let b, c € I. Then, given p € B,,;,, the convolution

(o#p)(x) = f(; (o) Dp(ndr (x €l) 4.1

lies in C,, . and can be approximated from span{t;o : s € I} in the norm of L;;. In other words, for any
p € B, we have that o#p lies in C, and belongs to the closure of span{t,o : s € I} in LY

Proof. 1t can be adapted from that of [12, Lemma 3.1]. Fix p € 8,,. By virtue of Lemma 3.1(i),
= L°° for each x € I; consequently, the function (4.1) is well defined.
We begln by showing the continuity of o#p on (0, c]. With this purpose, pick xy € (0, c]. We have

|(o#p)(x) — (o#p)(xo)|

< fo |(T.0)(@) = (1,0)@)| o(2)] dz
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b
<y fo |(T.0)@ = (@)@ [ )] dz

b
< P sup [ ()| f (T.0)(2) = (r5,0)@)| dz (x € (0, c)).
z€l 0
Moreover, for each z € (0, b], using (2.2) we may write
(0.0)(2) = (15,0)(2)|

b+c
< ess sup |t‘“‘1/20'(t)| f |D,1(x, z,1) — Dy(x0, 2, t)| 12 e
0

t€[0,b+c]
< C;IZ”H/Z (xﬂ+1/z+x;5+1/2) ess sup |t_ﬂ—1/20_(t)|
t€[0,b+c]
<2¢,' by esssup | 2o ()| (x € (0, c)).

t€[0,b+c]

Lemma 3.1(i) guarantees that
lim |(1,0)(2) — (15,0)(@)| =0 (z € (0,b]).
X—X(

The desired continuity now follows from an application of the Lebesgue theorem of dominated
convergence.
Similarly, because of Lemma 3.1(i), the estimate

e, X M (o #p)(x) — f o(2)p(z) dz
0

b b
f e, X V(1,0 )(2)p(2) dz — f o(2)p(z)dz
0 0

b
< f |eu(2) 2 (1,0)(@) = 7o (@) |o(2)| Pz
0
b
- f o (2) — 77 Po@)| [P e(2)| 2 dz
0

b
< sup |Z_“_1/2p(z)|f e Po @) - # T Po@)| 24 dz (xe D),
zel 0

and dominated convergence:
| #1Po(2) - 7# o (2)|

—u—1/2 —u—1/2
< [P @)l + 17 Pa ()|

b+x
< leu(xzg)y ™12 f D(x,z,t)o(t)dt
0

<2esssup|r*o(®)| (x€(0,cl, z€(0,0)),
t€[0,b+c]

+ [z o ()|

we arrive at .
11%1 x V2 (o #p)(x) = C,Il f o(2)p(z) dz.
x—0+ 0
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Thus, o#p € C,,.
Next, fix x € (0,c]. For each n € N, consider the partition {t; = ib/n : 0 < i < n} of [0, b], and let
e > 0. The following estimate is easily obtained:

n

bp (1;
‘(O'#p)(x) - % 7,0) (x)

i=1

<

fw (te0) (1) p(t) dt — Z fi ,l_—u—l/z (1.0) (1) 2 p(2) dit
0 i=1 ti-1

n

D @) @)p @)

i=1

+ . (4.2)

n

n Vo b
> [ e e o -
i=1 V-1

As z%#*! and 77+ '2p(z) are uniformly continuous on [0, b] (cf. [18, Lemma 5.2-1]), for large enough
n, the second term on the right-hand side of (4.2) can be bounded by

2 f 1 0 (t,-)r““”pa)dt—%Z(w) (t)p (1)
i=1 “ti-1 i=1

z€[0,b+c]

n i
< ¥*12¢ M ess sup |z_“_1/20'(z)| Z f |t’“”2p(t) - (ti)| dt
i=1 Y-l

< x"“/zc;1 ess sup |z_“_1/20'(z)|
z€[0,b+c]

n f
—u—-1/2 2u+1 2u+1 —u—1/2 —u—1/2 2u+1
fo [sup|l’“‘ Pp@| [+ = e + | Pp(e) — £ P p(e)| £ ]dt
=1 Yli-1 tel

< i+ g (4.3)

Concerning the first term on the right-hand side of (4.2), recall that o is a.e. continuous and note that
the representation (2.1), jointly with Lemma 3.1, renders the map (x, ) — (xt)*~'/2(r,07)(¢) continuous
on (/\ U)X [0, o), where U is some open set containing the points of discontinuity of o, with measure
less than a given A > 0. Therefore, this map is uniformly continuous over compacta: To every @, > 0,
there corresponds N € N, independent of x € [a, c] \ U, such that n > N implies

|Gty V2 (10) (0) = at) P (o) ()| < B (€ [, 1], 1 <0 < ).

In particular, given a,n > 0, we may arrange for
00 n ti
| [ wowpwd-Y [ 7 ey w e
0 i=1 Vi1
n t;
< Z f |12 (x0) (1) = £ (1,0) @) [+ p(e)| 2+t
i=1 Vli-1

n ti
<X sup [ Pp()] ) f |y (2,0) (1) = ()1 (a00) (1) 4 e
tel =1 Yti-1
<2y (xela,c]\ V), (4.4)
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provided that  is large enough. This way, givenn, 6 > 0, there exists N € N such that, whenevern > N,
the measure of the set of points x € (0, ¢] for which the left-hand side of (4.4), weighted by x#~'/2, is
greater than or equal to 7, does not exceed 0; that is, the sequence of such measures converges to zero,
or, in other words, the corresponding functional sequence converges to zero in measure. By passing to
a subsequence if necessary, a.e. convergence is achieved; thus, we obtain

' f‘” (t0) (Hp(t) dt — Z fi ti_’“‘_l/z (r.0) (1) ;/1+1/2p(t) dt
0 i=1 Vi1

<2 (4.5)

for a.e. x € [0, c] and sufficiently large n. A combination of (4.2), (4.3), and (4.5) results in the estimate

n

HO’#p - Z bp(t) T,[,O'H = esssup

P n H,00,C x€[0,c]

n

K P o)) - Y

i=1

bp(t;) <s
n

(T,0)(x)

being valid for large n, which accomplishes the first part of the proof.

Now, for any p € B,,, we have that o#p € C,, lies in the closure of span {7,0" : s € I} in L;}, whenever
c € 1. Since, by Lemma 3.1(1), span{r,o : s € I} C L;ff, a direct application of Lemma 4.1 reveals that
o#p belongs to the closure of span{r,o : s € I} in LY The proof is complete. O

Remark 4.3. Observe that, in the notation and conditions of Lemma 4.2, both

Zn: bp(t;) .
n ! neN

i=1

n t;
{Z [ti—u—l/zf l,,u+1/2p(t) dt]r,ia}
i=1 fi-1

are approximating sequences to o#p from span{r,o : s € I}.

and

neN

Lemma 4.4. Assume o € L7, is a.e. continuous and does not lie in 7, Then, some p € By, is such that
o#p does not lie in n,, either.

Proof. Lemma 4.2 allows us to argue as in the proof of [12, Lemma 3.2]. O
Lemma4.5. Ifo € LY p e B, and a € I, then 7,(c#p) = oH#r,p.

Proof. Defined as in (4.1), the convolution o#7,0 makes sense, because B, is stable under Hankel
translations [21, Corollary 3.3].
Let b € I be such that p(¢) = 0 for # > b. There holds:

j‘mm%@&jxwmwjﬂdmm@&mh
0 0 0
X+a b x+a+b
< f Dy(a, x,2)dz f lo(s)lds f (D] Dy(z, 5, 1) dt
0 0 0

0 x+a+b 00
< sup |s—u—1/2p(s)|f D,(a, x,7) dzf |o-(t)|d;f D,(z, 5. 1) s**'2ds
sel 0 0 0
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0 x+a+b
= ¢, sup s p(s) f Dy(a, x,2) 2" dz f [P (o) 2
sel 0 0

x+a+b
< c;z(wc)’“r”2 ess sup |t‘“_1/20'(t)| sup |s“‘_”2p(s)|f T dt < oo (x €.
sel 0

t€0,x+a+b]

Thus, the Fubini theorem may be applied to obtain

Ta(0#P)(X) = f (o#p)(2) Dyu(a, x,2) dz
0

= foo D#(a,x,z)dzfmp(s)ds foo o(t) Dy(z, s, 1) dt
0 0 0

:f a'(t)dtf p(s)dsf D,(a,x,2) D,(z,s,t)dz

0 0 0

_ f (1) di f p(s)ds f Du(a,2,5) Dy(x, 2, 1) dz
0 0 0

= foo deoo O'(I)Dﬂ(X,Z, t)dtfoop(s)Dﬂ(a’Z’ S)dS
0 0 0

= fo (1:0)(2) (1,0)(2) dz = (oH#T,0)(x) (x € 1),

as claimed. O
Theorem 4.6. Let o € L;ff \ 7, be a.e. continuous. Then,
Si(0) = span{ry(A,0) : s,rel} C Ly,

is dense in C,, i.e., for any f € Cy, ¢ € I and & > 0, some g € S\(0) satisfies ||f — gllyc0c < &.
Conversely, if o € n,, then S\(0) has finite dimension, which prevents it from being dense in C,,.

Proof. The converse statement is contained in Theorem 3.2.
For the direct one, use Lemmas 4.2 and 4.4 to get some p € B,, such that o#p € C, \ m,. The identity

Ar(qu_) = rpH/ZTq/r(/lro—) (rnqel) (4.6)

can be derived by simple changes of variables. A combination of Theorem 3.2 with (4.6) and
Lemma 4.5 yields the density of

Si(o#p) = span {A,(g#t,0) : 1,q € I}
in C,. Recalling that 8, is stable under Hankel translations, invoke Lemma 4.2 again, this time to
approximate o#t,0 from span {r,o : s € I} in the topology of L7, After a new application of (4.6),

we are done. O

As a consequence of Theorem 4.6, the hypotheses imposed on the activation function in [12,
Theorem 4.1] can be weakened.
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Theorem 4.7. Let o € LY be a.e. continuous, and let 1 < p < oo. Given c € I, let y be a Radon
measure on [0, c] satisfying

f 1 2dy|(f) < oo.
0

Then, for S1(o) = span{ty(,0) : s,r € I} to be dense in LP([0, c],dy), it is necessary and sufficient
that o ¢ n,.

Proof. If o € &, then, as shown above, S;(c0) has finite dimension, which prevents it from being dense
in L7([0, c], dy).
Conversely, if o ¢ m, then, from Theorem 4.6, S (o) is dense in C,, ., and hence in LP([0, c], dy). O

5. Conclusions

The universal approximation property (UAP) of three-layered radial basis function neural networks
of Hankel translates with varying widths has been studied. The requirement on the activation function
o in the hidden layer for such networks to approximate continuous functions locally in the esssup-norm
has been satisfactorily weakened from continuity to local essential boundedness and a.e. continuity,
provided that z7#~'/20-(z) (z € I) is not an even polynomial. The UAP in p-mean (1 < p < o) with
respect to a suitable finite measure can therefore be attained under the same relaxed condition.
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