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Abstract: In this paper, we considered a class of analytical, rotational, and self-similar solutions
to the 2D compressible Navier-Stokes equations (CNS) with density-dependent viscosity coefficients.
For the isentropic case k > 0, γ = φ > 1, we provided the formula of self-similar analytical solutions
and proved the well-posedness and the large time behavior for the corresponding generalized Emden
equation. It is interesting to see that the different effects of rotation and pressure were revealed.
Compared with the irrotational and pressureless case, when the free boundary a(t) increases linearly
or sub-linearly in time, we can find some classes of solutions with linear growth by taking the pressure
effect or the swirl effect into account. In this sense, rotation or pressure effects may accelerate the
growth of the boundary. Finally, we gave some examples of blow-up solutions and used a new method
to prove the results.
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1. Introduction

The 2D compressible Navier-Stokes equations (CNS) with density-dependent viscosity coefficients
and the free boundary condition can be formulated in the following form:

ρt + div(ρu) = 0, in Ω(t),
(ρu)t + div(ρu ⊗ u) + ∇P = div(h(ρ)D(u)) + ∇(g(ρ)divu), in Ω(t),
ρ > 0, in Ω(t),
ρ = 0, on ∂Ω(t),
(ρ,u) (x, 0) = (ρ0,u0), on Ω(0),

(1.1)
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where ρ(x, t) and u(x, t) with (x, t) ∈ Ω(t) × (0,+∞) are the density and the velocity, respectively.
P = P(ρ) is the pressure, and we use the γ-law on the pressure, i.e.,

P = kργ (k ≥ 0, γ ≥ 1), (1.2)

where γ stands for the adiabatic exponent, γ = cp

cv
≥ 1 is the ratio of the specific heats, and cp and

cv are the specific heats per unit mass under constant pressure and constant volume, respectively. The
system (1.1) is called pressureless if k = 0. In particular, if k > 0, γ = 1, the fluid is called isothermal,
which can be used for constructing models with non-degenerate isothermal fluid; if k > 0, γ > 1,
the fluid is called isentropic. Ω(t) ⊂ R2 characterizes the instantaneous spatial region occupied by the
fluid at time t. D(u) is the strain tensor given by ∇u+∇uT

2 , and h(ρ) and g(ρ) are the Lamé viscosity
coefficients. ∂Ω(t) = Ψ(∂Ω(0), t) is the free boundary separating fluid from a vacuum, ρ = 0 on
∂Ω(t) is the continuous density boundary condition which completes the Navier-Stokes equations, and
∂Ω(0) = {x ∈ R2 : |x| = a0} is the initial free boundary. Ψ is the particle path of the flow, which satisfies{

∂tΨ(x, t) = u(Ψ(x, t), t), x ∈ R2,

Ψ(x, 0) = x.

For a more detailed introduction of the Navier-Stokes equations, see [1–3].
Equations (1.1) were introduced by Liu, Xin, and Yang in [4]. Since then, significant progress has

been achieved by many authors. For the one-dimensional case with h(ρ) = ρα, g(ρ) = 0 (α ∈ (0, 3
2 ))

and the free boundary conditions, there are many studies on the well-posedness theory, see [5–7] and
the references therein. However, few results are available for the multi-dimensional problems. The
first multi-dimensional result is due to Mellet and Vasseur [8], where they proved the L1 stability of
weak solutions to (1.1) based on a new entropy estimate established in [9, 10], which extended the
corresponding L1 stability result of [9].

The reason for the viscosity depending on the density (variable viscosity) is that when we study
fluid motion, especailly when we encounter a vacuum state, this makes the problem complicated.
First, in [4, 11, 12], we can see that the Cauchy problem of the Navier-Stokes equations with constant
coefficients including the vacuum state is ill-posed, which is reflected in the fact that the solution of this
system has no continuous dependence on the initial value, and when the initial density has a compact
support set, the system may have a global regular solution. According to the theory of physics, Liu,
Xin, and Yang introduced the density-dependent Navier-Stokes equation in [4] and proved the local
well-posedness. In fact, we know that the real fluids can be approximated by the ideal fluids only
if the temperature and density vary within the appropriate range by the literature [13, 14]. Second,
we obtain the Navier-Stokes equations from the Boltzmann equation by the second-order expansion
of Chapman-Enskog (see [4, 15, 16]), where the viscosity coefficient is temperature dependent in
the derivation process. For example, for the hard sphere collision model, the viscosity coefficient
is directly proportional to the square root of the temperature. If we consider the motion of an
isentropic fluid, according to the second law of thermodynamics, it can be deduced that the viscosity
coefficient is density-dependent. Therefore, we need to take into account the effect of density on the
viscosity coefficient when studying the problem of initial density containing a vacuum. In addition,
in geophysics, many of the mathematical models that are used to study fluid motion are similar to
the Navier-Stokes equations whose viscosity depends on density, such as the Saint-Venant system for
shallow water waves (see [3, 10, 17]).
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In the recent decades, there have been many references considering the analytical solutions or
blow-up solutions to the Navier-Stokes equations [18–20], Euler-Poisson equations [21–23], Euler
equations [24–26], or Euler equations with time-dependent damping [27] and the references therein.
In [19], Yeung and Yuen considered (1.1) radial symmetry solutions with h(ρ) = 0, g(ρ) = ρθ in
RN, and showed that there exists a family of analytical solutions for the Navier-Stokes equations
with pressure for θ = γ = 1 and θ = γ > 1. Dong, Xue, and Zhang in [28] constructed a
class of spherically symmetric and self-similar analytical solutions to the pressureless Navier-Stokes
equations with density-dependent viscosity coefficients satisfying h(ρ) = ρθ, g(ρ) = (θ − 1)ρθ, and
they investigated the large time behavior of the solutions according to various θ > 1 and 0 < θ < 1.
In [29], Dou and Zhao found an interesting phenomenon on the solution to 1D compressible isentropic
Navier-Stokes equations with a constant viscosity coefficient on (x, t) ∈ [0,+∞) × R+: The solutions
to the initial boundary value problem to 1D compressible Navier-Stokes equations in half space can be
transformed to the solution to the Riccati differential equation under some suitable conditions. In [23],
Yuen considered the Euler-Poisson equations in spherical symmetry in the two dimensional isothermal
case, and the following analytical solutions were given:

ρ(t, r) =
ey( r

a(t) )

a2(t)
, u(t, r) =

a′(t)
a(t)

r, (1.3)

where a(t), y(z) ∈ C2 are two functions satisfying some ordinary differential equations, and the blow-up
rate of the solution is

lim
t→T
ρ(t, 0)(T − t)η ≥ o(1),

with η < 2.
In this paper, we mainly consider the compressible Navier-Stokes equations with density-dependent

viscosity coefficients and a continuous density boundary condition. The Lamé viscosity coefficients
are

h(ρ) = 0, g(ρ) = κρφ(φ ≥ 1). (1.4)

Without loss of generality, we let κ = 1, and then g(ρ) = ρφ. Therefore, system (1.1) is transformed
into {

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) + ∇P(ρ) = ∇(ρφdivu).

(1.5)

Similar to [30], if we consider the shear viscosity, the Lamé viscosity coefficients are taken as
h(ρ) = µ, g(ρ) = µ + ρφ, and there is no essential difficulty. The corresponding conclusion can also be
obtained by using the method in this paper.

We consider the fluid region Ω(t) in 2D space, which is written as

Ω (t) =
{
(r, t) ∈ R+ × [0,+∞)|0 ≤ r ≤ a (t) , t ≥ 0

}
, (1.6)

where r =
√

x2
1 + x2

2 is the polar diameter, and a(t) is the free boundary satisfying

d
dt

a(t) = ur (a(t), t) , a(0) = a0, (1.7)

where ur is the radial component of the velocity field u as in (1.8).
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Let er =
(x1,x2)

r , eθ = (−x2,x1)
r be two orthogonal unit vectors along the radial and angular directions,

respectively. Then the velocity field u can be written in the following form:

u(r, t) = ur(r, t)er + uθ(r, t)eθ,

which can be equivalently expressed in the Euler coordinates as

u = (u1, u2) =
(

x1ur − x2uθ

r
,

x2ur + x1uθ

r

)
.

The compressible Navier-Stokes equations (1.5) in the Euler coordinates can be written in the following
polar coordinates form:

ρt + ∂r(ρur) + ρu
r

r = 0,
ρur

t + ρ
[
ur∂rur −

|uθ |2

r

]
+ ∂r(kργ) = (ρφ)r

(
ur

r + ∂rur
)
+ ρφ

(
r∂rur−ur

r2 + ∂2
r ur

)
,

ρuθt + ρ
[
ur∂ruθ + uθur

r

]
= 0.

(1.8)

By (1.8) and the following Theorems 2.1 and 2.6, we see that uθ has nothing to do with θ, but with
the polar diameter, and in this sense the Navier-Stokes equation in the 2D polar coordinates can be
viewed as radially symmetric.

Accordingly, the initial condition is(
ρ, ur, uθ

)
(r, t)

∣∣∣∣
t=0
=

(
ρ0, ur

0, u
θ
0

)
(r), r ∈ (0, a0) .

The continuous density boundary condition is

ρ (a(t), t) = 0. (1.9)

In the following Theorems 2.1 and 2.6, the solutions to (1.8) is radially symmetric and smooth at
the center of symmetry, so the velocity at the center of symmetry is 0, and we impose the Dirichlet
boundary condition at the center of symmetry

ur (0, t) = uθ (0, t) = 0. (1.10)

In the following, according to the different properties of pressure and different types of fluid, we
first consider the self-similar solutions of 2D CNS under the boundary conditions (1.9) and (1.10) in
the isentropic case k > 0, γ = φ > 1; and then we consider the self-similar solutions of 2D CNS in the
isothermal case k > 0, γ = φ = 1.

Our main results are as follows:

2. Results

For the isentropic case, we have:
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Theorem 2.1. For the 2D CNS (1.8)–(1.10) in the isentropic case k > 0, γ = φ > 1, there exist a family
of self-similar solutions of the form

ρ(t, r) =

[
φ−1

2 (1 − r2

a2 )
] 1
φ−1

a2(t)
, (2.1)

ur(t, r) =
a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r, (2.2)

where ξ is a constant that represents the strength effects of rotation, and a(t) ∈ C2([0,+∞)) is a free
boundary satisfying (1.6), (1.7), and the following generalized Emden equation: a′′(t) − ξ2

a3(t) −
kφ

a2φ−1(t) +
2φa′(t)
a2φ(t) = 0,

a(0) = a0 > 0, a′(0) = ã1.
(2.3)

In particular, the generalized Emden equation (2.3) is a non-conservative system, the trajectory of the
solution a(t) in the Poincaré phase plane is moving toward a state that has a lower total energy, and
a(t) satisfies the estimate

0 < C2 < a(t) < C1(1 + t),

where

C1 = max

a0,

√
ã2

1 + ξ
2a−2

0 +
kφ
φ − 1

a2−2φ
0

 , (2.4)

C2 = max

 |ξ|√
ã2

1 + ξ
2a−2

0 +
kφ
φ−1a2−2φ

0

,

 kφ

(φ − 1)(̃a2
1 + ξ

2a−2
0 +

kφ
φ−1a2−2φ

0 )


1

2φ−2

 . (2.5)

Moreover, if

C2 ≥
2
k

√
ã2

1 + ξ
2a−2

0 +
kφ
φ − 1

a2−2φ
0 , (2.6)

the limit lim
t→+∞

a′(t) exists, and the large time behavior of a(t) is

lim
t→+∞

a(t)
t
= lim

t→+∞
a′(t) = A. (2.7)

There are several remarks in order.

Remark 2.2. For the 2D irrotational case k > 0, γ > 1, ξ = 0, the Emden equation (2.3) is reduced to

a′′(t) −
kφ

a2φ−1(t)
+

2φa′(t)
a2φ(t)

= 0, a(0) = a0 > 0, a′(0) = ã1. (2.8)

Accordingly, the condition (2.6) is reduced to kφ

(φ − 1)(̃a2
1 +

kφ
φ−1a2−2φ

0 )


1

2φ−2

≥
2
k

√
ã2

1 +
kφ
φ − 1

a2−2φ
0 ,

AIMS Mathematics Volume 10, Issue 5, 10831–10851.



10836

or equivalently,
kφ
φ − 1

(
k
2

)2φ−2

≥

(̃
a2

1 +
kφ
φ − 1

a2−2φ
0

)φ
, (2.9)

which can be guaranteed by selecting suitable initial values a0 > 0 and ã1 in (2.3). Moreover, similar
to the proof of Step 2 in Lemma 3.8, we have that if ã1 >

2φ
2φ−1a1−2φ

0 , the free boundary a(t) increases in
[0,+∞) and lim

t→+∞
a(t) = +∞, and the fluid density ρ(t, r) satisfies that lim

t→+∞
ρ(t, r) = 0.

Remark 2.3. For the 2D pressureless case k = 0, φ > 1, the corresponding generalized Emden
equation becomes

a′′(t) −
ξ2

a3(t)
+

2φa′(t)
a2φ(t)

= 0, a(0) = a0 > 0, a′(0) = ã1. (2.10)

To investigate the large time behavior in (2.7), we require φ ≥ 3
2 , and

a′′(t) =
ξ2

a3(t)
−

2φa′(t)
a2φ(t)

=
ξ2a2φ−3(t) − 2φa′(t)

a2φ(t)
≥ 0,

and the condition (2.6) is turned into

φ ≥
3
2
, ξ2

 |ξ|√
ã2

1 + ξ
2a−2

0


2φ−3

≥ 2φ
√

ã2
1 + ξ

2a−2
0 . (2.11)

Remark 2.4. For the 2D irrotational and pressureless case k = 0, φ > 1, ξ = 0, the Emden
equation (2.3) is reduced to

a′′(t) +
2φa′(t)
a2φ(t)

= 0, a(0) = a0 > 0, a′(0) = ã1. (2.12)

By a similar way as was done in [28], one can obtain that if ã1 ≥
2φ

2φ−1a1−2φ
0 , the free boundary a(t)

increases in [0,+∞) and lim
t→+∞

a(t) = +∞ (at most, it increases linearly as in (2.7)); and if ã1 <

2φ
2φ−1a1−2φ

0 , a(t) tends to a positive bounded constant
[
(a1−2φ

0 −
2φ−1

2φ a1)
] 1

1−2φ .

Remark 2.5. One can see different effects of the pressure and the swirl from the above remarks.
More precisely, Remark 2.4 implies that, for the irrotational and pressureless case, the free boundary
a(t) increases linearly or sub-linearly in time; however, taking the pressure effect or the swirl effect
into account, we can find some classes of solutions with linear growth under the conditions in (2.9)
or (2.11). In this sense, rotation or pressure effects may accelerate the growth of the boundary.
Moreover, comparing the conditions in (2.9) and (2.11), the result demonstrates the predominance
of pressure effects relative to swirl effects.

For the isothermal case k > 0, γ = φ = 1, the formula of fluid density is different from the isentropic
case, and we have the following:

Theorem 2.6. For the 2D CNS (1.8) in the isothermal case k > 0, γ = φ = 1, there exist a family of
self-similar solutions with the form

ρ(t, r) =
e

1
2

(
1− r2

a2

)
+β

a2(t)
, ur(t, r) =

a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r, (2.13)
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where β is a constant, ξ is a constant that represents the strength effects of rotation, and a(t) ∈
C2([0,T )) satisfies the following generalized Emden equation: a′′(t) − ξ2

a3(t) −
k

a(t) +
2a′(t)
a2(t) = 0,

a(0) = a0 > 0, a′(0) = ã1.
(2.14)

Likewise, (2.14) is a non-conservative system, and the trajectory of the solution a(t) in the Poincaré
phase plane is moving toward a state that has a lower total energy. Moreover, if ã1 ≥

2
a0

, a(t) increases
on [0,+∞) and lim

t→+∞
a(t) = +∞, and the fluid density ρ(t, r) satisfies that lim

t→+∞
ρ(t, r) = 0.

Remark 2.7. By Theorems 2.1 and 2.6, we see that in the self-similar solution in the 2D polar
coordinates, the density ρ is radially symmetric, the velocity has a rotational part uθ, if initially uθ = 0,
and the solution is radially symmetric.

Remark 2.8. One can easily extend this result to the isothermal Euler/Navier-Stokes equations with
frictional damping term

ρt + ∂r(ρur) + ρu
r

r = 0,
ρur

t + ρ
[
ur∂rur −

|uθ |2

r

]
+ ∂r(kρ) + ηρur = (ρφ)r

(
ur

r + ∂rur
)
+ ρφ

(
r∂rur−ur

r2 + ∂2
r ur

)
,

ρuθt + ρ
[
ur∂ruθ + uθur

r

]
+ ηρuθ = 0,

(2.15)

where η ≥ 0. The solutions are also given by (2.13), and a(t) satisfies the following equation: a′′(t) − ξ2

a3(t) −
k

a(t) +
2a′(t)
a2(t) + ηa

′(t) = 0,
a(0) = a0 > 0, a′(0) = ã1.

(2.16)

3. Proof of the isentropic case

First, similar to [26], we give a lemma for the mass conservation equation in the polar coordinates,
whose proof is direct.

Lemma 3.1. For the mass conservation equation of CNS (1.8) in the polar coordinates form

ρt + ∂r(ρur) +
ρur

r
= 0, (3.1)

there exist solutions of the form

ρ(t, r) =
f ( r

a(t) )

a2(t)
, ur(t, r) =

a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r, (3.2)

where f ≥ 0, f ∈ C1, a(t) > 0, and a(t) ∈ C1([0,+∞)).

Precisely, we show the following result.

Lemma 3.2. For the 2D CNS (1.8) under the continuous density boundary condition (1.9) in the
isentropic case k > 0, γ = φ > 1, there exist a family of self-similar solutions of the form

ρ(t, r) =

[
φ−1

2 (1 − r2

a2 )
] 1
φ−1

a2(t)
, (3.3)
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ur(t, r) =
a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r, (3.4)

where ξ is a constant that represents the strength effects of rotation, a(t) ∈ C2([0,+∞)) is the free
boundary satisfying (1.6), (1.7), and the following generalized Emden equation: a′′(t) − ξ2

a3(t) −
kφ

a2φ−1(t) +
2φa′(t)
a2φ(t) = 0,

a(0) = a0 > 0, a′(0) = ã1.
(3.5)

Proof. According to Lemma 3.1, the solutions possess the following form:

ρ(t, r) =
f ( r

a(t) )

a2(t)
, ur(t, r) =

a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r.

Substituting them into (1.8)2, one has

ur
t = r

a′′(t)a(t) − [a′(t)]2

a2(t)
, ∂rur =

a′(t)
a(t)
, ∂2

r ur = 0,

∂rP = ∂r(kργ) = kγργ−1ρr, ρr =
f ′( r

a(t) )
1

a(t)

a2(t)
=

f ′( r
a(t) )

a3(t)
,

where f ′ represents the derivative of function f with respect to r
a(t) , and then

ρr
a′′(t)a(t) − [a′(t)]2

a2(t)
+ ρr

(a′(t)
a(t)

)2

−
ξ2

a4(t)

 + kγργ−1
f ′( r

a(t) )

a3(t)

= φρφ−1
f ′( r

a(t) )

a3(t)

(
a′(t)
a(t)
+

a′(t)
a(t)

)
.

It follows that

ρr
[
a′′(t)
a(t)

−
ξ2

a4(t)

]
+ kγρ

f γ−2 f ′

a2γ−1 − φρ
2 f φ−2 f ′a′(t)

a2φ = 0.

For simplicity, we let γ = φ, and the above equation can be written as

ρr
[
a′′(t)
a(t)

−
ξ2

a4(t)

]
+ kφρ

f φ−2 f ′

a2φ−1 − φρ
2 f φ−2 f ′a′(t)

a2φ = 0,

i.e., (
a′′(t)
a(t)

−
ξ2

a4(t)

)
r + kφ

f φ−2 f ′

a2φ−1 − φ
2 f φ−2 f ′a′(t)

a2φ = 0. (3.6)

Denoting z = r
a(t) , we require

z = − f φ−2(z) f ′(z), (3.7)

and note that for the continuous density boundary condition (1.9), we have f (1) = 0, and then

f (z) =
[
φ − 1

2
(1 − z2)

] 1
φ−1

. (3.8)
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Substituting (3.7) and (3.8) into (3.6), we get the following generalized Emden equation: a′′(t) − ξ2

a3(t) −
kφ

a2φ−1(t) +
2φa′(t)
a2φ(t) = 0,

a(0) = a0 > 0, a′(0) = ã1.

Similarly, if one substitutes ρ(t, r) =
f ( r

a(t) )

a2(t) , ur(t, r) = a′(t)
a(t) r, uθ(t, r) = ξ

a2(t)r into (1.8)3, the same
conclusion can be made, and the proof is complete. □

In the following, we will consider the local existence and uniqueness of the generalized Emden
equation (3.5). The main result is the following:

Lemma 3.3. There exists a sufficiently small T , such that, for the generalized Emden equation (3.5),
there exists a unique solution a(t) ∈ C1

[0,T ], satisfying 0 < 1
2a0 < a(t) < 2a0.

Proof. We prove the local existence and uniqueness of the generalized Emden equation (3.5) by using
Banach’s fixed point theorem [31–33] in functional analysis theory, which consists of the following
three steps.

Step 1: We transform the Cauchy problem of the second-order nonlinear generalized Emden
equation (3.5) into the Cauchy problem of the corresponding differential-integral equation.

We integrate over (0, t) on both sides of Eq (3.5)1, and note that a(0) = a0 > 0, a′(0) = ã1. Then

a′(t) = ã1 −
2φ

2φ − 1
a1−2φ

0 +
2φ

2φ − 1
a1−2φ(t) + kφ

∫ t

0
a1−2φ(s)ds + ξ2

∫ t

0
a−3(s)ds.

Therefore, a(t) satisfies the following differential-integral equation: a′(t) = ã1 −
2φ

2φ−1a1−2φ
0 +

2φ
2φ−1a1−2φ(t) + kφ

∫ t

0
a1−2φ(s)ds + ξ2

∫ t

0
a−3(s)ds,

a(0) = a0 > 0, a′(0) = ã1.
(3.9)

Step 2: In the metric space X, a nonlinear mapping T(a(t)) is constructed, and we will prove that
T(a(t)) ∈ X.

Suppose T1 is a small positive constant, and we define the metric space

X =

{
a(t) ∈ C1

[0,T ], 0 <
1
2

a0 < a(t) < 2a0, ∀t ∈ [0,T1]
}
.

For ∀a1(t) ∈ X, a2(t) ∈ X, let

h(a(t)) = ã1 −
2φ

2φ − 1
a1−2φ

0 +
2φ

2φ − 1
a1−2φ(t) + kφ

∫ t

0
a1−2φ(s)ds + ξ2

∫ t

0
a−3(s)ds.

Equation (3.9) can be transformed into
da(t)

dt
= h(a(t)),

a(0) = a0 > 0, h(a(0)) = a′(0) = ã1.

Then
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|h(a1(t)) − h(a2(t))|

=

∣∣∣∣∣∣ 2φ
2φ − 1

(
a1−2φ

1 − a1−2φ
2

)
+ kφ

∫ t

0
(a1−2φ

1 (s) − a1−2φ
2 (s))ds + ξ2

∫ t

0
(a−3

1 (s) − a−3
2 (s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ 2φ
2φ − 1

a2φ−1
1 − a2φ−1

2

a2φ−1
1 a2φ−1

2

∣∣∣∣∣∣∣ + kφ
∫ t

0

∣∣∣a1−2φ
1 (s) − a1−2φ

2 (s)
∣∣∣ ds + ξ2

∫ t

0

∣∣∣a−3
1 (s) − a−3

2 (s)
∣∣∣ ds

:= H1 + H2 + H3.

For the terms Hi (i = 1, 2, 3), one has

H1 =

∣∣∣∣∣∣∣ 2φ
2φ − 1

a2φ−1
1 − a2φ−1

2

a2φ−1
1 a2φ−1

2

∣∣∣∣∣∣∣ ≤ 2φ
2φ − 1

∣∣∣a2φ−1
1 − a2φ−1

2

∣∣∣(
1
2a0

)2φ−1

≤
2φ

2φ − 1

(
1
2

a0

)1−2φ

|a1 − a2|
2φ−1 ,

H2 = kφ
∫ t

0

(
a1−2φ

1 (s) − a1−2φ
2 (s)

)
ds ≤ kφ

(
1
2

a0

)1−2φ ∫ t

0
|a1 − a2|

2φ−1 ds,

and

H3 = ξ
2
∫ t

0

∣∣∣a−3
1 (s) − a−3

2 (s)
∣∣∣ ds ≤ ξ2

(
1
2

a0

)−3 ∫ t

0
|a1 − a2|

3 ds.

Suppose

2φ
2φ − 1

(
1
2

a0

)1−2φ

|a1 − a2|
2φ−1 + kφ

(
1
2

a0

)1−2φ ∫ t

0
|a1 − a2|

2φ−1ds

+ ξ2
(
1
2

a0

)−3 ∫ t

0
|a1 − a2|

3ds ≤ L sup
0≤t≤T1

|a1(t) − a2(t)|,

where L = 2φ
2φ−132φ−2

(
1
2a0

)−1
+ kφT132φ−2

(
1
2a0

)−1
+ 9ξ2T1

(
1
2a0

)−1
is a constant, and then

|h(a1(t)) − h(a2(t))| ≤ H1 + H2 + H3 ≤ L sup
0≤t≤T1

|a1(t) − a2(t)| . (3.10)

We now define a mapping T on X, such that T satisfies

Ta(t) = a0 +

∫ t

0
h(a(s))ds, ∀t ∈ [0,T1], (3.11)

and it is easy to know that Ta(t) ∈ C1
[0,T1].

Next, let us find the condition satisfying Ta(t) ∈ X.
If

Ta(t) ≤ a0 + t
(
|̃a1| +

2φ
2φ − 1

(
1
2

a0)1−2φ + kφT1(
1
2

a0)1−2φ + ξ2T1(
1
2

a0)−3
)
≤ 2a0,
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we have
t ≤

a0

|̃a1| +
2φ

2φ−1

(
1
2a0

)1−2φ
+ kφT1

(
1
2a0

)1−2φ
+ ξ2T1

(
1
2a0

)−3 = T2.

If

Ta(t) = a0 +

∫ t

o
h(a(s))ds ≥ a0 − |̃a1|t −

2φ
2φ − 1

a1−2φ
0 t ≥

1
2

a0,

we have
|̃a1|t +

2φ
2φ − 1

a1−2φ
0 t ≤

1
2

a0,

and

0 < t ≤
1
2a0

|̃a1| +
2φ

2φ−1a1−2φ
0

= T3.

Therefore, if T1 ≤ min{T2,T3}, then Ta(t) ∈ X.
Step 3: By Banach’s fixed point theorem, we can prove that the Cauchy problem of differential-

integral equation
Ta(t) = a(t), a′(t) = h(a(t))

has a unique solution in X.
If T is a contraction mapping, by (3.10) and (3.11), which satisfies

sup
0≤t≤T1

|Ta1(t) − Ta2(t)| ≤

∣∣∣∣∣∣
∫ t

0
h(a1(s))ds −

∫ t

0
h(a2(s))ds

∣∣∣∣∣∣
≤ LT1 sup

0≤t≤T1

|a1(t) − a1(t)|,

and LT1 < 1, then

2φ
2φ − 1

32φ−2
(
1
2

a0

)−1

T1 + kφT 2
1 32φ−2

(
1
2

a0

)−1

+ 9ξ2T 2
1

(
1
2

a0

)−1

< 1,

and we have kφ · 32φ−2
(
1
2

a0

)−1

+ 9ξ2
(
1
2

a0

)−1 T 2
1 +

2φ
2φ − 1

32φ−2
(
1
2

a0

)−1

T1 − 1 < 0,

T1 ≤

√
( 2φ

2φ−132φ−2( a0
2 )−1)2 + 4

(
kφ · 32φ−2( a0

2 )−1 + 9ξ2( a0
2 )−1

)
−

2φ
2φ−132φ−2( a0

2 )−1

2(kφ · 32φ−2(a0
2 )−1 + 9ξ2(a0

2 )−1)

= T4.

Therefore, if T = min{T1,T2,T3,T4}, the mapping T : X 7→ X is a contraction mapping.
By Banach’s fixed point theorem, there exists a unique a(t) ∈ C1

[0,T ], s.t.

Ta(t) = a(t), a′(t) = h(a(t)),
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and the lemma is proved. □

Next, we focus on Eq (3.5) and give an estimate for the solution a(t). From the perspective of
ordinary differential equations, we use the standard energy method [34] in autonomous systems to get
some properties of the generalized Emden equation (3.5).

Lemma 3.4. There exist two positive constants

C1 = max

a0,

√
ã2

1 + ξ
2a−2

0 +
kφ
φ − 1

a2−2φ
0

 , (3.12)

and

C2 = max

 |ξ|√
ã2

1 + ξ
2a−2

0 +
kφ
φ−1a2−2φ

0

,

 kφ

(φ − 1)
(̃
a2

1 + ξ
2a−2

0 +
kφ
φ−1a2−2φ

0

)
1

2φ−2
 , (3.13)

s.t. the solution a(t) of the generalized Emden equation (3.5) satisfies

0 < C2 < a(t) < C1(1 + t). (3.14)

Proof. Multiplying both sides of the generalized Emden equation (3.5) by a′(t), we have

a′(t)a′′(t) −
ξ2a′(t)
a3(t)

−
kφa′(t)
a2φ−1(t)

+
2φ(a′(t))2

a2φ(t)
= 0.

Integrating over (0, t), we have∫ t

0
a′(s)a′′(s)ds −

∫ t

0

ξ2a′(s)
a3(s)

ds −
∫ t

0

kφa′(s)
a2φ−1(s)

ds +
∫ t

0

2φ(a′(s))2

a2φ(s)
ds = 0.

Then, it follows that

1
2

(a′(t))2 +
1
2
ξ2a−2(t) +

kφ
2φ − 2

a2−2φ(t) +
∫ t

0

2φ(a′(s))2

a2φ(s)
ds

=
1
2

ã2
1 +

1
2
ξ2a−2

0 +
kφ

2φ − 2
a2−2φ

0 , (3.15)

and this implies that
1
2

(a′(t))2 <
1
2

ã2
1 +

1
2
ξ2a−2

0 +
kφ

2φ − 2
a2−2φ

0 ,

a′(t) <

√
ã2

1 + ξ
2a−2

0 +
kφ
φ − 1

a2−2φ
0 .

So

a(t) < a(0) +

√
ã2

1 + ξ
2a−2

0 +
kφ
φ − 1

a2−2φ
0 t ≤ C1(1 + t),
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where

C1 = max

a0,

√
ã2

1 + ξ
2a−2

0 +
kφ
φ − 1

a2−2φ
0

 .
From (3.15), we have

1
2
ξ2a−2(t) <

1
2

ã2
1 +

1
2
ξ2a−2

0 +
kφ

2φ − 2
a2−2φ

0 ,

i.e.,

a2(t) >
ξ2

ã2
1 + ξ

2a−2
0 +

kφ
φ−1a2−2φ

0

.

Likewise, one has
kφ

2φ − 2
a2−2φ(t) <

1
2

ã2
1 +

1
2
ξ2a−2

0 +
kφ

2φ − 2
a2−2φ

0 ,

and

a2(t) >

 kφ

(φ − 1)(̃a2
1 + ξ

2a−2
0 +

kφ
φ−1a2−2φ

0 )


1
φ−1

.

Therefore,

a(t) > max

 |ξ|√
ã2

1 + ξ
2a−2

0 +
kφ
φ−1a2−2φ

0

,

 kφ

(φ − 1)(̃a2
1 + ξ

2a−2
0 +

kφ
φ−1a2−2φ

0 )


1

2φ−2

 = C2.

So this completes the proof of Lemma 3.4. □

The following lemma is a direct consequence of Lemmas 3.3 and 3.4.

Lemma 3.5. For the generalized Emden equation (3.5), there exists a global solution a(t) in [0,+∞),
which satisfies the estimate in (3.14).

For the generalized Emden equation (3.5), let

w
(
a,

da
dt

)
=

2φa′(t)
a2φ(t)

, g(a) = −
ξ2

a3(t)
−

kφ
a2φ−1(t)

,

and then (3.5) can be written as

a′′(t) + w
(
a,

da
dt

)
+ g(a) = 0. (3.16)

Let

G(a) =
∫

g(a)da =
ξ2

2
a−2 −

kφ
2 − 2φ

a2−2φ +C,

and we can define the kinetic energy of the generalized Emden equation (3.5):

Ekin =
1
2

(
da
dt

)2

.
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Likewise, the potential energy of (3.5) is defined as

Epot = G(a) =
∫

g(a)da =
ξ2

2
a−2 −

kφ
2 − 2φ

a2−2φ +C.

The total energy of the generalized Emden equation (3.5) is

E = Ekin + Epot =
1
2

(
da
dt

)2

+G(a).

Then
dE
dt
=

da
dt

d2a
dt2 +G′(a)

da
dt
=

da
dt

(
d2a
dt2 + g(a)

)
= −

da
dt

w
(
a,

da
dt

)
.

For w
(
a, da

dt

)
=

2φa′(t)
a2φ(t) , we have

dE
dt
=

da
dt

d2a
dt2 +G′(a)

da
dt
=

da
dt

(
d2a
dt2 + g(a)

)
= −

da
dt

w
(
a,

da
dt

)
= −2φ

[a′(t)]2

a2φ(t)
< 0. (3.17)

The total energy of (3.5) decreases monotonically, it is a non-conservative system, and the trajectory
of the solution a(t) to the generalized Emden equation (3.5) in the Poincaré phase plane is moving
toward a state that has a lower total energy. In summary, we get the following lemma:

Lemma 3.6. For the generalized Emden equation (3.5), the solution a(t) has the following
properties: (3.5) is a non-conservative system and the trajectory of the solution a(t) in the Poincaré
phase plane is moving toward a state that has a lower total energy.

Remark 3.7. The related results about the other types of generalized Emden equations may be referred
to [19–21].

Furthermore, a(t) possesses the following large time behavior:

Lemma 3.8. For the generalized Emden equation (3.5), if

C2 ≥
2
k

√
ã2

1 + ξ
2a−2

0 +
kφ
φ − 1

a2−2φ
0 , (3.18)

where C2 is the same as (3.13), then the limit lim
t→+∞

a′(t) exists, and let A = lim
t→+∞

a′(t). We have

lim
t→+∞

a(t)
t
= lim

t→+∞
a′(t) = A.

Proof. We prove the lemma by three steps:
Step 1: In the proof of Lemma 3.4, we have

a′(t) <

√
ã2

1 + ξ
2a−2

0 +
kφ
φ − 1

a2−2φ
0 , (3.19)
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and
a(t) > C2 > 0,

where C2 is the same as (3.13).
By (3.18), we have

a′′(t) =
ξ2

a3(t)
+

kφ
a2φ−1(t)

−
2φa′(t)
a2φ(t)

>
kφa(t) − 2φa′(t)

a2φ(t)
≥ 0, (3.20)

so a(t) is a strictly convex function, and a′(t) is monotonically increasing in [0,+∞). In particular, the
convexity of a(t) is very important in the following proof.

By (3.19), we have that a′(t) is bounded, and according to the monotone bounded theorem [35,36],
the limit lim

t→+∞
a′(t) exists.

Step 2: In this step, we will prove that a(t)→ +∞ as t → +∞.
First, we transform the generalized Emden equation (3.5) into the differential-integral form: a′(t) = ã1 −

2φ
2φ−1a1−2φ

0 +
2φ

2φ−1a1−2φ(t) + kφ
∫ t

0
a1−2φ(s)ds + ξ2

∫ t

0
a−3(s)ds,

a(0) = a0 > 0, a′(0) = ã1,

and we divide into two cases to prove the results:
Case 1: If ã1 ≥

2φ
2φ−1a1−2φ

0 −
2φ

2φ−1a1−2φ(t), then a′(t) > 0 is always true in [0,+∞). So a(t) is
monotonically increasing in [0,+∞), note the convexity of a(t), and then a(t)→ +∞ as t → +∞.

Case 2: If ã1 <
2φ

2φ−1a1−2φ
0 −

2φ
2φ−1a1−2φ(t), as a′(t) is monotonically increasing in [0,+∞), due to the

continuity property, the behavior of a(t) may be:
(i). a(t) is first monotonically decreasing in [0, t0] (t0 < +∞), and then a(t) is monotonically

increasing in [t0,+∞).
(ii). a(t) is monotonically decreasing in [0,+∞).
In the following, we will prove that (ii) does not hold, and only (i) is true.
By Lemma 3.4, we have that a(t0) > 0, a′(t0) = 0.
If t0 = +∞, then

a′(t0) = a′(+∞) = ã1 −
2φ

2φ − 1
a1−2φ

0 +
2φ

2φ − 1
a1−2φ(+∞)

+ kφ
∫ +∞

0
a1−2φ(s)ds + ξ2

∫ +∞

0
a−3(s)ds = +∞,

while in the proof of Step 1, a′(t) is bounded, so a contradiction is met. So t0 , +∞, and (ii) can not
happen.

Therefore, a(t) is monotonically decreasing in [0, t0] (t0 < +∞), and then a(t) is monotonically
increasing in [t0,+∞). Note that the convexity of a(t) implies that a(t)→ +∞ as t → +∞.

In conclusion, we have that a(t)→ +∞ as t → +∞.
Step 3: Since the limit lim

t→+∞
a′(t) exists, by the L’Hospital’s rule [35, 36], we have

lim
t→+∞

a(t)
t
= lim

t→+∞
a′(t) = A.

This completes the proof of Lemma 3.8. □

The proof of Theorem 2.1 is a direct consequence of Lemmas 3.2–3.8.
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4. Proof of the isothermal case

In this part, we discuss the formulas and properties of analytical solutions to (1.8) in the isothermal
case k > 0, γ = φ = 1. We have the following result:

Lemma 4.1. For the 2D CNS (1.8) in the isothermal case k > 0, γ = φ = 1, there exist a family of
self-similar solutions of the form

ρ(t, r) =
e

1
2

(
1− r2

a2

)
+β

a2(t)
, ur(t, r) =

a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r, (4.1)

where β is a constant, ξ is a constant that represents the strength effects of rotation, and a(t) ∈
C2([0,+∞)) is a differential function satisfying the following generalized Emden equation: a′′(t) − ξ2

a3(t) −
k

a(t) +
2a′(t)
a2(t) = 0,

a(0) = a0 > 0, a′(0) = ã1.
(4.2)

Proof. We check that (4.1) is a solution by direct calculations.
First, according to Lemma 3.1, one can suppose the solutions in the following form:

ρ(t, r) =
e f ( r

a(t) )

a2(t)
, ur(t, r) =

a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r. (4.3)

Obviously, the solutions above satisfy (1.8)3.
Next, substituting (4.3) into (1.8)2, one has

ur
t = r

a′′(t)a(t) − [a′(t)]2

a2(t)
, ∂rur =

a′(t)
a(t)
, ∂2

r ur = 0,

and

ρr =
e f ( r

a(t) ) f ′( r
a(t) )

1
a(t)

a2(t)
=

e f ( r
a(t) ) f ′( r

a(t) )

a3(t)
,

where f ′ represents the derivative of function f with respect to r
a(t) , and then

ρr
a′′(t)a(t) − [a′(t)]2

a2(t)
+ ρr

(a′(t)
a(t)

)2

−
ξ2

a4(t)

 + k
e f ( r

a(t) ) f ′( r
a(t) )

a3(t)

=
e f ( r

a(t) ) f ′( r
a(t) )

a3(t)

(
a′(t)
a(t)
+

a′(t)
a(t)

)
.

It follows that (
a′′(t)
a(t)

−
ξ2

a4(t)

)
r + k

f ′( r
a(t) )

a(t)
−

2 f ′( r
a(t) )a

′(t)

a2(t)
= 0. (4.4)

Denoting z = r
a(t) , similarly as was done in (3.7), we require

z = − f ′(z). (4.5)
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Suppose f (1) = β and β is a constant, and then we get

f (z) =
1
2
−

1
2

z2 + β. (4.6)

Substituting (4.5) and (4.6) into (4.4), we get the Emden equation (4.2).
This finishes the proof of Lemma 4.1. □

As the proof of Case (i) of Theorem 2.3 in [28], one integrates the generalized Emden equation (4.2)
on [0, t] to obtain

a′(t) = ã1 −
2
a0
+

2
a(t)
+

∫ t

0

(
ξ2

a3(s)
+

k
a(s)

)
ds. (4.7)

It follows that

a(t) = a0 +

(̃
a1 −

2
a0

)
t +

∫ t

0

2
a(s)

ds +
∫ t

0

∫ q

0

(
ξ2

a3(s)
+

k
a(s)

)
dsdq, (4.8)

and if ã1 ≥
2
a0

, a′(t) > 0, a(t) increases in [0,+∞]. By the contradiction method, we can get lim
t→+∞

a(t) =
+∞, so the fluid density ρ(t, r) satisfies that lim

t→+∞
ρ(t, r) = 0.

Similar to the proof of Lemma 3.3 and Lemma 3.6, we can also get the local existence and
uniqueness of the generalized Emden equation (4.2), and by Lemma 4.1, we can prove Theorem 2.6.

5. Some examples of blow-up solutions

In this part, we consider some examples of blow-up solutions to (1.8) without a(t) being the free
boundary.

First of all, as in [23], we give the definition of a blow-up:
Definition: (Blow-up) We say a solution blows up if one of the following conditions is satisfied.
(1) The solution becomes infinitely large at some point x and some finite time T .
(2) The derivative of the solution becomes infinitely large at some point x and some finite time T .
In this section, we consider the forms and properties of the analytical solutions to the 2D CNS

without the continuous density boundary condition. Since we remove the free boundary condition, we
only consider the formal analytical solutions to the CNS.

The first result is related to the isothermal case k > 0, γ = φ = 1:

Theorem 5.1. For the 2D CNS (1.8) in the isothermal case k > 0, γ = φ = 1, there exists a family of
self-similar solutions of the form

ρ(t, r) =
e

r2

2a2 +α

a2(t)
, ur(t, r) =

a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r, (5.1)

where α is a constant, ξ is a constant that represents the strength effects of rotation, and a(t) ∈
C2([0,T )) is a differential function satisfying the following generalized Emden equation: a′′(t) − ξ2

a3(t) +
k

a(t) −
2a′(t)
a2(t) = 0,

a(0) = a0 > 0, a′(0) = ã1.
(5.2)
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In particular, if a0 > 0 is small enough, ã1 < 0, and

2ã1

a2
0

+
ξ2

a3
0

−
k
a0
< 0, (5.3)

then there exists a δ > 0, where −a0
ã1
≤ δ < T, and there exists a finite time t∗ ∈ [0, δ) such that a(t∗) = 0,

and then the solutions (5.1) blow up.

Proof. Similar to the proof of Lemma 4.1, denoting z = r
a(t) , we require z = f ′(z) instead of (4.5), and

we will obtain that (5.1)–(5.2) are self-similar solutions of the CNS.
In the following, we will prove the blow-up result. Different from the proof by the contradiction

method in the references [19, 20, 23], we use a new method to prove the blow-up solutions directly by
attaching conditions to the initial value of the generalized Emden equation (5.2).

Because a(0) = a0 > 0 is small enough, a′(0) = ã1 < 0, and (5.3), by the existence theorem
of solutions of the ordinary differential equations and the local sign-preserving property of the
continuously differentiable functions, there exists a δ > 0, s.t. as t ∈ [0, δ), there exists a solution
for the generalized Emden equation (5.2)1, meanwhile a′′(t) exists in [0, δ) and a′′(t) < 0.

Thus a′(t) monotonically decreases in [0, δ) and a′(t) < ã1, a(t) also monotonically decreases, so
we have that the curve (t, a(t)) is below the line

a2(t) = ã1t + a0. (5.4)

Note that a′(t) and a(t) monotonically decrease in [0, δ), −a0
ã1
≤ δ < T , and the line equation (5.4)

intersects the t-axis, so the point of intersection t = −a0
ã1

is in the interval [0, δ).
Therefore, the curve (t, a(t)) also intersects the t-axis and the point of intersection is in the interval

[0, δ), i.e., there exists t∗ ∈ [0, δ), such that a(t∗) = 0. Moreover, the solutions (5.1) blow up.
This completes the proof of Theorem 5.1. □

Similar to the results in Theorem 5.1, for the isentropic case k > 0, γ = φ > 1, we have:

Theorem 5.2. For the 2D CNS (1.8) in the isentropic case k > 0, γ = φ > 1, there exist a family of
self-similar solutions of the form

ρ(t, r) =

[
φ−1

2
r2

a2 + α
φ−1

] 1
φ−1

a2(t)
, ur(t, r) =

a′(t)
a(t)

r, uθ(t, r) =
ξ

a2(t)
r, (5.5)

where α is a constant, ξ is a constant that represents the strength effects of rotation, and a(t) ∈
C2([0,T )) is a differential function satisfying the following generalized Emden equation: a′′(t) − ξ2

a3(t) +
kφ

a2φ−1(t) −
2φa′(t)
a2φ(t) = 0,

a(0) = a0 > 0, a′(0) = ã1.
(5.6)

In particular, if a0 > 0 is small enough, ã1 < 0, and

2φã1

a2φ
0

+
ξ2

a3
0

−
kφ

a2φ−1
0

< 0, (5.7)

then there exists a δ > 0, where −a0
ã1
≤ δ < T, and there exists a finite time t∗ ∈ [0, δ) such that a(t∗) = 0,

and then the solutions (5.5) blow up.
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Remark 5.3. Although the system (5.2) can be seen as a limit system of (5.6) in the sense that φ→ 1,
the expressions for the density in (5.1) and (5.5) are different. The properties of these equations need
to be further studied.

6. Conclusions

In this work, we establish a class of analytical, rotational, and self-similar solutions to the 2D
compressible Navier-Stokes equations with density-dependent viscosity coefficients. According to
the different properties of pressure and different types of fluid, we maily consider the isentropic case
k > 0, γ = φ > 1 and the isothermal case k > 0, γ = φ = 1. For both of the two cases, we give
the formulas of self-similar analytical solutions. Especially, for the isentropic case, we prove the well-
posedness and the large time behavior for the corresponding generalized Emden equation. The result in
this paper demonstrates the predominance of pressure effects relative to swirl effects. Compared with
the irrotational and pressureless case, when the free boundary a(t) increases linearly or sub-linearly
in time, we can find some classes of solutions with linear growth by taking the pressure effect or the
swirl effect into account. In this sense, rotation or pressure effects may accelerate the growth of the
boundary. In the end, we give some examples of blow-up solutions, and a new direct method is adopted
to prove the blow-up results.
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