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Abstract:  This study sought to improve the comprehension of wave propagation in thermo-
elastic materials according to Lord-Shulman (L-S) theory by developing precise wave solutions for
the governing equations that take into consideration temperature-dependent material features. The
research utilized the improved simple equation method (ISEM) to analyze the interrelated thermal
and mechanical properties of these materials, allowing the creation of analytical solutions that
exactly characterize intricate wave processes. The ISEM facilitates the development of various
wave shapes. These solutions, defined by configurable free parameters, offer a flexible framework
for examining diverse physical circumstances in thermo-elasticity. The work includes detailed
graphical representations of crucial discoveries such as temperature distributions, stress tensors, and
displacement which provide amazing visual insights into the complex interactions that occur within
thermo-elastic systems.
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List of Nomenclature

Quantity Definition

u Displacement vector

a; Thermal expansion coefficient, where y = 2ua, + 31a,
T Time

Oij Stress tensor

T Increment temperature

k Thermal conductivity

6o Reference temperature

Ce Specific heat

pand A Lame’s constants

s(T)x+ h(T)y + 8 () | A function of 7

(,) Ilustrates the derivative

(r) The derivative with respect to €
dot(.) The derivative with respect to 7
ol Density

1. Introduction

The L-S theory of thermo-elasticity, created in 1967, is a significant advancement in the field of
coupled thermo-elasticity that addresses the constraints of classical thermo-elastic models by
introducing a finite speed of heat propagation. Classical thermo-elastic theories, based on the
traditional Fourier heat conduction law, assume an infinite speed of thermal wave propagation, which
leads to unrealistic physical predictions, especially in high-frequency or transient thermal
scenarios [1]. To overcome this issue, Lord and Shulman [2] built a generalized thermo-elasticity
model that incorporates just one relaxation time parameter, which modifies the heat conduction
equation to a hyperbolic form rather than the conventional parabolic type. This modification leads to
the phenomenon of thermal wave propagation with finite velocity, a critical factor in applications
involving rapid thermal processes, such as laser heating, aerospace materials, and microelectronics.
The theory of L-S combines the equations of motion, heat conduction, and constitutive relations,
creating a more comprehensive framework that takes into account both thermal and mechanical
effects simultaneously. One of the most significant advantages of L-S theory is its ability to predict
the thermal wave propagation phenomenon, which has been observed experimentally in a variety of
materials, notably at microscale systems and cryogenic temperatures. The governing equations of the
L-S model consist of the balance of linear motion, the modified energy equation incorporating
relaxation time, and the constitutive relations between strain, stress, and temperature. These equations
are extremely useful for analyzing thermo-elastic problems, where the delayed response of heat flux
and mechanical fields plays a crucial role. The inclusion of relaxation time introduces additional
characteristic wave speeds in the system, leading to the propagation of coupled thermo-elastic waves
with different attenuation and dispersion properties. Researchers have extensively studied the
implications of the L-S theory in various contexts, such as layered structures [3], isotropic and
anisotropic materials [4, 5], and rotating media [6]. Analytical and numerical methods, such as finite
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element analysis [7], the Laplace transform [8—10], the normal mode [11, 12], and perturbation
techniques [13], have been widely employed to derive solutions for distinct geometric configurations
and boundary conditions. The L-S theory has found significant applications in engineering fields
requiring precise control over thermal and mechanical interactions, including the vibration control in
thermal environments and design of heat-resistant materials. Furthermore, the theory provides a
robust foundation for investigating thermo-elastic phenomena under extreme conditions, such as
high-temperature gradients and dynamic loading. So, the L-S theory is considered a cornerstone of
modern thermo-elasticity, offering valuable insights into the intricate interplay between thermal and
mechanical fields in a wide range of practical applications.

The temperature-dependence of thermo-elasticity is critical for precisely simulating the behavior
of materials subjected to thermal and mechanical loads in a variety of engineering applications. In
classical thermo-elasticity, material properties such as thermal expansion coefficients, Lamé’s
constant, and thermal conductivity remain constant. However, experimental evidence has
demonstrated that these qualities change dramatically with temperature, particularly in
high-temperature environments such as microelectronics, aerospace structures, and power plants [14].
Incorporating temperature-dependent characteristics into thermo-elastic models results in nonlinear
governing equations that better represent real-world material responses to thermal stresses. As the
temperature increases, the materials may soften or harden, affecting wave propagation speeds, stress
distributions, and energy dissipation in the system [2]. The addition of temperature dependence
becomes especially significant in transient heat conduction problems, where fast temperature
variations can cause localized thermal stresses [15, 16]. Advanced thermo-elastic models, such as the
L-S theory and Green-Naghdi theories, have been expanded to include changeable material
properties, allowing for more accurate analysis of complicated thermal effects. Numerical and
analytical techniques, involving the perturbation technique and the finite element technique, are
frequently employed to solve the resulting complicated equations and provide insights into stress
distribution and deformation behavior under temperature-dependent conditions [17]. Studies have
suggested that neglecting the temperature dependence in thermo-elastic analysis can lead to massive
errors in forecasting material behavior, underscoring the importance of incorporating such effects for
applications in high-performance materials and structures [18, 19]. The findings of these studies are
critical for the design of materials with improved thermal stability, such as advanced composite
materials used in high-temperature applications.

The ISEM is a advanced analytical technique utilized to obtain exact solutions of nonlinear partial
differential equations (NLPDEs) that frequently arise in different scientific and engineering fields.
NLPDE:s play a crucial role in modeling complex physical phenomena, such as wave propagation in
thermo-elasticity, fluid dynamics, nonlinear optics, and plasma physics [20-22]. Traditional
techniques struggle with the inherent complexity of these equations, necessitating the development of
efficient analytical methods like the ISEM to derive accurate and closed-form solutions [23]. The
ISEM enhances the classical simple equation technique by incorporating more general solution forms
and additional free parameters, allowing for greater flexibility and broader applicability. This method
typically assumes a trial solution involving an elementary function, such as the trigonometric,
hyperbolic, or rational function, which satisfies a reduced form of the original NLPDE [24,25]. By
systematically balancing the highest-order nonlinear and linear terms, the ISEM transforms the given
NLPDE into an algebraic equation, which can be solved to obtain exact wave solutions with physical
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significance. Studies have demonstrated the effectiveness of the ISEM in solving various nonlinear
models, involving the nonlinear Schrédinger equation [26, 27]. One of the key advantages of the
ISEM is its capability to generate soliton-like, rational, and periodic solutions, which are critical for
understanding wave dynamics in dispersive and nonlinear media [28, 29]. Further, the inclusion of
free parameters in the solution structure provides a useful method for controlling and analyzing
physical behaviors under a variety of initial and boundary conditions. However, there are limitations
to the method. The ISEM assumes linear material properties and isotropic conditions, which may not
apply to nonlinear or anisotropic materials. It also works best with simpler geometries and may
require hybrid approaches when dealing with more complex structures.

The main objective of this research is to thoroughly explore the significant influence of
temperature-dependence on thermo-elastic materials. This investigation is carried out within the
framework of L-S theory and leverages the ISEM as the primary analytical tool. In the following
sections, a comprehensive discussion of the ISEM will be provided, highlighting its importance and
effectiveness in addressing NLPDEs. A detailed examination of each solution type will be conducted
to ensure a thorough understanding of the thermo-elastic behavior under various conditions.
Additionally, to facilitate better interpretation and visualization of the study’s findings, 2D graphical
illustrations will be incorporated. — These visual representations will play a crucial role in
demonstrating the key results, offering valuable insights into the intricate interactions within
thermo-elastic systems, and supporting a more profound comprehension of the complex phenomena
revealed in this study.

2. Basic equations

This section illustrates the governing equations for 2-dimensional thermo-elasticity within the
framework of the L-S theory, with particular emphasis on examining the influence of
temperature-dependence. The equations are subsequently transformed into a dimensionless form.
Lastly, a moving wave transformation is applied as follows:

wx, 35,7 = Ule, V(X 5, T)=V(e),
0(x, y, ©) 0 (€), e=sHFI+h(Hy+NX®7@),

and the nonlinear PDEs are reduced to nonlinear ordinary differential equations for simplified analysis.
According to the findings reported by Othman et al. [30], the motion equation is given as follows:

Oijj = PUizr. (2.1)

The formulation of the energy equation is now provided below, as derived and discussed in previous
works referenced in [2, 31, 32]:

[kT,i],i =

0
1+ To—a } [oc.T - + yOouy.,], 2.2)
T

where % << 1.
Note that
u=u(x,y 1), v=v(x, y, 7), w =0, (2.3)
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and consequently, the constitutive relations are
oij = (A, —yT) 6ij + 1 (ui,j + uj,i) . 2.4)

We suppose that
(A, 1, p, ¥, k) = (Ao, Hos po, Yo, ko) f(6). (2.5)

In this context, it is presumed that the function f (7)) remains continuous throughout the interval
0 < T < co. Additionally, the parameters w, Ao, Yo, ko, and p, are treated as fixed constants, which
characterize the material properties and play a crucial role in defining the behavior of the system
under investigation.

Using Eq (2.5) in Egs (2.1), (2.2) and (2.4), we realize

aijj = J(T) pottirr, (2.6)

0
[kOf (T) T,i],i = [1 + TO&] [pOf (T) ceT,‘r + 70f (T) QOur,r‘r] s (27)
o= f(T) [(ﬂou” —v0T) 0ij + Mo (Mi,j + uj,i)] . (2.8)

Employing Eqgs (2.3) and (2.8) in Eq (2.6), the equations of motion can be expressed as:

0 = f (T) [(2,UO + /10) U xx + :uOu,yy + (,Llo + /10) v,yx — Pol rr — 70T,x]
+f (D) T | Quo + Ao) e + Aovy = YoT | + f (D) Ty [uey + .| (2.9)
O = f (T) [(ZﬂO + /10) V,yy + MOV,xx + (IJO + /10) u,yx - va,T‘r - YOT,y]

+f (1) Ty [Quo + 20) vy + Aoty = YT | + f (T poT o [ty + .| (2.10)

where £ (T) = 442
From Eq (2.3), Eq (2.7) becomes

0 = f(T) [kOT,xx + kOT,yy - pOCeT,T - 7060 (u,m‘ + V,y‘r) - TOpOCeT,TT - TOVOQO (u,XTT + V,yﬁ')]

4 2
+f (T) [ko (T + ko (Ty) = T0p0Ce (Te)* = T¥000T x (e + V) |- (2.11)
To simplify the analysis, the following set of dimensionless variables is introduced:
(@, ¥, %, ) = weo(u, v, x, y), T =clwt T’—T 0 = Tij (2.12)
D) 1) ’y_ 0 ’ B 7y7 ) ) _00’ l‘/_ﬂo+2/.[0, .
where ¢} = % and w = 5.
From Eq (2.12) in Eq (2.9), it can be inferred that
O = f (T) [l’;l’;w; + ali:l,y)', + az\’}&j — 1’27-7-7- - aﬂﬁ;]
+f (T) T |tz + asvs — asT| + anf (T) T |y + 9. (2.13)
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+A 0 A
where a; = 2/;)‘310, a, = me;o’ az = 2:(‘)’&0, and a4 = 2#02/10.
Utilizing Eq (2.12) in Eq (2.10), we infer
0 = f(T) [f/y}j + (11\7;@ + azﬁﬁ - \7’7-7- - (l3T’y:|
+f (T)T5 |95 + asiis — asT| + ar f (T) T |5 + 5] (2.14)

Using Eq (2.12) in Eq (2.11), one discovers

+f (T (Tj)z + (T&)Z — % (T ,;)2 — %pasT - (LIXT + \7&;)] , (2.15)

where as = '8—2)

Using Eq (2.12) in Eq (2.8), we see

Fo = ()]s - asT + asvg), (2.16)
Gy = f(T)|95 - asT +asii], (2.17)
G = f(T)|asiiz - asT + aus]. (2.18)
Gy = Gu=af(T)[v:+ig, (2.19)
Fro = Go=0y=0,=0. (2.20)

We consider the next function [33]:

a
f(T):l_Q_OT’

where « is a positive constant.
Through the application of the dimensionless variable, the resulting expression can be derived as

follows:
f(T)=1-ef. (2.21)

Employing Eq (2.21) in Eqgs (2.13)—(2.15), one uncovers

0 = ljt;c); + alljl)*,}*, + afﬁ - ﬁj-f— - a3T;C - CL’Tﬁjg - CZCI]TIT!;* - (l’azT\j'yj

+ Q’Tlxt 7t 2aa TT;C T,Xa’j — CZ(Z4T’)~C\7’)7 - a’alT,yi;l’y - aalT,yf/;C, (222)
0 = Vypt+aiVsm+aritge — Vs —azTy —alVyy — aa TV 3z — aar Tl gz

+aTv- 72+ 20a3TT 5 — aT V5 — aasT 5ty — aa T sy — aa T 5V 5, (2.23)

0 = Tu+Ty-Tri-as (u v ‘757%) — %7 2 — Toas (ﬁx%% + Nj}%‘?) —aTT s
- CKTT;; + (YTT-T- + aa5T (Ijt 7w T v ~,-7-) + (Y%Og’fﬁ- + cﬁ’oa5T (i;l wr T \7,5,7-7-)
~ \2 ~ \2 ~ \2 ~
— a( x) —a (T,}:) + Cl’%() (Tj—) + CZ%QCIS Tj- (fl:f— + \77)7-7-) . (224)
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Incorporating Eq (2.21) into Eqgs (2.16)—(2.19) enables the derivation of the stress tensor, which can be

expressed in the following form:

Cyy = (1 - aT) [ﬁx —a;T + a4\7y] ,
Oy = (1 — aT) [ﬁy —a3T + a,it x] ,
o 1- aT) [amg —asT + a4\7y] ,
Gy = Gu=ar(l-al)[v;+ig)

Let us assume the following representation for the moving wave transformation:

(X, 5, 7

(X, 3, 7)

Ule), V(% §, ) = Ve,
T (e), e=sMX+h(®DF+N®F).

From Eq (2.29) in Eqgs (2.22)—(2.24), one acquires

0 = biU +b,V —byU —b,T —bsTU —bgTV'
+ b, TU +byTT —bT'U - by TV,

0 = bV +bU =bV —bpT —biTV —bsTU'
+ b TV + b TT —bisT'V = b T U,

0 = bl —byT —bU" —blU —bylU —by V' —byV —byV

= byuTT" + bysTT + bogTU" + by TU" + bogTU + booTV" + b3 TV

, "2 ) o ) P
+b31TV —b24(T) +b26TU +b32TU +b33TV +b29TV ,

where

(2.25)
(2.26)
(2.27)
(2.28)

(2.29)

(2.30)

2.31)

(2.32)

. \2 . ..
by = +ah* = (5% +hy + R) by = aysh, by = (5% + iy + R), by = a35.bs = aby, be = aby, by = aby,

bs = 2abs, by = as” + aarh*, byg = (a4 + ay) ash, by = I* + ayh® — (5% + hy + z‘<)2,1912 = ash,

) ) N J P URY
b13 = lel,bm = 2(Zb12,b15 = ah + aa;s ,b]ﬁ =s"+h —To (Sx+hy+x) >

. . . . - \2
biy = (8T +hy + p) + 7o (5% + iy + R)  big = Toass (5T +hy +R)

b19 = (a5s + 27’06155‘) (S)? + ]’lj} + N) + %06155 (S)Z' + hSJ + 8) s b20 =ass + %0(15§, b21 = %0(15]1 (S)Z' + h57 + N)

bzz = (Cl5h + 2%0615]&) (S)? + hy + N) + ‘7'0(15]1 (S)? + l’lj} + N) , b23 = Cl5q' + 7~'oa57;l, b24 = a/blé, b25 = a/b17,

by = abig, by = abig, brg = abyy, byg = @by, byy = abyy, by; = abys, by = 0’7'0055(555 + hy + N) ,

bsz = 0%0615h (S;C + ]’lj} + N) .
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3. Description of the method

The ISEM that will be employed in this paper is briefly described in this section [34].
Considering that we have the following NLPDE:

F(T, Ty, Tz, T, Txz, ....) = 0, 3.1
the fundamental procedures of the ISEM can be stated below:

Step 1: Initially transform the NLPDE in Eq (3.1) to an ordinary differential equation (ODE) utilizing
the following transformation:
T(%,3,7)=TC(e), e=s(MX+h(@y+N7). (3.2)

Hence, Eq (3.1) becomes
H(T, T, T",T",...) = 0. (3.3)

Step 2: The solution of Eq (3.3) is supposed as follows:

N N
T(e)= ) swle)+ ) r (o), (3.4)
=0 j=1

where s; and r; are unknown constants to be found and y(e) fulfills the next differential equation:

W' (€) = dy + diy(€) + dayp(e). (3.5)

Step 3: In Eq (3.3), the nonlinear term is balanced with the highest-order derivative to determine the
integer N.

Step 4: Substituting the solution of Eq (3.4) and the differential equation Eq (3.5) into Eq (3.3) yields
a polynomial of (e€).

Step 5: Setting every coeflicient of i/ of the polynomial increased in Step 4 to null creates a system

of equations that could be solved by software such as Maple or Mathematica to identify the unknown
constants.

Step 6: Changing d, d;, d, with varied values yields several general solutions for Eq (3.5) below:
First Family: d, = 0

exp (d,€) B @

Y(e) = a n

Second Family: d;, = 0

U(e) = — 4/ —? tanh (y=dodae), dod; < 0.
2
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Third Family: d, = 0
w(e) = 1 dljxp (di£) .
— dy exp (dy€)
By incorporating the determined constants r;, s; and the general solutions of Eq (3.5) into the suggested
solution of Eq (3.4), several accurate solutions to the differential equation can be obtained.

The ISEM offers distinct advantages over traditional analytical methods, such as the homotopy
perturbation method (HPM) and the extended tanh function method. Unlike these approaches, which
rely on perturbative expansions or specific solution forms, the ISEM directly transforms nonlinear
partial differential equations into algebraic equations by balancing nonlinear and linear terms. This
results in more precise, closed-form solutions that do not require iterative corrections. Furthermore,
the ISEM’s flexibility in incorporating free parameters makes it especially effective for handling
temperature-dependent thermo-elasticity, where material properties vary with temperature. Recent
advancements, including studies in [36, 37], demonstrate the ISEM’s superiority in solving complex,
nonlinear models and highlight its unique ability to generate accurate, physically meaningful
solutions for real-world applications.

4. Exact solutions for the suggested model

Setting
U=mT, V=mT, m #0, mpy#0 “.1)

in which m; and 7, are constants.
From Eq (4.1) in Egs (2.30)—(2.32), we obtain

0 = [71'1[91 + 71'2[?2] T“ - [ﬂ]b:; + b4] T/ - [7T1b5 + 7T2b6] TT”
’ ’ 2
+ [ﬂ1b7 + bg] TT — [ﬂ]bg + ﬂzb]o] (T ) y (42)

0 = [mby +mb))T = [mbs+bp) T — [mabys + mbg] TT'

’ 7 2
+[mb7 + by ] TT — [mobys + mibyol (T ) , (4.3)
0 = —[mbg+ mby] T" + [bi6 — D19 — m2b2s] T" - [D17 + m1byg + mabas] T
+ [71bos + Mabool TT” + [2bsg + 1oy — bog) TT ™ + [bys + m1bog + by | TT
’ " ’ 2
+ [ﬂ]bz(, + ﬂzbzg] TT + [7T1b32 + 7T2b33 — b24] (T ) . (44)

Differentiating Eqs (4.2) and (4.3), we get

0 = - (ﬂ]b5 + 7T2b6) TT" + (ﬂ'lb] + 7T2b2) T — (l’)4 + 7T1b3) T + (bg + 7T]b7) TT” + (l’)g + 7T1b7) (T,)2
- (7T1b5 + 27T1b9 + ﬂ'zb() + 27T2b10) T’TH, (45)
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0 = —(mbe+mbi3) TT" + (myby + b)) T = (b1y + m2b3) T + (big + moby) TT” + (b1 + mb7) (T7)

- (7T]b6 + 27T1b1() + 7T2b13 + 27T2b15) T'T”.
It is noted that Eqs (4.4)—(4.6) will have the same form under the following conditions:

miby + mby = miby + mybyy = —mib1g — mabay,

by + m1by = by + mybs = —big + mbig + mabya,

mbs + 2m1bg + mobe + 2mab g = mbg + 211 b1g + Maby3 + 2mb1s = —m1byg — Maboo,

bg + mib7 = by + maby = —boy + m1by7 + mab3,

bg + mib7 = b1y + mab7 = —boy + b3y + Mab33,

mibs + mabs = mibs + mab13 = —m1bys — Mabyo,

bi7 + mibyy + mabo3 = 0,

bys + mbyg + mb3 = 0. 4.7)

Based on the previous conditions, Eqs (4.4)—(4.6) can be rewritten in the following form:
AT + AT + AsT'T” + A TT” + Ay (T’)2 + AsTT" =0, 4.8)
where

Ay =mb; + mby,

Ay = —by — b3,
A3 = —7T1b5 - 27T1b9 - ﬂzb(, - 27T2b10,
Ay = bg + 7T1b7,

A5 = —7T1b5 - 7T2b6.

The integer value N should be determined at first to implement the improved simple equation method.
This can be done by applying the balancing rule. Balancing 7" with TT"”, we get N = 1. Therefore,
the solution of the resulting ODE Eq (4.8) can be represented in the following form:

r

w(e)

Substituting Eq (4.9) along with its auxiliary equation (3.5) into Eq (4.8) yields a nonlinear algebraic
equation. Collecting the coefficients of /' and equating them to zero gives a system of equations that

can be handled by using software packages of Mathematica. The following results are obtained:
Casel.d, =0:

T(e) = so+ s1¥(e) + 4.9)

Result 1
2 (A3 —As) 5o+ A1 (A =244+ A5)) - 244

r=0,dy= , A1 = — .
(42 - 42)s, Az + As

AIMS Mathematics Volume 10, Issue 5, 10806—-10830.
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Then, we have the following solutions:

244 (s(D)X+h(T)7+N(7))

P, (Ag—A%)sle B —2A1 (A3 —2A4 + As) 4.10)
x’ b T = ’ ’
Y 244 (A3 — As)
(Ag - Ag) sje AtAs  —2A, (A3 — 24,4 + As)
iz 5, 7 =m : 4.11)
2A4 (A3 — As)
(Ag - Ag) sie’ Mt —2A, (A — 244 + As)
PE P, ) =m : (4.12)

2A4 (A3 — As)

_AAL((DIHAT)FHR(T)) 2A4(s(D)F+h(D)F+R(T))

e~ A (2(chl (A3 —2A4 + As) + Ay (A3 — As)) e 4% +w(A§ —Aﬁ)sl)

T 4AZ (As - As)?
4
2A4(s(‘7'))?+h(‘7‘)§‘+8(‘7‘))
x (20341 (-A3 + 24, — As)e” s = (A3 = As) 51 QA4 (mash (B) + mys (D) + a3 (A3 + As)) |,
(4.13)
_ 4A4(s('?))’t+h('?)§)+8('?)) 2A4(x("r))’c+h(f))"+x(f))
e A3+As (2 (@A (A3 —2A4 + As) + A4 (A3 — As)) e s ta (A% - A%) Sl)
Fyy = —
. 4A% (A3 — As)?
244 (s(F)F+(ED)FHR(E))
X {2613141 (A3 +2A4 - As)e A3*as — (A3 — As) 51 (2A4 (mass(T) + mh(T)) + a3 (Az + As)) },
(4.14)
_ 4A 4 (s(D)X+R(T)J+N(T)) 2A4(s(D)X+A(T)J+N(T))
e A3+As (2 (@A (A3 —2A4 + As) + A4 (A3 — As)) e s ta (A% - Ag) sl)
0, =—
= 447 (A3 — As)?
2A4(s(‘7').f+h(?')_€‘+8(‘7‘))
X {2613141 (A3 +2A4 - As)e A3ras — (A3 — As) 51 2asAs (moh (T) + my5 (7)) + a3 (A3 + As)) },
(4.15)
A4 GEF+HAETHR(E)
. arsy (mh (%) + ms (7)) e A3ths
Oy =
’ 2A4 (A3 — As)
2A4(s(D)X+I(T)J+N(T)) 2 2
X (2(0A1 (A3 = 244 + As) + Ay (A5 - As))e o5 +a(A]-A2)s )
(4.16)
Result 2 (2AsAys0 + AjAy + ALAs) Auso + A
+ + +
s1:0,d0:r1 54480 144 15’ = 450 1,A3:—3A5.
2(A5S0+A1)2 A5S0 +A1
Then, we have the following solutions:
3 250 (Asso + Ay) ? exp (LentANOBMINRO)) 1 A7y (A4 + As) 5o + 241)
Ty, 0= (A450+AD(sB)X+(E)F+R(D)) ’ (4.17)
2 (Asso + A1) 2 exp ( e ) = 11 (2A4Ass0 + A (Ag + As))

AIMS Mathematics Volume 10, Issue 5, 10806—-10830.



10817

250 (Asso + Ay) 2 exp (ALt ANSOUMORRDN) 4 A7y ((Ag + As) 5o+ 241)

i(x, y, 1) =m — . (4.18)
2 (Asso + Ay) 2 exp (Lt ANCOURONRD) _ 1) (24,4550 + A (Ag + As))
Agso+AD(SOFhDFHRE
oo 2S0 (A5S0 + Al) 2 exXp (( 450+ I);i(;(?izl(ﬂﬁ— (T))) + Alrl ((A4 + AS) So + 2A1)
PE § D =m > (Agso+ADGEHTHEFR(E) . (419)
2(Asso + A1) exp( AssotA; ) —r1 (2A4As550 + Ay (A4 + As))
_ (aso — 1) e COTROIRD) 4 oy + dy (1 — asp)
e (ehSOTETHR@) — )3
{ as ( N OFHI@F+RD) _ do) ( S0 ( N BOTHhDF+RE) _ do) +d, ”1) + dfrl (myash (%) + 7y () e (s(%))?+h(%)j/+N(%))}’
(4.20)
_ (asg — 1) e COTHOFRD) 4 oy + dy (1 — asy)
W (eh GOTAEIHRE) — )3
{ a3 ( I OF+DOI+RE) _ do) ( S0 ( I OIThDFHRE) _ do) +d, 7’1) + dfrl (71045 (F) + moh (7)) & (s(%))?+h(%))7+?<(%))}’
4.21)
_ (aso — 1) e COTROIRD) 4 oy + dy (1 — asp)
z = (ehOTETHR@) _ )3
{a3 (ed1<s(%)x+h(%)y+x(%)> - do) ( S0 (edl (s(DT+h(DF+ND) _ do) +d, r1) + ayd’ry (mh (F) + mys (F)) € (s(%)ﬂh(%)ym(%))}’
(4.22)
C adir (mh () + mys (7)) ehCOTIOIND) (g5 — 1) ehCOHIOIND) 4 g,y + dy (1 - aso))
Oxy = (eh GOFRDIRD) — )3 :
(4.23)
Case 2. d; =0:
Result 1 A M A
450 T A 481
r=0,dy=———F—,d=————, A3 = -3As.
: T T 20As T 2(Asso+ A :

Then, we have the following solutions:

(5. %) = 50— \/ (4450 +Af;i§£5s‘) + A tanh[% \/%mm FRET+ x(%»),

(4.24)

A A)(A A 1 [A4(A A
iR 5, D) = ms—m \/( el 1)tanh(§,/A—;‘EAiiz:Aﬁ(sﬁ)mh(%)ym&))],
(4.25)
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C e e e B (Agso + A1) (Asso + Ay) 1 /A4(A4So +A), o .
V(X, y, T) = ms) 7'(2\/ A, tanh[2 A (Asso + A +A1)(s(‘r)x +h(T)y+ N(T))),

(4.26)

.1 (Agso + A1) (Asso + Ay) 1 /A4 (Agso+ A1), . _ - -
Oy = E (—Q’J A4A5 tanh [5 m(é‘(?’)x +h (T)y +N (T))] + asg — 1] X

{ As(Ayso +Ay)  [(Asso+A)) (Asso+Ay)
As(Asso +Ay) A4As

1 [AyAgso+AD 5 (Agso + A1) (Asso + Ay)
sech (E | /A—s s T A CDE @+ N(T))] + 2a3(so - \/ e X
1 A4 (A4S0 +A1) e o~ ~
tamh[5 \ /m(s(r)x +h®F+ x(r))])}, (4.27)

.1 (Agso + A1) (Asso + Ay) 1 /A4 (Agso+ A1), . _ - .
Oyy = 5 [—Q\/ A4A5 tanh[i m(S(T)X +h (T)y +N (T))J + asy — 1] X

{\/A4 (Agso +Ay) \/(A4SO + A1) (Asso + Ay)

(maash () + mys (7)) X

As (Assyg + Ay) ALAs (m1ags (T) + mph (7)) X

2 1 ’A4 (A4S0 +A1) _— _ o~ - (A4SO +A1)(ASSO+A1)
sech (E m(S(T)X +h (T)y +N (T))] + 2613(5'0 - J A4A5 X
1 A4 (A4S() + Al) o o~ ~
tanh [5 \ / m(s(r)x +h@F+N (T))] ). (4.28)

.1 (Agso + A1) (Asso + Ay) 1 fA4 (Agso+ A1), _ - -
O, = 5[—a\/ ALAsS tanh{i m(S(T)X'Fh(T)y'FN(T))] + asy — IJX

{a Ay (Ayso+ A1) [(Agso +Ar) (Asso +Ay)
4
As(Assy +Ay) A4As

2 1 A4 (A4S0 +A1) —— o~ - (A4SO +A1)(ASSO+A1)
sech [5 1 fm(é‘(‘l’)x +h (T)y +N (T))] + 2613(S0 - \/ A4A5 X
1 ’A4 (A4S() + Al) o o~ ~
tanh [5 m(é'(?’)x +h (T)y + N (T))] )}, (429)
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o 1 |AsAaso+A)
Oxy = Ealsechz [5 \/%(S(T)X +h (T)y +N (T))] X

{ Ay (Ayso+ A1) [(Asso +Ar) (Asso + Ay)
As(Asso +Ay) A4As

(Ays0 +A1)(A5S0+A1) 1 A4(A4S0+A1) . o )
( - 01\/ AAL tanh[i \/%(s(f)x +h(®)y+N (T))] + asy — 1)}

(m1h (T) + mas (7)) X

(4.30)
Result 2 A A A
r —A480 — A1
=0, dy=———" 4= —0 LA = _3As.
51 » 70 2(A5S() +A1) 2 2A5I"1 3 >
Then, we have the following solutions:
NArso ¥ A (Assg ¥ A coth (% A ()7 + 1 ()5 + N (%)))
T (X, 9, 7)=so— W 4.31)
4As
71 N@aso ¥ A7) (Assg + A7) coth (% JFAEERA ()% 4 (D)5 + N (%)))
u(x, y, 7) =myso — s
(X, ¥, ) 150 \/A4_A
(4.32)
o Vs + A (s + Ap) coth (1 {4 (P74 1 (D)5 + R ()
\7()~C, 57, %) =TSy — .
VAAs
(4.33)

esch? (L (s()% + h (D) §+ N (D))

Opx = — X {(a AyAssy — \/A4A5 —

DALAs

aQ) coth (%g“(s(f)fc +h(T) 7+ N (%))) ) X (a3(Q sinh({(s(F)X+ h(T)y + K (T))) —

VA4Asso(cosh({(s(T)X + h(T)§ + N (T))) — 1)) + {Q (mash (T) + 715 (7)) )}, (4.34)

esch? (34(s(DF + h(D)F + R (9)))
2A4A; 8

aQ coth (%{(s(%)fc +h(@)y+N (%))) ) X (a3(Q sinh({(s(P)X + h(T)y + N (7)) —

Oy = =

VA4Asso(cosh({(s(T)X+ h(T) ¥ + N (T))) — 1)) + {Q (myass (T) + moh (7)) )}, (4.35)
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csch? (%((s(%)fc +h(T)j+N (7')))
X

Tz =~ 2ALA:

aQ coth (%{(s(‘?)fc +h(@)y+N (?))) ) X (a3(Q sinh({(s(F)X + h(T)y + N (T))) —

VA4Asso(cosh({(s(F)X+ h(T) ¥ + N (7)) — 1)) + as{Q (mh (T) + 715 (7)) )}, (4.36)

@, {Q (mh (7) + mys (9) esch’ (L (s(DE + h (D)5 + R (7))

Oy = — X
w 2A4As5
1
{a/ VA4Ass) — \VA4A5 — afd coth (Eg(s(%))? +h(@)y+N (‘?))) }, 4.37)
As(Agso+A
where { = /4404 and O = (Ays0 + A1) (Asso + Ap).
Case 3. d, =0:
Result 1
—Assog— A s1 (2AsA4s0 + A1A4 + AA
r =0, Ay = —3As. d; = 450 1,d2:_1( 54450 144 14s)
A5S() +A1 Z(ASSO +A1)2
Then, we have the following solutions:
Agso+AD(SEI+hEF+RE
o 51 (~Aqso — A;) exp (_( 450+ 1)235(:31;1@)% (T)))
T 5 1= (Ag50+A ) GOF+HEFHRE) + S0, (4.38)
51(2A4A550+A1(Ag+As5)) exp(— A530+A] )
(ASSO + Al) 2(Asso+A; )2 +1
Ayso+AD(sE)E+hEF+RE
o 7181 (—Asso —Al)exp (_( 450+ 1);2(;’31‘21(7))‘* (T)))
(X, y, 7= : - PRTR e + 71 S0, (4.39)
$12AsAs S0 A1 (Ag +As)) exp( - LA )
(ASSO +A1) 2(Assg+A1 )2 +1
Ayso+AD(sEX+hEF+RE
o 281 (—Ayso — Ap) exp (_( 450+ 1)21(:31;1(7)y+ (T)))
V(x’ Vs T) = (Ag50+A1)(DT+(EDF+R(T)) + 7250, (440)
$12AsAss0+A1 (ArtAs)) exp - L )
(ASSO +Al) 2(Assg+A;)? +1

B dz (O,’S() _ 1) edl(s(%)i+l1(‘?)ji+?<(‘?)) _ a,dlSledl(s(f'))”c+h(‘7')y+x(‘?)) —asy+ 1
- (dzedl(s('?)i+h('?)y+8('?)) _ 1) 3

XX

x { as ( d> edl (SOI+OF+HRGE)) _ 1)

( S ( dp e CORETR®) _ 1) —dys;e™ (s(%)5c+h(%)y+8(%))) _ d% 51 (myash (%) + 715 () ed.(s(%)x+h(%)y+x(%))}’

(4.41)
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. (da(aso—1)—ads) eHDTHHONRD) — gy + 1 d, eI COTOTHRD) _
Tyy = (dyed COTHDFHRE) _ )3 X\ ( 2€ - )

((dzso —dys)) N OITDF+R(T) _ SO) _ d1251 (miaqs (F) + mph (%)) edl(s(%)i+h(f)y+N(f))}’

(4.42)

e T —ant ] d, M1 COTDTHR@D) _ |
“ (drei SOFFREFHR@D) _ 1)3 X a3( 4 — )

(( drso — dy s1) N @OIHNDI+RTD) _ So) —ay d% s1 (mh (F) + mys () edl(s(‘?))"c+h(‘?)jz+8(%))}’

(4.43)

ad? sy (17 (%) + s (7)) e COFOTND) ((d, (1 = ars) + ady 51) e COFIOTND) 4 g5y — 1)

Try = (dreh GOF+hDFHR@®) _ 1)3
(4.44)
Result 2
2A4 2 (A4A3S() — A4Ass9 + A1Az —2A1A4 + A(As)
51=0,di=—, dr = ,
A; +4s (42-42)r,
Then, we have the following solutions:
_ 2A4(Hy+P+S x)
) (A2-A2)re A% — 24, (43 - 244 + A5)
TE, 3,7 = , (4.45
Y 2A4 (A3 — As) )
_ 2A4(Hy+P+S x)
m (A3 = A2)rie 5 —2pilA; (A3 — 244 + As)
(%, 9, 7= , (4.46)
g 24, (A; — As)
_ 2A4(Hy+P+S x)
1 (A= A2)rie” 5 = 2pirA; (As — 244 + As)
V , 4.47)

V(X, Y, T) = 2A4 (A3 - AS)

_4Ay (s(D)F+A(T)F+N(T)) 2A4(s(D)X+h(T)J+N(T))

e s (2 (@A (A3 —2A4 + As) + Ay (A3 — As)) e 75 + a(Ag - A%) rl)
&xx =
4A42L (A3 — As)?

2A4(s(D)F+h(T)J+R(T))

X{203A1 (A3 +2A4 —As)e  B%s + (A3 — As) 11 QA4 (maash (T) + mys (7)) + a3 (A3 + As)) },
(4.48)
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_4Ay (s(D)X+h(T)F+N(7)) 2A4 (s(D)X+h(D)F+N(T))

P T r— (2 (@A) (A3 —2A4 + As) + Ay (A3 — As)) e &8s + a(A§ - A%) rl)
4A2 (A3 — As)2

Oy = —

2A4(s()X+h(7)J+N(7))

><{2613141 (A3 +2A4 —As)e B35 + (A3 — As) ri QA4 (myass (T) + mh (7)) + a3 (A3 + As)) },
(4.49)

_ 4A 4 (s(D)X+R(T)J+N(7)) 2A4(s(D)X+h(T)J+N(T))

e At (2 (@A (A3 —2A4 + As) + Ay (A3 — As))e 3% + a’(A§ - A%) r1)
4A2 (A3 — As)?

Oz =~

2A4(s(D)X+h(T)J+N(T))

><{2613141 (A3 +2A4 —As)e s + (Az — As) r1 (2asAys (mah (T) + 115 (7)) + az (Az + As)) },

(4.50)
_ 4A 4 (s(D)X+A(T)J+N(T))
arry (mh (T) + mys (7)) e A3ts
Ty = X
2A4 (A3 - As)
2A4 (s()X+h(T)J+N(T))
{a/ (A3 - A3)r1i - 2(aA; (A3 — 244 + A5) + Ay (A3 — As)) e o5 } (4.51)

5. Visualization and interpretation of some solutions

This section provides graphical representations in two dimensions for a selection of solutions.
Copper is chosen as the thermo-elastic material for the analysis, with specific values assigned to
various physical constants, as outlined below [35]:

ce = 3831x10*°T-kg'-K',  6,=293x10°K, k=368W -m' K,
o = 38.6x10°N-m™=2,  py=89.54x10°kg-m™>, A =77.6x10°N-m™,
a. = 1.78x107° K.

Figure 1 depicts the solutions for Eqs (4.10)—(4.13) and (4.16) with the specified parameters s(7) =
h@ =8#) =7, 71 =06, 1, = -128, =1, T =1, 5y = =029, @ = 3, 4 and 5. Figure
2 depicts the solutions for Eqs (4.24)—(4.27) and (4.30) with the specified parameters s(7) = h(T) =
NT) =71, 1 =-168, 1p, =262,y =1, T =1, 5o = 3.4, « = 3, 4 and 5. Figure 3 depicts
the solutions for Eqs (4.45)—(4.48) and (4.51) with the specified parameters s(¥) = h(T) = NK(T) =
T, m =166, m;;, = -38, y=1,7T=1, r =2, «a =3, 4and 5. Varying parameters in a system
can significantly influence its behavior and performance, making sensitivity analysis a crucial tool
for understanding the underlying dynamics. By systematically altering key parameters, such as «,
and observing the corresponding changes in the system’s output, one can assess how sensitive the
system is to these variations. This type of analysis helps identify regions where the system exhibits
high responsiveness, as well as areas where it remains relatively unaffected by parameter changes.
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Understanding the relationship between parameters and outputs is essential for optimization, control,
and decision-making processes, as it provides insight into which parameters most significantly impact
the system’s behavior. Additionally, recognizing points of high sensitivity can guide the design of more
robust systems that perform consistently across a range of operating conditions, which frequently aligns
with [17].

Figures 1(a), 2(b), and 3(b) introduce the effect of changing a on T for Eqs (4.10), (4.24), and (4.45).
In addition, the effect of changing « on i, ¥, xx, and G xy is introduced in Figures 1(b, c, d, e), 2(b, c,
d, e), and 3(b, c, d, ). For small values of a, T may change rapidly, indicating a high sensitivity of the
system to a. In contrast, for larger values of a, the rate of change of 7 could become less pronounced,
suggesting that the system becomes less sensitive to further changes in @. This nonlinear relationship
highlights how the effect of @ on T is not constant and can vary depending on the magnitude of a.
Critical points on the plot, where T shows a sharp increase or decrease, can be interpreted as zones
where small adjustments in « lead to significant changes in 7, reflecting heightened sensitivity in those
ranges. Understanding this behavior helps in optimizing parameters or identifying conditions where
the system is most responsive to a.
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T p
12; 7k
10k — a=3 6k — a=
8¥ — a= 5¥ — a=4
6! ]
— a=5 3t — a=
4/ 5
2! 1
20 40 60 80 100" 20 40 60 80 100
(a) (b)
; O xx
20 40 60 80 100 — =3 3| — a=
—5l — a=4 — a=4
5 !
— a=5 — a=5
—10ﬁ N
-1 20 40 60 80 100
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(d)
O'Xy
20 50 80 160’; — =3
-0.2; -
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-0.8
-1.0
-1.2¢
(e)

Figure 1. Graphical simulations of Eqs (4.10)—(4.13) and (4.16).
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T u
—o=3 20 40 60 80 100 — =3
— a=4 _a — a=4
—a=5 _, — a=5
—4;
‘ - % -5
20 40 60 80 100
b
() (b)
y .
O-XX
8
S T
6f — a=4 004/ — a=4
4 — @=5 02 — @=5
2/ oo
| | | | L 20 40 60 80 100
20 40 60 80 100
(@
(©)
0.15
— a=3
0.10] — a=4
— a=5
0.05]
: X
20 40 60 80 100

(e)

Figure 2. Graphical simulations of Eqs (4.24)—(4.27) and (4.30).
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T u
1507 _ =3 2507 — =3
200
— a=4 — a=4
100; 5 150 5
— = — a=
sol 100}
50!
20 40 60 80 100 20 40 60 80 100"
(a) (b)
~ 0'~
v XX
_100, 20 40 60 80 100" — @=3 800 — a=3
~200 — a=4 600} — a=4

20 40 60 80 100
d)

-300: — a=5 400/ — a=5
—400
~500/ 200}
~600 ‘ ‘ ‘ ‘ - 3
(©)

Oxy

20 40 60 __8e—r00° — @=3
-200¢ — a=4
—400" — a=5
— 600"
—800

(e)
Figure 3. Graphical simulations of Eqs (4.45)—(4.48) and (4.51).

6. Conclusions

The ISEM has established itself as a powerful and flexible analytical technique for investigating
temperature-dependent behavior in thermo-elastic materials, particularly within the framework of L-S
theory. Its capacity to derive a diverse array of exact solutions underscores its reliability and
adaptability across a broad spectrum of analytical applications. The method’s effectiveness is further
reinforced by the use of graphical representations, which depict key parameters such as displacement
components, temperature distributions, and stress tensor components. These visualizations serve as
essential tools for both researchers and engineers, offering critical insights into the complex responses
of thermo-elastic materials subjected to varying environmental and operational conditions. In addition
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to enhancing the understanding of thermo-elasticity, the ISEM provides a solid foundation for future
studies and potential real-world applications in multiple scientific and engineering disciplines. By
unveiling the intricate dynamics governing these materials, the method opens new avenues for
exploration, fostering innovation and contributing to the advancement of related technologies and
analytical methodologies. As a result, the ISEM is not only a valuable tool for current research but
also a driving force in the evolution of future developments in thermo-elastic material analysis.

Aerospace Engineering: The accurate modeling of thermo-elastic wave propagation in
temperature-dependent materials is crucial for predicting thermal stresses in spacecraft structures
during rapid thermal loading, such as re-entry or orbital transitions. The derived solutions can assist
in the design of thermally resilient components by providing precise stress and displacement profiles.

Microelectronics: In micro-scale devices, where thermal effects significantly influence mechanical
behavior, the presented model can contribute to better heat management and structural reliability
analysis. Our findings can support the development of predictive tools for thermal fatigue and failure
prevention in integrated circuits.

Materials Science: The study offers insights into the behavior of advanced materials under coupled
thermo-mechanical loads, particularly those exhibiting temperature-dependent properties. This can
guide the design and testing of smart materials or composites used in sensors and actuators.
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