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Abstract: In this paper, the exponential input-to-state stabilization (EISS) problem for nonlinear
systems subject to impulsive disturbance and continuous external inputs is addressed by an aperiodic
intermittent control (APIC), which is further classified as either time-triggered APIC (TAPIC) or
event-triggered APIC (EAPIC). To establish sufficient conditions for the realization of EISS, the
Lyapunov approach is used. It is shown that the suggested APIC can successfully reduce the negative
consequences of continuous external inputs and impulsive disturbance. Limiting the percentage
of the active interval in the control procedure yields a range of impulse moments under TAPIC.
The relationship among impulse disturbance, intermittent control parameters, the event-triggered
mechanism (ETM), and the threshold is established under EAPIC to guarantee EISS. The predesigned
ETM is used to generate a series of impulse disturbance moments. Furthermore, the Zeno phenomenon
is excluded. Finally, an example of Chua’s oscillator is presented to show how effective the system is
under TAPIC and EAPIC.
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1. Introduction

In real life, impulse phenomena are used in a variety of fields, including aerospace [1], digital signal
processing [2], ecological domain [3], and orbital adjustment of satellite [4], typically representing a
sudden change in the system’s state at a specific moment in time. In mathematics, impulse phenomena
are usually described using impulse differential equations, which not only describe the dynamic
behavior between successive impulses but also define an instantaneous update or reset of the system’s
state at discrete time points. Impulses can be classified into stable and unstable types on the basis
of the effect on the system. Stable impulses help the system achieve the desired performance and
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positively contribute to its stability. For example, Zhang et al. [5] and He et al. [6] investigated
the finite-time stability of general nonlinear system and positive switched linear delayed system
under impulse control, respectively. In [7], the authors revealed that stable impulses accelerate the
convergence of the system state based on the Lyapunov method. In [8], impulse control is then applied
to multi-agent systems. In contrast, unstable impulses or impulse disturbances occur when the system
encounters unavoidable transient disturbances. These disturbances can adversely affect the stability
of the system and even disrupt its dynamic behavior. Recently, impulse disturbance has received
increasing attention in areas such as synchronization of the network system and network security.
Zhang et al. [9] established a Zeno-free event-triggered impulsive control framework to achieve input-
to-state stability (ISS) for nonlinear systems under arbitrarily timed impulsive disturbance. In [10], the
results indicated that impulsive disturbance had a negative effect on system stability and needed to be
suppressed by increasing the feedback gain in order to achieve stability. Yang et al. [11] investigated the
synchronization problem of Boolean control networks with a drive-response structure under impulsive
disturbance. The paper [12] was the first to address the synchronization problem under impulsive
disturbance without imposing a lower bound on the impulse intervals.

When discussing how the disturbance impacts the performance of a system, we also need to consider
ISS, as it mathematically characterizes how exogenous signals relate to state variable evolution. Sontag
was the first to introduce this concept in [13]. Regardless of where the system begins in the state space,
ISS implies that the state will eventually converge near the origin. External inputs exist in dynamic
systems because of unavoidable negative consequences such as component friction and environmental
noise in real-world situations. Therefore, studying the ISS of systems has garnered increasing interest
from researchers, and there are many articles on the ISS properties of systems (see e.g., [14–16]).
In [17], the ISS of a nonlinear system was analyzed using an event-triggered impulse control method.
Sufficient conditions were proposed to establish the connection between impulse intensity and the
event-triggered mechanism (ETM). The problems of ISS and integral ISS for nonlinear systems with
hybrid inputs and delayed impulses were examined in [18], together with the impact of hybrid delayed
impulses on both stable and unstable impulses. In [19], ISS was extended to infinite-dimensional
stochastic impulsive systems, and the results are applicable to both stable and unstable impulses of the
system.

Intermittent control (IC) has attracted much attention as an efficient control mechanism and has
been extensively used in the control of dynamic systems. Compared with continuous control, IC
does not require the constant application of control inputs to the system and can effectively reduce
resource consumption. In some practical applications, such as aircraft control, robot control, and smart
grids, these controls do not require continuous control signals as in conventional control methods.
In these cases, intermittent control proves highly effective because it inputs control signals to the
system only at specific time intervals, which is consistent with the dynamics of the system. IC is
easily separated into periodic intermittent control (PIC) (see e.g., [20–22]) and aperiodic intermittent
control (APIC) (see e.g., [23–27]), which differ in terms of when and how the control signals are
applied. While PIC updates the control signals at fixed intervals, ensuring regularity, it lacks flexibility
and may lead to unnecessary control actions when the system’s state is already stable. In contrast,
APIC triggers control signals on the basis of specific conditions or events, offering greater adaptability
and improved efficiency. This flexibility enables APIC to dynamically respond to the system’s
requirements, reduce resource consumption, and enhance overall performance. Furthermore, APIC

AIMS Mathematics Volume 10, Issue 5, 10787–10805.



10789

can adjust the control intervals in real time, which improves its ability to manage external disturbances
and uncertainties. This is especially useful for complicated nonlinear systems. Zhang et al. [25]
investigated the exponential input-to-state stabilization (EISS) of semi-linear system via APIC and
aperiodic intermittent sampled-data control, respectively. In [26], the authors proposed an APIC
strategy that flexibly regulated the control period and width and combined it with a Lyapunov approach
to suppress system’s uncertainties and impulsive disturbance, achieving finite-time stabilization of
nonlinear systems. In [28], the global asymptotic stability of nonlinear time-delay systems under
PIC was investigated, while [29] demonstrates that APIC achieves EISS through constraining the
control width ratio, thereby enhancing the robustness against impulsive disturbance. These advantages
highlight APIC as a superior choice for modern control applications that demand high levels of
efficiency and adaptability.

In the engineering field, time-triggered control (TC) and event-triggered control (EC) are additional
options to the IC mentioned above, which utilize different control methods. Although TC is simpler
to design and implement than EC, it frequently updates the control signals due to having fixed time
intervals, leading to the waste of computational and communication resources. However, EC can
reduce unnecessary waste by designing a suitable ETM to determine when system control is applied.
So far, there are numerous research results on EC due to its effective performance in achieving dynamic
system performance (see e.g., [30–34]). For example, Peng et al. [30] discussed the stability of the pth
moment of the impulsive stochastic delay system under the event-triggered control strategy framework.
However, EC implies that the event generator and the controller operate continuously even if the system
is not really needed. This issue has been addressed by the combination of IC and EC, known as
event-triggered intermittent control (EIC). In [34], the authors achieved the stabilization of nonlinear
delayed systems under impulsive disturbance for a finite period of time by designing an APIC strategy
and verified, through numerical simulations, that event-triggered APIC (EAPIC) outperforms time-
triggered APIC (TAPIC).

According to the available results, it is clear that there has been limited research on the ISS of
nonlinear dynamical systems under APIC, especially considering the effects of impulsive disturbances.
Therefore, it is important and challenging to study the ISS of nonlinear systems with impulsive
disturbance and external disturbance by designing appropriate APIC strategies. The present study
examines the EISS for such systems employing both TAPIC and EAPIC, with impulsive effects
manifesting at each instant of control initiation. The main contributions of this paper include the
following.

(1) We propose a novel APIC strategy designed for nonlinear systems subject to both continuous and
impulsive disturbances. Furthermore, numerical simulations based on Chua’s oscillator demonstrate
that, under identical disturbance and initial conditions, EAPIC significantly reduces control effort
compared with TAPIC.

(2) Under TAPIC, the active interval width and impulse moments are determined by the link
between the control parameters and the impulse disturbance, providing a lower bound on range of the
control width. This not only preserves the advantages of intermittent control but also ensures that the
beneficial system properties resulting from the strategy are maintained over a sufficiently long period.
Under EAPIC, the links among impulse disturbance, control parameters, ETM, and the threshold are
established, and the series of impulse disturbance moments is produced using the predesigned ETM
while excluding Zeno behavior.
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(3) Liu et al. [23] achieved EISS for continuous nonlinear systems with continuous external inputs
by employing APIC. However, their work solely addressed continuous system dynamics, whereas the
present study incorporates transient external disturbance.

(4) In contrast to prior studies, particularly [28], which solely focuses on fixed control widths,
the proposed method accommodates flexible control widths and event-triggering conditions while
rigorously guaranteeing the exclusion of Zeno behavior.

Notations: Let R signify all real numbers, R+ = [0,+∞). Rn is the n-dimensional real vector space,
Rn×m is the n × m-dimensional real space, Z+ indicates the set of positive integers, and Z+0 = {0} ∪ Z+.
The identity matrix of compatible dimensions is denoted by I. X > 0 or X < 0 signify that the matrix
X is positive or negative definite. For any matrix X, the operations XT and X−1 yield its transpose
and inverse, respectively. λM(X) denotes the maximum eigenvalue of the matrix X. Respectively,
z(t+r ) and z(t−r ) stand for the right and left limits. C(E, F) = {η : E → F is continuous}. ⋆ indicates
the symmetric block in a symmetric matrix. L indicates the set of Lebesgue measurable functions
ω(t) ∈ C[R+,R+). For ω(t) ∈ L, define |ω(t)|G as the essential supremum of |ω(t)| over G, and |ω(t)|∞
as the essential supremum of |ω(t)| with G = R+. A function ϑ(d) ∈ C(R+,R+) belongs to the class K∞
if it is strictly increasing in d and ϑ(d)→ +∞ as d → +∞.

2. Preliminaries

We study the following system in this paper:ż(t) = A z(t) + g(z(t)) + u(t) + ω(t), t ≥ t0,

z(t0) = z0,
(2.1)

where z(t) ∈ Rn represents the state vector, ż(t) signifies the right-hand derivative of z(t), A ∈ Rn×n,
g(z) = (g1(z1), . . . , gn(zn))T ∈ C(Rn,Rn), u(t) indicates the control input, and ω(t) ∈ L denotes external
disturbance.

Design the rth aperiodic intermittent control (APIC) (H , {tr} , {τr}) as

u(t) =

H z(t), t ∈ [tr, tr + τr),
0, t ∈ [tr + τr, tr+1),

(2.2)

where H ∈ Rn×n is the control strength, and tr is the impulse instant, which is also the starting instant of
the rth APIC. Assume that the sequence {tr}

∞
r=1 satisfies 0 = t0 < t1 < · · · < tr < . . . and lim

r→∞
tr = ∞, Fc

indicates such kinds of sequences. Similarly, Fω indicates the control width sequences {τr} satisfying
0 < τr < Θr = tr+1 − tr, r ≥ 0. Here, [tr, tr + τr) represents the active interval and [tr + τr, tr+1)
represents the inactive interval. For the given {tr} and {τr}, let V (H , {tr} , {τr}) be the set of APIC
composed of the control gain H . Moreover, we define τmax = maxr∈Z+0 {τr}, τmin = minr∈Z+0 {τr}, and
Θmax = maxr∈Z+0 {Θr}.

Then the system (2.1) can be changed to the form below under APIC (2.2):ż(t) = (A +H )z(t) + g(z(t)) + ω(t), t ∈ [tr, tr + τr),
ż(t) = A z(t) + g(z(t)) + ω(t), t ∈ [tr + τr, tr+1).

(2.3)
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As can be observed, the controller works only during the active interval, and input data are not
transferred during the other interval. In addition, considering that the state of (2.3) may suddenly jump
at a particular moment due to input noise and uncertainty, thus generating the impulsive phenomenon,
which we regard as impulsive disturbance. Then the system (2.3) is disturbed by an impulse and can
be rewritten as 

ż(t) = (A +H )z(t) + g(z(t)) + ω(t), t ∈ [tr, tr + τr), t , tr,

ż(t) = A z(t) + g(z(t)) + ω(t), t ∈ [tr + τr, tr+1),
z(tr) = (I +D)z(t−r ), t = tr, r ∈ Z+,

(2.4)

where D ∈ Rn×n is a constant matrix with respect to the impulse gain, and we assume that the state
variable z(t) of the system (2.4) is right continuous. Let z(t) = z(t, t0, z0) denote the solution of the
system (2.4) with the initial condition z(t0) = z0. Moreover, assume that (2.4) with u = 0 is non-ISS.
Designing an appropriate APIC to achieve the EISS of system (2.4) is the aim of this paper. Some
definitions, lemmas, and assumptions to be used in the following are given below.

Definition 2.1. The right upper Dini derivative of the local Lipschitz function V: Rn → R+ is defined as

D+V(z) = lim
∆t→0+

sup
V(z + ∆t) − V(z)

∆t
.

Definition 2.2. [23] For the given constants ρ > 0, ϖ > 0, and Γ ∈ K∞, if an APIC that belongs to
V (H , {tr} , {τr}) exists such that the solution z(t) of the system (2.4) satisfies

|z(t)| ≤ ϖ|z0|exp(−ρ(t − t0)) + Γ(|ω(t)|[t0,t]), ∀t ≥ t0.

Then the system (2.4) is said to be exponentially input-to-state stabilized (EISS) with respect to ω(t).

Definition 2.3. [35] For an impulse time sequence {tr} ,N0 > 0 denotes the chatter bound, where T ∗ is
called the average dwell time, if

N(t, t∗) ≤ N0 +
t − t∗

T ∗
, (2.5)

where N(t, t∗) indicates the number of impulses within the interval [t∗, t).

Lemma 2.1. [36] For a positive definite matrix M and a constant k, where k > 0, there is

2µTν ≤ kµT Mµ + k−1νT M−1ν, µ ∈ Rn, ν ∈ Rn.

Assumption 2.1. Consider a positive constant lm satisfying

|g(z1) − g(z2)| ≤ lm|z1 − z2|, z1, z2 ∈ R
n, m = 1, 2, . . . , r.

Then the function g(·) satisfies the Lipschitz condition.

3. Main results

The EISS of the nonlinear system (2.4) over V (H , {tr} , {τr}) is guaranteed by some criteria given
in this section. We concentrate on TAPIC and EAPIC.
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3.1. Stabilization to EISS via TAPIC

Theorem 3.1. Under the conditions of Assumption 2.1, presume that β1, β2, b1, and b2 are positive

constants and ι ≥ 1, where β2 ≥ β1, β∗ =
√
β2
β1

and the matrix P > 0 satisfies

(i) β1I ≤ P ≤ β2I,

(ii) (A +H )T P + P(A +H ) + (2l∗β∗ + b1)P ≤ 0,

(iii) A T P + PA + (2l∗β∗ − b2)P ≤ 0,

(iv)
[
−ιK K (I +D)T

⋆ −K

]
≤ 0,

(v) lnι
T ∗ − ξ̃ < 0,

where K = P−1. Then for {tr} ∈ Fc and {τr} ∈ Fw, the system (2.4) over V (H , {tr} , {τr}) is EISS,
which satisfies

b2

b1 + b2
< inf

r∈Z+0

{τr}

{Θr}
< 1. (3.1)

Proof. Assume the Lyapunov function V(z(t)) = zT (t)Pz(t). For ease of understanding, let V(z(t)) be
V(t). When t , tr, for t ∈ [tr, tr + τr), we get

D+V(t) = 2zT (t)Pż(t)
= zT (t)((A +H )T P + P(A +H ))z(t) + 2l∗zT (t)Pz(t) + 2zT (t)Pω(t), (3.2)

where l∗ = diag
{
l2
1, l

2
2, . . . , l

2
r

}
.

From Lemma 2.1, a1 > 0 exists satisfying

2zT (t)Pω(z) ≤ a1zT (t)Pz(t) + a−1
1 λM(P)|ω(t)|2. (3.3)

Combining (3.2), (3.3), and (ii), one has

D+V(t) ≤ zT (t)((A +H )T P + P(A +H ) + 2l∗β∗P + a1P)z(t) + a−1
1 λM(P)|ω(t)|2

≤ −b̃1V(t) + |ω(t)|2a−1
1 λM(P),

where b̃1 = b1 − a1. Integrating the aforementioned inequality over the interval [tr, t], let γ1 =

b̃−1
1 a−1

1 λM(P), one gets
V(t) ≤ exp(−b̃1(t − tr))V(tr) + |ω(t)|2[tr ,t]γ1. (3.4)

Similarly, for t ∈ [tr + τr, tr+1), from (iii), a2 > 0 exists, which yields

D+V(t) ≤ zT (t)(A T P + PA + 2l∗β∗P + a2P)z(t) + a−1
2 λM(P)|ω(t)|2 ≤ b̃2V(t) + |ω(t)|2a−1

2 λM(P),

where b̃2 = b2 + a2. Let γ2 = b̃−1
2 a−1

2 λM(P). Then, by integrating the inequality above, one obtains

V(t) ≤ exp(b̃2(t − tr − τr))V(tr + τr) + |ω(t)|2[tr+τr ,t]γ2. (3.5)

When t = tr, from (iv), we have

V(t) = zT (t−)(I +D)T P(I +D)Z(t−) ≤ ιV(t−). (3.6)
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From (3.4), we derive
V(tr + τr) ≤ exp(−b̃1τr)V(tr) + |ω(t)|2[tr ,t]γ1. (3.7)

Let γ = γ1 + γ2, ∆r,i = −(b̃1 + b̃2)
∑r−1

j=i τ j + b̃2(t − ti) and Pr(t) =
∑r−1

i=0 ι
N(t,ti+τi)exp(b̃1τi + ∆r,i(t)), where

r ∈ Z+, i ∈ Z+0 with r > i.
Then for t ∈ [t0, t0 + τ0) and N(t, t0) = 0, by (3.4), one gets

V(t) ≤ exp(−b̃1(t − t0))V(t0) + |ω(t)|2[t0,t]γ1 = ι
N(t,t0)exp(−b̃1(t − t0))V(t0) + |ω(t)|2[t0,t]γ1. (3.8)

For t ∈ [t0 + τ0, t1) and N(t, t0) = N(t, t0 + τ0) = 0, from (3.5) and (3.7), we have

V(t) ≤ exp(b̃2(t − t0 − τ0))V(t0 + τ0) + |ω(t)|2[t0+τ0,t]γ2

≤ exp
(
− (b̃1 + b̃2)τ0 + b̃2(t − t0)

)
V(t0) + |ω(t)|2[t0,t]

(
γ1exp(b̃2(t − t0 − τ0)) + γ2

)
≤ exp(∆1,0(t))V(t0) + |ω(t)|2[t0,t]γι

N(t,t0+τ0)exp(b̃1τ0 + ∆1,0(t))
= ιN(t,t0)exp(∆1,0(t))V(t0) + |ω(t)|2[t0,t]γP1(t). (3.9)

For t ∈ [t1, t1 + τ1) and N(t, t0) = N(t, t0 + τ0) = 1, together with (3.4), (3.6), and (3.9), it holds that

V(t) ≤ exp(−b̃1(t − t1))V(t1) + |ω(t)|2[t1,t]γ1

≤ ιexp(−b̃1(t − t1))V(t−1 ) + |ω(t)|2[t1,t]γ1

≤ ιexp
(
− b̃1(t − t1) + ∆1,0(t1)

)
V(t0) + |ω(t)|2[t1,t]γ1 + |ω(t)|2[t0,t]γexp(−b̃1(t − t1) + b̃1τ0 + ∆1,0(t1))

≤ ιN(t,t0)exp(∆1,0(t1))V(t0) + |ω(t)|2[t0,t]
(
γ1 + γι

N(t,t0+τ0)exp(b̃1τ0 + ∆1,0(t1))
)

= ιN(t,t0)exp(∆1,0(t1))V(t0) + |ω(t)|2[t0,t](γ1 + γP1(t1)).

For t ∈ [t1 + τ1, t2), N(t, t0) = 1,N(t, ti + τi) = 1 − i, and i = 0, 1, from (3.5)–(3.7), we have

V(t) ≤ exp(b̃2(t − t1 − τ1))V(t1 + τ1) + |ω(t)|2[t1+τ1,t]γ2

≤ ιexp
(
b̃2(t − t1 − τ1) − b̃1τ1 + ∆1,0(t1)

)
V(t0) + |ω(t)|2[t1,t]

(
γ1exp(b̃2(t − t1 − τ1) + γ2

)
+ |ω(t)|2[t0,t]γιexp

(
− b̃1τ1 + b̃1τ0 + ∆1,0(t1) + b̃2(t − t1 − τ1)

)
= ιexp(∆2,0(t))V(t0) + |ω(t)|2[t1,t]

(
γ1exp(b̃1τ1 + ∆2,1(t)) + γ2

)
+ |ω(t)|2[t0,t]γιexp(b̃1τ0 + ∆2,0(t))

≤ ιN(t,t0)exp(∆2,0(t))V(t0) + |ω(t)|2[t0,t]
(
γιN(t,t1+τ1)exp(b̃1τ1 + ∆2,1(t)

)
+ |ω(t)|2[t0,t]ι

N(t,t0+τ0)exp(b̃1τ0 + ∆2,0(t))
= ιN(t,t0)exp(∆2,0(t))V(t0) + |ω(t)|2[t0,t]γP2(t).

Similarly, for t ∈ [tr, tr + τr), N(t, t0) = r, N(t, ti + τi) = r − i, r ∈ Z+, i ∈ Z+0 and r > i, we have

V(t) ≤ ιN(t,t0)exp(∆r,0(t))V(t0) + |ω(t)|2[t0,t](γ1 + γPr(t)). (3.10)

For t ∈ [tr + τr, tr+1), N(t, t0) = r, and N(t, ti + τi) = r − i, we have

V(t) ≤ ιN(t,t0)exp(∆r+1,0(t))V(t0) + |ω(t)|2[t0,t]γPr+1(t). (3.11)

Then according to (3.8)–(3.11), for all t ≥ t0, r ∈ Z+ yields the following:

V(t) =


ιN(t,t0)exp(∆1,0(t))V(t0) + |ω(t)|2[t0,t]γ1P1(t), t ∈ [t0, t1),
ιN(t,t0)exp(∆r,0(t))V(t0) + |ω(t)|2[t0,t](γ1 + γPr(t)), t ∈ [tr, tr + τr),
ιN(t,t0)exp(∆r+1,0(t))V(t0) + |ω(t)|2[t0,t]γPr+1(t), t ∈ [tr + τr, tr+1).

(3.12)
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According to (3.1), it follows directly that for some ξ ∈ (0, b1), the following holds:

ξ + b2

b1 + b2
=
ξ̃ + b̃2

b̃1 + b̃2
≤
τr

Θr
< 1, ∀r ∈ Z+0 ,

where a1 = a2 = a < ξ < b1 and ξ̃ = ξ − a.
From the definition of ∆r,i, it can be asserted that for all t ∈ [tr, tr + τr),

∆r,i ≤ (ξ̃ + b̃2)
(
t − ti −

r−1∑
j=i

Θ j

)
− ξ̃(t − ti) ≤ (ξ̃ + b̃2)(t − tr) − ξ̃(t − ti) ≤ (ξ̃ + b̃2)τr − ξ̃(t − ti).

Then from (2.5), it is possible to obtain the following for all t ∈ [tr, tr + τr):

ιN(t,t0)exp(∆r,0(t)) ≤ ιN0exp((ξ̃ + b̃2)τmax)exp
(
(
lnι
T ∗
− ξ̃)(t − t0)

)
,

and

Pr(t) ≤ ιN0

r−1∑
i=0

exp
( lnι
T ∗

(t − ti − τi)
)
exp
(
b̃1τi − (ξ̃ + b̃2)

r−1∑
j=i

Θ j + b̃2(t − ti)
)

≤ ιN0

r−1∑
i=0

exp
(
(b̃1 + b̃2)τmax + (

lnι
T ∗
− ξ̃)(r − i)τmin

)
≤ ιN0exp((b̃1 + b̃2)τmax)

(
1 − exp((

lnι
T ∗
− ξ̃)τmin)

)−1
.

Let φ = ιN0exp((b̃1 + b̃2)τmax)(1 − exp(( lnι
T ∗ − ξ̃)τmin))−1, then maxr∈Z+0

(Pr(t)) ≤ φ.
For all t ≥ t0, review (3.12)

V(t) ≤ ιN(t,t0)exp(∆r,0(t))V(z0) + |ω(t)|2[t0,t]γ(1 + Pr(t))

≤ α1exp
(
(
lnι
T ∗
− ξ̃)(t − t0)

)
V(z0) + |ω(t)|2[t0,t]α2,

where α1 = ι
N0exp((ξ̃ + b̃2)τmax), α2 = γ(1 + φ). By (i), let β∗ =

√
β2
β1

, then we can also obtain

|z(t)| ≤ α
1
2
1 β
∗exp
(1
2

(
lnι
T ∗
− ξ̃)(t − t0)

)
|z0| + |ω(t)|2[t0,t]α

1
2
2 . (3.13)

By combining (3.13) with (v), it can be obtained that the system (2.4) is EISS, that is, the system (2.1)
can be stabilized to EISS over V (H , {tr} , {τr}) under TAPIC and impulse disturbance. □

Remark 3.1. Condition (ii) indicates that when the control input u(t) = H z(t), the system (2.1) can
be stabilized to EISS. In other words, the state does not grow indefinitely due to external disturbance
ω(t). Condition (iii) shows that when the control input u(t) = 0, the system (2.1) may be non-EISS; that
is, in the absence of a control input, the system state z(t) may diverge due to the external disturbance
ω(t).
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Remark 3.2. If we rewrite (2.2) as

u(t) =

H z(t), t ∈ [rJ, rJ + τ),
0, t ∈ [rJ + τ, (r + 1)J),

(3.14)

then, APIC becomes PIC so that (2.1) stabilizes with ω = 0. This is a special instance of (2.2), where
the active interval is implied by 0 < τ < J and the control period is represented by J > 0. As can be
seen, J and τ are fixed and (3.14) is time-triggered. Moreover, the stabilization can be proved under
PIC (3.14) in an approach analogous to that of Theorem 3.1.

Remark 3.3. Notably, inequalities (3.4) and (3.5) are guaranteed to hold by conditions (ii) and (iii),
which govern continuous dynamics. Here, b̃1and b̃2 are introduced to describe the decay and growth
rates during the active and inactive control intervals, respectively. A larger b1 accelerates stabilization
during active intervals, while a smaller b2 mitigates divergence during inactive intervals. Their ratio

b2
b1+b2

directly influences the lower bound of the control width. The impulse coefficient ι quantifies the
impact of the impulse disturbance at {tr}, where a smaller ι indicates a weaker disturbance effect.
According to condition (v), ξ̃ is proportional to lnι. Moreover, the reduction in the control interval
Θr = tr+1 − tr leads to the rise in the control frequency. If we assume that b̃2, ξ̃ are fixed, two scenarios
should be considered when choosing a smaller τr in light of the inequality (3.1) as follows.
(1) If Θr remains constant, then b̃1 grows. This implies that for the given impulse intensity, achieving
EISS requires a stronger control intensity when the control frequency is fixed.
(2) If b̃1 remains constant, Θr decreases. In this case, when the control intensity is fixed, a greater
control frequency is required to provide EISS for the given impulse intensity.

It should also be emphasized that the specified series of starting moments {tr} serves as the basis
for the creation of the control width sequence {τr} in Theorem 3.1. Both sequences are designed
in accordance with the APIC strategy, and thus Theorem 3.2 provides a means of determining the
activation of the control action for a given sequence of control width. The proof of Theorem 3.2 is not
included here, since it is equivalent to that of Theorem 3.1.

Theorem 3.2. Let conditions (i)–(v) of Theorem 3.1 hold. Then for a given {τr} ∈ Fw, the system (2.4)
is EISS over V (K , {tr} , {τr}), where {tr} ∈ Fc satisfies (3.1).

Theorems 3.1 and 3.2 have established the validity of the general APIC mechanism, and two
corollaries are presented below to address specific situations of this mechanism. Specifying (3.1)
for these situations is essentially adequate, and the corresponding stabilization results can be obtained
using a similar approach. For the sake of conciseness, the following proofs are left out.

Corollary 3.1. When the hypotheses of Theorem 3.1 are satisfied, if tr = rJ, τr = τ and

b2

b1 + b2
J < τ < J,

then the system (2.4) is EISS over V (H , {rJ} , τ).

Corollary 3.2. When the hypotheses of Theorem 3.2 are satisfied, if τr = τ and

b2

b1 + b2
Θr < τ < Θr,∀r ∈ Z+0 ,

then the system (2.4) is EISS over V (H , {tr} , τ).
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Remark 3.4. Under the same presumptions, Theorem 3.2 can be regarded as a complementary
expression for Theorem 3.1. In the APIC mechanism V (H , {tr} , {τr}), the control gain H , the
control start time {tr}, and the control width {τr} are considered as the design parameters, where H is
determined by the sufficient condition based on the linear matrix inequalities (LMI). The link between
the control width τr and the control period Θr should be taken into consideration when designing
APIC strategy, since Θr depends on two consecutive control start times. Consequently, to handle these
two parameters, this paper adopts the approach of setting one parameter and constructing another.
Specifically, in Theorem 3.1, {tr} is given in advance and {τr} is treated as the design parameter.
Conversely, in Theorem 3.2, {τr} is given and {tr} is treated as a design parameter.

3.2. Stabilization to EISS via EAPIC

In this section, we propose EAPIC for stabilization to EISS. Unlike TAPIC, EAPIC is state-
dependent and can lessen the conservatism of TAPIC. The following ETM is defined:

tr+1 =

in f {t : t ∈ Φr(tr + τr, tr + ϵ]}, i f Φr(tr + τr, tr + ϵ] , ∅,
tr + ϵ, i f Φr(tr + τr, tr + ϵ] = ∅,

(3.15)

where Φr(η, t] = {t : t > η+ τr,V(z(t)) ≥ eσV(z(η+ τr))+ |ω(t)|2[η+τr ,t]γ
∗}, τr > 0 , σ > 0, eσ is threshold-

value, ϵ is a relatively large positive constant that represents the check-period, and γ∗ ≥ max(γ1, γ2).
A simple structure of EAPIC is shown in Figure 1. The EAPIC framework containing an impulse
disturbance is shown in Figure 2.

Figure 1. Structure of EAPIC.

Figure 2. Framework of EAPIC.
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Theorem 3.3. Under assumptions (i)–(iv) specified in Theorem 3.1, positive constants b̃1, b̃2 exist
that satisfy

σ

b̃1
< τmin ≤ τr ≤ ϵ −

σ

b̃2
, (3.16)

as in Theorem 3.1, 0 < a = a1 = a2 < b1, b̃1 = b1 − a, and b̃2 = b2 + a. Consequently, the Zeno
phenomenon is excluded and EISS is achieved for the system (2.4) via the ETM (3.15).

Proof. For ease of understanding, let V(z(t)) be V(t).
As in Theorem 3.1, t = tr, we get

V(z(t)) = zT (t−)(I +DT )P(I +D)Z(t−) ≤ ιV(z(t−)). (3.17)

For t , tr, one obtainsV(t) ≤ exp(−b̃1(t − tr))V(tr) + |ω(t)|2[tr ,t]γ1, t ∈ [tr, tr + τr),
V(t) ≤ exp(b̃2(t − tr − τr))V(tr + τr) + |ω(t)|2[tr+τr ,t]γ2, t ∈ [tr + τr, tr+1),

(3.18)

and
V(tr+1) ≤ exp(b̃2(tr+1 − tr − τr))V(tr + τr) + |ω(t)|2[tr+τr ,tr+1]γ2. (3.19)

If Φr(tr + τr, tr + ϵ] , ∅, then tr+1 − tr ≤ ϵ, until the event generator function is greater than zero, the
next event will not be triggered, that is

V(tr+1) = eσV(tr + τr) + |ω(t)|2[tr+τr ,tr+1]γ
∗. (3.20)

In accordance with (3.19) and (3.20), we get

σ

b̃2
≤ tr+1 − tr − τr ≤ ϵ − τmin,∀r ∈ Z+0 . (3.21)

If Φr(tr + τr, tr + ϵ] = ∅, then tr+1 − tr = ϵ, and (3.21) still holds.
Since σb̃2

> 0, according to (3.16) and (3.21),

0 < (
1
b̃1
+

1
b̃2

)σ ≤ tr+1 − tr ≤ ϵ. (3.22)

By combining (3.21) and (3.22), it is known that Zeno behavior is avoided.
For ∀t ∈ [tr, tr + τr), by (3.18), we get

V(tr + τr) ≤ exp(−b̃1τr)V(tr) + |ω(t)|2[tr ,tr+τr]γ1. (3.23)

From (3.15), (3.18), and (3.23), we have, for ∀r ∈ Z+0 ,

V(t) ≤ eσV(tr + τr) + |ω(t)|2[tr+τr ,t]γ
∗, t ∈ [tr + τr, tr+1). (3.24)

V(t) ≤ eσV(tr) + |ω(t)|2[tr ,t]γ
∗, t ∈ [tr, tr+1). (3.25)

From (3.23)–(3.25), we get

V(tr+1) ≤ exp(σ − b̃1τr)V(tr) + eσ|ω(t)|2[tr ,tr+τr]γ1 + |ω(t)|2[tr+τr ,tr+1]γ
∗
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≤ exp(σ − b̃1τr)V(tr) + (eσγ1 + γ
∗)|ω(t)|2[tr ,tr+1], ∀r ∈ Z+0 . (3.26)

For t ∈ [t0, t1), by (3.25), we have

V(t) ≤ eσV(t0) + |ω(t)|2[t0,t]γ
∗. (3.27)

For t ∈ [tr, tr+1) and r ∈ Z+, let qr = σ − b̃1τr, γ̄ = eσγ1 + γ
∗; then, by combining (3.16), (3.17),

and (3.26), one has

V(tr) ≤ ιV(t−r )
≤ ιexp(qr−1)V(tr−1) + ι|ω(t)|2[tr−1,tr]γ̄

≤ ι2exp(qr−1 + qr−2)V(tr−2) + ι2exp(qr−1)|ω(t)|2[tr−2,tr−1]γ̄ + ι|ω(t)|2[tr−1,tr]γ̄

≤ ι3exp(qr−1 + qr−2 + qr−3)V(tr−3) + ι3exp(qr−1 + qr−2)|ω(t)|2[tr−3,tr−2]γ̄

+ ι2exp(qr−1)|ω(t)|2[tr−2,tr−1]γ̄ + ι|ω(t)|2[tr−1,tr]γ̄

...

≤ ιrexp(
r−1∑
i=0

qi)V(t0) + ιr
( r−1∑

i=1

exp(
r−1∑
j=i

q j) + 1
)
|ω(t)|2[t0,tr]γ̄,

where q = b̃1τmin − σ > 0 and γ̃ = γ̄(1 − e−q)−1, and thus one gets

V(tr) ≤ ιrexp(−rq)V(z0) + ιr|ω(t)|2[t0,tr]γ̃. (3.28)

For t ≥ t0, together with (3.22), (3.24), (3.25), (3.27), and (3.28), we have

V(t) ≤ eσV(tr) + (γ∗ + γ̃)|ω(t)|2[t0,t]

≤ ιrexp(σ + q)exp
(−q
ϵ

(t − t0)
)
V(z0) +

(
γ∗ + (ιreσ + 1)γ̃

)
|ω(t)|2[t0,t]. (3.29)

By (3.29), as in Theorem 3.1, let β∗ =
√
β2
β1

, which yields

|z(t)| ≤ ι
r
2β∗exp

(σ + q
2

)
exp
(−q(t − t0)

2ϵ

)
|z0| +

(
γ∗ + (ιreσ + 1)γ̃

) 1
2 |ω(t)|[t0,t].

Therefore, it can be seen that the system (2.4) is EISS; that is, system (2.1) can be stabilized to EISS
over V (H , {tr} , {τr}) under ETM (3.15) and impulse disturbance. □

Remark 3.5. In ETM (3.15), when the event condition is not satisfied, meaning the event generator
function does not exceed the preset threshold, the controller continues to operate for a certain duration,
known as the check-period ϵ. Without this check-period, the controller would stop controlling the
system once the event-triggering condition is not met, which could result in a loss of control. By
introducing the check-period ϵ, the controller ensures that control inputs are applied at the end of the
check-period. This mechanism ensures that the system achieves EISS, even when the system’s state
does not reach the predefined threshold throughout the entire check-period.

AIMS Mathematics Volume 10, Issue 5, 10787–10805.



10799

Remark 3.6. The performance of the EAPIC strategy is highly sensitive to several key parameters, such
as the triggering threshold eσ, the control width τr, the check-period ϵ, and the disturbance-related
gain γ∗. A larger σ leads to fewer control updates, but may slow down the system’s convergence.
Conversely, a smaller σ results in more frequent control actions, enhancing the response speed at
the cost of higher resource consumption. The parameter ϵ serves as an upper bound on the inter-
event time. Choosing a larger ϵ helps reduce the triggering rate but requires careful balancing with
σ to avoid performance degradation. The lower bound on τr, as given in Theorem 3.3, ensures the
exclusion of Zeno behavior while directly affecting how quickly the system reacts to impulses. The
choice of γ∗ ≥ max(γ1, γ2) provides robustness against external disturbances. While increasing γ∗

improves disturbance tolerance, it may make the triggering condition more conservative.

4. Example

In this section, Chua’s oscillator is used as an example to examine the validity of the conclusions
produced, taking both TAPIC and EAPIC into account.
Example 4.1. Consider the following underlying system:

ż = A z + g(z) + u + ω, (4.1)

where

A =


−α(1 + b) α 0

1 −1 1
0 −β 0

 , g(z) =


g(z)

0
0

 ,
where g(z) = −α2 (a − b) (|z1 + 1| − |z1 − 1|), and a, b, α, β are parameters. As in [37], we choose
α = 9.215, β = 15.9946, a = −1.2495, and b = −0.75735. When z(0) = (4, 1, 3)T , u = ω = 0. Figure 3
shows the trajectory of z1, z2, z3. It is evident that (4.1) is an unstable system.
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Figure 3. State trajectories of the system (4.1).

If we assume z(t) = (z1, z2, z3)T , then by considering APIC, impulse disturbance, and continuous
external inputs, then we can rewrite the system (4.1) asż = A z + g(z) + u + ω, t ≥ 0, t , tr, r ∈ Z+,

z(tr) = (I +D)z(t−r ), t = tr,
(4.2)
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where

u(t) =

H z(t), t ∈ [tr, tr + τr),
0, t ∈ [tr + τr, tr+1).

Now, we design TAPIC and EAPIC. Firstly, think about the system (4.2) with P = I and D =

diag {0.3, 0.1, 0.2}. By combining the conditions (i)–(v) and using the LMI toolbox, one gets b1 =

6.2490, b2 = 9.07097, and H = −7.66I. In the following, in order to facilitate the later comparison
between TAPIC and EAPIC, the same data are used for the simulation. We use the same control width
τr = 1.5 and the same continuous external disturbance ω(t) = (3sin(t), 3cos(t), and 3rand(1))T .

Case 1. Stabilization to EISS via TAPIC: According to Theorem 3.2, for TAPIC with (H =

−7.66I, {tr}, and {τr = 1.5}), if {tr} is chosen to meet tr+1 ∈ (tr + 1.5, tr + 1.5 + 1.0334), then (4.2)
is stabilized to EISS by the TAPIC. In the simulation, tr+1 = tr + 2 + 0.5333rand(1). Figure 4 shows
the trajectories of z(t), and Figure 5 illustrates the intermittent control u(t).
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Figure 4. Stabilization to EISS of (4.2) by TAPIC, where + stands for the moment of
impulse.
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Figure 5. Intermittent control input of (4.2) under TAPIC.
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Case 2. Stabilization to EISS via EAPIC: For EAPIC (3.15) and (3.16), we set γ∗ = 5 ≥
max(γ1, γ2) = max(0.1905, 0.0993) = 0.1905, eσ = 100, ϵ = 10, and {tr} is determined by

tr+1 =

in f {t : t ∈ Φr(tr + 1.5, tr + 10]}, i f Φr(tr + 1.5, tr + 10] , ∅,
tr + 10, i f Φr(tr + 1.5, tr + 10] = ∅,

where Φr(η, t] = {t : t > η + 1.5,V(z(t)) ≥ 100V(z(η + 1.5)) + 5|ω(t)|2[η+1.5,t]}, and V(z(t)) = zT (t)Pz(t).
From Theorem 3.3, (4.2) is stabilized to EISS by the EAPIC. Figures 6 and 7 show the state trajectories
of z(t) and the intermittent control inputs of u(t), respectively. Figure 8 shows the event-triggered
intervals of the system (4.2).
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Figure 6. Stabilization to EISS of (4.2) by EAPIC, where + stands for the moment of
impulse.
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Figure 7. Intermittent control input of (4.2) under EAPIC.
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Figure 8. Event-triggered intervals of (4.2).

Remark 4.1. In the example of Chua’s oscillator, we have used the same control gain matrix H , the
same parameters, the same length of the active interval, and the same initial value, except for the
different impulse instant tr. With both control schemes, TAPIC and EAPIC, it is clear that at the same
time, under EAPIC, the trigger frequency is lower, which is more resource-saving and less costly to
control. This indicates that EAPIC outperforms TAPIC in terms of efficiency.

5. Conclusions

This study investigates the EISS of nonlinear systems under impulsive disturbance and
external inputs by means of APIC strategies, including TAPIC and EAPIC strategies. Compared with
PIC [20–22], which requires fixed control intervals, the proposed APIC framework provides enhanced
flexibility through its adaptive control mechanism, while EAPIC further reduces resource consumption
compared with conventional EC [30–33] by synergistically combining intermittent execution with
state-dependent triggering. Unlike the existing impulsive stabilization methods [17], our approach
explicitly addresses hybrid disturbances (both impulsive and continuous inputs) and establishes
tractable LMI-based conditions for EISS. Numerical simulations of Chua’s oscillator demonstrate the
superiority of EAPIC over TAPIC. Future work could extend this framework to stochastic systems. In
addition, EISS for nonlinear impulsive systems can be studied via the EAPIC framework.
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