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1. Introduction

As an analogue of almost contact metric Riemannian manifolds, Sato introduced the notion of
almost paracontact Riemannian manifolds in 1976 [1]. Afterwards, Sasaki defined almost paracontact
manifolds of type (p, q), where p and q are the multiplicities of the eigenvalues 1 and −1 of the
endomorphism φ. In the literature, these manifolds are called almost paracontact paracomplex
Riemannian manifolds for the special case where

p = q = n.

Classifications of almost paracontact paracomplex Riemannian manifolds and Riemannian almost
product manifolds are made by using the covariant derivative of their fundamental forms, see [2, 3],
respectively. In this work, after presenting the necessary preliminary information, we obtain an almost
product structure P̃ with a trace zero on the product of an almost paracontact paracomplex
Riemannian manifold with R, thereby using a method similar to that in [4] using a warped product.
Then, we define a Riemannian metric on the product manifold, which is compatible with the almost
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product structure. Thus, the product manifold is a Riemannian almost product manifold of a special
type. We write the covariant derivative of the Riemannian metric and the almost product structure of
product manifold in terms of the covariant derivative of the metric of the almost paracontact
paracomplex Riemannian manifold. We investigate the curvature properties of the product manifold
and state relations between some classes of almost paracontact paracomplex Riemannian manifolds
and Riemannian almost product manifolds. In addition, the almost product manifold obtained by the
warped product is integrable if and only if the almost paracontact paracomplex Riemannian manifold
is normal.

2. Preliminaries

An odd dimensional differentiable manifold M2n+1 has an almost paracontact structure (φ, ξ, η) if it
admits an endomorphism φ of the tangent bundle, a vector field ξ and its dual 1-form η such that

φ2(X) = X − η(X)ξ, η(ξ) = 1 (2.1)

hold for an arbitrary vector field X. A differentiable manifold with an almost paracontact structure is
called an almost paracontact manifold [1]. Equation (2.1) implies the following:

η(φ(X)) = 0, φ(ξ) = 0,

for all vector fields X.
Almost paracontact manifolds of type (p, q) are introduced in [5]. Denote the multiplicity of the

eigenvalues 1 and −1 of φ by p and q, respectively. In addition, the endomorphism φ has a simple
eigenvalue 0; thus,

trφ = p − q,

where trφ is the trace of φ.
If (M, φ, ξ, η) is an almost paracontact manifold with

trφ = p − q,

then this manifold is called an almost paracontact manifold of type (p, q). If

p = q,

that is, if
trφ = 0,

then M is called an almost paracontact paracomplex manifold.
An almost paracontact paracomplex manifold endowed with a Riemannian metric g such that

g(φ(X), φ(Y)) = g(X,Y) − η(X)η(Y) (2.2)

for all vector fields X,Y is called an almost paracontact paracomplex Riemannian manifold [4, 6].
Equations (2.1) and (2.2) yield the following:

η(X) = g(ξ, X), g(φ(X),Y) = g(X, φ(Y)).
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for all vector fields X,Y .
Note that almost paracontact paracomplex Riemannian manifolds are called almost paracontact

Riemannian maniolds of type (n, n) in [2] and almost paracontact almost paracomplex Riemannian
manifolds in [6]. We use the terminology in [4].

Let ∇ be the Levi-Civita connection of the Riemannian metric g. For all vector fields X,Y,Z on M,
the structure tensor α of type (0, 3) is defined as following:

α(X,Y,Z) = g ((∇Xφ) (Y),Z) ,

which has following properties:

α(X,Y,Z) = α(X,Z,Y),
α(X, φ(Y), φ(Z)) = −α(X,Y,Z) + η(Y)α(X, ξ,Z) + η(Z)α(X,Y, ξ).

The following 1-forms are associated to the structure tensor α:

θ(X) = gi jα(Ei, E j, X), θ∗(X) = gi jα(Ei, φ(E j), X), ω(X) = α(ξ, ξ, X),

where {E1, · · · E2n, ξ} is a local frame, X is a vector field, and (gi j) is the inverse matrix of (gi j).
The space F of covariant derivatives of the endomorphism φ given by

F =
{
α ∈ ⊕0

3M : α(X,Y,Z) = α(X,Z,Y),

α(X, φ(Y), φ(Z)) = −α(X,Y,Z) + η(Y)α(X, ξ,Z) + η(Z)α(X,Y, ξ)}

decomposes into eleven subspaces
F = F1 ⊕ · · · ⊕ F11,

which are orthogonal and invariant under the action of the structure group O(n) ×O(n) × I where O(n)
is the group of orthogonal matrices of size n, and I is the unit matrix of size one [2, 6]. The defining
relations of basic classes Fi and projections F i onto each subspace Fi is given in [2, 6]. An almost
paracontact paracomplex Riemannian manifold is said to either be in the class Fi or a direct sum of
some classes, if the structure tensor α is in Fi or in a direct sum of some classes,respectively.

Riemannian almost product manifolds are introduced in [1]. If a differentiable manifold L has a
tensor field P (almost product structure) and a Riemannian metric h satisfies the conditions

• P2(X) = X,
• h(P(X), P(Y)) = h(X,Y),

for all vector fields X,Y on L, then L is called a Riemannian almost product manifold. In this study, we
consider Riemannian almost product manifolds with

trP = 0

classified by [3]. In this case, L is even dimensional and the structure group of the tangent bundle
reduces to the group O(n) × O(n). Note that

h(P(X),Y) = h(X, P(Y)).

AIMS Mathematics Volume 10, Issue 5, 10764–10786.



10767

The structure tensor F of type (0, 3) on L is defined as follows:

F(X,Y,Z) = h ((∇XP) (Y),Z) .

The tensor F has the following properties:

F(X,Y,Z) = F(X,Z,Y) = −F(X, P(Y), P(Z)),
F (X,Y, P(Z)) = −F(X, P(Y),Z).

In addition, for any vector field X on L, the 1-form θ̃ associated with F is defined as follows:

θ̃(X) = hi jF(Ei, E j, X),

where {E1, E2, · · · E2n} is a local frame field on L, and (hi j) is the inverse matrix of (hi j).
Then, the subspace W of ⊗0

3L is defined as follows:

W :=
{
F ∈ ⊗0

3L |F(X,Y,Z) = F(X,Z,Y) = −F(X, P(Y), P(Z)) F(X,Y, P(Z)) = −F(X, P(Y),Z)} .

According to the symmetries of W, this space splits into the direct sum W = W1 ⊕ W2 ⊕ W3. The
subspaces Wi are invariant and irreducible under the group O(n) × O(n). The defining relations for
invariant subspaces are as follows:

(1) Riemannian P-manifolds:
F(X,Y,Z) = 0.

(2) Class W1:

F(X,Y,Z) =
1
2n

{
h(X,Y)θ̃(Z) + h(X,Z)θ̃(Y) (2.3)

−h(X, P(Y))θ̃(P(Z)) − h(X, P(Z))θ̃(P(Y))
}
.

(3) Class W2:
F(X,Y, P(Z)) + F(Y,Z, P(X)) + F(Z, X, P(Y)) = 0 (2.4)

and
θ̃ = 0,

or equivalently,
[P, P] = 0 and θ̃ = 0.

(4) Class W3:
F(X,Y,Z) + F(Y,Z, X) + F(Z, X,Y) = 0. (2.5)

(5) Class W1 ⊕W2 (The class of integrable Riemannian almost product manifolds with trP = 0):

F(X,Y, P(Z)) + F(Y,Z, P(X)) + F(Z, X, P(Y)) = 0,

or equivalently,
[P, P] = 0.
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(6) Class W2 ⊕W3:
θ̃ = 0.

(7) Class W1 ⊕W3:

F(X,Y,Z) + F(Y,Z, X) + F(Z, X,Y) =
1
n

{
h(X,Y)θ̃(Z) + h(X,Z)θ̃(Y)

+ h(Y,Z)θ̃(X) − h(X, P(Y))θ̃(P(Z))

− h(X, P(Z))θ̃(P(Y)) −h(Y, P(Z))θ̃(P(X))
}
.

(8) Class W1 ⊕W2 ⊕W3: no condition.

Note that [P, P] denotes the Nijenhuis tensor of the almost paracomplex structure P and is defined by
the following:

[P, P](X,Y) = [PX, PY] + [X,Y] − P[PX,Y] − P[X, PY] (2.6)

for all vector fields X, Y on L, see [3].
It is well known that if (M, φ, ξ, η) is an almost paracontact paracomplex Riemannian manifold, then

M × R is canonically an almost product manifold with the following almost paracomplex structure:

P(X, a
d
dt

) =
(
φ(X) +

a
t
ξ, tη(X)

d
dt

)
, (2.7)

where a is a function on M ×R, and t is the coordinate on R, see [1,6]. P has the following properties:

P2 = I

and
trP = 0.

An almost paracontact paracomplex Riemannian manifold (M, φ, ξ, η) is called normal if the
corresponding almost product structure (2.7) on the even dimensional product manifold M × R is
integrable. i.e., the Nijenhuis tensor [P, P] of the almost product structure P is identically zero.
Additionally, it is known that the vanishing of [P, P] is equivalent to the vanishing of the Nijenhuis
tensor N of the structure (φ, ξ, η), where

N = [φ, φ] − dη ⊗ ξ (2.8)

and the Nijenhuis torsion [φ, φ] of φ is given by

[φ, φ](X,Y) = [φX, φY] + φ2[X,Y] − φ[φX,Y] − φ[X, φY] (2.9)

and
dη(X,Y) = −α(X, φY, ξ) + α(Y, φX, ξ);

refer to [6]. In addition, if N = 0, then the following tensors are also zero [1]:

N(2)(X,Y) =
(
Lφ(X)η

)
(Y) −

(
Lφ(Y)η

)
(X) = 0, (2.10)
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N(3)(X) =
(
Lξφ

)
(X) = 0, (2.11)

N(4)(X) =
(
Lξη

)
(X) = 0. (2.12)

The [6, Theorem 5.1] states that an almost paracontact paracomplex Riemannian manifold is normal
if and only if the manifold is in F1 ⊕F2 ⊕F4 ⊕F5 ⊕F6 [7]; the relations of these subspaces are defined
as follows:

F1 : α(X,Y,Z) =
1

2n

{
g(φ(X), φ(Y))θ(φ2(Z)) + g(φ(X), φ(Z))θ(φ2(Y))

−g(X, φ(Y))θ(φ(Z)) − g(X, φ(Z))θ(φ(Y))} , (2.13)
F2 : α(ξ,Y,Z) = α(X, ξ,Z) = 0, θ = 0, (2.14)
α(X,Y, φ(Z)) + α(Y,Z, φ(X)) + α(Z, X, φ(Y)) = 0,

F4 : α(X,Y,Z) =
θ(ξ)
2n
{g(φ(X), φ(Y))η(Z) + g(φ(X), φ(Z))η(Y)} , (2.15)

F5 : α(X,Y,Z) =
θ∗(ξ)
2n
{g(X, φ(Y))η(Z) + g(X, φ(Z))η(Y)} (2.16)

and

F6 : α(X,Y,Z) = α(Z, X, ξ)η(Y) + α(Y, X, ξ)η(Z) − 2η(Y)η(Z)α(ξ, ξ, X)
= η(Y)α(φ(X), ξ, φ(Z)) + η(Z)α(φ(X), ξ, φ(Y)),

θ(ξ) = θ∗(ξ) = 0,

or equivalently,

α(X,Y,Z) = α(X,Y, ξ)η(Z) + α(X,Z, ξ)η(Y),
α(X,Y, ξ) = α(Y, X, ξ) = α(φ(X), φ(Y), ξ),

θ = θ∗ = 0.

In Example 3.9, we show that [6, Theorem 5.1] is not an if and only if statement. If the structure
belongs to F1 ⊕ F2 ⊕ F4 ⊕ F5 ⊕ F6, then it is normal. By Example 3.9, there exist structures which are
normal but do not belong to F1 ⊕ F2 ⊕ F4 ⊕ F5 ⊕ F6.

3. Almost product manifolds from almost paracontact paracomplex Riemannian manifolds

In this section, we first define an almost paracomplex (almost product) structure P̃ on the product
of an almost paracontact paracomplex Riemannian manifold with R by a warped product. Note that
P̃ is different than the canonical almost product structure P in (2.7). The structure (2.7) depends on t,
where t is the coordinate of R. The new almost product structure P̃ depends on any function σ of t.
Then, we write a Riemannian metric on the product manifold depending on a function σ, where

σ : R→ R

is an arbitrary function on R; in this way, we obtain an almost product Riemannian manifold whose
structure tensor P̃ has a trace zero and we give the relations between the covariant derivatives.
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Additionally, we investigate the curvature properties of M × R. Then, we consider the normal almost
paracontact paracomplex Riemannian manifolds and we show that a paracontact paracomplex
Riemannian manifold is normal if and only if the almost product Riemannian manifold defined by our
warped product is integrable.

Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional almost paracontact paracomplex Riemannian manifold
and consider the product manifold M ×R. A vector field on the manifold M ×R is of the form

(
X, a d

dt

)
,

where t is the coordinate of R, and a is a smooth function on M×R. The almost paracomplex structure
P̃ on M × R is defined by the following:

P̃
(
X, a

d
dt

)
=

(
φ(X) + ae−σξ, eση(X)

d
dt

)
, (3.1)

where σ is any function of t. One can easily see that

P̃2 = I.

In addition, we define a Riemannian metric h on M × R by the following:

h
((

X, a
d
dt

)
,

(
Y, b

d
dt

))
:= e2σg(X,Y) + ab.

Then we have

h
(
P̃

(
X, a

d
dt

)
, P̃

(
Y, b

d
dt

))
= h

((
X, a

d
dt

)
,

(
Y, b

d
dt

))
and

trP̃ = 0.

Hence, (M × R, P̃, h) is an almost product Riemannian manifold with

trP̃ = 0.

Let ∇ denote the Levi-Civita covariant derivatives of both Riemannian metrics g on M and h on
M × R. The Levi-Civita covariant derivative of the metric h on M × R is obtained by using the Koszul
formula as follows:

∇(X,a d
dt )

(
Y, b

d
dt

)
=

(
∇XY +

dσ
dt

(aY + bX),
{

X[b] + a
db
dt
− e2σdσ

dt
g(X,Y)

}
d
dt

)
.

Additionally, the covariant derivative of the almost product structure P̃ is calculated as follows:(
∇(X,a d

dt )P̃
) (

Y, b d
dt

)
=

(
(∇Xφ) (Y) + be−σ∇Xξ − b dσ

dt φ(X) + eσ dσ
dt (η(Y)X + g(X,Y)ξ) a{

eσ (∇Xη) (Y) − e2σ dσ
dt g(X, φ(Y)) − 2beσ dσ

dt η(X)
}

d
dt

)
,

for any vector fields
(
X, a d

dt

)
,
(
Y, b d

dt

)
, and

(
Z, c d

dt

)
on M × R. Unless otherwise stated, throughout the

paper, we will use the notation X̃, Ỹ , Z̃, ... for the vector fields

(X, a
d
dt

), (Y, b
d
dt

), (Z, c
d
dt

), ...
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on the product manifold, respectively. It follows that

F
(
X̃, Ỹ , Z̃

)
= h

((
∇X̃ P̃

)
(Ỹ), Z̃

)
= e2σα(X,Y,Z) − 2bceσ

dσ
dt
η(X) + eσ {bg (∇Xξ,Z) + cg (∇Xξ,Y)}

+ e3σdσ
dt
{η(Y)g(X,Z) + η(Z)g(X,Y)} − e2σdσ

dt
{bg(X, φ(Z)) + cg(X, φ(Y)} . (3.2)

By choosing

X̃ = (ξ, 0), Ỹ = Z̃ =
(
0,

d
dt

)
,

we obtain
F(X̃, Ỹ , Z̃) = −2eσ

dσ
dt
, 0.

Therefore, the almost product Riemannian structure obtained is nontrivial for any non-constant
function σ.

Since

∇(X,a d
dt )(ξ, 0) =

(
∇Xξ +

dσ
dt

aξ,−e2σdσ
dt
η(X)

d
dt

)
,

if ξ is parallel, then (ξ, 0) is not parallel for any non-constant function σ. In addition, if ξ is Killing,
then (ξ, 0) is also Killing:

h
(
∇(X,a d

dt )(ξ, 0), (Y, b
d
dt

)
)
= e2σg(∇Xξ,Y) + ae2σdσ

dt
η(Y) − be2σdσ

dt
η(Y)

= −h
(
∇(Y,b d

dt )(ξ, 0), (X, a
d
dt

)
)
.

Moreover, note that

h
(
∇(X,a d

dt )

(
0,

d
dt

)
,

(
Y, b

d
dt

))
= e2σdσ

dt
g(X,Y)

= g
(
∇(Y,b d

dt )

(
0,

d
dt

)
,

(
X, a

d
dt

))
.

Let {e1, · · · , e2n, ξ} be a local orthonormal frame field on M. Then, one can obtain an orthonormal
frame field on M × R as follows:{(

e−σe1, 0
)
, · · · ,

(
e−σe2n, 0

)
,
(
e−σξ, 0

)
,

(
0,

d
dt

)}
.

Using this frame, the 1-form θ̃, associated with F is as follows:

θ̃(X, a
d
dt

) = θ(X) − ae−σθ∗(ξ) + ω(X) + 2(n + 1)eσ
dσ
dt
η(X). (3.3)

In addition, we write the curvature tensor R̃ on the product manifold M × R in terms of the curvature
tensor R on M as follows:

R̃(X̃, Ỹ)Z̃ =
R(X,Y)Z + c

(dσ
dt

)2

+
d2σ

dt2

 (aY − bX)
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− e2σ
(
dσ
dt

)2

(g(Y,Z)X − g(X,Z)Y) , e2σ

(dσ
dt

)2

+
d2σ

dt2

 g(bX − aY,Z)
d
dt

 .
Then, the Ricci curvature can be calculated as follows:

Q̃(X̃, Ỹ) = Q(X,Y) − ab(2n + 1)
(dσ

dt

)2

+
d2σ

dt2


− e2σ

(
dσ
dt

)2

(2n + 1)g(X,Y) − e2σd2σ

dt2 g(X,Y).

In addition, we can evaluate the scalar curvature as follows:

s̃ = e−2σs − (2n + 1)(2n + 2)
(
dσ
dt

)2

− 2(2n + 1)
d2σ

dt2 . (3.4)

Let M be an almost paracontact paracomplex Riemannian manifold with a zero scalar curvature. Then,
we can construct an almost product Riemannian manifold with a scalar curvature as follows:

s̃ = k > 0,

where k is a positive real number, with the appropriate choice of the function σ. For s = 0, the Eq (3.4)
becomes the following:

k = −(2n + 1)(2n + 2)
(
dσ
dt

)2

− 2(2n + 1)
d2σ

dt2 . (3.5)

The solution of the differential Eq (3.5) is as follows:

σ(t) =
1

n + 1
ln

cos
 √k
√

2

 √n + 1
√

2n + 1
t − 2

√
(2n + 1)(n + 1)c1

 + c2,

where c1, c2 ∈ R. For example, if k and c1 are chosen so that

−
π

2
<

√
k
√

2

 √n + 1
√

2n + 1
t − 2

√
(2n + 1)(n + 1)c1

 < π2 , (3.6)

then the product manifold M × (t0, t1) has the positive scalar curvature k, where

t0 =

√
2
√

k

−π√2n + 1

2
√

n + 1
+ 2c1(2n + 1)

 ,
t1 =

√
2
√

k

π√2n + 1

2
√

n + 1
+ 2c1(2n + 1)

 .
Thus, from any almost paracontact paracomplex Riemannian manifold with scalar curvature s = 0,

it is possible to construct an almost product Riemannian manifold with any constant positive scalar
curvature

s̃ = k.

We illustrate this result by the following example.

AIMS Mathematics Volume 10, Issue 5, 10764–10786.
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Example 3.1. Consider the Lie group G of dimension 5 with a basis of left-invariant vector fields
{e1, e2, e3, e4, e5} defined by the following non-zero brackets:

[e1, e5] = e2, [e2, e5] = −e1, [e3, e5] = e4, [e4, e5] = −e3.

One can define an invariant almost paracontact paracomplex Riemannian structure on G as follows:

g(ei, ei) = 1,
g(ei, e j) = 0, i , j,

e5 = ξ, φ(e1) = e3, φ(e3) = e1, φ(e2) = e4, φ(e4) = e2.

The nonzero Levi-Civita covariant derivatives are as follows:

∇e5e1 = −e2, ∇e5e2 = e1, ∇e5e3 = −e4, ∇e5e4 = e3.

This structure is cosymplectic and the scalar curvature is s = 0, as shown by Example 3.10. Let us
choose k = 1 and c1 = 0 in the solution σ(t) of the differential Eq (3.5). Then, the product manifold
G × (t0, t1) has a positive scalar curvature k = 1, where

t0 = −
π

2

√
10
√

3

and

t1 =
π

2

√
10
√

3
since Eq (3.6) holds and

σ(t) =
1
3

ln
cos

√
3
√

10
t


is a solution to (3.5).

It is possible to obtain Einstein almost product Riemannian manifolds from Einstein almost
paracontact paracomplex Riemannian manifolds by appropriately choosing the function σ . If the
almost paracontact paracomplex Riemannian manifold M is Einstein with an Einstein constant λ, that
is if

Q(X,Y) = λg(X,Y),

then the almost product manifold M × R is Einstein if and only if

−
λ

2n
= e2σd2σ

dt2 . (3.7)

In this case, the Einstein constant K of the product manifold is

K = −(2n + 1)
(dσ

dt

)2

+
d2σ

dt2

 ,
that is,

Q̃(X̃, Ỹ) = Kh(X̃, Ỹ).

AIMS Mathematics Volume 10, Issue 5, 10764–10786.



10774

The differential Eq (3.7) has the following solution:

σ(t) = ln
(
−

1
2

e−
√

c1(t+c2)λ +
e
√

c1(t+c2)

4nc1

)
,

where c1, c2 ∈ R, c1 > 0, and
K = −(2n + 1)c1,

since (dσ
dt

)2

+
d2σ

dt2

 = c1.

If λ is negative, then the function σ is defined for all real numbers. Hence, the product manifold M×R
is an Einstein manifold with a negative Einstein constant:

K = −(2n + 1)c1 < 0.

In addition, if λ is positive, then it can easily be seen that the domain of the function σ is (t0,∞), where

t0 =
ln(2nc1λ)

2
√

c1
− c2,

and the product manifold M × (t0,∞) is Einstein with an Einstein constant

K = −(2n + 1)c1 < 0.

Now, we will investigate the relation between the normal almost paracontact paracomplex
Riemannian manifolds (M, φ, ξ, η, g) and integrable almost product Riemannian manifolds
(M × R, P̃, h) (that is, [P̃, P̃] = 0). We calculate the Nijenhuis tensor [P̃, P̃] of P̃ on M × R as follows:

[P̃, P̃](X̃, Ỹ) =
(
[φ, φ](X,Y) − (dη)(X,Y)ξ − be−σ

(
Lξφ

)
(X) + ae−σ

(
Lξφ

)
(Y) ,{

eσ
(
Lφ(X)η

)
(Y) − eσ

(
Lφ(Y)η

)
(X) + a

(
Lξη

)
(Y) − b

(
Lξη

)
(Y)

} d
dt

)
, (3.8)

where

X̃ =
(
X, a

d
dt

)
and

Ỹ =
(
Y, b

d
dt

)
.

If M is normal, then the Nijenhuis tensor N in Eq (2.9) vanishes; thus, Eqs (2.10)–(2.12) hold. This
yields that

[P̃, P̃] = 0,

that is, M × R is integrable.
Conversely, if M × R is integrable, then the identity (3.8) vanishes for all X̃, Ỹ . In particular, we

choose X̃, Ỹ so that
a = b = 0.
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Then we obtain N = 0, which implies that

N2 = N3 = N4 = 0,

and as a result, M is normal. Hence, the manifold M is normal if and only if the product manifold
M × R is integrable (the class W1 ⊕W2).

It is known that the classes F1–F6 are normal, that is, the Nijenhuis tensor of the almost paracontact
paracomplex Riemannian manifold vanishes for these classes [6]. Thus, the product manifold is either
in W1 ⊕ W2 if M belongs to F1–F6 or a direct sum of these classes. Now, we prove that the product
manifold M × R does not belong to the subclasses W1 or W2 of W1 ⊕W2, except if M is in F4.

Theorem 3.2. If (M, φ, ξ, η, g) is of the class F1, then the product manifold M×R is of the class W1⊕W2

and not in the subclasses W1 or W2 for any non-constant function σ.

Proof. From the definition (2.13) of F1, we have ω = 0 and θ∗(ξ) = 0; thus,

θ̃(X̃) = θ(X) + 2(n + 1)eσ
dσ
dt
η(X).

For
X̃ = (ξ, 0) ,

we have

θ̃(ξ, 0) = 2(n + 1)eσ
dσ
dt
.

Hence, θ̃ is not equal to zero for any non-constant function σ. Therefore, the product manifold M × R
is not in the class W2.

Additionally, the defining relation (2.3) of the class W1 does not hold. Take

X̃ =
(
0,

d
dt

)
, Ỹ = (ξ, 0) and Z̃ = (Z, 0)

in Eq (2.3). By the Eq (3.2), the left hand side of (2.3) becomes

F(X̃, Ỹ , Z̃) = 0,

whereas the right hand side is
1

(n + 1)
eσθ(φ(Z)),

which need not be zero. Thus, the product manifold M × R is not in the class W1. □

Theorem 3.3. If (M, φ, ξ, η, g) is of the class F2, then the product manifold M×R is of the class W1⊕W2

and not in the subclasses W1 or W2 for all non-constant σ functions.

Proof. Since (M, φ, ξ, η, g) is of the class F2, by the defining relation (2.14), we have the following:

θ(X) = 0, ω(X) = 0
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for all vector fields X on M, and ξ is parallel [2]. Then, by (3.3),

θ̃

(
X, a

d
dt

)
= 2(n + 1)eσ

dσ
dt
η(X) , 0.

Hence, M × R is not in W2.
Take

X̃ = (ξ, 0), Ỹ = Z̃ =
(
0,

d
dt

)
in Eq (2.3). The left hand side of Eq (2.3) is

F(X̃, Ỹ , Z̃) = −2eσ
dσ
dt
,

and the right hand side of the Eq (2.3) is

−2eσ
dσ
dt

n + 1
n
,

which is different than F(X̃, Ỹ , Z̃). Thus, the defining relation (2.3) of W1 does not hold, so M ×R does
not belong to W1. □

Theorem 3.4. Let (M, φ, ξ, η, g) be of the class F4. If

σ(t) = ln(c1 −
θ(ξ)t

2(n + 1)
),

then either the product manifold M × (−∞, t0) or M × (t0,∞) belongs to W2, where

t0 =
2(n + 1)c1

θ(ξ)
.

Otherwise, M × R is in W1 ⊕W2 and not in the subclasses W1, W2 for any non-constant function σ.

Proof. Since F4 is a sublass of normal manifolds [6], the product manifold is in W1 ⊕ W2, and the
defining relation of W1 ⊕ W2 holds. By the defining relation (2.15) of F4, we have ω = 0, θ∗(ξ) = 0
(since trφ = 0), and

θ(X) = θ(ξ)η(X).

Thus, from (3.3),

θ̃(X̃) =
(
θ(ξ) + 2(n + 1)eσ

dσ
dt

)
η(X).

If σ satisfies the differential equation

θ(ξ) + 2(n + 1)eσ
dσ
dt
= 0, (3.9)

then θ̃ = 0.
Note that the differential Eq (3.9) has the solution

σ(t) = ln(c1 −
θ(ξ)t

2(n + 1)
), (3.10)
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and σ(t) is defined for all t such that

c1 −
θ(ξ)t

2(n + 1)
> 0.

If θ(ξ) > 0,then the function σ(t) is defined for all t such that

t <
2(n + 1)c1

θ(ξ)
.

As a result, M × (−∞, t0), where

t0 =
2(n + 1)c1

θ(ξ)
is in the class W2.

If θ(ξ) < 0, then the condition

c1 −
θ(ξ)t

2(n + 1)
> 0

implies that

t >
2(n + 1)c1

θ(ξ)
.

Thus, the product manifold M × (t0,∞), where

t0 =
2(n + 1)c1

θ(ξ)

is in W2.
To sum up, if the differential Eq (3.9) is satisfied, that is, if σ is the function given in Eq (3.10), then

depending of the sign of θ(ξ), either M × (−∞, t0) or M × (t0,∞) belong to W2, where

t0 =
2(n + 1)c1

θ(ξ)
.

If σ(t) is not a solution of (3.9), then θ̃ , 0, and M × R is not in W2.
Now, we show that the product manifold is not in W1. Assume that the defining relation of W1 holds

for all vector fields X̃, Ỹ , Z̃. In particular, choose

X̃ = (ξ, 0), Ỹ = (Y, 0) and Z̃ = (Z, 0).

From (3.2), the left hand side of the defining relation (2.3) of W1 is

F(X̃, Ỹ , Z̃) = e2σα(ξ,Y,Z) + e3σdσ
dt

2η(Y)η(Z) (3.11)

and the right hand side is

1
2(n + 1)

{
h(X,Y)θ̃(Z) + h(X,Z)θ̃(Y) − h(X, P(Y))θ̃(P(Z)) − h(X, P(Z))θ̃(P(Y))

}
=

1
(n + 1)

{
e2ση(Y)η(Z)

(
θ(ξ) + 2(n + 1)eσ

dσ
dt

)}
. (3.12)
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Comparing (3.11) and (3.12), and noting also that

α(ξ,Y,Z) = 0

in F4, we obtain

0 =
θ(ξ)
n + 1

η(Y)η(Z),

which is a contradiction since θ(ξ) , 0 in F4. As a result M × R is not in W1. □

Theorem 3.5. If (M, φ, ξ, η, g) is of the class F5, then the product manifold M×R is of the class W1⊕W2

and not in the subclasses W1 or W2 for all non-constant σ functions.

Proof. Since (M, φ, ξ, η, g) is of the class F5, from (2.16), we have the following:

θ(X) = 0, θ∗(X) = θ∗(ξ)η(X), ω(X) = 0

for all vector fields X on M. Therefore, by (3.3),

θ̃

(
X, a

d
dt

)
= −e−σaθ∗(ξ) + 2(n + 1)eσ

dσ
dt
η(X) , 0,

since

θ̃

(
0,

d
dt

)
= −e−σθ∗(ξ).

Thus, M × R is not in W2. Taking

X̃ =
(
0,

d
dt

)
, Ỹ = (ξ, 0) and Z̃ = (ξ, 0)

in the defining relation (2.3) of the class W1, we have

θ∗(ξ) = 0.

This is a contradiction since
θ∗(ξ) , 0

for a nontrivial structure in the class F5 for any non-constant function σ. Hence, the product manifold
M × R is not in the class W1. □

Theorem 3.6. If (M, φ, ξ, η, g) is of the class F6, then the product manifold M×R is of the class W1⊕W2

and not in the subclasses W1 or W2 for all non-constant σ functions.

Proof. Since (M, φ, ξ, η, g) is of the class F6, by the defining relation of this class, we have the
following:

θ(ξ) = 0, θ∗(ξ) = 0, ω(X) = 0

for all vector fields X on M [7]. Then, we have

θ̃

(
X, a

d
dt

)
= θ(X) + 2(n + 1)eσ

dσ
dt
η(X) , 0
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since, for instance,

θ̃ (ξ, 0) = 2(n + 1)eσ
dσ
dt

is not equal to zero for any non-constant function σ. Thus, the product manifold is not in W2. Take

X̃ =
(
0,

d
dt

)
, Ỹ = (Y, 0) and Z̃ =

(
0,

d
dt

)
in the defining relation (2.3) of the class W1, we have the following:

eσ
dσ
dt
η(Y) = 0.

This is a contradiction for a non-constant function σ. □

Now, we investigate the class of the almost paracontact paracomplex Riemannian structure if the
class of the almost product Riemannian structure on M × R is given.

Theorem 3.7. If the product manifold M × R is of the class W1, then the almost paracontact almost
paracomplex manifold is cosymplectic.

Proof. If the product manifold M × R is of the class W1, the defining relation (2.3) is satisfied for all
vector fields X̃, Ỹ and Z̃. In Eq (2.3), taking

X̃ =
(
0,

d
dt

)
and

Ỹ = Z̃ = (ξ, 0),

we obtain
θ∗(ξ) = 0.

For

X̃ =
(
0,

d
dt

)
, Ỹ = (ξ, 0) and Z̃ = (Z, 0),

we have
θ(φ(Z)) = −ω(φ(Z));

hence,
θ(Z) + ω(Z) = η(Z)θ(ξ).

Then, by choosing
X̃ = (X, 0) , Ỹ = (Y, 0) and Z̃ = (Z, 0),

we obtain
α(X,Y,Z) =

1
2(n + 1)

θ(ξ) {η(Y)g(X,Z) + η(Z)g(X,Y)} . (3.13)

Now, since
α(X, ξ, ξ) = 0
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for any almost paracontact paracomplex structure, by Eq (3.13), we have the following:

α(X, ξ, ξ) =
1

(n + 1)
θ(ξ)η(X) = 0,

which implies θ(ξ) = 0. Thus, α = 0. □

Theorem 3.8. If the product manifold M × R is of the class W2, then the almost paracontact almost
paracomplex manifold is of the class F2 ⊕ F3 ⊕ F4 ⊕ F6 ⊕ F8 ⊕ F10.

Proof. Since the product manifold M × R is of the class W2,

θ̃(X, a
d
dt

) = 0

for all vector fields (X, a d
dt ). From the Eq (3.3),

θ̃

(
0,

d
dt

)
= −e−σθ∗(ξ) = 0,

which implies
θ∗(ξ) = 0

and
θ̃ (ξ, 0) = θ(ξ) + 2(n + 1)eσ

dσ
dt
= 0.

By choosing

X̃ =
(
0,

d
dt

)
, Ỹ = (Y, 0) and Z̃ = (Z, 0)

in Eq (2.4) and using (3.2), we have the following:

α(Y,Z, ξ) = α(Z,Y, ξ). (3.14)

Then,
0 = α(X, ξ, ξ) = α(ξ, X, ξ) = α(ξ, ξ, X) = ω(X);

thus
∇ξξ = 0.

Additionally, we have

0 = θ̃
(
X,

d
dt

)
= θ(X) + (2n + 1)eσ

dσ
dt
η(X),

and
θ(φ(X)) = 0.

Moreover, by taking
X̃ = (X, 0), Ỹ = (Y, 0), Z̃ = (Z, 0)

in Eq (2.4), from (3.2), we obtain the following:

SXYZ {α(X,Y, φ(Z) − α(X, φ(Y), ξ)η(Z)} = 0.
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Now, we evaluate the projections αi to determine the class of the almost paracontact paracomplex
structure.

Since
θ(φ(X)) = 0, θ∗(ξ) = 0 and ω(X) = 0,

projections α1, α5, and α11 vanish, respectively. From (3.14), we have the following:

α7 = α9 = 0.

Note that, the remaining projections need not vanish. For example, by using

ω(X) = 0,

we have
α10(X,Y,Z) = η(X)α(ξ, φ2(Y), φ2(Z)) = η(X)α(ξ,Y,Z),

which is zero if and only if
∇ξY = 0.

□

We finish by giving examples of almost paracontact paracomplex Riemannian structures in certain
classes. Example 3.9 shows that a normal almost paracontact paracomplex Riemannian manifold is
not necessarily in F1 ⊕ F2 ⊕ F4 ⊕ F5 ⊕ F6, contrary to [6, Theorem 5.1].

Example 3.9. Consider the five dimensional Lie algebra with basis elements {e1, e2, . . . , e5} whose
nonzero brackets are

[e1, e2] = e5, [e3, e4] = e5.

Let g be the Riemannian metric such that the basis elements are orthonormal. Nonzero covariant
derivatives are evaluated by Koszul’s formula in [8]:

∇e1e2 =
1
2

e5, ∇e1e5 = −
1
2

e2,

∇e2e1 = −
1
2

e5, ∇e2e5 =
1
2

e1,

∇e3e4 =
1
2

e5, ∇e3e5 = −
1
2

e4,

∇e4e3 = −
1
2

e5, ∇e4e5 =
1
2

e3,

∇e5e1 = −
1
2

e2, ∇e5e2 =
1
2

e1, ∇e5e3 = −
1
2

e4, ∇e5e4 =
1
2

e3.

Let
ξ = e5,

η be the 1-form metric dual to e5, and the endomorphism φ be defined by

φ(e1) = e2, φ(e2) = e1, φ(e3) = e4, φ(e4) = e3, φ(e5) = 0.
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Then, (φ, ξ, η, g) is an almost paracontact paracomplex structure with nonzero structure constants:

α(e1, e1, e5) = g((∇e1φ)(e1), e5) =
1
2
= α(e1, e5, e1),

α(e2, e2, e5) = −
1
2
= α(e2, e5, e2),

α(e3, e3, e5) =
1
2
= α(e3, e5, e3),

α(e4, e4, e5) = −
1
2
= α(e4, e5, e4),

α(e5, e1, e1) = −α(e5, e2, e2) = α(e5, e3, e3) = −α(e5, e4, e4) = 1.

First, we determine the class of this structure by evaluating projections αi introduced in [6]. The
only nonzero projections are

α8(x, y, z) =
1
2
{x1y1 − x2y2 + x3y3 − x4y4}z5

+
1
2
{x1z1 − x2z2 + x3z3 − x4z4}y5

and
α10(x, y, z) = {y1z1 − y2z2 + y3z3 − y4z4}x5,

where
x = x1e1 . . . x5e5, y = y1e1 . . . y5e5, z = z1e1 . . . z5e5.

Thus, the structure is in the class F8 ⊕ F10 according to the classification in [6].
Now, by a direct calculation, we get that

[φ, φ](x, y) = (−x1y2 + x2y1 − x3y4 + x4y3) = dη(x, y)ξ

which implies that the Nijenhuis tensor

N(x, y) = [φ, φ](x, y) − dη(x, y)ξ

vanishes; thus, the structure is normal. As a result, a normal structure need not be in F1 ⊕ F2 ⊕ F4 ⊕

F5 ⊕ F6 given in [6].

In the following example, we write almost paracontact paracomplex Riemannian structures of
classes F9, F6 ⊕ F10 and F6 ⊕ F9 ⊕ F10, and we show that these structures are normal if and only if the
structure is cosymplectic.

Example 3.10. Consider the Lie group G of dimension 5 with a basis of left-invariant vector fields
{e1, e2, e3, e4, e5} defined by the following non-zero brackets:

[e1, e5] = λ1e1 + λ2e2 + λ1e3 + λ3e4,

[e2, e5] = −λ2e1 − λ1e2 − λ3e3 − λ1e4,

[e3, e5] = −λ1e1 − λ3e2 + λ1e3 + λ2e4,
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[e4, e5] = λ3e1 + λ1e2 − λ2e3 − λ1e4,

where λi, i = 1, 2, 3 are arbitrary real numbers. One can define an invariant almost paracontact
paracomplex Riemannian structure on G as follows:

g(ei, ei) = 1,
g(ei, e j) = 0, i , j,

e5 = ξ, φ(e1) = e3, φ(e3) = e1, φ(e2) = e4, φ(e4) = e2.

By Koszul’s formula, the nonzero Levi-Civita covariant derivatives are

∇e1e1 = −λ1e5, ∇e1e4 = −λ3e5, ∇e1e5 = λ1e1 + λ3e4,

∇e2e2 = λ1e5, ∇e2e3 = λ3e5, ∇e2e5 = −λ1e2 − λ3e3,

∇e3e2 = λ3e5, ∇e3e3 = −λ1e5, ∇e3e5 = −λ3e2 + λ1e3,

∇e4e1 = −λ3e5, ∇e4e4 = λ1e5, ∇e4e5 = λ3e1 − λ1e4,

∇e5e1 = −λ2e2 − λ1e3, ∇e5e2 = λ2e1 + λ1e4, ∇e5e3 = λ1e1 − λ2e4,

∇e5e4 = −λ1e2 + λ2e3,

and the nonzero structure constants

α(ei, e j, ek) = g((∇eiφ)(e j), ek)

are

α(e1, e2, e5) = −λ3 = α(e1, e5, e2),
α(e1, e3, e5) = −λ1 = α(e1, e5, e3),
α(e2, e1, e5) = λ3 = α(e2, e5, e1),
α(e2, e4, e5) = λ1 = α(e2, e5, e4),
α(e3, e1, e5) = −λ1 = α(e3, e5, e1),
α(e3, e4, e5) = λ3 = α(e3, e5, e4),
α(e4, e2, e5) = λ1 = α(e4, e5, e2),
α(e4, e3, e5) = −λ3 = α(e4, e5, e3),
α(e5, e1, e1) = 2λ1 = −α(e5, e2, e2),
−α(e5, e3, e3) = 2λ1 = α(e5, e4, e4).

We write N(x, y) by a direct calculation. We see that dη(x, y)ξ = 0 and

N(x, y) = [φ, φ](x, y)
= 2 {−λ1x3y5 + λ3x4y5 + λ1x5y3 − λ3x5y4} e1

+ 2 {−λ3x3y5 + λ1x4y5 + λ3x5y3 − λ1x5y4} e2

+ 2 {λ1x1y5 − λ3x2y5 − λ1x5y1 + λ3x5y2} e3

+ 2 {λ3x1y5 − λ1x2y5 − λ3x5y1 + λ1x5y2} e4.
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This structure is normal if and only if N = 0, that is, if and only if λ1 = λ3 = 0. In this case, the
structure is cosymplectic, and if λ2 = 0, then all Lie brackets vanish and the Lie algebra is Abelian.
Otherwise, if λ2 , 0, then the algebra is not Abelian.

We determine the class of this structure by evaluating projections αi given in [6]. We have α11 = 0
since ω = 0. Since

θ(ξ) = θ∗(ξ) = 0,

we obtain
α4 = α5 = 0.

Let
x =

∑
xiei, y =

∑
yiei and z =

∑
ziei.

Then
F10(x, y, z) = 2λ1x5{y1z1 − y2z2 − y3z3 + y4z4};

thus, F10 = 0 if and only if λ1 = 0. In addition,

α(φ2x, φ2y, ξ) = −λ3x1y2 − λ1x1y3 + λ3x2y1 + λ1x2y4 − λ1x3y1 + λ3x3y4 + λ1x4y2 − λ3x4y3

= α(φy, φx, ξ)

and

α(φ2y, φ2x, ξ) = λ3x1y2 − λ1x1y3 − λ3x2y1 + λ1x2y4 − λ1x3y1 − λ3x3y4 + λ1x4y2 + λ3x4y3

= α(φx, φy, ξ).

Thus,
α8 = α7 = 0

and

α9(x, y, z) = λ3 {−x1y2z5 + x2y1z5 + x3y4z5 − x4y3z5 − x1y5z2 + x2y5z1 + x3y5z4 − x4y5z3} .

Thus, α9 = 0 if and only if λ3 = 0. Similarly, α6 = 0 if and only if λ1 = 0.
Note that

θ(x) = 0

for any vector x; thus, α1 = 0. By a direct calculation,

α2 = α3 = 0.

We can summarize these points as

(1) If λ1 = 0 and λ3 = 0, then the structure is cosymplectic.
(2) If λ1 = 0 and λ3 , 0, then this structure is in F9.
(3) If λ1 , 0 and λ3 = 0, then this structure is in F6 ⊕ F10.
(4) If λ1 , 0 and λ3 , 0, then this structure is in F6 ⊕ F9 ⊕ F10.
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The class of the product manifold can be determined by (3.2). For example, if λ1 = 0 and λ3 , 0,
then the structure is in F9. If σ is constant, then the product structure satisfies the defining relation of
W2 ⊕W3. If σ is not constant, then

θ̃(X̃) , 0;

in this case, the product manifold is in the widest class.
This structure has the scalar curvature −4(λ2

1 + λ
2
3). For instance, if λ1 = 0, λ3 , 0, and σ is

constant, then, from (3.4), the product manifold also has a negative scalar curvature.

4. Conclusions

In this paper, we systematically defined an almost product structure P̃, on the product of an almost
paracontact paracomplex Riemannian manifold with R by a warped product. Here, the new structure
P̃ depends on any function σ of the coordinate t of R. Then, we considered the classifications of these
structures and gave certain relations between them, that may depend on the function σ. In this way, it
is possible to obtain integrable almost product Riemannian manifolds. Additionally, we studied the
curvature properties of the almost product structures and gave explicit examples. We showed that the
almost product Riemannian manifolds of any positive scalar curvature can be obtained from almost
paracontact paracomplex Riemannian manifold with a scalar curvature of zero. In addition, we
obtained Einstein almost product Riemannian manifolds from Einstein almost paracontact
paracomplex Riemannian manifolds.
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