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1. Introduction

As an analogue of almost contact metric Riemannian manifolds, Sato introduced the notion of
almost paracontact Riemannian manifolds in 1976 [1]. Afterwards, Sasaki defined almost paracontact
manifolds of type (p,q), where p and ¢ are the multiplicities of the eigenvalues 1 and —1 of the
endomorphism ¢. In the literature, these manifolds are called almost paracontact paracomplex
Riemannian manifolds for the special case where

pP=4qg=n.

Classifications of almost paracontact paracomplex Riemannian manifolds and Riemannian almost
product manifolds are made by using the covariant derivative of their fundamental forms, see [2, 3],
respectively. In this work, after presenting the necessary preliminary information, we obtain an almost
product structure P with a trace zero on the product of an almost paracontact paracomplex
Riemannian manifold with R, thereby using a method similar to that in [4] using a warped product.
Then, we define a Riemannian metric on the product manifold, which is compatible with the almost
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product structure. Thus, the product manifold is a Riemannian almost product manifold of a special
type. We write the covariant derivative of the Riemannian metric and the almost product structure of
product manifold in terms of the covariant derivative of the metric of the almost paracontact
paracomplex Riemannian manifold. We investigate the curvature properties of the product manifold
and state relations between some classes of almost paracontact paracomplex Riemannian manifolds
and Riemannian almost product manifolds. In addition, the almost product manifold obtained by the
warped product is integrable if and only if the almost paracontact paracomplex Riemannian manifold
is normal.

2. Preliminaries

An odd dimensional differentiable manifold M>"*! has an almost paracontact structure (¢, &, 1) if it
admits an endomorphism ¢ of the tangent bundle, a vector field ¢ and its dual 1-form 7 such that

¢’X) =X -nX)E  nE) =1 (2.1)

hold for an arbitrary vector field X. A differentiable manifold with an almost paracontact structure is
called an almost paracontact manifold [1]. Equation (2.1) implies the following:

neX)) =0, @& =0,

for all vector fields X.

Almost paracontact manifolds of type (p, g) are introduced in [5]. Denote the multiplicity of the
eigenvalues 1 and —1 of ¢ by p and ¢, respectively. In addition, the endomorphism ¢ has a simple
eigenvalue 0; thus,

re =p—4q,
where try is the trace of ¢.
If (M, ¢, &, 1) is an almost paracontact manifold with

Irg=p—q,
then this manifold is called an almost paracontact manifold of type (p, g). If
pP=q

that is, if
tro =0,

then M is called an almost paracontact paracomplex manifold.
An almost paracontact paracomplex manifold endowed with a Riemannian metric g such that

8(p(X), p(Y)) = g(X, Y) = n(X)n(Y) (2.2)

for all vector fields X, Y is called an almost paracontact paracomplex Riemannian manifold [4, 6].
Equations (2.1) and (2.2) yield the following:

nX) =g X), geX),Y)=gX, e)).
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for all vector fields X, Y.

Note that almost paracontact paracomplex Riemannian manifolds are called almost paracontact
Riemannian maniolds of type (n,n) in [2] and almost paracontact almost paracomplex Riemannian
manifolds in [6]. We use the terminology in [4].

Let V be the Levi-Civita connection of the Riemannian metric g. For all vector fields X, Y, Z on M,
the structure tensor @ of type (0, 3) is defined as following:

a(X,Y,Z) = g(Vxp) (), 2),
which has following properties:

aX,Y,Z) = a(X,Z,Y),
a(X,p(Y),p(2)) = —a(X, Y, Z) + n(Y)a(X, &, Z) + n(£)a(X, Y, §).

The following 1-forms are associated to the structure tensor a:
0(X) = g"a(E, Ej. X),  6"(X) = g"a(Ep p(E)). X), w(X) = a(£.&X),

where {E}, - - - E»,, &} is a local frame, X is a vector field, and (g) is the inverse matrix of (g; )
The space F of covariant derivatives of the endomorphism ¢ given by

F ={acaiM : a(X.Y.2) = (X, Z.Y),
(X, o(Y), p(2)) = —a(X, Y, Z) + n(V)(X, &, Z) + n(D)a(X, ¥, &)}
decomposes into eleven subspaces
F=Fia o,

which are orthogonal and invariant under the action of the structure group O(n) X O(n) X I where O(n)
is the group of orthogonal matrices of size n, and I is the unit matrix of size one [2, 6]. The defining
relations of basic classes F; and projections F' onto each subspace ¥; is given in [2,6]. An almost
paracontact paracomplex Riemannian manifold is said to either be in the class #; or a direct sum of
some classes, if the structure tensor « is in 7; or in a direct sum of some classes,respectively.

Riemannian almost product manifolds are introduced in [1]. If a differentiable manifold L has a
tensor field P (almost product structure) and a Riemannian metric 4 satisfies the conditions

o PX(X) = X,
e W(P(X),P(Y)) = h(X,Y),

for all vector fields X, Y on L, then L is called a Riemannian almost product manifold. In this study, we
consider Riemannian almost product manifolds with

trP=0

classified by [3]. In this case, L is even dimensional and the structure group of the tangent bundle
reduces to the group O(n) X O(n). Note that

h(P(X),Y) = h(X, P(Y)).
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The structure tensor F of type (0, 3) on L is defined as follows:
F(X,Y,Z) = h(VxP)(Y),Z).
The tensor F has the following properties:

F(X,Y,Z) = F(X,Z,Y) = —-F(X, P(Y), P(Z)),
F(X,Y,P(Z)) = -F(X, P(Y), Z).

In addition, for any vector field X on L, the 1-form 0 associated with F is defined as follows:
6(X) = h'F(E;, E}, X),

where {E;, E,, - - - E»,} is a local frame field on L, and (A”) is the inverse matrix of (A; )
Then, the subspace W of ®]L is defined as follows:

W= {F € ®(3)L IF(X,Y,2)=F(X,Z,Y)=-F(X,P(Y),P(2)) F(X,Y,P(Z)) = -F(X,P(Y),Z)}.

According to the symmetries of W, this space splits into the direct sum W = W, @ W, @ W;. The
subspaces W; are invariant and irreducible under the group O(n) X O(n). The defining relations for
invariant subspaces are as follows:

(1) Riemannian P-manifolds:
FX,Y,Z)=0.

(2) Class Wy:

FX,Y,Z) = 2—1’1 {h(X, Y)0(Z) + (X, Z)A(Y) (2.3)
—h(X, P(Y))O(P(Z)) — h(X, P(Z))d(P(Y ))} .

(3) Class W5:
FX,Y,P(Z))+ F(Y,Z,P(X))+ F(Z,X,P(Y))=0 2.4)

and

or equivalently,
[P,P]=0and 8 =0.

(4) Class Ws:
FXY,2)+ FY,Z,X)+ F(Z,X,Y) =0. (2.5)

(5) Class Wy @ W, (The class of integrable Riemannian almost product manifolds with trP = 0):
FX,Y,P(Z)) + F(Y,Z,P(X)) + F(Z, X, P(Y)) = 0,

or equivalently,
[P, P] =0.
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(6) Class W, @ W5:

(7) Class W, & Ws:

FX,Y,Z)+F(Y,Z,X)+ F(Z,X,Y) = ! {h(X, Y)O(Z) + h(X,Z)6(Y)

n
+ h(Y, 2)8(X) — h(X, P(Y))A(P(Z))

~ h(X, P2))A(P(Y)) ~h(Y, PZ)E(P(X))}
(8) Class W, & W, @ W3: no condition.

Note that [P, P] denotes the Nijenhuis tensor of the almost paracomplex structure P and is defined by
the following:
[P, PI(X,Y) = [PX,PY] +[X,Y] - P[PX, Y] - P[X, PY] (2.6)

for all vector fields X, Y on L, see [3].
It is well known that if (M, ¢, &, 17) is an almost paracontact paracomplex Riemannian manifold, then
M x R is canonically an almost product manifold with the following almost paracomplex structure:

d a d
P(X,aa) = [e(X) + ;f, IU(X)E , (2.7)

where a is a function on M X R, and ¢ is the coordinate on R, see [1,6]. P has the following properties:
Pr=1

and
trP = 0.

An almost paracontact paracomplex Riemannian manifold (M, ¢, &,n) is called normal if the
corresponding almost product structure (2.7) on the even dimensional product manifold M X R is
integrable. 1i.e., the Nijenhuis tensor [P, P] of the almost product structure P is identically zero.
Additionally, it is known that the vanishing of [P, P] is equivalent to the vanishing of the Nijenhuis
tensor N of the structure (¢, &, 17), where

N=[p,p]l—dn®¢ (2.8)
and the Nijenhuis torsion [, ¢] of ¢ is given by
[p, p1(X, Y) = [pX, oY1+ @*[X, Y] - ¢lgX, Y] - ¢[X, Y] (2.9)

and
dn(X,Y) = —a(X, pY, &) + a(Y, ¢X, §);

refer to [6]. In addition, if N = 0, then the following tensors are also zero [1]:
NO(X, Y) = (Looon) (V) = (Leonn) () =0, (2.10)
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NOX) = (Leg) (X) =0, 2.11)

NOX) = (Len) (X) = 0. (2.12)

The [6, Theorem 5.1] states that an almost paracontact paracomplex Riemannian manifold is normal
if and only if the manifold is in 71 ® 7, @ F4, ® F5 ® F [7]; the relations of these subspaces are defined
as follows:

1
Ti 1 (X, Y.2) = >~ {8(e(X). ¢(NI(L(Z) + 8(p(X). o2& (V)

—o(X, p(Y)A(2)) — g(X. 9Z2)B(AY))) 2.13)
Fr: &, Y,2) = a(X,6,2) =0, 0=0, (2.14)
WX, Y,0(2)) + oY, Z,o(X)) + a(Z, X, p(¥)) = O,
0
Fi - alX, %,2) = 5 5(6(X), 601 (Z) + 86X oY), 2.15)
9*
Fs:aX,Y,Z) = 2(5) {gX, o(V)n(Z) + g(X, (Z))n(Y)} (2.16)

and

Fo: X, Y, 2) = (Z, X, EnY) + (Y, X, E(Z) - 2n(Y)n(Z)a(§, &, X)
= n(Na(p(X), &, (2)) + n(Z)a(e(X), &, ¢(Y)),
6¢) = 6°(6) =0,

or equivalently,

aX,Y.Z) = a(X,Y,En(Z) + a(X, Z,En(Y),

a(X,Y,£) = a(¥, X, &) = a(p(X), p(Y), £),
=6 =0.

In Example 3.9, we show that [6, Theorem 5.1] is not an if and only if statement. If the structure
belongs to 71 @ F, @ F4 ® F5 ® Fg, then it is normal. By Example 3.9, there exist structures which are
normal but do not belong to 71 & F> ® ¥4 & F5 ® F.

3. Almost product manifolds from almost paracontact paracomplex Riemannian manifolds

In this section, we first define an almost paracomplex (almost product) structure P on the product
of an almost paracontact paracomplex Riemannian manifold with R by a warped product. Note that
P is different than the canonical almost product structure P in (2.7). The structure (2.7) depends on ¢,
where ¢ is the coordinate of R. The new almost product structure P depends on any function o of 7.
Then, we write a Riemannian metric on the product manifold depending on a function o, where

oc:R->R

is an arbitrary function on R; in this way, we obtain an almost product Riemannian manifold whose
structure tensor P has a trace zero and we give the relations between the covariant derivatives.
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Additionally, we investigate the curvature properties of M X R. Then, we consider the normal almost
paracontact paracomplex Riemannian manifolds and we show that a paracontact paracomplex
Riemannian manifold is normal if and only if the almost product Riemannian manifold defined by our
warped product is integrable.

Let (M, ¢,&,1,g) be a (2n + 1)-dimensional almost paracontact paracomplex Riemannian manifold
and consider the product manifold M X R. A vector field on the manifold M X R is of the form (X, ad%),
where ¢ is the coordinate of R, and a is a smooth function on M X R. The almost paracomplex structure
P on M x R is defined by the following:

D d -0 o i
P(X, aa) = (go(X) +ae & e n(X)dt) , 3.1

where o is any function of . One can easily see that

P?=1.

In addition, we define a Riemannian metric 2 on M X R by the following:

d d\\ 5
h((X,aE), (Y, ba)) =e7g(X,Y)+ab.

(Ple) o)) = olee) 0oz

trP = 0.

Then we have

and

Hence, (M x R, P, h) is an almost product Riemannian manifold with
trP = 0.

Let V denote the Levi-Civita covariant derivatives of both Riemannian metrics g on M and /& on
M x R. The Levi-Civita covariant derivative of the metric # on M X R is obtained by using the Koszul
formula as follows:

d do db do d
\Y —| = — — ¢ —.
(Xad (Y bdt) (VXY + ” (aY + bX), {X[b] + adt e o g(X, Y)} dt)

Additionally, the covariant derivative of the almost product structure P is calculated as follows:

(VoassP) (152) = ((Vag) (1) + be7Va — B g(X) + &7 (1)K + (X, ) a
fe7 (V) () = 792 g(X, (1Y) - 2be™ (X)) £),

for any vector fields (X, a%), (Y b%), and (Z, c%) on M X R. Unless otherwise stated, throughout the

paper, we will use the notation X, ¥, Z, ... for the vector fields
d d d
X7 ) Kb_ ) Z, el PO
( adt) ( dt) ( Cdt)
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on the product manifold, respectively. It follows that
F(X.7.Z) = h((V¢P)(1).2)

d
= (X, Y, Z) - 2bce"stTn(X) + ¢ (bg (Vxé, Z) + cg (Vxé, Y))

d d
+ e3f’d—f {nNgX,2) + n(2)g(X,Y)} - e2"d—? {bg(X,p(2)) + cg(X,p(Y)}.  (3.2)
By choosing
- - d
X=0), Y=2Z= (0, E)’
we obtain

. e do
FX,Y,Z)=-2¢"— # 0.
( ) ¢ — #

Therefore, the almost product Riemannian structure obtained is nontrivial for any non-constant
function 0.
Since

do Ldo d
meﬁm:ﬁﬁ+gﬂ§%ZEMan

if € is parallel, then (&, 0) is not parallel for any non-constant function o. In addition, if £ is Killing,
then (¢, 0) is also Killing:

d d d
4Wm$@mﬂwaﬂ=Wﬂwan+whgmn—mw§mn

d
=-h (V(Y,bj,)(‘f’ 0), (X, Cla)) .

Moreover, note that
d d Sy on
h (V(X,a:ft) (0, d_t) , (Y, bd_t)) =e Eg(X’ Y)

d d
= #[Tome) 0.5)- (05

Let {e,- -, e, &} be alocal orthonormal frame field on M. Then, one can obtain an orthonormal
frame field on M X R as follows:

{(6_"61, 0), -+, (e7e2,0),(e77¢.0), (O’ %)} .

Using this frame, the 1-form 0, associated with F is as follows:
~ d s do
0(X, az) =0(X) —ae 760" (¢) + w(X) + 2(n + 1)6"En(X). (3.3)

In addition, we write the curvature tensor R on the product manifold M X R in terms of the curvature
tensor R on M as follows:

RX,Y)Z =|R(X,V)Z + dﬁ2+dz—a (aY — bX)
’ B ’ W7 ae |\
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2
- (dﬁ) V. DX - g(X,2)Y), e [(

do\’ do
dt

d
i + W)g(bX - CIY, Z)E) .

Then, the Ricci curvature can be calculated as follows:

2 2
OX,¥) = O(X,Y) — ab(2n + 1)((‘1“) L4 ‘T)

dt dr?
do\* d’o
200 20
—e (E) 2n + 1)g(X, Y)-e ﬁg(X, Y).
In addition, we can evaluate the scalar curvature as follows:
do\’ d’o
§=es—2n+1D2n+2)[—| -22n+ 1)—-. 3.4
§=e s(n+)(n+)dt (n+)dt2 (3.4)

Let M be an almost paracontact paracomplex Riemannian manifold with a zero scalar curvature. Then,
we can construct an almost product Riemannian manifold with a scalar curvature as follows:

§=k>0,

where k is a positive real number, with the appropriate choice of the function o. For s = 0, the Eq (3.4)
becomes the following:

2 2
k=-Q2n+1)2n+2) (Cfi—?) —20n + 1)‘;—5. 3.5)

The solution of the differential Eq (3.5) is as follows:

1 | [\/%(\/lwl
o(t) = " Infcos| —| ——

t—2+/Qn+ (n+ 1)c1]]] + 5

+1 V2 V2n+1
where ¢y, ¢; € R. For example, if k and ¢, are chosen so that
k( V 1
L i[n—+t—2\/(2n+ D+ 1)c1] < (3.6)
2 \2\vVan+1 2
then the product manifold M X (%, t;) has the positive scalar curvature k, where
‘ \/i( Nt o +1))
0= —F=|——F— t+42c1@n )
Vil 2vn+1

; _ﬁ(n\/2n+1
A

Thus, from any almost paracontact paracomplex Riemannian manifold with scalar curvature s = 0,
it is possible to construct an almost product Riemannian manifold with any constant positive scalar
curvature

+2c1(2n + 1)).

§=k.

We illustrate this result by the following example.
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Example 3.1. Consider the Lie group G of dimension 5 with a basis of left-invariant vector fields
{e1, e, €3, €4, s} defined by the following non-zero brackets:

ler,es] = ea, [ea,es] = —ey, [e3,es] = es, [es,e5] = —e3.
One can define an invariant almost paracontact paracomplex Riemannian structure on G as follows:
glei,e) =1,
glei,e)) =0, i+ j,
es =&, gle)) = e3, @le3) = e, glez) = es, @les) = €.

The nonzero Levi-Civita covariant derivatives are as follows:
Ve5€1 = —éy, Ve5€2 =é€q, Ve5€3 = —éy4, Ve5€4 = é3.

This structure is cosymplectic and the scalar curvature is s = 0, as shown by Example 3.10. Let us
choose k = 1 and ¢y = 0 in the solution o (t) of the differential Eq (3.5). Then, the product manifold
G X (ty, 1) has a positive scalar curvature k = 1, where

__rmyio
0="73 N
and
5 = T Y10
243
since Eq (3.6) holds and

o(t) = l In (cos ﬁt)
3 V10

is a solution to (3.5).

It is possible to obtain Einstein almost product Riemannian manifolds from Einstein almost
paracontact paracomplex Riemannian manifolds by appropriately choosing the function o . If the
almost paracontact paracomplex Riemannian manifold M is Einstein with an Einstein constant A, that
is if

Q(X,Y) = 28(X,Y),
then the almost product manifold M X R is Einstein if and only if
A 5y d2o
—— =" —.
2n dr?

In this case, the Einstein constant K of the product manifold is
do\* do
K=-Cn+D)||—| + — 1,
(2n )(( dt) dtZ)

0X,Y) = Kh(X,Y).

(3.7)

that is,

AIMS Mathematics Volume 10, Issue 5, 10764—-10786.
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The differential Eq (3.7) has the following solution:

1 i Ver(t+er)
o(t) =In (—Ee_ Veeren g 4 € )

4dncy

where c¢1,c, € R, ¢; > 0, and
K=-2n+ 1),

do 2+d20
— —|=c.
dt dr? !

If A 1is negative, then the function o is defined for all real numbers. Hence, the product manifold M X R
is an Einstein manifold with a negative Einstein constant:

since

K=-2n+ 1) <0.
In addition, if A is positive, then it can easily be seen that the domain of the function o is (¢y, o), where

- In(2ncA)
0= Ve

and the product manifold M X (fy, o) is Einstein with an Einstein constant

—Cy,

K=-2n+ 1) <0.

Now, we will investigate the relation between the normal almost paracontact paracomplex
Riemannian manifolds (M, ¢,&,7m,8) and integrable almost product Riemannian manifolds
(M xR, P, h) (that is, [P, P] = 0). We calculate the Nijenhuis tensor [P, P] of Pon M x R as follows:

[P, PI(X. 7) = ([¢ 91X, Y) = (dn)(X, V) = be™ (Lew) (X) + ae™ (Leg) (¥)

{60 (ch(X)n) (Y)—e” (-Ega(Y)n) (X)+a (-ﬁg’]) ¥Y)-b (-5577) (Y)} %) , (3.8)

where

and
Y

d
Y,b—]|.
(23]

If M is normal, then the Nijenhuis tensor N in Eq (2.9) vanishes; thus, Eqs (2.10)—(2.12) hold. This
yields that
[P,P] =0,

that is, M X R is integrable.
Conversely, if M x R is integrable, then the identity (3.8) vanishes for all X, Y. In particular, we
choose X, ¥ so that
a=b=0.

AIMS Mathematics Volume 10, Issue 5, 10764-10786.
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Then we obtain N = 0, which implies that
N*=N’=N*=0,

and as a result, M is normal. Hence, the manifold M is normal if and only if the product manifold
M x R is integrable (the class W, & W)).

It is known that the classes 71—%¢ are normal, that is, the Nijenhuis tensor of the almost paracontact
paracomplex Riemannian manifold vanishes for these classes [6]. Thus, the product manifold is either
in W; @ W, if M belongs to F,—F or a direct sum of these classes. Now, we prove that the product
manifold M X R does not belong to the subclasses W, or W, of W; @ W,, except if M is in F;.

Theorem 3.2. If (M, ¢, &, 1, g) is of the class F1, then the product manifold M XR is of the class W @ W,
and not in the subclasses Wy or W, for any non-constant function o.

Proof. From the definition (2.13) of ¥, we have w = 0 and 6*(¢) = 0; thus,
o~ do
0(X)=0(X)+2(n+ l)e”zn(X).

For
X =0,
we have

~ ,do
0(£,0) =2(n+ 1)e e

Hence, 6 is not equal to zero for any non-constant function o-. Therefore, the product manifold M x R
is not in the class W,.
Additionally, the defining relation (2.3) of the class W; does not hold. Take

X:(O,%), Y=(,00 and Z=(Z0)

in Eq (2.3). By the Eq (3.2), the left hand side of (2.3) becomes

FX,Y,2)=0,
whereas the right hand side is
T0(p(2)),
T 1)6 (p(2))
which need not be zero. Thus, the product manifold M X R is not in the class Wj. m|

Theorem 3.3. If (M, ¢, &,n, g) is of the class T, then the product manifold M XR is of the class W @& W,
and not in the subclasses Wy or W, for all non-constant o functions.

Proof. Since (M, ¢,&,1, g) is of the class 75, by the defining relation (2.14), we have the following:
0X)=0, wX)=0

AIMS Mathematics Volume 10, Issue 5, 10764—-10786.
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for all vector fields X on M, and ¢ is parallel [2]. Then, by (3.3),
- d do
0| X,a—|=2 e —n(X) # 0.
( adt) (n+1)e 7 n(X) #

Hence, M X R is not in W,.
Take

X =(,0), Y’:Z:(O,i)

in Eq (2.3). The left hand side of Eq (2.3) is

and the right hand side of the Eq (2.3) is

ysdon+1

) ,
edt n

which is different than F(X, ¥, Z). Thus, the defining relation (2.3) of W, does not hold, so M x R does

not belong to W;.
Theorem 3.4. Let (M, ¢,&,1, ) be of the class Fy. If

0(6)t
2n+1)

o(t) = In(c; - )

O

then either the product manifold M X (—oo, ty) or M X (t,, 00) belongs to W,, where

- 2(n+ 1)
T e

Otherwise, M X R is in Wi @ W, and not in the subclasses W, W, for any non-constant function o.

Proof. Since ¥, is a sublass of normal manifolds [6], the product manifold is in W; & W,, and the
defining relation of W; @ W, holds. By the defining relation (2.15) of ¥4, we have w = 0, 8°(¢) = 0

(since tr¢ = 0), and
0(X) = 0(En(X).
Thus, from (3.3),
-~ do
0(X) =(6(8) +2(n + 1)605 n(Xx).

If o satisfies the differential equation
do
() +2(n+ 1)e” — =0,
(&) +2(n+ De 7
then 6 = 0.

Note that the differential Eq (3.9) has the solution

0t

o(t) = In(c; - X+l

)

AIMS Mathematics
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and o(¢) is defined for all ¢ such that

b
Y2+ 1)
If 6(¢) > 0,then the function o (?) is defined for all 7 such that
2(n+ 1)c
o0&
As aresult, M X (—c0, t3), where
2(11 + 1)C 1
fo= ————
0(6)
is in the class W5.
If 6(¢) < 0, then the condition
b
Y2+ 1)
implies that
2(n+ 1)
0(&)
Thus, the product manifold M X (#;, o), where
2(n+ 1)
fo= ————
0(6)

is in W,.
To sum up, if the differential Eq (3.9) is satisfied, that is, if o~ is the function given in Eq (3.10), then
depending of the sign of 6(¢), either M X (—oo, ty) or M X (ty, o) belong to W,, where

_2(n+1)c
0¢)
If o(¢) is not a solution of (3.9), then 8 # 0, and M X R is not in W,.

Now, we show that the product manifold is not in W;. Assume that the defining relation of W, holds
for all vector fields X, ¥, Z. In particular, choose

Iy

X=(0), Y=(0) and Z=(Z0).

From (3.2), the left hand side of the defining relation (2.3) of W, is
v vV 7 200 30 dO'
FX,Y,Z)=e"a(g,Y.Z) +e EZU(Y)U(Z) (3.11)

and the right hand side is

(WX, 1)AZ) + h(X. 2)AY) - h(X. PY)IPZ)) - h(X, PZ)HP(Y))]
2n+1)

1 d
=D {eZ‘Tn(Y)n(Z) (9(5) +2(n + 1)e”d—(:)} . (3.12)
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Comparing (3.11) and (3.12), and noting also that

&, Y,2)=0
in 4, we obtain
0(£)
0=—72"nY)nZ),
P 177( mz)
which is a contradiction since 6(¢) # 0 in 4. As a result M X R is not in W;. |

Theorem 3.5. If (M, ¢, &, 1, g) is of the class Fs, then the product manifold M XR is of the class W, @& W,
and not in the subclasses W or W, for all non-constant o functions.

Proof. Since (M, ¢, &, 1, g) is of the class Fs, from (2.16), we have the following:
0X)=0, €X)=0EnX), wX)=0

for all vector fields X on M. Therefore, by (3.3),

~ d o Ldo
H(X,ad—t) =—e7af’ (é)+2(n+ e 0 nX) # 0,

since

( d o
e(o,d—t):—e (&)

Thus, M X R is not in W,. Taking

X:(O,%), Y=(,0) and Z=(£,0)

in the defining relation (2.3) of the class Wy, we have

(&) = 0.
This is a contradiction since

g &) #0
for a nontrivial structure in the class 5 for any non-constant function o. Hence, the product manifold
M X R is not in the class Wj. ]

Theorem 3.6. If (M, ¢, &, 1, 2) is of the class F, then the product manifold M XR is of the class W, ®W,
and not in the subclasses Wy or W, for all non-constant o functions.

Proof. Since (M, p,&,1,g) is of the class 4, by the defining relation of this class, we have the
following:
8¢ =0, 6 =0, wX) =0

for all vector fields X on M [7]. Then, we have

~ d Ldo
Q(X’ad_t) =0(X)+2(n+ 1)e EU(X) # 0
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since, for instance,
- do
0(£,0)=2(n+ 1) —
(£,0)=2(n+ e 7

is not equal to zero for any non-constant function o. Thus, the product manifold is not in W,. Take

~ d - ~ d
X=(0,—], Y=(0 d Z=10,—
[05) 70w 2-(0.5)
in the defining relation (2.3) of the class W, we have the following:
do
T—nY) = 0.
¢ — n)

This is a contradiction for a non-constant function o. O

Now, we investigate the class of the almost paracontact paracomplex Riemannian structure if the
class of the almost product Riemannian structure on M X R is given.

Theorem 3.7. If the product manifold M X R is of the class Wy, then the almost paracontact almost
paracomplex manifold is cosymplectic.

Proof. If the product manifold M X R is of the class W, the defining relation (2.3) is satisfied for all
vector fields X, Y and Z. In Eq (2.3), taking

- d

x=(o)
and

Y=27=(,0),

we obtain

0 (&) = 0.
For

X = (o, dit), Y=(,0) and Z=(Z0),
we have
0(p(2)) = —~w(p(2));

hence,

0(Z) + w(Z) = n(Z)6().

Then, by choosing
X=(X,0), Y=(X0) and Z=(Z0),

we obtain

aX,Y,Z) = 0(&) (n(Y)g(X, Z) + n(Z)g(X, Y)} . (3.13)

2(n+1)
Now, since

a(X,£,6) =0
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for any almost paracontact paracomplex structure, by Eq (3.13), we have the following:

CZ(X, f’ é‘:) =

1
n 1)9(§)U(X) =0,

which implies 6(¢) = 0. Thus, @ = 0.

O

Theorem 3.8. If the product manifold M X R is of the class W,, then the almost paracontact almost

paracomplex manifold is of the class F> ® F3 ® F4 ® Fo D Fs D Fro-

Proof. Since the product manifold M X R is of the class W,
~ d
6X,a—)=0

(X,a p t)

for all vector fields (X, a%). From the Eq (3.3),

7 d —0 % _
9(0, d_;) = 0 (€)= 0,

which implies
g =0
and P
B(£,0) = 6&) +2(n + 1)ef’d—f - 0.
By choosing

X:(o,%), Y=(,0) and Z=(Z0)

in Eq (2.4) and using (3.2), we have the following:
oY, Z,8) = o(Z, Y, §).
Then,

0=a(X,£,8) = a&, X,6) = a(£,£,X) = w(X);

thus
Vgé: = 0

Additionally, we have

(. d d
0= e(X, E) - 0(X) + 2n + l)e“d—(;n(X),

and
0((X)) = 0.
Moreover, by taking

X=(X0), Y=0), Z=(Z0)
in Eq (2.4), from (3.2), we obtain the following:

Sxrz (X, Y, o(Z) — a(X, p(Y),Hn(Z)} = 0.

(3.14)
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Now, we evaluate the projections o' to determine the class of the almost paracontact paracomplex
structure.
Since
0p(X)) =0, 6°() =0 and w(X)=0,

projections @', @°, and a'! vanish, respectively. From (3.14), we have the following:
a’ =a =0.
Note that, the remaining projections need not vanish. For example, by using
w(X) =0,
we have

a'’(X, Y, Z) = n(X)a(&, o*(V), ¢*(2)) = n(X)a(é, Y, Z),

which is zero if and only if
Vé:Y =0.

O

We finish by giving examples of almost paracontact paracomplex Riemannian structures in certain
classes. Example 3.9 shows that a normal almost paracontact paracomplex Riemannian manifold is
not necessarily in F; ® 7, ® F4, ® 5 & F, contrary to [6, Theorem 5.1].

Example 3.9. Consider the five dimensional Lie algebra with basis elements {e,e,,...,es} whose
nonzero brackets are

[e1,e2] = es, [e3,esq] = es.

Let g be the Riemannian metric such that the basis elements are orthonormal. Nonzero covariant
derivatives are evaluated by Koszul’s formula in [8]:

1 1
Ve = 65 V. es = —5€2
1 1
Vezel = —565, VezeS = 561,
1
Ve,e4 = 65 V.es = —5e
Ve; = —56s Vees = 765
1
Vesel = —562, Ve5€2 = 561, Ve5€3 = —564, Ve5€4 = §€3~
Let
& =es,

n be the 1-form metric dual to es, and the endomorphism ¢ be defined by
ple1) = e, @lex) =e1, gles) =es, ples) =e3, les) =0.
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Then, (¢,&,1, g) is an almost paracontact paracomplex structure with nonzero structure constants:

1
aler, ey, es) = g((Ve, p)er), es) = 5= a(ey,es, e;),

1

a(ey, e, es) = 5= a(ey, es, e;),
1

ales, e3, es) = 3= ales, es, e3),

a(ey, e4,€5) = 5= a(ey, es, e4),
ales,eq,e)) = —a(es, ey, ey) = ales, ez, e3) = —a(es, ey, e4) = 1.

First, we determine the class of this structure by evaluating projections o' introduced in [6]. The
only nonzero projections are

1
A, y,2) = E{xlyl — Xoy2 + X3Y3 — X4Y4)Zs

1
+ E{xlzl — X222 + X323 — X424}

and
a'%(x,y,2) = {y121 — Y222 + ¥323 — yaza}xs,

where
X =X1€]1...X5€65, Y =Y1€]...Y565, Z=1Z21€1...2565.

Thus, the structure is in the class ¥ ® F1o according to the classification in [6].
Now, by a direct calculation, we get that

[, 0l(x,y) = (=X1y2 + Xoy1 — X34 + X4y3) = dn(x, y)é

which implies that the Nijenhuis tensor

N(x,y) = [¢, pl(x,y) — dn(x, y)é
vanishes, thus, the structure is normal. As a result, a normal structure need not be in F1® F> ® F4 @
Fs @ Fe given in [6].

In the following example, we write almost paracontact paracomplex Riemannian structures of
classes Fo, Fo ® F1o and F¢ & Fo & F1o, and we show that these structures are normal if and only if the
structure is cosymplectic.

Example 3.10. Consider the Lie group G of dimension 5 with a basis of left-invariant vector fields
{e1, e, €3, €4, €5} defined by the following non-zero brackets:

[er,es] = d1e) + Arex + Aje3 + Azeq,
[er,e5] = —Are; — Adjey — Azez — Ajey,

[e3,es] = —Aje) — Azep + Ajes + Ayey,
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[es, es] = Azey + Adjex — Arez — Ajey,

where A;, i = 1,2,3 are arbitrary real numbers. One can define an invariant almost paracontact
paracomplex Riemannian structure on G as follows:

glei,e) =1,
glei,e)) =0, i#+}],
es=¢&, @(e) =e3, ¢(e3) =e;, @ler)=es, ¢les)=es.

By Koszul’s formula, the nonzero Levi-Civita covariant derivatives are

V. e =—-Adies, Ve, =—-Aes, V,es=2A1e; + Azey,

Ve = dies, V,e3 = Azes, Vp,es = —A1e; — Azes,

Ve = Azes, V.e3 =—Aies, Ves = —Azer + Ayes,

Ve = —Aes, V,es = Aies, Voes = Aze; — Ajey,

Vesel = —/1262 - /1163, V65€2 = /1281 + /1164, V65€3 = /1161 - /1264,

Vese4 = —-diey + Ayes,
and the nonzero structure constants

a(e, ej, er) = 8((Ve,p)(e)), er)

are

aley, es, er),

aler,es,es) = —A; = aley, es, e3),

aler, e, es) = —As

a(ey, e1,es5) = A3 = a(ey, e5,€1),
a(er, eq,€5) = A1 = a(ey, es, e),
a(es, er, es) = —A; = ales, es, €1),
a(es, e4,e5) = A3 = a(es, es,e4),
a(ey, €r,e5) = A1 = a(ey, e5,€2),
a(ey, €3, e5) = —A3 = ey, €5, €3),
a(es,er,e)) = 241 = —a(es, e, €3),

—a(es, e3,e3) = 211 = a(es, e4, e4).
We write N(x,y) by a direct calculation. We see that dn(x, y)¢é = 0 and

N(x,y) = [@, ¢l(x, y)
= 2{-A1x3ys5 + A3x4ys + A1 X5y3 — A3Xs5y4} €
+ 2{=A3x3y5 + A1 X4Y5 + A3X5y3 — A1 Xsy4} €2
+ 2{1x1ys — B3xays — A1 xsy1 + A3 xsyate;
+ 2{A3x1y5 — lixays — Az xsy1 + A1 xsya} es.
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This structure is normal if and only if N = 0, that is, if and only if Ay = A3 = 0. In this case, the
structure is cosymplectic, and if 1, = 0, then all Lie brackets vanish and the Lie algebra is Abelian.
Otherwise, if 1, # 0, then the algebra is not Abelian.

We determine the class of this structure by evaluating projections o' given in [6]. We have o' = 0
since w = 0. Since

6(¢) =60"(¢) =0,

we obtain
at=a=0
Let
X = Z xXie, y= Zyiei and z = Zz,-ei-
Then

F'x,y,2) = 241 x5{y121 — Y222 — 323 + yaza}:
thus, F'° = 0 if and only if A; = 0. In addition,

a(P* X, 9y, €) = —A3x1y2 — 1x1y3 + B3Xoy) + A1 Xoys — A1x3y1 + B3x3yg + A1 Xays — A3x4ys

= a(py, px, &)
and
a(@?y, 9°x, &) = A3x1yy — L X1y — B3Xoy + A1X2ys — A1 x3y1 — B3X3y4 + A1 Xy + A3x4ys
= a(px, ¢y, &).
Thus,
ad=a =0
and

9
@ (x,y,2) = A3 {—X1Y225 + X2Y125 + X3YaZ5 — X4Y325 — X1Y522 + X2Y521 + X3Y524 — X4Y523} -

Thus, &® = 0 if and only if A3 = 0. Similarly, a® = 0 if and only if A; = 0.
Note that
0(x) =0

for any vector x; thus, a' =0. By a direct calculation,
@ =a=0.
We can summarize these points as
p

(1) If Ay = 0 and A3 = O, then the structure is cosymplectic.

(2) If A, = 0 and A3 # 0, then this structure is in F.

(3) If 1, # 0 and A3 = 0, then this structure is in F¢ & F1o.

(4) If A1 # 0 and A5 # 0, then this structure is in F¢ ® Fo & Fo.

AIMS Mathematics Volume 10, Issue 5, 10764-10786.



10785

The class of the product manifold can be determined by (3.2). For example, if 1, = 0 and 153 # 0,
then the structure is in Fy. If o is constant, then the product structure satisfies the defining relation of
W, @ Ws. If o is not constant, then

0(X) # 0;
in this case, the product manifold is in the widest class.

This structure has the scalar curvature —4(/1% + /lg). For instance, if 1 = 0, A3 # 0, and o is
constant, then, from (3.4), the product manifold also has a negative scalar curvature.

4. Conclusions

In this paper, we systematically defined an almost product structure P, on the product of an almost
paracontact paracomplex Riemannian manifold with R by a warped product. Here, the new structure
P depends on any function o of the coordinate ¢ of R. Then, we considered the classifications of these
structures and gave certain relations between them, that may depend on the function o-. In this way, it
is possible to obtain integrable almost product Riemannian manifolds. Additionally, we studied the
curvature properties of the almost product structures and gave explicit examples. We showed that the
almost product Riemannian manifolds of any positive scalar curvature can be obtained from almost
paracontact paracomplex Riemannian manifold with a scalar curvature of zero. In addition, we
obtained FEinstein almost product Riemannian manifolds from Einstein almost paracontact
paracomplex Riemannian manifolds.
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