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Abstract: In this article, we consider the problem of finding a zero of a system of monotone inclusions
in Hilbert spaces. Notably, each of these monotone inclusions comprises three operators, with two of
them being linearly composed. To address this challenge, we propose a new splitting method that, at
each iteration, essentially necessitates the computation of three individual resolvents, corresponding
to each operator within the monotone inclusion. Under the weakest possible conditions, with the help
of characteristic operator techniques, we analyze the weak convergence properties of our proposed
method, which is facilitated by the introduction of a novel inequality. Numerical results demonstrate
the practical usefulness of this method in solving large-scale rare feature selection in deep learning.
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1. Introduction

For the Hilbert spaces H;, i = 1,...,n, G| and G», consider the following system of three-operator
monotone inclusions

0 EA,‘(X,‘)'FR?A (Z?:]Rixi_r)+ Q;‘B(Z?leixi—q), i=1,...,n, (1.1)

where each A;: H; = H;, A: G, =3 G, B: G» = G, are all maximally monotone operators, and
R;: H; —» G, Q;: H; —» G, are nonzero bounded linear operators along with their adjoint operators
R:, Q7 respectively, and r € G| and g € G, are vectors. This problem model finds wide-ranging
applications across various fields, including monotone variational inequality problems [1, 2], fused
lasso [3], hyperspectral unmixing [4], image restoration [5—7], signal processing [8], and machine
learning [9, 10].

A particularly notable case of the problem is given by

0 A(x) + A(x),
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which reminds us of the Douglas—Rachford splitting method of Lions and Mercier [11]; see [12-14]
for related discussions.
In the n = 1 case, the problem model simplifies to

0€A(x)+R'ARx —r)+ Q"B(Qx — q), (1.2)

which can be solved by some existing splitting methods such as those proposed in [1,9].
In the general case, this model distinguishes itself from [15] by taking into consideration the
following problem:

0€eA(x)+A(x)+QB(Z-,Qixi—q), i=1,...,n, (1.3)

where each A;: H; =3 H; is a maximally monotone operator. A recently proposed method [15,
Algorithm 1] can be stated as follows: For i = 1,...,n + 1, choose a; > 0. At the k-th iteration,
for given iterates x¥, af € A,(x}), i =1,...,n, x*,, and u*, we update u* in some simple way to get
the intermediate %, and compute

AL k_ ok _k
(il + A)(X) 3 aix; —a; — Qi

(@pr I + B)(X{/(H.]) Bl a’n+1xk

—k
n+1 +u,

to get the intermediate iterates )'cff, i=1,...,n+ 1. Calculate y; > 0 in some way. Finally, we obtain
the new iterates

(a;1 +Al~)(xf+l) E} a,-xf + af - 'yk(xf - )'ci-‘), i=1,...,n
k1 k k -
Ani1 X541 = U1 Xy — V(X — xkn+1)’
k+1 k K -
W = — (7 - S0 + ),

k1 ) k ko <k
o Y+ df =g = 7).

at = o (o - ¥

Inspired by this work, we propose a new method to solve (1.1). Specifically speaking, for i =
1,...,n+ 2, choose a; > 0, 8 > 0, and ﬁ > 0. At the k-th iteration, for given iterates xff, i =
1,...,n+2, u*, and V*, we update u* and v* in some simple ways to get the intermediate #* and ¥, and
compute

(il + A)(X) > axt — Rt — O,
(I + A)(Z,

k —k
n+l) 3 Tt 1X,41 +u,

=k k =k
(@pead + B)(xn+2) S Ap2X, 0 TV,

to get the intermediate iterates )'ci.‘, i=1,...,n+ 2. Calculate v, > 0 in some way. Finally, we get the
new iterates

o =~y -5, i=1,...,n+2,
k+1 k —k n p sk
Wt =u - YiB(X, ) — T RiX; + 1),
k1 _ ok Aok n ().7k
V= - YilB(Xyyy — Xin QiXi + ).
This new method is not a simple extension of the method in [15], even in the n = 1 case, because
we make use of the resolvent computations with respect to the operator A in the process of obtaining
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the intermediate iterates from the current ones, which is different from the method proposed in [15].
In this sense, our algorithm is new. It shares nice convergence properties with the method in [15], and
their individual resolvent computations are also the same at each iteration. Moreover, the new method
has a broader range of applications.

Ifay,...,a,, au, B, B satisfy the inequalities (3.7) and (3.8) below, then we follow [15] to resort to
characteristic operator techniques [16—18] to prove the weak convergence of our proposed method.
In convergence analysis, we introduce Lemma 2, which seems new and is an extension of [19,
Lemma AS5].

The rest of this article is organized as follows. In Section 2, we give some basic definitions
and lemmas. In Section 3, we describe our proposed splitting method in Hilbert spaces in details,
specifically tailored for the monotone inclusions (1.1) mentioned earlier. In Section 4, under the
weakest possible conditions, by using characteristic operator techniques [16—18] and introducing a new
lemma, we prove the weak convergence of the generated primal sequence. In Section 5, we propose a
variant of Algorithm 1 and analyze its weak convergence. Section 6 introduces the dual-first version
of Algorithm 2. In Section 7, we performed numerical experiments to verify the practical effectiveness
of our proposed method, together with its variants, in solving the large-scale rare feature selection in
deep learning [9, 20]. Finally, Section 8 concludes this article with some remarks.

2. Preliminaries

In this section, we begin with some basic definitions, followed by presenting auxiliary results that
will facilitate our subsequent discussions.

Let H be an infinite-dimensional Hilbert space, equipped with the standard inner product (-, -) and
the corresponding norm || - ||. Let Q: H — G be a nonzero bounded linear operator, with its adjoint
operator Q. The norm of Q is given by

10l = max{ v(u, Q*Qu) : lull =1, u € H}.

Definition 1. An operator A: H =3 H is said to be monotone if
(x=x',a-d)>0, Vx, X €edomA, aeAx), a € AX),

where domA: = {x € H: A(x) # 0}, and it is said to be maximally monotone if its graph {(x,a) €
H X H: a € A(x)} is not properly contained in the graph of any other monotone operator in H.

The inverse of A defined by A™!(a) = {x € H: a € A(x)} is maximally monotone in { whenever A
is. And one important case of maximally monotone operators is df, which is the sub-differential of a
closed proper convex function f: H — (—co, +oo].

For any given maximally monotone operator A : H =3 H and X € H, the solution of (al+A)(x) > X
or (I + @A)(x) > X exists uniquely [21].

Lemma 1. Denote

x=(x1,....x,), A=diag(A,....,A,), R=(Ri,....R,), 0= (Q1.... 0
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For the system of monotone inclusions (1.1), we introduce the dual variable u € G| and the auxiliary
variable v € G,. Then

A X (0 R 09\(x) (0
T(x,u,v) = A7l ul+|-R 0 O [{ul|+]|r
B')\v) \-0 0 0)\v) \g

must be maximally monotone. And T is termed the characteristic operator with regard to the
problem (1.1).

Proof. Its proof is similar to that of [15, Lemma 1] and thus is omitted. O
At the end of this section, we extend [22, Section 3] and [23, Lemma 5.1] to the following lemma.

Lemma 2. LetR : H — Gi, Q : H — G, be nonzero, bounded, and linear operators, and let
a>0, B>0. If4aB > ||(Q, VBRI, thenVx € H, Yu € G, Vv € G», the following holds:

allxdl® + Bllull* + VI = (x, Qu + Rv) > ¢(a. B, R, Q) (lell2 + Judll® +ﬁ_IIIVI|2),

where

1
p(@p.RQ) = 5 (a +p- N@-pr+©, \/BR)IIZ) .

3. Method

In this section, we give a detailed description of our proposed splitting method for the system of
monotone inclusions (1.1).
The underlying design of this method comes from the following considerations:

Assumption 1. For the system of monotone inclusions (1.1), we assume the existence of solutions

x;€Hy,....,x, €H,, X, €G, X, € G, U € G and V' € G, such that these variables satisfy the
system
0cA(x)+Ru+Qv, i=1,...,n, (3.1
0€A(xyy1) — u, (3.2)
0 € B(x,12) — v, (3.3)
0= RiXi— 71— Xpi1, (3.4)
0 =235 0ixXi —q— Xui2. (3.5)

Furthermore, it is assumed that fori = 1,...,n, O # domA; C domA and 0 # domB.

Denote
Ry =-1, Ryp = 0, Qn+1 =0, Qn+2 =-I. (36)

Algorithm 1. Step 0. Choose x) € H;, i = 1,....,n, x),, € G, u’ € G1, X0, € Go, W € G,. For
i=1,...,n+2 choose; >0, B;>0and 0 <0 <8<?2. Setk:=0.

AIMS Mathematics Volume 10, Issue 5, 10740-10763.



10744

Step 1. Choose a; satisfying

@; > |IRiIP/(4B) + Qi /4By, i=1,....n, (3.7)
i1 > 1/(4ﬁn+l)a Qpyo > 1/(4Bn+2) (38)

Calculate B = Y2B;, B = Y4B For X e Hyi=1,....,n, X, € G\, u' € G), X, € Go, V' € Gy,

n
compute

i =u - (5, - S R+ )8, (3.9)
7= -, - 27 10X + )/, (3.10)
(il + A)(Z) 3 aixk — Ry — O, (3.11)
(@i I + A)FE, ) D @ X, + 05, (3.12)
(Aol + B)(® ) 3 piaxt , + 7. (3.13)

If a prescribed stopping criterion is satisfied, the algorithm terminates. Otherwise, choose 6; € [, 0],

compute
= Y a; ||x - xkll + (xk Z;L,Ri)'cf +r,uf =y + (xn+2 ;;,Ql-)'cf +q, vk — Ky,
Ui = Sitllan(xf = ZOIP + 1%y, — B Rix + il + 155, — S, Q% + gl
Yi: = O/ Y. (3.14)

Step 2. Fori=1,...,n+ 2, compute in order

A = o — (X - 5,

uk+1 — uk _ '}’k()_ciﬂ — Z?ZIR,X? +7),

V= oy (B, - 2, 00 + ).
Setk:=k+ 1.

Interestingly, when specialized to 0 € A(x) + A(x), in the 8 = +oo case, Algorithm 1 reduces to

(@l + A)(F) 3 ax* — b, (aol + A)FE) 3 @ + i,
xk+l = _xk - yka'(xk - )_Ck), x];—l = xé - ’)/ka’Z(xé - )_Cé)’
uk+1 — uk _ '}’k()_cg _ )_Ck)

4. Weak convergence

In this section, under the weakest possible assumptions, we analyze the convergence properties
exhibited by both the primal and dual sequences of iterates generated by Algorithm 1. In particular,
we rigorously prove that the primal sequence of iterates converges weakly to a solution of the
problem (1.1).

Theorem 1. Let {x 1}2”12, {u*}, and { Y be the sequences generated by Algorithm 1. If Assumption 1

holds, define B: = ¥28;, B: = Y*2B; and assume that
@; > ||Ri||2/(4:8i) + Q1P /4B, i=1,....n, (4.1)
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Upi1 > 1/(@ABus1),  @usa > 1/(4B12), (4.2)

then there exists some positive number ¥ satisfying
WA =W IP < I = I = 9 (2l = SHP + BBl = ) + o+ Dl - BIP). (43)
Proof. Fori=1,...,n, it can be deduced from (3.11) and (3.1) that
A(F) 3 ai(x - 3 - Rii* - Q}F, Aux)) > —Rju" — O}V,
which, together with the monotonicity of each A;, imply
(T =2, @i} = 3 = RI@ —u") = Q[ ")) 2 0.
By using ¥ —xf = xf —x' — (¥ - %), i = 1,...,n, we have
(= xp, (= X)) — (& = X3 RIS - u) + QF 0 =) > aillxd — X1 (4.4)
Based on (3.12) and (3.2), we derive
AR, D) D @ (0, -2, )+ b, AL, v,
and due to the monotonicity of A, it can be inferred that
(Tt = Xp1s Ut (g = Foy )+ — 1) 2 0,
which indicates
(Xt = Xnpts @it Oy = Ty D)+ (B = Xy B = ™) = @l — X (4.5)
Similarly, we can derive from (3.13) and (3.3) that
B(X,,2) 3 @naa(Xpy = o) + 7, Blxy,,) 307
From the monotonicity of B, we can obtain
<x§+2 = X425 an+2(x§+2 - )_CI;+2) +7 =) >0,
thereby implying that
<xn+2 Xpi2s a’n+2(x]:;+2 - )_sz+2)> + </‘]r(;+2 Xpgps V= V) 2 an+2||xn+2 xfl+2||2' (4.6)
Combining (4.4)—(4.6) with (3.6) yields
S = X, @i(xf = X)) = DR — X)), i1 — 'y = S OIE — X)), V=) = netallx) - ®IP.
Furthermore, according to (3.4)—(3.6), we have

+2 * +2 —_
YIPRiX =1, YHIOix; =q.
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Thus

SO = X, @i = 7)) — (PR — 1, 0 = ut) — (D20 — g, V=) > i 2a] |l - X1

In terms of
B —uw = - - -dH, v =V v = (F =75,

we can obtain

Tk — 1, @i = X)) + - ut, —XERE + )+ O =y, =320 + q)
2 yitaille = ZIP = (SLERE — rod = @) = (SIPOE - ¢, = ).

Next, denote
X a(x; — Xp)

w.= Xn+2 |° d:= a’n+2(xn+2 - )_Cn+2) ?
u —SMIRX; + 1
v —SHOiXi +q

and
¢ = Sl = TP — (SETRE — 1o = @) — (X 0 — g, v =),
then the inequality above can be rewritten as (W —w*, d*) > ¢, where w* is the corresponding solution.
Together with (3.14) and v, = ||d*||>, we obtain
k+1 W*HZ — ||Wk _ W* _ ’}/kdk“z
= [ = wiII> = 2y = W', d) + yplldM P
< I = wIlP = 2yui + Vi

[lw

= W = wIP = (2 = Oy 4.7)
Note that
SIRE +r = B, -y 1R-;c’f +r

= Xus1 T 2i iRi X tr+ ‘xn+1 II§+1 + Z?:lRi(xf‘{ - Xf)

= ,B(l/t k) + 'xn+l n+l + Zi:lRi(xf'C - xf)
Similarly,

n+2lek tq= IB(V —V ) + xn+2 foz + Z?:lQi(xf'( - )_Cf()

From Lemma 2, 8: = ¥7*2B; and 3: = ¥7*2f3;, we have

¢ = Rtallx; = BIP = (PR — i — i) = (S0 - g0V —V>
=yt — X1 + Bl — @ +ﬁ||v — VP + DEHR — &), i = @) + RO = X)),V =)
= "*Z(CVzIka TP + Billu = @2 + Billv = VP + (= &, Ry = @) + Q70F = )))
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51 ko =k2 . A lo=k k2 —k |12 k =k plps -k k 51 —k k
= 286 aillxi = XIF+ B8 Billa" — w7+ VT =g =X B R —uw) + B Qi (7 =)
5-1n 51 51 —k 2 kK =kpp2 1Rk k2
> BB @B BB R BT O — BIP + Ik — 1P + B Bl — P
) ko =ki2 “1p 1k k2
= "+2¢(a,,ﬁl,R,,Q)(||x 7+ llu” =@l + B~ Bl = V1),

and the conditions (4.1) and (4.2) indicate

* 51 % * S— M .
4aif; > R + B BNQHIP > IR}, AJBT'BODIP, i=1,....n+2.

So each

1 ~
) [a'i +0i— \/(a'i - B)* + II(R?, ,Bi_lﬁiQf)Hz]
must be positive. Let p be their minimum; thus, we further obtain

$i 2 p (Pl = ZP + (0 + 2l = @17 + 5228, Bl — 71P) (4.8)
On the other hand,
Ui = Y2l (k= FOIP + || = S2RE + I + || - S0 + gl
= Y2l = O + 1Bk — &) + SR — TP +|v§(vk 7Y+ 220, - 2P
= 2l — XN + 2028w — @) + SR (6 — X))
+ 132 ABBI(B B = 7)) + 22 0i(x — 7)1
< sra? iRl — RP + (22287 + SERIP) ((n + 2l — @I + sl — 21P)

1

+ (BB + TN EEB; Bl = FIP + willag = %)
< (s(a? +B7 + B + IIRIP + 1QP)) (2l = FHP + (n + 2l = 1P + 52267 Bl = 1P).

Thus, we can conclude that

Vi = O/ = (Bp)/ L (i + B + BB + IRAF + Q%) > 0.

Combining this with (4.7) and (4.8) yields the desired result. O

Theorem 2. Let {x; }”+2, {u*}, and {(V*} be the sequences generated by Algorithm 1. If Assumption I and
conditions (4.1) and (4.2) hold, then the corresponding primal sequence {xf.‘}?:l weakly converges to a
solution of the system of monotone inclusions (1.1) mentioned above.

Proof. It follows from (4.3) that

DX -0, - >0, V-7—>0i=1,...,n+2; (4.9)
(ii) {x"}*2, {u*}, and {v*} are bounded in norm. (4.10)
In accordance with the definition of T, we can obtain
T, @ (X, — ) + 8 @ (X, — %) +7)

n
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(xfc) + R*(a/n+l(-xk -)_Cﬁ_,_]) + ﬁk) + Q?(an+2(xﬁ+2 - )_CI:H_Q) + ‘_}k)

A_l(anH(-fo_] - )_Ck_,_]) + ﬁk) - Z?:IRI)_Cf t+r

n

B aua(,, — &) + 1) - 31,0 + ¢

Utilizing (3.11)—(3.13), we further deduce that

A, (xk) +R; (an+l(xn+1 xﬁﬂ) + ﬁk) + Q*(an+2(x,’z+2 - )_Cﬁﬂ) + ‘_"k)
> a;(xf — ) - Ri* - O+, R(X, - %, )+ R + @, 20/(xr, — % )+ 0

n+1

= q; (X - X ) + a'n+1R (X,H_] n+1) + a’n+2Q[ (Xn+2 - X]:Hz)a

AN @ (O, =X, )+ = YL RE +r 3 Bt — ) - (o, - #, )+ 2 R - ),

B (aua(xh,, — %) +79) = 3,0 + g 3 BOM = V) — (X, — X)) + 20, 0ilxd — X).

Therefore,

-

n+2

T (&, @i (%) ) + @, () ) +7)

n+l n+1 n+2

G’,(X - X ) + a’n+1R (xn+1 n+l) + a’n+2Q;<(x,];+2 - )_Cﬁ+2)
> : . 4.11)
Bl =) = (x,, X’,Z+1) + T Ri(xf — X)

BOF =) - (XM X 0) + I QX — X))

Due to (4.9) and the boundedness of each R;, Q;, we can see that the right-hand side of (4.11) converges
strongly to zero. Meanwhile, from (4.10), there exists at least one weak cluster point (x*, u®™, v®)
such that

which, together with (4.9), implies

N T N T N

Finally, invoking [15, Lemma 3] or [24, Lemma 3.2], we can conclude that this weak cluster point
is a solution point of 0 € T'(x, u, v), thereby also solving the problem (1.1). The proof of uniqueness of
weak cluster point is standard [12,25] and thus is omitted. O

5. The variant of Algorithm 1

In this section, we give a variant of Algorithm 1 tailored for the system of monotone inclusions (1.1).
The underlying design of this method is rooted in the following:
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Assumption 2. For the system of monotone inclusions (1.1), we assume the existence of solutions
x;eHy,...,x; €H,, x5, € G, u' € G and V' € G, such that these variables collectively satisfy the

n+l
system
0cA(x)+Ru+Qv, i=1,...,n, (5.1)
0€eA(x,41) —u, (5.2)
0 =35 Rixi =1 — Xps1, (5.3)
0eB'(v)- 3L 0ixi +q. (5.4)

Furthermore, it is assumed that fori = 1,...,n, 0 # domA; C domA and 0 # domB.
Denote
Ry = -1, Q1 =0. (55)

Algorithm 2. Step 0. Choose X0 e H,i=1,....,n,x°, € G, u' € G, VW eG, Fori=1,...,n+1,
choose B; >0, B;>0and 0 <0 <8< 2. Setk:=0.
Step 1. Choose a; satisfying

;> IRIP/(4B) + 1QiIP /4B, i=1,...,n+1.

Calculate B = Y1%\Bi, B = (XB)™ Forx* e Hyi=1,...,n X, € G, u* € G\, V' € Gy,

compute
i =ut - (X, - S R+ 1)/B, (5.6)
(a;l + A)(X) > axt — Riid — Q) (5.7)
(@i I + A)F, ) D @p X, + 05, (5.8)
(I + BB ) 3V + Bz, 0iF - ¢). (5.9)

If a prescribed stopping criterion is satisfied, the algorithm terminates. Otherwise, choose 6; €
[0, 8], compute

G = Sl aillxk — BIP + BV - TP+ (L - S R+ it - 3 - 3 (0 = 7,0 =),
Uit = Yl = X5 — QF0F = VOIF + 11X, — S R + AP + 11871 0K = TIP,
Y= Ok /Y. (5.10)

Step 2. Fori=1,...,n+ 1, compute in order

1 k k =k k -k
X;ﬁ =X — Vk(a’i(xi - x,‘) - Q?(V - V),
k1 _ ok _k —k
w =u = (X - SLRE + ),

Vk+] — vk _ ,ka—](vk _ ‘—}k)

Setk:=k+ 1.
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Remark 1. In the n = 1 case, when A, R, and r vanish, the problem (1.1) can be transformed into

0 € A(x) + Q"B(Qx — @),
and the corresponding iteration about the intermediate points can be simplified as

(al + A)(F) 3 axt — OV,
(I + BB H() 3 v' + pOF -

which is a special case of the proximal point method. See [26—28] for more details.

Theorem 3. Let {x*}*], (¥}, and (V*} be the sequences generated by Algorithm 2. If Assumption 2

ltl’

holds, define B: = ¥*\Bi, B: = (£ B8,)" and assume that

a; > [IRIP/4B) + 1QI1P /4By, i=1,....n,
Ap1 > 1/(4B11),

then there exists some positive number ¥ satisfying

||wk+l

Proof. Fori=1,...,n, it can be deduced from (5.7) and (5.1) that
A(X) 3 ai(xk = ¥ - R - OV, Aux)) 3 —Riut — Qv
According to the monotonicity of each A;, it follows that
(T =2, @i = 3 = RI@ —u") = 0/ =) 2 0.

By utilizing ¥ — x7 = x¥ — x7 = (& = %), i = 1,..., n, we obtain

(= X1, (= X)) — (3 = X3 RIS - u) + QF0F =) > aillxd — X1

Based on (5.8) and (5.2), we derive

)3 CYn+1(36ﬁ+1 x

AR D+, A, ) DUt

n+1

Then it follows from the monotonicity of A that

—k = —k *
<xn+1 n+1’ a,n+](xk xk+1) tu —u > 2 07

n

which indicates

k —k —k —f & 2
(X1 = Xps1s an+1()f = X )+ (X = Xpppp @ —u') 2 an+1||xﬁ+1 - xk+1|| .

n

Similarly, we can derive from (5.9) and (5.4) that

B'@ 350 -9+ 3,08 —gq, B'(0V) 3 51,0 —q

2 k 2 =k|2 —1 5 1,,k =ky2 k —k112
=P < IwE = wel? = (Sl = =P+ BBV = PP + (n + DIl - 71P).

(5.11)
(5.12)

(5.13)

(5.14)

(5.15)
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From the monotonicity of B~!, we have

=, B =) + 2 Qi - X)) 2 0,

implying that
O =V BT = V) + (0 = S 0 - X))y 2 BV - P (5.16)

Combining (5.14)—(5.16) with (5.5) results in,
S = X, (= X)) — S - x5 R - ) + 07 (v = v
+ 0 =V BN =T+ (- Z”*'Q(xk x;))
> Srlallxf — X7+ BV - 9P
Furthermore, based on (5.3) and (5.5), we derive that ¥!*'R;x; = r, thereby
T = s @i = X)) = (S Qi = X)),V =)

+ (i —u, Z”“Rx + )+ OF =, BIOM = 7))
> vl allxf — %P + BV = P

l

In terms of

=k * _ k % k -k .
Xi—x=x;—x;—(;—-x),i=1,...,n,
i —u = —u - - db,

P — vyt =k =y — (F =75,

we can further obtain
Y — X, a2 = 3 - O f =T + W -, SR+ Y + O =, BT O - )
P = b = @b, S REE 1y — Sk - 2, Qrk = ).

> stk — &P + g -

Next, denote

X1 aj(x; —x) - Qj(v—")
wi= Xn+1 |2 d:= a’n+1(xn+1 X-n+1) - Q>s (V - ‘_}) ’
n+1
u Z””R X+ r
v ,8 v =7)

and

—k 12 kK -k P K =k
G = T aillxd = XIP + BV = NP - = 3 S RE - ) — el = 7 QR0F =),

then the inequality above can be rewritten as (w* —w*, d*) > ¢, where w* is the corresponding solution.
Together with (5.10) and v = ||d*||*, we obtain

k+1 2 k k)2
W™ = willm =W = w" =y
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= [wE = w*|I? = 2wk — w*, d) + 2 ||d"|?
< W = WP = 2y + ViU

= W = wII> = 2 = 6y (5.17)
Note that
~SI R A1 = Ky~ TR
= X 2L IR-xk +r+ fc’;+1 — Xhyy + TR - 7))
= B — @) + X, = Xy, + TR — X))
From Lemma 2, 8: = ¥*!8; and 87! = 3! B;, we have
b = Staillxg — ZP + Bl — @I+ IV = VP + g - & RIS - i) - 07 0F =)

= S (il = FHP + Billd* — @ + Bl - PP +<xif—xi-‘,R,~<u - )—Q,-(v )
SBiB aluxk P +ﬁl Bl — I+ IV = TP - B BT R - )+ B Q0K - )
S BB e B B BT RS O (I = S + = P+ B Bl - 7P)
= i w(e B R QD) (I1xf = B2 + ek — 912 + B B = P11P).
and the conditions (5.11) and (5.12) indicate

* 51 * * 51 * .
4aif; > RIP + B IO > IR}, \B: BODIF, i=1,....n+1.

So each

% {0&' +Bi - \/(a'i - B)* + (R}, ﬁAi_l,BiQf)||2J
must be positive. Let p be their minimum; thus, we further obtain
$i 2 p (I = ZIP + (0 + Dl = @97 + £208,7 Bl = 91P) . (5.18)
On the other hand,
Ui = S llei(xf = ) = Q7 0F = PP + 11 = S Ry + P + 1B (0 = P9I

sellan( = 2) = B B0l (NBTI B, = VIR

FUZEB = @) + 2 R = BOIP + 12 BB (BT BOF = NI
Si@? + B BIOAP(E Ik — 7P +2"*1ﬁ B = 7P
S+ IRIDEE I = ZP + (n+ Dlld — @) + BB i B BV — |1
Sra; + B] + BB + IRAP + BT BIQIP) (Sl = BIP + (n 4+ Dl — &1 + 5! 57 Billv* = 71P) .
Thus, we can conclude that
Vi = Ok /Wi = (Bp)/ 21 (@} + B7 + BB + IR + BBl QAP > 0.
Combining this with (5.17) and (5.18) yields the desired result. O
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Theorem 4. Let {xf.‘ };’:11, {u*}, and {(V*} be the sequences generated by Algorithm 2. If Assumption 2 and
conditions (5.11) and (5.12) hold, then the corresponding primal sequence {xff Y., weakly converges to

a solution of the system of monotone inclusions (1.1).

Proof. It follows from (5.13) that
-0, - >0, V-7—>0i=1,...,n+1; (5.19)
(ii) (X)), (u¥), (V') are bounded in norm. (5.20)

Then, according to the definition of 7', we can obtain

AR + R @ik, — 3, + 79 + O
T()_Ck’ a’"+1(xrli+l - xﬁﬂ) + L_tk’ ‘_"k) = :

ANy (X - )+ - 2 RX +
B7'(") - T, Q% +q
Utilizing (5.7)—(5.9), we further have

A + R (5, - %, )+ i)+ Qi

n
ko =k _k - _ —k
> ax; —X)-Ru" — OV + a,,+1R;"(xﬁ+l - xﬁﬂ) +Ru" + Qv
ko =k vk - =k
= a’i(xi - xi) + a’n+1Ri (xn+1 - xn+1) - Qj(V -V,

AN (0, = &) + 7 — L RiF + 1

n+l
S B — 1) + X, — b, + SR - ),
BN -3yL,0% +q
SV -+ 3 0F g - I 0% + ¢
=B =,

Therefore,

o = ) + R, — &) = 010K = )

T(F, @y (X, — X, )+, 7% 2 (5.21)

B =) + %,y = X + TR = X)
B0k =)

Due to (5.19) and the boundedness of each R; and Q;, we can know that the right-hand term of (5.21)

strongly converges to zero. Meanwhile, from (5.20), there exists at least one weak cluster point

(x*, u™, v*) such that

xk./ — xoo, uk./ N um’ vkj N voo’

which, together with (5.19), implies

A A AT TR T N

Finally, invoking [15, Lemma 3] or [24, Lemma 3.2], we can conclude that this weak cluster point is
a solution point of 0 € T'(x, u, v), thereby also solving the problem (1.1). The proof of uniqueness of
weak cluster point is standard [12,25] and thus is omitted. O
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6. The dual-first version of Algorithm 2

In this section, we introduce the dual-first version of Algorithm 2, providing a simple overview of
its implementation.

Algorithm 3. Step 0. Choose X0 e H;,i=1,....n,x°, , € G, u' € G, VW eG Fori=1,...,n+1,
choose B; >0, B;>0and 0 <0 <8< 2. Setk:=0.
Step 1. Choose «a; satisfying

a; > IRIP/EB) +1QIP /4B, i=1,....,n+ 1.
Calculate B = Yi%\Bi, B = (XB) ™. Forx* € Hyi=1,...,n, X, € Gi, u* € G\, V € Gy,

compute

i = uk (xk Zf IR-xk + r)/ﬁ
(I +BB ) 2 +ﬂ(2 L 0ixl - q),
(ol + A,-)(xi) E) aqxi - R:fuk - vk

—k k
(@pi I +A)X, ) D Apir X,y + i

If a prescribed stopping criterion is satisfied, the algorithm terminates. Otherwise, choose 6; €
[0, 8], compute

bi: = St = BIP + BV P+ (R - S RE i — ) — 5 (00— R, - ),
Ui = Sl — 5 = Q10K = TR + IR, — SR P + 1B 0F = IR,
Yii= O/ Y.

Step 2. Fori=1,...,n+ 1, compute in order

A = o =y (@ - 7 - Q10F =),
Ukt =k — yk(xk Z;’:]R[)'cf.‘ +7),

n+1
k+1

V :vk—)/k,B (v —\‘/‘).
Setk:=k+ 1.

7. Numerical experiments

In this section, we performed numerical experiments via Python 3.9.2 to verify the practical
usefulness of Algorithms 1-3 in solving large-scale rare feature selection in deep learning, compared
with other state-of-the-art splitting algorithms, selected for their similarities in features, applicability,
and implementation effort.

Vi Splitting: The splitting method is due to Vi [1] and also see [15, Algorithm 6].

JE Splitting: The splitting method of [9, Algorithm 1], originally proposed by Johnstone and
Eckstein, is well suited for solving (1.2), and also see [15, Algorithm 7].

JE 2021: The splitting method of [9, Algorithm 1], originally proposed by Johnstone and Eckstein
to solve the first test problem below.
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The test problems we conducted were about rare feature selection [9, 10,20]. In machine learning
and data mining, datasets often contain a large number of features, but not all features can effectively
assist prediction models. In fact, key information often only focuses on a few features. Therefore,
feature selection techniques are particularly important as they can help to accurately identify valuable
features for the model and eliminate irrelevant or redundant features. In this process, rare feature
selection becomes a key step, aiming to screen out those features that appear less frequently but have
significant value for model prediction or classification from numerous features. These rare features
may be particularly sparse due to the sparsity of the dataset, but they may play a crucial role in
the model construction process. Therefore, how to aggregate these features and extract them from
numerous features is a challenge. Yan et al. [20] introduced a framework for aggregating rare features
into denser features by making use of an auxiliary tree data structure and proposed a generalized
regression model for the rare feature selection. Johnstone and Eckstein [9] improved the model to
make it more suitable for splitting methods, and effectively solved the problem with their proposed
algorithm.

Our first test problem comes from Johnstone and Eckstein [9]*, which can be stated as follows:

rg;ig 1Boe + XHy = yll3/2n) + Aully-lly + A1 = wlIHylli, (7.1)

where X is the n-by-d data matrix, H is the d-by-r coefficient matrix, y € R" is the target vector, e € R"
is the all-ones vector, ) € R is an offset, and y € R". In [9,20], the authors gave a detailed description
of the relationship of H, 7y (see [9, Section 6.3] [20, Section 3] for more details). The £; norm on y
enforces sparsity of y , which in turn fuses together coefficients associated with similar features. The
¢; norm on Hy additionally enforces sparsity on these coefficients, which is also desirable.

As described in [9,20], we applied this model on the TripAdvisor hotel-review dataset. The response
variable y was the overall rating of the hotel, in the set {1,2,3,4,5}. The features were the counts of
certain adjectives in the review. Many adjectives were very rare, with 95% of the adjectives appearing
in less than 5% of the reviews. There were 7573 adjectives from 169987 reviews, and the auxiliary
similarity tree 7 had 15145 nodes. The 169987 x 7573 design matrix X and the 7573 X 15145 matrix
H arising from the similarity tree 7 were both sparse, having 0.32% and 0.15% nonzero entries,
respectively.

Obviously, if we let

d=d+1, x= (,8;) eR™, X =(e,X) e R,

_ 1 0 di X (r+1) _ 0 0 di X(r+1)
H_(OT H)ER , M= o7 HeR ,

then the problem can be transformed into

min  &(x): = [XHx - yll5/2n) + (x| + ...+ bel) + A1 = p)lMxl;. (7.2)

xeRr+l1

The corresponding optimality condition is

0 € Aulx + (XH)" (XHx —y) /n+ A1 = )M || - ||, (Mx), (7.3)

“TripAdvisor data are available at https://github.com/yanxht/TripAdvisorData.
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where J = diag(0,d|,...,d]||,0). This problem may be viewed as a special case of (1.2) with
A=, A={1/mI, B=aA1-wdl-I,

R=XH, r=y, O0=M, ¢g=0.

Below we followed [9] to choose n = 169987, d; = 7574, and r = 15145. To verify the
effectiveness of the methods, we fixed u = 0.5 and selected multiple values for A € {1075, 1074, 1073}.

For Algorithm 1 (in the n = 1 case), through trial and error, we tried @y = @, = a3 =
0.01, 0.1, 1, 10, 100, and so on, ultimately choosing

Hk = 09, ) = 10, an = 10, a3 = 10,

Bi = (1+10°)(IRI? +11QIP)/(4a1), Ba=(1+107)/(4az), B =P+ P,
Bi=p1, By=(1+10"0)/(4as), pB=pi+ps,

which satisfy (4.1) and (4.2) as required in Section 4. And for the starting points, we followed [9] to
choose
= zeros(r + 1, 1), xg = zeros(n, 1), xg = zeros(d;, 1),

u® = zeros(n, 1), V° = zeros(d,, 1).
In the practical implementations of Algorithm 1, we set
Fo= X - RE + Q) a,

and got
(@l +A)(F) e = F=U+a'A)GE.

Thus, we further obtained

o {(1 + o 2pd] - 7N ET) = sgn(Ei]Y) max (|71 - o', 0f, i=2,....n-1,
X =

x[il*, i=1,n,

where the term on the right-hand side is the so-called soft shrinkage function, X[i] represents the i-th
component of X.
For Algorithms 2 and 3 (in the n = 1 case), by trial and error similar to Algorithm 1, we chose

6:=09, @ =10, a;=10, B =(1+107)IRI? +IQI)/(4a),

Br=(1+10)/(@ar), B=pi+B B =p, B=1/p,

which satisfy the corresponding inequalities as required in Section 5. And for the starting points, we
also chose

X0 = zeros(r+ 1, 1), xg = zeros(n, 1), u° = zeros(n,1), V° = zeros(d,, 1).
In the practical implementations of Algorithms 2 and 3, we set
k= 4+ Boxt - ¢).
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By utilizing Moreau identity, the resolvent of the operator B~!' can be computed as follows:
V= +pB) ) =V -pU+ BB, B0

For Vi splitting, we chose 7 = 2/n, oy = 2/n, 0, = 0 to satisfy the corresponding inequality as
required in [1], and
A=4d, By =Q2/nl, B,=2A1-wpadll-l,

Li=XH, r=y, L=M rn=0, =1

For the starting points, we chose
X’ = zeros(r+ 1, 1), v(l) = zeros(n, 1), vg = zeros(d;, 1).
For JE splitting, we chose
Ay = A0 =)ol -1, As=aul, G =XH, G,=M.

As to A;, we explained its resolvent’s evaluations in some details. Consider the problem of
minimizing f(G,z), where f,(-): = || - —y|I*/(2n) and Vf; = A,. Be aware that, in [15, Algorithm 7],
for the corresponding subproblem

(I +piADx; 3 1},

its solution x* is equivalent to that of
min pyfi(x) + [lx = 417/2 = min |l = yIP/@2n) + |Ix - £17/2p).
For the parameters, we chose
pr =GP /n, o2 = A1 =), ps =y,

a; =05, a =05 a=05 v=1.0,

and for the starting points, we chose
7' = zeros(r+ 1, 1), wi = zeros(n, 1), wé = zeros(d;, 1), wé = zeros(r + 1, 1),

x? = zeros(n, 1), xg = zeros(dy, 1), xg = zeros(r +1,1).

For JE 2021, we followed [9] to choose parameters.
Numerical results on the test problem were given in Figures 1-3, where € = 1g(|[XHx* — y||,).
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—+— Algorithm 1 —v— Algorithm 1 0.40
— Algorithm 2
—— Algorithm 3 580 m
—e— JE splitting —e— fE splitting
—=— Vi splitting —— Va splitting 030
—— E2021 575 —— 2021

—+— Algorithm 1
—< Algorithm 2
—— Algorithm 3
—e— JE splitting
—=— Vi splitting
—— 2021

SUNH(P)

10 12 1 o 2 6 8
CPUTime

Figure 1. 1 = 107, u=0.5.

10 —v— Algorithm 1
— Algorithm 2
~— Algorithm 3 5.80
—o— JE splitting
—=- Vi splitting
—— E2021 575

& E202) —¥— Algorithm 1

BxPLX)

—=— v splitting
—— 2021

o 2 a 0 1 1 16 0 2 4

6 8
cPUTime

Figure 2. 1 =104, u=0.5.

—¥— Algorithm 1 09
—< Algorithm 2
5.80 —— Algorithm 3

—=— Va splitting
575 —— 2021

BxKYB0T)

00 25 50 75 100 125 150 175 00 25 50 75 100 125 150 175
cPUTime. CPU Time

Figure 3. 1 =107, u=0.5.

Figures 1-3 showed that, in each case, Algorithm 1 desirably achieved the highest sparsity among
these algorithms and comparable accuracy to JE 2021. Unlike JE Splitting, JE 2021 was well suited for
the case of A; being further assumed to be Lipschitz continuous instead of (1.1) under consideration.

Our second test problem is based on the first test problem, replacing the least squares term with the
¢, norm term:

min - @(x): = [[XHx — yll1/(n) + du(lxa| + ...+ [x]) + A0 = w)lMx]];, (7.4)

xeRr+1

and the corresponding optimality condition is
0 € Aulx + (XH) 9|l - [l OXHx = ) /n + A1 = )M ]| - [l,(MLx), (7.5)

where J = diag(0,d|-|,...,d||,0). We chose the same n, d;, r, u, and A as the first test problem. This
problem may be viewed as a special case of (1.2) with

A=2d, A=1/mdll- I, B=al-wal-I,
R=XH, r=y, O0=M, ¢g=0.

For Algorithm 1 (in the n = 1 case), through trial and error, we first tried @y = a; = a3 =
0.01, 0.1, 1, 10, and 100 and then ascertained it to lie in the neighborhood of 1, ultimately choosing,

Qk = 09, a) = 15, an = 15, a3 = 15,
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Bi =1+ 10°)RIF + 1QI7)/(4ay), Bo=(1+107)/(4az), B =P+ P
Bi=p1, Bs=1+107)/4as), B=p+ps,

which satisfy (4.1) and (4.2) as required in Section 4. And for the starting points, we followed [9] to
choose
K= zeros(r + 1, 1), xg = zeros(n, 1), xg = zeros(d;, 1),

u® = zeros(n, 1), V' = zeros(d,, 1).

For Algorithms 2 and 3 (in the n = 1 case), through trial and error, similar to the process in
Algorithm 1, we chose

6 =09, a1=05, a;=05 g =(+107)RI+QI")/(Ea),

Br=(1+10")/@ar), B=pi+B B =p, B=1/p,

which satisfy the corresponding inequalities as required in Section 5. And for the starting points, we
also chose

X0 = zeros(r+ 1, 1), xg = zeros(n, 1), u’ = zeros(n,1), V'’ = zeros(d,, 1).
For Vi splitting, we chose 4, = 1, oy = 1/n, 0 = 0y and
A=, By =@/l i, By=241-wall- I,

Li=XH, ri=y, L=M, rn=0, 7=2/(0lL|+0clLl*)-107,

which satisfy the corresponding inequality as required in [1]. For the starting points, we chose
x° = zeros(r+ 1, 1), V(1) = zeros(n, 1), vg = zeros(d;, 1).
For JE splitting, we chose
Ay = A1 =)l -, As=4d, G =XH, G,=M.

As to A;, we explained its resolvent’s evaluations in some details. Consider the problem of
minimizing fi(G,z), where fi(-): = || - —yl|l;/(n) and Vf; = A;. Be aware that, in [15, Algorithm 7], for
the corresponding subproblem

(I +p1A)x; 3 1),

its solution x* is equivalent to that of
min py fi(x) +llx = 417/2 = min [lx; = yll/0) + llxy = 417/ Q2po).
For the parameters, we chose
pr =GP /n, pr= A1 =p), ps =,

a; =05, a =05 a=05 vy=01,
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and for the starting points, we chose

7' = zeros(r + 1, 1),

x(l) = zeros(n, 1),

Numerical results on the test problem were given in Figures 4-6, where €, = lg(||XHx* — y||;).

—%— Algorithm 1
—<- Algorithm 2
—— Algorithm 3
—e— JE splitting
—=— Vi splitting

PP

10 —+— Algorithm 1
— Algorithm 2
—— Algorithm 3
5 —e— JE splitting
—=— Vi splitting

SUNH(P)

SUB(X0)

w} = zeros(n, 1),

x(z) = zeros(dy, 1),

—v— Algorithm 1
—< Algorithm 2
—— Algorithm 3

o 2 4 6 0 12 14

5
cPUTIme

Figure4. 1 =107, u=0.5.

—v— Algorithm 1
2

o 2 4 6 8
CPUTime

Figure 5. 1 = 10, u=0.5.

—v— Algorithm 1

CPUTime

Figure 6. 1 = 1073, u =0.5.

wé = zeros(d;, 1),

wé = zeros(r + 1, 1),

xg = zeros(r +1,1).

—+— Algorithm 1
09 ey  — Algorithm2
—— Algorithm 3

08 —e— JE splitting
—=— Vi splitting

sparsity

—
09 %
08 g <

~+— Algorithm 1

< Algorithm 2
—— Algorithm 3
—o— JE splitting
—=— V@ splitting

ity

7

1.000

—¥— Algorithm 1
2 —— Algorithm 3
& 0900 —e— JE splitting

0875
0850

0.825 .

From Figures 4-06, it can be observed that among these algorithms, Algorithms 1-3 demonstrated
higher accuracy and sparsity. Since the initial condition @(x°) was identical, the figures on the left-hand
side revealed that Algorithms 1-3 achieved the highest accuracy within the same CPU time. The figures
on the right-hand side indicated that, within the same CPU time, Algorithm 1 attained greater sparsity.
Additionally, the figures in the middle showed that within the same CPU time, Algorithms 1-3 yielded
smaller values of ||XHx* — y||;, which implied that the solutions obtained can better fit the model while

ensuring sparsity.

8. Conclusions

In this article, we have introduced a new splitting method tailored for solving the system of
three-operator monotone inclusions within Hilbert spaces, where the last two operators are linearly
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composed. Furthermore, by invoking a new inequality, we have analyzed weak convergence of this
method under the weakest possible assumptions. To verify the practical effectiveness of our proposed
splitting method, together with its variants, we have conducted rigorous numerical experiments,
comparing their performance against other state-of-the-art methods in solving large-scale rare feature
selection in deep learning. Finally, an interesting open question is whether or not it is possible to
analyze the rate of convergence of this method, and we expect to explore it in the future.

Author contributions

Yunda Dong:  Writing - review and editing, validation, supervision, methodology,
conceptualization; Yiyi Li: Writing - original draft, validation, software, methodology, data
curation. All authors have read and approved the final version of the manuscript for publication.

Acknowledgments

The authors are greatly indebted to the handling editor and the referees for their encouraging words
and insightful suggestions, which improve the quality of this article. Special thanks go to Qiqi Luo and
Yue Zhu for careful reading of the current version of this manuscript.

Contflict of interest

The authors declare no conflict of interest.

References

1. B. Vi, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv.
Comput. Math., 38 (2013), 667-681. https://doi.org/10.1007/s10444-011-9254-8

2. D. Hieu, L. Vy, P. Quy, Three-operator splitting algorithm for a class of variational inclusion
problems, Bull. Iran. Math. Soc., 46 (2020), 1055-1071. https://doi.org/10.1007/s41980-019-
00312-5

3. O. Iyiola, C. Enyi, Y. Shehu, Reflected three-operator splitting method for
monotone inclusion problem, Optim. Method. Softw., 37 (2022), 1527-1565.
https://doi.org/10.1080/10556788.2021.1924715

4. E. Chouzenoux, M. Corbineau, J. Pesquet, A proximal interior point algorithm with applications to
image processing, J. Math. Imaging Vis., 62 (2020), 919-940. https://doi.org/10.1007/s10851-019-
00916-w

5. Y. Tang, M. Wen, T. Zeng, Preconditioned three-operator splitting algorithm with applications to
image restoration, J. Sci. Comput., 92 (2022). https://doi.org/10.1007/s10915-022-01958-w

6. A. Padcharoen, D. Kitkuan, W. Kumam, P. Kumam, Tseng methods with inertial for solving
inclusion problems and application to image deblurring and image recovery problems, Comput.
Math. Method. M., 3 (2021), e1088. https://doi.org/10.1002/cmm4.1088

AIMS Mathematics Volume 10, Issue 5, 10740-10763.


https://dx.doi.org/https://doi.org/10.1007/s10444-011-9254-8
https://dx.doi.org/https://doi.org/10.1007/s41980-019-00312-5
https://dx.doi.org/https://doi.org/10.1007/s41980-019-00312-5
https://dx.doi.org/https://doi.org/10.1080/10556788.2021.1924715
https://dx.doi.org/https://doi.org/10.1007/s10851-019-00916-w
https://dx.doi.org/https://doi.org/10.1007/s10851-019-00916-w
https://dx.doi.org/https://doi.org/10.1007/s10915-022-01958-w
https://dx.doi.org/https://doi.org/10.1002/cmm4.1088

10762

7. V.Nguyen, N. Vinh, Two new splitting methods for three-operator monotone inclusions in Hilbert
spaces, Set-Valued Var. Anal., 32 (2024), 26. https://doi.org/10.1007/s11228-024-00730-6

8. B. Tan, X. Qin, J. Yao, Strong convergence of self-adaptive inertial algorithms for solving
split variational inclusion problems with applications, J. Sci. Comput., 87 (2021), 20.
https://doi.org/10.1007/s10915-021-01428-9

9. P. Johnstone, J. Eckstein, Single-forward-step projective splitting: Exploiting cocoercivity,
Comput. Optim. Appl., T8 (2021), 125-166. https://doi.org/10.1007/s10589-020-00238-3

10. P. Johnstone, J. Eckstein, Projective splitting with forward steps, Math. Program., 191 (2022),
631-670. https://doi.org/10.1007/s10107-020-01565-3

11. P. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer.
Anal., 16 (1979), 964-979. https://doi.org/10.1137/0716071

12. Y. Dong, A. Fischer, A family of operator splitting methods revisited, Nonlinear Anal., 72 (2010),
4307-4315. https://doi.org/10.1016/j.na.2010.02.010

13. Y. Dong, Douglas-Rachford splitting method for semi-definite programming, J. Appl. Math.
Comput., 51 (2016), 569-591. https://doi.org/10.1007/s12190-015-0920-8

14. H. He, D. Han, A distributed Douglas-Rachford splitting method for multi-block convex
minimization problems, Adv. Comput. Math., 42 (2016), 27-53. https://doi.org/10.1007/s10444-
015-9408-1

15. Y. Dong, A new splitting method for systems of monotone inclusions in Hilbert spaces, Math.
Comput. Simulat., 203 (2023), 518-537. https://doi.org/10.1016/j.matcom.2022.06.023

16. Y. Dong, X. Zhu, An inertial splitting method for monotone inclusions of three operators, Int. J.
Math. Stat. Oper. Res., 2 (2022), 43-60. https://doi.org/10.47509/IIMSOR.2022.v02i01.04

17. J. Eckstein, A simplified form of block-iterative operator splitting and an asynchronous algorithm
resembling the multi-block alternating direction method of multipliers, J. Optim. Theory Appl., 173
(2017), 155-182. https://doi.org/10.1007/s10957-017-1074-7

18. X. Zhu, Inertial splitting methods for monotone inclusions of three operators (Thesis), Zheng Zhou
University, 2020.

19. Y. Dong, Extended splitting methods for systems of three-operator monotone inclusions with
continuous operators, Math. Comput. Simulat., 223 (2024), 86—107. https://doi.org/10.1016/j.mat-
com.2024.03.024

20. X. Yan, J. Bien, Rare feature selection in high dimensions, J. Am. Stat. Assoc., 116 (2020), 887—
900. https://doi.org/10.1080/01621459.2020.1796677

21. G. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.
https://doi.org/10.1215/S0012-7094-62-02933-2

22.J. Eckstein, B. Svaiter, A family of projective splitting methods for the sum of two maximal
monotone operators, Math. Program., 111 (2008), 173-199. https://doi.org/10.1007/s10107-006-
0070-8

23.P. Latafat, P. Patrinos, Asymmetric forward-backward-adjoint splitting for solving
monotone inclusions involving three operators, Comput. Optim. Appl., 68 (2017), 57-93.
https://doi.org/10.1007/s10589-017-9909-6

AIMS Mathematics Volume 10, Issue 5, 10740-10763.


https://dx.doi.org/https://doi.org/10.1007/s11228-024-00730-6
https://dx.doi.org/https://doi.org/10.1007/s10915-021-01428-9
https://dx.doi.org/https://doi.org/10.1007/s10589-020-00238-3
https://dx.doi.org/https://doi.org/10.1007/s10107-020-01565-3
https://dx.doi.org/https://doi.org/10.1137/0716071
https://dx.doi.org/https://doi.org/10.1016/j.na.2010.02.010
https://dx.doi.org/https://doi.org/10.1007/s12190-015-0920-8
https://dx.doi.org/https://doi.org/10.1007/s10444-015-9408-1
https://dx.doi.org/https://doi.org/10.1007/s10444-015-9408-1
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.06.023
https://dx.doi.org/https://doi.org/10.47509/IJMSOR.2022.v02i01.04
https://dx.doi.org/https://doi.org/10.1007/s10957-017-1074-7
https://dx.doi.org/https://doi.org/10.1016/j.mat-com.2024.03.024
https://dx.doi.org/https://doi.org/10.1016/j.mat-com.2024.03.024
https://dx.doi.org/https://doi.org/10.1080/01621459.2020.1796677
https://dx.doi.org/https://doi.org/10.1215/S0012-7094-62-02933-2
https://dx.doi.org/https://doi.org/10.1007/s10107-006-0070-8
https://dx.doi.org/https://doi.org/10.1007/s10107-006-0070-8
https://dx.doi.org/https://doi.org/10.1007/s10589-017-9909-6

10763

24. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM
J. Control Optim., 38 (2000), 431-446. https://doi.org/10.1137/S0363012998338806

25. R. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14
(1976), 877-898. https://doi.org/10.1137/0314056

26. Y. Dong, Weak convergence of an extended splitting method for monotone inclusions, J. Global
Optim., 79 (2021), 257-277. https://doi.org/10.1007/s10898-020-00940-w

27.Q. Dong, M. Su, Y. Shehu, Three-operator reflected forward-backward splitting
algorithm with double inertial effects, Optim. Method. Softw., 39 (2024), 431-456.
https://doi.org/10.1080/10556788.2024.2307470

28. K. Bredies, E. Chenchene, D. Lorenz, E. Naldi, Degenerate preconditioned proximal point
algorithms, SIAM J. Optim., 32 (2022), 2376-2401. https://doi.org/10.1137/21M 1448112

©2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 10, Issue 5, 10740-10763.


https://dx.doi.org/https://doi.org/10.1137/S0363012998338806
https://dx.doi.org/https://doi.org/10.1137/0314056
https://dx.doi.org/https://doi.org/10.1007/s10898-020-00940-w
https://dx.doi.org/https://doi.org/10.1080/10556788.2024.2307470
https://dx.doi.org/https://doi.org/10.1137/21M1448112
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Method
	Weak convergence
	The variant of Algorithm 1
	The dual-first version of Algorithm 2
	Numerical experiments
	Conclusions



