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sampling plan called the generalized Type-II progressive hybrid censored strategy has been suggested
to minimize test time and costs. This study introduces a novel statistical framework for modeling
lifetime data under generalized progressive hybrid censoring using the log-logistic (LogL) lifespan
model. Besides traditional methodologies, our approach integrates frequentist and Bayesian inferential
techniques to estimate key parameters and reliability metrics, such as the survival and hazard functions
of the LogL distribution. The relevant approximate confidence intervals for unknown numbers are also
constructed using the frequentest estimators’ normal approximations. Incorporating the Markovian
technique into Bayesian analysis, we leverage independent gamma priors and the Metropolis-Hastings
algorithm to enhance computational efficiency to calculate the Bayes’ point estimators along with
their highest posterior density interval estimators. Additionally, we propose an optimal progressive
censoring scheme that minimizes experimental costs while maintaining estimation accuracy. Extensive
Monte Carlo simulations confirm the superiority of the proposed estimators, while three real-world
applications in physics and engineering demonstrate their practical efficacy. The findings highlight
the versatility of the LogL model and its potential as a robust survival analysis tool under complex
real-world conditions.
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1. Introduction

Reliability technology, defined as a system’s ability to execute its intended process under
predetermined conditions for a set amount of time, is becoming increasingly important. Many studies
have been conducted in this area. Thus, life-testing studies are frequently carried out in the presence
of practical limits such as time and/or cost limitations. Progressive Type-II censoring (PT2C) permits
surviving individual(s) to be withdrawn from a test at multiple points; see [1] for details. To establish
a PT2C test, at time zero, the experimenter must first put n independent (identical) units into a test,
assign the number of target failures m, and assign the progressive (removal) design
S = (S 1, S 2, . . . , S m) such that n = m +

∑m
i=1 S i. When X1:m:n occurred, S 1 (of n − 1) units must be

taken randomly and removed from the investigation. Similarly, when X2:m:n is noticed, S 2 (of
n − S 1 − 2) units are removed from the investigation, and so on. Lastly, at Xm:m:n, all remaining units
(say S m = n − m −

∑m−1
j=1 S j) are withdrawn.

The primary disadvantage of the PT2C component is that it may take longer to finish the test when
the test units are of high quality. Consequently, [2] proposed Type-I progressively hybrid censoring
(T1-PHC), which combines PT2C and regular Type-I censoring. Furthermore, a drawback of T1-
PHC is that it has a limited amount of failures that may occur before time T , which implies that
the estimators produced cannot sometimes be derived. Therefore, [3] proposed progressively Type-II
hybrid censoring (T2-PHC). This plan terminates the investigation at T ∗ = max {Xm:m:n,T }. Despite the
fact that the T2-PHC ensures an efficient quantity of apparent failures, gathering the requisite failures
may take some time. As a result, [4] proposed generalized progressive Type-II hybrid censoring (G-T2-
PHC). They stated that the experiment under G-T2-PHC is stopped at T ∗ = max {T1,min {Xm:m:n,T2}},
where the two thresholds Ti, i = 1, 2(0 < T1 < T2) and the number m(1 < m ≤ n) are prefixed, where
d1 and d2 represent the total number of failures up to thresholds T1 and T2, respectively. If Xm:m:n < T1,
the investigator will continue to discover failures in a lack of more removals up to T1 (Case-1), and
if T1 < Xm:m:n < T2, they will end the experiment at Xm:m:n (Case-2); otherwise, the test will end at
T2 (Case-3). It is vital to note that the G-T2-PHC modifies the T2-PHC by ensuring that the test is
completed on time T2. Thus, T2 is the longest length of duration that the investigator is willing to
permit the test to proceed. So, the investigator will collect one of the following data types:

Case-1: {(X1:m:n, S 1), . . . , (Xm−1:m:n, S m−1), (Xm:m:n, 0), . . . , (Xd1:n, 0)}
Case-2: {(X1:m:n, S 1), . . . , (Xd1:n, S d1), . . . , (Xm−1:m:n, S m−1), (Xm:m:n, S m)}
Case-3: {(X1:m:n, S 1), . . . , (Xd1:n, S d1), . . . , (Xd2−1:n, S d2−1), (Xd2:n, S d2)}

 = {X}.

Now, we assume that the variables {X} represent order lives collected from a continuous population
with reliability function (RF) R(·) and probability density function (PDF) f (·). Then, the joint PDF of
{X} is

Lξ(Ω|X) = CξRξ(Tη; Ω)
Dξ∏
j=1

f (x j:m:n; Ω)
[
R(x j:m:n; Ω)

]S j
, ξ = 1, 2, 3, η = 1, 2, (1.1)

where Ω is an unknown parametric vector andSξ(·) is a composite form of the RFs under consideration.
From (1.1), Table 1 reports the G-T2-PHC notations.
Remark 1: From G-T2-PHC, different sampling strategies can be acquired as special cases, namely:

• T1-PHC (by [2]) if T1 → 0.
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Table 1. The G-T2-PHC notations.

ξ Cξ Dξ Rξ(Tη; Ω) S ∗dη+1

1 Π
d1
j=1

∑m
i= j (S i + 1) d1 [R(T1; Ω)]S ∗d1+1 n − d1 −

∑m−1
i=1 S i

2 Πm
j=1

∑m
i= j (S i + 1) m 1 0

3 Π
d2
j=1

∑m
i= j (S i + 1) d2 [R(T2; Ω)]S ∗d2+1 n − d2 −

∑d2
i=1 S i

• T2-PHC (by [3]) if T2 → ∞.
• Hybrid-T1 (by [5]) if T1 → 0, S j = 0, j = 1, 2, . . . ,m − 1, and S m = n − m.
• Hybrid-T2 (by [6]) if T2 → ∞, S j = 0, j = 1, 2, . . . ,m − 1, and S m = n − m.
• Time censoring (by [7]) if T1 = 0, m = 1, S j = 0, j = 1, 2, . . . ,m − 1, and S m = n − m.
• Failure censoring (by [7]) if T1 = 0, T2 → ∞, S j = 0, j = 1, 2, . . . ,m − 1, and S m = n − m.

Several investigations have also been completed using G-T2-PHC data. For example, [8] based on
the Weibull model, [9] based on the Burr-XII model, [10] based on exponential competing risks, [11]
based on the inverted Nadarajah–Haghighi model; [12] based on the Kumaraswamy model, [13] based
on the inverted exponentiated-Rayleigh model, and [14,15] based on alpha-power inverted exponential
and Maxwell-Boltzmann distributions, respectively, among others.

The log-logistic (or Fisk) model has been widely used in recent decades to describe time-to-event
data, particularly in reliability and econometrics domains; one may refer to [16] for more details. Let
X be a random variable that follows the LogL distribution, simply X ∼ LogL(γ, δ), where γ > 0(δ > 0)
is the scale (shape) parameter. Then, its PDF can be defined as:

f (x; γ, δ) =
δγδxδ−1

(xδ + γδ)2 , x > 0. (1.2)

Moreover, the RF and HRF of X (at t > 0) can be represented as:

R(t; γ, δ) =
γδ

tδ + γδ
, t > 0, (1.3)

and

h(t; γ, δ) =
δtδ−1

tδ + γδ
, (1.4)

respectively. It should be remembered here that, setting δ 6 1(> 1) in (1.4), the HRF has a
monotonically decreasing (unimodal) shape.

Upon several choices of γ and δ, Figure 1(a) reveals that the LogL density can be positively (or
negatively) skewed, unimodal, and bell-shaped, whereas Figure 1(b) indicates that the LogL hazard
rate (1.4) has a monotonically decreasing or bathtub-down failure rate shape.

In the reliability literature, based on various censoring scenarios, different efforts have been made
to carry out significant studies on the LogL model. For example, [17] for PT2C, [18] for Type-I and
Type-II hybrid, [19] for progressive Type-I interval, [20] for adaptive-PT2C, [21] for progressive first-
failure, [22] for entropy under PT2C, and [23] for reliability indices under PT2C, among others.
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Figure 1. Several shapes of the LogL’s density and hazard rate functions.

The novelty of this study, in the context of imperfect sampling, is that it is the first trial in which
likelihood and Bayes frameworks for the LogL distribution’s parameters have been compared since its
inception. The motivation for this study arises from the proposed generalized censored mechanism’s
usefulness in enhancing the effectiveness of statistical analysis when compared to its special cases. We
have two justifications to perform this study: (1) The LogL distribution’s HRF has an inverted bathtub-
shaped (or decreasing) form, which is advantageous in many practical applications. (2) The G-T2-
PHC plan is beneficial because it allows for the flexibility of stopping trials at a predefined period and
reducing overall test length while keeping the desired characteristics of progressive design in practical
research. So, far as we are aware, no discussion of inferential elements of the LogL distribution exists,
particularly in a reliability context. The purpose of this work, which employs a G-T2-PHC strategy, is
to close this gap by demonstrating that the LogL lifetime model may be used as a survival model. As
a result, the current study has five contributions, which are as follows:

(1) The problem of estimating the distribution parameters (γ, δ,R(t),h(t)) of the LogL model from
G-T2-PHC is addressed.

(2) The Bayes estimates of γ, δ, R(t), and h(t) against the squared-error loss (SEL) are assessed using
Markov-chain in Monte-Carlo (MCMC) methods using independent gamma conjugate density
priors.

(3) In terms of interval estimation, the same unknown parameters are estimated through the
approximate confidence interval (ACI) as well as the highest posterior density (HPD) interval.

(4) Since the joint likelihood (or posterior) function of γ and δ cannot be formulated in closed
forms, two language packages via R programming software, namely ‘maxLik’ and ‘coda’, are
recommended.

(5) Find the optimal PT2C based on three popular criteria.
(6) Using a series of Monte Carlo comparisons, the effectiveness of the acquired estimates is

evaluated.
(7) From the physical domain, three real-world applications are analyzed to show the LogL
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distribution’s capacity to fit varied data kinds.

The remaining sections of the study are classified as follows: In Sections 2 and 3, frequentist and
Bayes inferences of γ, δ, R(t), and h(t) are obtained, respectively. Section 4 presents different intervals.
Simulation outcomes are investigated in Section 5. Section 6 provides the metrics to determine the
best censoring design. Three applications are illustrated in Section 7. Ultimately, Section 8 lists some
concluding remarks.

2. Likelihood method

Let x = {x j:m:n, S j} be a G-T2-PHC data (of size d2) created from the LogL(γ, δ) population with
PDF (1.2) and RF (1.3). Using (1.1), (1.2), and (1.3), where x j:m:n � x j for simplicity, we can write
(1.1) up to proportional as

Lξ
(
γ, δ| x

)
∝ Rξ

(
Tη; γ, δ

)
δDsγδ

(
Ds+

∑Ds
j=1 S j

) ∏Ds

j=1
xδj(xδj + γδ)−(S j+2), (2.1)

where R1 (T1; γ, δ) =

[
γδ

T δ
1+γδ

]S ∗d1+1
, R2

(
Tη; γ, δ

)
= 1, and R3 (T2; γ, δ) =

[
γδ

T δ
2+γδ

]S ∗d2+1
.

The log-likelihood function (say `ξ ∝ Lξ) of (2.1) becomes

`ξ
(
γ, δ| x

)
∝ ψξ

(
Tη; γ, δ

)
+ Ds log(δ) + δ(Ds +

∑Ds

j=1
S j) log(γ)

+ δ
∑Ds

j=1
log

(
x j

)
−

∑Ds

j=1

(
S j + 2

)
log

(
xδj + γδ

)
, (2.2)

where ψξ
(
Tη; γ, δ

)
= logRξ

(
Tη; γ, δ

)
for ξ = 1, 2, 3, and η = 1, 2.

The MLEs γ̂ and δ̂ of γ and δ, respectively, can be acquired from (2.2) as

∂`ξ

∂γ
= ψ◦ξ

(
Tη; γ, δ

)
+ δ

[
γ−1(Ds +

∑Ds

j=1
S j) − γδ−1

∑Ds

j=1

(
S j + 2

) (
xδj + γδ

)−1
]
, (2.3)

and

∂`ξ

∂δ
= ψ•ξ

(
Tη; γ, δ

)
+ Dsδ

−1 + (Ds +
∑Ds

j=1
S j) log(γ) +

∑Ds

j=1
log

(
x j

)
−

∑Ds

j=1

(
S j + 2

) (
xδj log

(
x j

)
+ γδ log (γ)

) (
xδj + γδ

)−1
, (2.4)

where, for ξ = 1, 3 and η = 1, 2, we have
ψ◦ξ

(
Tη; γ, δ

)
= S ∗dη+1δγ

−1T δ
η

(
T δ
η + γδ

)−1
,

ψ◦ξ

(
Tη; γ, δ

)
= ψ•ξ

(
Tη; γ, δ

)
= 0

and
ψ•ξ

(
Tη; γ, δ

)
= S ∗dη+1T δ

η

(
log (γ) − log

(
Tη

)) (
T δ
η + γδ

)−1
.

The MLEs of γ and δ must be determined by solving Eqs (2.3) and (2.4) simultaneously using
any iterative method. To establish this, we recommend employing iterative numerical optimization
techniques such as the Newton-Raphson (N-R) algorithm to get the estimates of γ̂ and δ̂. To apply
this algorithm for evaluating γ̂ and δ̂ of γ and δ, respectively, based on their functions (2.3) and (2.4),
follow the next steps:

AIMS Mathematics Volume 10, Issue 5, 10709–10739.
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Step-1: Set k = 1.

Step-2: Set the initial guesses as (γ, δ) = (γ(k−1), δ(k−1)).

Step-3: Compute score values Uγ and Uδ of γ and δ from (2.3) and (2.4), respectively.

Step-4: Compute the Hessian matrix:

H =

 ∂
2`ξ
∂γ2

∂2`ξ
∂γ∂δ

∂2`ξ
∂δ∂γ

∂2`ξ
∂δ2

 .
Step-5: Apply the Newton-Raphson rule:[

γ(k)

δ(k)

]
=

[
γ(k−1)

δ(k−1)

]
− H−1

[
Uγ

Uδ

]
.

Step-6: Stop the iteration (for a small tolerance ε) if

|γ(k) − γ(k−1)| < ε and |δ(k) − δ(k−1)| < ε,

otherwise, return to Step-3.

Then, the MLEs R̂(t) and ĥ(t) can also be produced by substituting γ and δ with their respective γ̂
or δ̂ as

R̂(t) =
γ̂δ̂

tδ̂ + γ̂δ̂
and ĥ(t) =

δ̂tδ̂−1

tδ̂ + γ̂δ̂
,

respectively.

3. Bayes method

Instead of evaluating unknown parameter(s) as fixed values (like in classical approaches), using our
beliefs about a parameter as we gather more data, the Bayesian setup treats them as random variables
with their probability distributions. This framework allows us to combine prior knowledge (knowledge
of the parameters before seeing the data) with new evidence (the data) to form a posterior distribution
that reflects our updated beliefs. Depending on the SEL function, the Bayes estimators of γ, δ, R(t),
and h(t), as well as their related HPD intervals, are produced in this section.

To do this, the LogL parameters γ and δ are assumed to have independent gamma (Gamma(·)) priors
such as Gamma(θ1, β1) and Gamma(θ2, β2), respectively. The combined prior density (say, P(·)) of γ
and δ is

P (γ, δ) ∝ γθ1−1δθ2−1e−(γβ1+δβ2), (3.1)

where θi > 0 and βi > 0 for i = 1, 2, are known. Subsequently, using (2.1) and (3.1), the joint posterior
PDF (say P∗ξ(·)) of γ and δ is

P∗ξ (γ, δ| x) = K−1Rξ

(
Tη; γ, δ

)
δθ2+Ds−1γ

δ

θ1+Ds+
Ds∑
j=1

S j

−1

AIMS Mathematics Volume 10, Issue 5, 10709–10739.
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× e−(γβ1+δβ2)
∏Ds

j=1
xδj(xδj + γδ)−(S j+2), (3.2)

where K =
∫ ∞

0

∫ ∞
0

P (γ, δ) Lξ
(
γ, δ| x

)
dγdδ. Remember that assuming independent gamma priors

simplifies modeling by treating each parameter separately, which is especially useful when there is no
prior reason to believe that the parameters are related.

It is worth noting here that the proposed gamma distribution as a priori knowledge is often chosen
in Bayesian analysis due to: (a) it is flexible and works well for positive parameters like rates; (b) it is
conjugate to common likelihoods; (c) its ease of interpretation—the ratio of the shape and rate gives
the prior mean; and (d) larger shape values mean more confidence. Additionally, it is flexible enough to
be either informative (reflecting strong prior beliefs) or non-informative (letting the data speak more);
see [24].

Subsequently, the Bayes’ SEL estimate of γ and δ (for short, say Ω̃(·)) is given by

Ω̃ (γ, δ) =

∫ ∞

0

∫ ∞

0
Ω (γ, δ) P∗ξ (γ, δ| x)dγdδ.

The entire representation of the marginal density of γ( or δ) is not feasible, as shown by (3.2). As
a result, we recommend producing samples from (3.2) using Bayes MCMC algorithms to compute the
acquired Bayes estimates and build corresponding HPD intervals. As a result of (3.2), the conditional
PDFs (Cγ

ξ (·) and Cδ
ξ(·)) of γ and δ are supplied, respectively, as follows:

Cγ
ξ

(
γ| δ, x

)
∝ Rξ

(
Tη; γ, δ

)
γδ

(
θ1+Ds+

∑Ds
j=1 S j

)
−1eγβ1

Ds∏
j=1

(xδj + γδ)−(S j+2) (3.3)

and

Cδ
ξ

(
δ| γ, x

)
∝ Rξ

(
Tη; γ, δ

)
δθ2+Ds−1γδ

(
θ1+Ds+

∑Ds
j=1 S j

)
−1e−δβ2

Ds∏
j=1

xδj(xδj + γδ)−(S j+2). (3.4)

Obviously, from (3.3) and (3.4), there is no simple way to shrink the posterior distributions of γ and
δ to familiar distributions. As a result, the Metropolis-Hastings (M-H) technique is regarded as the best
alternative for resolving this problem; for further information, see [25] and [26].

By simulating a single G-T2-PHC dataset (when (n,m) = (100, 50) and (T1,T2) = (10, 30)) from
the LogL(0.2,0.3), the plots of the conditional PDFs of γ and δ are depicted in Figure 2. It indicates
that the posterior PDFs of γ and δ behave similarly to the normal distribution.

So, the M-H steps are:

Step-1: Set the starting values: γ(0) = γ̂ and δ(0) = δ̂.

Step-2: Set i = 1.

Step-3: Simulate γ• from N(γ̂, σ̂2
γ̂) and δ• from N(δ̂, σ̂2

δ̂
).

Step-4: Calculate φγ =
Cγ
ξ (γ• |δ(i−1),x)

Cγ
ξ (γ(i−1)|δ(i−1),x) and φδ =

Cδ
ξ ( δ• |γ(i),x)

Cδ
ξ ( δ(i−1)|γ(i),x) .

Step-5: Create two variates (namely: u1 and u2) using the uniform U(0, 1) distribution.

AIMS Mathematics Volume 10, Issue 5, 10709–10739.
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Figure 2. Conditional PDFs of γ (left) and δ (right).

Step-6: Set γ(i) = γ• and δ(i) = δ• if u1 < min{1, φγ} and u2 < min{1, φδ}. Otherwise, put γ(i) = γ(i−1)

and δ(i) = δ(i−1).

Step-7: Set i = i + 1.

Step-8: Redo steps 3–7 Q times and ignore the first simulated variated (sayD) (burn-in) to get γ(i) and
δ(i) for i = D + 1,D + 2, . . . ,Q.

Step-9: Use γ(i) and δ(i) for t > 0 to compute R(t) and h(t), respectively, as

R(i)(t) =
γ(i)δ

(i)

tδ(i)
+ γ(i)δ(i) and h(i)(t) =

δ(i)tδ
(i)−1

tδ(i)
+ γ(i)δ(i) .

Step-10: Obtain the Bayes’ MCMC estimate of γ, δ, R(t), or h(t) (say Ω̃(·)) as

Ω̃(γ, δ) =
1

Q −D

Q∑
i=D+1

Ω(i)(γ, δ).

4. Interval inference

This part focuses on finding the ACIs (using the observed Fisher’s data) and HPD intervals (using
simulated Markovian variates) for γ, δ, R(t), and h(t).

4.1. Asymptotic intervals

For creating 100(1 − ε)% ACIs, the asymptotic variance-covariance (AVC) matrix must first be
produced by inversely calculating the Fisher’s information. Following [27], we derive I−1(·) as

I−1(γ̂, δ̂) �
[
−l11 − l12

−l21 − l22

]−1

(γ̂,δ̂)

=

[
σ̂2
γ̂ σ̂γ̂δ̂

σ̂δ̂γ̂ σ̂2
δ̂

]
, (4.1)
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where

l11 = ψ◦◦ξ
(
Tη; γ, δ

)
− δγ−2

(
Ds +

∑Ds

j=1
S j

)
−

(
δ
(
γδ + 1

)
− 1

)
γδ−2

∑Ds

j=1

(
S j + 2

) (
xδj + γδ

)−1
,

l22 = ψ••ξ
(
Tη; γ, δ

)
− Dsδ

−2

−
∑Ds

j=1

(
S j + 2

) (
xδj + γδ

)−1
[(

xδj log2
(
x j

)
+ γδ log2 (γ)

)
−

(
xδj log

(
x j

)
+ γδ log (γ)

)2 (
xδj + γδ

)−1
]

and

l12 = ψ◦•ξ
(
Tη; γ, δ

)
+ γ−1

(
Ds +

∑Ds

j=1
S j

)
− γδ−1

∑Ds

j=1

(
S j + 2

) (
xδj + γδ

)−1
{
1 + δ log (γ) − δ

(
xδj log

(
x j

)
+ γδ log (γ)

) (
xδj + γδ

)−1
}
,

where

ψ◦◦ξ
(
Tη; γ, δ

)
= −S ∗dη+1δγ

−2T δ
η

(
T δ
η + γδ

)−1
[
1 + δγδ

(
T δ
η + γδ

)−1
]
,

ψ••ξ
(
Tη; γ, δ

)
= S ∗dη+1T δ

η

(
log (γ) − log

(
Tη

)) (
T δ
η + γδ

)−1

×

[
log

(
Tη

)
−

(
T δ
η log

(
Tη

)
+ γδ log (γ)

) (
T δ
η + γδ

)−1
]

and

ψ◦•ξ
(
Tη; γ, δ

)
= S ∗dη+1γ

−1T δ
η

(
T δ
η + γδ

)−1
[
1 − δγδ

(
log (γ) − log

(
Tη

)) (
T δ
η + γδ

)−1
]
.

Thus, the respective 100(1 − ε)% ACIs of γ and δ are provided by

γ̂ ∓ z ε
2

√
σ̂2
γ̂ and δ̂ ∓ z ε

2

√
σ̂2
δ̂
,

where z ε
2

denotes the top ε
2 percentage points of the standard Gaussian distribution.

To build the ACI of R(t) (or h(t)), the delta idea is re-utilized to get the estimated variances σ̂2
R̂(t)

and

σ̂2
ĥ(t)

of R̂(t) and ĥ(t) (see [28]) as

σ̂2
R̂(t) = fT

R̂I−1
(
γ̂, δ̂

)
fR̂ and σ̂2

ĥ(t)
= fT

ĥ
I−1

(
γ̂, δ̂

)
fĥ,

respectively, where fT
R̂

=
[
∂R(t)
∂γ

∂R(t)
∂δ

]
(γ̂,δ̂) and fT

ĥ
=

[
∂h(t)
∂γ

∂h(t)
∂δ

]
(δ̂,γ̂).

So, the 100(1 − ε)% ACIs of R(t) and h(t) are respectively provided by

R̂(t) ∓ z ε
2

√
σ̂2

R̂(t)
and ĥ(t) ∓ z ε

2

√
σ̂2

ĥ(t)
.
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4.2. HPD intervals

To create an HPD interval estimator of γ, δ, R(t), or h(t) (say Ω), following the technique proposed
by [29], we first rank the simulated MCMC samples (developed in Section 3) of Ω(i) for i = D+ 1,D+

2, . . . ,Q as Ω(Q0+1),Ω(Q0+2), . . . ,Ω(Q). Hence, the 100(1 − ε)% HPD interval of Ω is

Ω(i∗),Ω(i∗+(1−ε)(Q−D)),

where i∗ = D + 1,D + 2, . . . ,Q is specified as

Ω(i∗+[(1−ε)(Q−D)]) −Ω(i∗) = min
16i6ε(Q−D)

[
Ω(i+[(1−ε)(Q−D)]) −Ω(i)

]
.

5. Monte Carlo simulations

To demonstrate the true performance of the offered point (or interval) estimators of γ, δ, R(t), or h(t),
based on different options of Ti, i = 1, 2, n, m, and S, several simulations are conducted. To establish
this objective, from LogL(0.5, 1.5), we replicate the G-T2-PHC strategy 1000 times. Taking t = 0.25,
the true value of (R(t), h(t)) is taken as (0.7101,0.5798). Further, taking n(=50,80) and (T1,T2) = (1, 2)
and (2,5), the level of m is taken as a failure percent (FP%), such as m

n (=40,80)%. Various censoring
designs S are also provided, namely,

Scheme-1 : S =
(
n − m, 0m−1

)
,

Scheme-2 : S =
(
0

m
2 −1, n − m, 0

m
2
)
,

Scheme-3 : S =
(
0m−1, n − m

)
,

where S = (1, 0, 0, 3) (for example) is denoted as S = (1, 02, 3).
Once 1000 G-T2-PHC samples are collected, by installing the ‘maxLik’ package (by [30]) in R,

the MLEs and 95% ACI estimates of γ, δ, R(t), or h(t) are obtained via an N-R iterative sampler. The
initial guess points used in this iterative method are taken as the actual values of LogL(γ, δ) proposed
in this part.

To carry out the Bayes’ inference, by installing the ‘coda’ package (by [31]) in R, 12,000 MCMC
samples are generated, and the first 2,000 iterations are ignored as burn-in. We now follow Kundu’s
[32] idea to determine the values of the hyper-parameters (θi, βi), i = 1, 2. Following the mean and
variance associated with the proposed gamma priors, two sets are considered, namely:

• Prior-1 (P1): (θ1, θ2) = (2.5, 7.5) and βi = 5, i = 1, 2;
• Prior-2 (P2): (θ1, θ2) = (5, 15) and βi = 10, i = 1, 2.

To examine the validity and efficiency status of the collected 12,000 iterations of γ, δ, R(t), or h(t)
produced from the proposed Bayes MCMC sampler, using Scheme-1, Prior-1, (T1,T2) = (1, 2), and
n[FP%] = 50[40%] (as an example), three tools for visualizing the convergence of MCMC draws are
used, namely:

(1) Autocorrelation function (ACF) plot: It shows how much each sample in the chain differs from
the previous one. To put it another way, it indicates the degree of serial correlation between the
draws.
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(2) Brooks-Gelman-Rubin (BGR) plot: It evaluates an MCMC’s chain convergence by comparing
the variances within/between Markovian chains.

(3) Trace (with thinning) plot: It displays the sampled values for each chain and node during the
series of iterations.

To display these plots, we take every fourth point (for example) from a total of 12,000 MCMC
variables collected from the posterior of γ and δ, see Figure 3. Figure 3(a) shows that the sample
autocorrelation between the terms of the chain decreases as a function of their lag, thus the acquired
estimates for the acquired point (or interval) estimates of γ, δ, R(t), or h(t) become more reliable;
Figure 3(b) indicates there is no difference among the variances within and between simulated chains;
Figure 3(c) emphasizes that the collected MCMC iterations are suitably mixed and that the duration of
the draws discarded at the beginning of each chain is adequate to decrease autocorrelation. Thus, the
quality of MCMC evaluations is adequate to offer a precise estimate of the target distribution.

Specifically, the average estimates (Av.Es) of γ (for instance) are given by

Av.E(γ̌) =
1

1000

∑1000

i=1
γ̌(i),

where γ̌(i) is the calculated estimate of γ at the ith sample.
The root mean squared errors (RMSEs) and mean relative absolute biases (MRABs) for the point

estimates of γ are compared as

RMSE(γ̌) =

√
1

1000

∑1000

i=1

(
γ̌(i) − γ

)2,

and
MRAB(γ̌) =

1
1000

∑1000

i=1

1
γ

∣∣∣γ̌(i) − γ
∣∣∣,

respectively.
Moreover, to compare the acquired interval estimates of γ, we consider two criteria, namely, average

confidence lengths (ACLs) and coverage percentages (CPs) as

ACL(1−ε)%(γ) =
1

1000

∑1000

i=1

(
Uγ̌(i) − Lγ̌(i)

)
,

and
CP(1−ε)%(γ) =

1
1000

∑1000

i=1
1?(
Lγ̌(i) ;Uγ̌(i)

) (γ),

respectively, where 1?(·) is an indicator, and (L(·),U(·)) denotes the (lower,upper) limits of the (1−ε)%
interval of γ.

From Tables 2–9, in terms of the smallest RMSE, MRAB, and ACL values, as well as the largest
CP values, we report the following facts:

• The acquired classical (or Bayes) estimates of γ, δ, R(t), or h(t) show good performance; that is,
the main general note.
• As n (or FP%) grows, all offered estimates of γ, δ, R(t), or h(t) perform better. A similar

conclusion is obtained when n − m decreases.
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Figure 3. The ACF, BGR, and Trace diagrams for γ, δ, R(t), and h(t) in Monte Carlo
simulation.

AIMS Mathematics Volume 10, Issue 5, 10709–10739.



10721

• The MCMC estimates of all considered parameters, due to the priority of gamma information,
behave well compared to those developed by others. A similar comment is also reached for HPD
interval estimates.
• Because the variation in Prior-2 is comparatively lower than in Prior-1, for all unknown

parameters, MCMC analysis based on the prior provides more efficient estimates compared to
the others.
• As Ti, i = 1, 2, grow, it is noted that:

– The RMSE, MRAB, and ACL of γ, R(t), and h(t) decrease, whereas their CPs grow.
– The RMSE, MRAB, and ACL of δ grow, while their CPs decrease.

• Comparing S : 1, 2, and 3, it is observed that the estimates of γ, δ, R(t), and h(t) behave well
based on Scheme-3 ‘right-censoring’.
• As a consequence, in the presence of data produced via a generalized Type-II progressively hybrid

mechanism, the Bayes Metropolis-Hastings-based methodology is recommended.

Table 2. The Av.Es (1st column), RMSEs (2nd column), and MRABs (3rd column) of γ.

(T1,T2) n[FP%] Scheme MLE MCMC

Prior→ P1 P2

(1,2) 50[40%] 1 0.6613 0.3189 0.2965 0.7961 0.1929 0.1725 0.5925 0.1883 0.1642
2 0.6535 0.2950 0.2751 0.6094 0.1874 0.1598 0.5727 0.1740 0.1565
3 0.6462 0.2263 0.2047 0.7034 0.1843 0.1561 0.5881 0.1534 0.1402

50[80%] 1 0.6003 0.2129 0.1918 0.6626 0.1790 0.1503 0.5747 0.1237 0.1239
2 0.5952 0.1867 0.1647 0.5578 0.1681 0.1476 0.5605 0.1102 0.1019
3 0.5911 0.1573 0.1393 0.6233 0.1500 0.1286 0.5709 0.1016 0.0925

80[40%] 1 0.6659 0.1477 0.1160 0.7751 0.1316 0.1067 0.6725 0.0969 0.0887
2 0.6461 0.1327 0.1083 0.5885 0.1177 0.0978 0.6402 0.0920 0.0815
3 0.6380 0.1237 0.1012 0.6914 0.0959 0.0892 0.6598 0.0843 0.0747

80[80%] 1 0.5991 0.1183 0.0991 0.4974 0.0851 0.0727 0.6038 0.0703 0.0575
2 0.5892 0.1121 0.0949 0.4572 0.0806 0.0686 0.5884 0.0652 0.0524
3 0.5925 0.1102 0.0930 0.4909 0.0697 0.0605 0.6018 0.0600 0.0488

(2,5) 50[40%] 1 0.6379 0.2853 0.2651 0.7646 0.1708 0.1568 0.5889 0.1681 0.1417
2 0.6317 0.2321 0.2118 0.5708 0.1669 0.1461 0.5651 0.1590 0.1370
3 0.6223 0.1918 0.1699 0.6679 0.1619 0.1423 0.5837 0.1555 0.1267

50[80%] 1 0.5819 0.1553 0.1371 0.5397 0.1437 0.1240 0.5511 0.1236 0.1096
2 0.5772 0.1468 0.1256 0.5365 0.1382 0.1186 0.5516 0.1098 0.1019
3 0.5739 0.1359 0.1186 0.5680 0.1144 0.0985 0.5600 0.0975 0.0894

80[40%] 1 0.6399 0.1124 0.0902 0.7115 0.0999 0.0872 0.6568 0.0945 0.0814
2 0.6232 0.1091 0.0874 0.6155 0.0926 0.0817 0.6461 0.0826 0.0765
3 0.6162 0.1058 0.0846 0.6205 0.0858 0.0763 0.6423 0.0745 0.0651

80[80%] 1 0.5807 0.0999 0.0832 0.4799 0.0691 0.0600 0.5898 0.0595 0.0548
2 0.5725 0.0973 0.0794 0.4876 0.0639 0.0565 0.5957 0.0591 0.0499
3 0.5749 0.0925 0.0770 0.4754 0.0604 0.0511 0.5871 0.0565 0.0460
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Table 3. The Av.Es (1st column), RMSEs (2nd column), and MRABs (3rd column) of δ.

(T1,T2) n[FP%] Scheme MLE MCMC

Prior→ P1 P2

(1,2) 50[40%] 1 1.3383 1.8502 1.2611 1.4138 1.4318 1.2069 1.5180 0.9832 0.8869
2 1.2074 1.7136 1.2354 1.2783 1.3737 0.9346 1.5164 0.9592 0.8383
3 1.1858 1.4885 1.2055 1.6581 1.3410 0.8334 1.5166 0.9333 0.8083

50[80%] 1 1.3914 1.3722 1.1134 1.7195 1.2467 0.7835 1.5230 0.8192 0.7187
2 1.5043 1.2820 1.0950 1.5574 1.2231 0.7509 1.5249 0.7917 0.6987
3 1.3612 1.1992 1.0645 1.6533 1.1564 0.7361 1.5210 0.7841 0.6823

80[40%] 1 1.7055 1.0799 1.0043 1.8307 1.0657 0.7199 1.5883 0.4399 0.4921
2 1.7354 0.9559 0.8914 1.1673 0.9437 0.6730 1.5829 0.3898 0.3595
3 1.5645 0.9192 0.8612 1.5950 0.8283 0.6434 1.5834 0.3757 0.3278

80[80%] 1 1.5950 0.8954 0.8383 1.6278 0.7873 0.5416 1.5679 0.3626 0.2970
2 1.7961 0.7697 0.7074 1.5006 0.7403 0.5286 1.5711 0.3490 0.2622
3 1.6134 0.7495 0.6858 1.5796 0.6701 0.4966 1.5674 0.3386 0.2535

(2,5) 50[40%] 1 2.1880 1.9710 1.3755 1.3555 1.5197 1.1791 1.5172 1.0021 0.9006
2 1.3956 1.8583 1.2901 1.3095 1.4751 0.9754 1.5165 0.9932 0.8897
3 1.8109 1.6591 1.2795 1.2992 1.4146 0.8936 1.5164 0.9701 0.8655

50[80%] 1 1.8041 1.4039 1.2757 1.5632 1.2320 0.7931 1.5249 0.8746 0.7936
2 1.6439 1.3778 1.1493 1.5334 1.2186 0.7673 1.5241 0.8433 0.7482
3 1.7272 1.2498 1.1216 1.4864 1.1582 0.7423 1.5232 0.8148 0.7132

80[40%] 1 2.0147 1.2145 1.0632 1.8755 1.1242 0.7145 1.5897 0.3969 0.3292
2 1.2825 1.0434 1.0334 1.6216 1.0938 0.6992 1.5886 0.3832 0.3041
3 1.7255 0.9543 0.9864 1.7757 0.8615 0.6519 1.5861 0.3788 0.2854

80[80%] 1 1.7312 0.9135 0.8555 1.7795 0.8007 0.5676 1.5774 0.3571 0.2813
2 1.5727 0.8825 0.8095 1.6493 0.7650 0.5454 1.5705 0.3437 0.2670
3 1.6762 0.8595 0.7992 1.7901 0.6595 0.4875 1.5716 0.3346 0.2498

Table 4. The Av.Es (1st column), RMSEs (2nd column), and MRABs (3rd column) of R(t).

(T1,T2) n[FP%] Scheme MLE MCMC

Prior→ P1 P2

(1,2) 50[40%] 1 0.7507 0.1503 0.1471 0.8514 0.0833 0.0880 0.7441 0.0706 0.0652
2 0.6971 0.1461 0.1413 0.7877 0.0812 0.0764 0.7372 0.0658 0.0608
3 0.7229 0.1211 0.1173 0.8179 0.0790 0.0637 0.7425 0.0593 0.0545

50[80%] 1 0.7352 0.1129 0.1078 0.8138 0.0748 0.0605 0.7384 0.0449 0.0416
2 0.7248 0.1093 0.1037 0.7808 0.0663 0.0543 0.7335 0.0441 0.0408
3 0.7269 0.0953 0.0893 0.7993 0.0632 0.0515 0.7369 0.0397 0.0366

80[40%] 1 0.7605 0.0927 0.0879 0.8572 0.0608 0.0495 0.7753 0.0375 0.0340
2 0.6985 0.0838 0.0777 0.7980 0.0606 0.0493 0.7646 0.0358 0.0324
3 0.7334 0.0783 0.0713 0.8274 0.0598 0.0484 0.7709 0.0340 0.0308

80[80%] 1 0.7397 0.0615 0.0518 0.7580 0.0541 0.0467 0.7516 0.0327 0.0291
2 0.7278 0.0598 0.0468 0.7470 0.0508 0.0415 0.7466 0.0306 0.0268
3 0.7340 0.0536 0.0462 0.7557 0.0468 0.0392 0.7509 0.0271 0.0234

(2,5) 50[40%] 1 0.7557 0.1384 0.1386 0.8437 0.0810 0.0865 0.7428 0.0653 0.0604
2 0.7030 0.1279 0.1236 0.7782 0.0790 0.0816 0.7345 0.0615 0.0569
3 0.7288 0.1171 0.1168 0.8117 0.0763 0.0761 0.7410 0.0602 0.0554

50[80%] 1 0.7367 0.1060 0.1014 0.7760 0.0729 0.0694 0.7302 0.0421 0.0390
2 0.7263 0.0988 0.0943 0.7738 0.0666 0.0609 0.7304 0.0401 0.0371
3 0.7287 0.0809 0.0745 0.7843 0.0650 0.0550 0.7333 0.0391 0.0361

80[40%] 1 0.7652 0.0780 0.0684 0.8440 0.0625 0.0497 0.7705 0.0362 0.0327
2 0.7044 0.0739 0.0665 0.8044 0.0598 0.0483 0.7670 0.0343 0.0309
3 0.7388 0.0715 0.0644 0.8115 0.0588 0.0464 0.7655 0.0281 0.0244

80[80%] 1 0.7412 0.0580 0.0488 0.7566 0.0540 0.0444 0.7471 0.0267 0.0232
2 0.7290 0.0541 0.0444 0.7559 0.0506 0.0414 0.7490 0.0249 0.0203
3 0.7357 0.0501 0.0419 0.7550 0.0475 0.0386 0.7462 0.0238 0.0181
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Table 5. The Av.Es (1st column), RMSEs (2nd column), and MRABs (3rd column) of h(t).

(T1,T2) n[FP%] Scheme MLE MCMC

Prior→ P1 P2

(1,2) 50[40%] 1 0.6687 0.3705 0.2660 0.4567 0.1619 0.1464 0.6039 0.1000 0.1204
2 0.8025 0.3069 0.2348 0.5078 0.1338 0.1231 0.5999 0.0981 0.1178
3 0.7257 0.2990 0.2137 0.5001 0.1294 0.1216 0.6033 0.0856 0.1005

50[80%] 1 0.6343 0.2632 0.1928 0.4818 0.1272 0.1115 0.5992 0.0825 0.0970
2 0.6530 0.2235 0.1681 0.4794 0.1240 0.1107 0.5956 0.0806 0.0942
3 0.6447 0.1960 0.1477 0.4897 0.1152 0.1052 0.5986 0.0760 0.0891

80[40%] 1 0.6424 0.1778 0.1345 0.4335 0.1134 0.1035 0.5964 0.0740 0.0863
2 0.7862 0.1767 0.1323 0.4694 0.1047 0.1004 0.5970 0.0736 0.0858
3 0.6876 0.1720 0.1309 0.4698 0.1040 0.0980 0.5976 0.0733 0.0853

80[80%] 1 0.6223 0.1344 0.1031 0.4767 0.0955 0.0901 0.5970 0.0716 0.0830
2 0.6401 0.1311 0.1013 0.4582 0.0889 0.0797 0.5941 0.0697 0.0789
3 0.6293 0.1280 0.0991 0.4749 0.0783 0.0720 0.5968 0.0626 0.0717

(2,5) 50[40%] 1 0.6298 0.3286 0.2315 0.4636 0.1603 0.1431 0.6033 0.0981 0.1177
2 0.7597 0.2869 0.1996 0.4975 0.1316 0.1188 0.5981 0.0947 0.1131
3 0.6831 0.2605 0.1866 0.4913 0.1264 0.1183 0.6024 0.0790 0.0998

50[80%] 1 0.6107 0.2288 0.1680 0.4744 0.1240 0.1172 0.5931 0.0763 0.0934
2 0.6296 0.1905 0.1450 0.4769 0.1215 0.1162 0.5934 0.0741 0.0877
3 0.6213 0.1705 0.1324 0.4813 0.1189 0.1081 0.5957 0.0710 0.0826

80[40%] 1 0.6045 0.1657 0.1181 0.4350 0.1170 0.1065 0.5963 0.0704 0.0797
2 0.7430 0.1570 0.1168 0.4755 0.1084 0.1051 0.5963 0.0676 0.0785
3 0.6496 0.1533 0.1164 0.4611 0.1060 0.1029 0.5965 0.0634 0.0731

80[80%] 1 0.5995 0.1168 0.0985 0.4626 0.1021 0.0897 0.5944 0.0615 0.0707
2 0.6190 0.1149 0.0943 0.4718 0.0955 0.0885 0.5955 0.0601 0.0679
3 0.6066 0.1135 0.0888 0.4615 0.0868 0.0823 0.5939 0.0572 0.0646

Table 6. The ACLs (1st column) and CPs (2nd column), of 95% ACI/HPD intervals of γ.

(T1,T2) n[FP%] Scheme ACI HPD

Prior→ P1 P2

(1,2) 50[40%] 1 0.554 0.929 0.482 0.940 0.238 0.952
2 0.544 0.931 0.410 0.943 0.218 0.954
3 0.529 0.934 0.390 0.946 0.197 0.957

50[80%] 1 0.443 0.938 0.359 0.950 0.158 0.961
2 0.425 0.939 0.333 0.951 0.151 0.962
3 0.412 0.941 0.325 0.953 0.145 0.965

80[40%] 1 0.407 0.943 0.313 0.955 0.138 0.967
2 0.396 0.945 0.297 0.957 0.131 0.968
3 0.362 0.948 0.278 0.960 0.128 0.972

80[80%] 1 0.330 0.951 0.228 0.963 0.127 0.975
2 0.325 0.952 0.219 0.964 0.116 0.977
3 0.306 0.953 0.209 0.967 0.109 0.978

(2,5) 50[40%] 1 0.518 0.934 0.427 0.945 0.215 0.957
2 0.484 0.936 0.386 0.947 0.199 0.959
3 0.467 0.939 0.358 0.950 0.179 0.962

50[80%] 1 0.415 0.941 0.313 0.953 0.149 0.964
2 0.382 0.944 0.295 0.955 0.138 0.967
3 0.363 0.946 0.287 0.958 0.132 0.969

80[40%] 1 0.362 0.948 0.281 0.960 0.129 0.970
2 0.359 0.950 0.278 0.962 0.126 0.973
3 0.354 0.951 0.271 0.963 0.121 0.975

80[80%] 1 0.313 0.955 0.236 0.967 0.118 0.980
2 0.282 0.957 0.215 0.969 0.114 0.981
3 0.268 0.961 0.205 0.970 0.107 0.982
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Table 7. The ACLs (1st column) and CPs (2nd column), of 95% ACI/HPD intervals of δ.

(T1,T2) n[FP%] Scheme ACI HPD

Prior→ P1 P2

(1,2) 50[40%] 1 3.096 0.869 1.902 0.895 0.837 0.908
2 2.809 0.884 1.838 0.897 0.799 0.915
3 2.190 0.900 1.805 0.909 0.780 0.923

50[80%] 1 1.965 0.910 1.774 0.918 0.751 0.928
2 1.887 0.913 1.730 0.920 0.739 0.932
3 1.875 0.916 1.702 0.924 0.708 0.936

80[40%] 1 1.819 0.919 1.492 0.927 0.569 0.941
2 1.593 0.923 1.350 0.931 0.543 0.946
3 1.371 0.928 1.234 0.936 0.531 0.949

80[80%] 1 1.340 0.931 1.190 0.939 0.526 0.951
2 1.275 0.932 1.131 0.943 0.514 0.953
3 1.181 0.935 1.060 0.947 0.494 0.956

(2,5) 50[40%] 1 3.166 0.865 1.947 0.889 0.849 0.904
2 2.814 0.884 1.891 0.891 0.822 0.909
3 2.219 0.896 1.885 0.904 0.802 0.916

50[80%] 1 1.979 0.905 1.790 0.913 0.781 0.924
2 1.946 0.909 1.776 0.914 0.757 0.927
3 1.885 0.912 1.717 0.917 0.712 0.931

80[40%] 1 1.851 0.914 1.392 0.922 0.648 0.937
2 1.609 0.918 1.357 0.928 0.585 0.941
3 1.380 0.923 1.296 0.931 0.536 0.946

80[80%] 1 1.359 0.925 1.226 0.933 0.531 0.947
2 1.347 0.927 1.194 0.937 0.521 0.950
3 1.188 0.933 1.145 0.940 0.510 0.954

Table 8. The ACLs (1st column) and CPs (2nd column), of 95% ACI/HPD intervals of R(t).

(T1,T2) n[FP%] Scheme ACI HPD

Prior→ P1 P2

(1,2) 50[40%] 1 0.288 0.937 0.136 0.949 0.083 0.960
2 0.283 0.938 0.133 0.950 0.080 0.962
3 0.276 0.940 0.127 0.952 0.077 0.964

50[80%] 1 0.230 0.943 0.125 0.953 0.066 0.967
2 0.228 0.944 0.122 0.954 0.057 0.969
3 0.225 0.944 0.119 0.956 0.054 0.970

80[40%] 1 0.221 0.946 0.115 0.957 0.053 0.970
2 0.219 0.947 0.113 0.959 0.051 0.972
3 0.216 0.949 0.112 0.960 0.049 0.973

80[80%] 1 0.180 0.952 0.110 0.962 0.046 0.975
2 0.179 0.953 0.109 0.963 0.045 0.976
3 0.170 0.955 0.108 0.963 0.042 0.977

(2,5) 50[40%] 1 0.279 0.940 0.133 0.951 0.081 0.960
2 0.276 0.941 0.126 0.952 0.078 0.963
3 0.269 0.943 0.125 0.952 0.073 0.964

50[80%] 1 0.226 0.946 0.123 0.955 0.059 0.968
2 0.225 0.947 0.121 0.956 0.053 0.970
3 0.224 0.947 0.118 0.958 0.052 0.971

80[40%] 1 0.216 0.949 0.115 0.959 0.051 0.971
2 0.214 0.950 0.113 0.960 0.049 0.973
3 0.211 0.951 0.110 0.962 0.047 0.974

80[80%] 1 0.178 0.953 0.105 0.964 0.044 0.976
2 0.177 0.953 0.102 0.965 0.042 0.977
3 0.169 0.955 0.099 0.963 0.037 0.979
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Table 9. The ACLs (1st column) and CPs (2nd column), of 95% ACI/HPD intervals of h(t).

(T1,T2) n[FP%] Scheme ACI HPD

Prior→ P1 P2

(1,2) 50[40%] 1 1.060 0.918 0.466 0.936 0.139 0.949
2 0.969 0.920 0.419 0.940 0.136 0.950
3 0.899 0.924 0.385 0.945 0.132 0.952

50[80%] 1 0.822 0.929 0.348 0.948 0.131 0.953
2 0.730 0.935 0.324 0.951 0.129 0.958
3 0.684 0.939 0.312 0.953 0.125 0.960

80[40%] 1 0.605 0.944 0.300 0.955 0.123 0.962
2 0.581 0.946 0.291 0.957 0.120 0.963
3 0.532 0.949 0.244 0.961 0.119 0.964

80[80%] 1 0.468 0.954 0.239 0.963 0.115 0.967
2 0.454 0.956 0.216 0.967 0.112 0.969
3 0.442 0.958 0.198 0.969 0.110 0.974

(2,5) 50[40%] 1 0.945 0.921 0.454 0.937 0.137 0.951
2 0.852 0.926 0.392 0.943 0.134 0.952
3 0.790 0.930 0.372 0.947 0.130 0.954

50[80%] 1 0.731 0.934 0.361 0.950 0.129 0.958
2 0.642 0.940 0.293 0.953 0.128 0.960
3 0.600 0.945 0.286 0.955 0.124 0.962

80[40%] 1 0.549 0.951 0.263 0.958 0.122 0.964
2 0.532 0.953 0.247 0.960 0.121 0.967
3 0.525 0.955 0.226 0.962 0.117 0.968

80[80%] 1 0.442 0.961 0.208 0.966 0.113 0.970
2 0.428 0.963 0.189 0.968 0.110 0.973
3 0.407 0.966 0.176 0.971 0.108 0.976

6. Optimal PT2C designs

In the philosophy of reliability, a researcher aims to choose the best PT2C design among all possible
censoring designs to gather the most data about the unknown parameter(s) being investigated. For the
first time, [33] discussed the challenge of determining the best censoring. Many different ways of
deciding what is best have been suggested, and many different studies have been done on finding the
best censoring systems. When the experimenter assigns the values of n, m, and Ti, i = 1, 2, the ideal
PT2C design S can be easily determined. According to [34], the best PT2C plan is specified based
on the availability of resources, the facilities for experiments, and the importance of cost; see, for
example, [35–37], among others. In this study, Table 10 provides three metrics (say Oi, i = 1, 2, 3) to
assist us in providing the ideal PT2C system.

Table 10. Three optimum criteria for the best PT2C plan.

Criterion Goal

O1 Maximize trace(I(γ̂, δ̂))
O2 Minimize trace(I−1(γ̂, δ̂))
O3 Minimize det(I−1(γ̂, δ̂))

Obviously, it should be noted that the best PT2C strategies should correspond to the highest (lowest)
value of O1 (Oi, i = 2, 3).
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7. Physical applications

This part studies three sets of actual data from the physical field to determine if the suggested
estimating methods are accurate, useful, and relevant to real-world circumstances. These applications
demonstrated that the suggested inferential procedures perform well when applied to real-world data
utilizing the proposed strategy.

7.1. Carbon fibers

In this application, we consider a dataset representing the tensile strength of 69 carbon fibers,
measured in gigapascals (GPa), tested under tension at gauge lengths of 20 mm; see Table 11. This
dataset was first reported by [38] and reanalyzed by [39] and [40].

Table 11. Tensile strength of 69 carbon fibers.

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726
2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585
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Figure 4. Reliability (left) and contour (right) from tensile strength data.

To show whether the given tensile strength data fit the proposed LogL(γ, δ) distribution or not,
the Kolmogorov–Smirnov (K–S) distance (in addition to its P-value) is computed. However, from
Table 11, we have the MLEs (with their standard-errors (St-Ers)) of γ and δ as 2.7879(0.4215) and
1.4407(0.1653), respectively; meanwhile, the K–S (P-value) is 0.0741(0.9965). Hence, the LogL
lifetime model fits the tensile strength dataset quite well. Moreover, from graphical visualization,
Figure 4 displays (i) estimated and empirical LogL reliability R(t) function and (ii) contour diagrams. It
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supports the same goodness-of-fit findings and shows that the acquired MLEs γ̂ � 2.788 and δ̂ � 1.441
exist and are unique.

From tensile strength data (for m = 39), three artificial G-T2-PHC samples (denoted by Si, i =

1, 2, 3,) are generated; see Table 12. For each sample in Table 12, the point estimates (in addition
to their St-Ers) and the 95% interval estimates (in addition to their interval widths (IWs)) of γ, δ,
R(t), or h(t) (at mission time t = 2) are obtained; see Table 13. Clearly, because there is no prior
information regarding γ and δ from the tensile strength dataset, the Bayes point/interval estimations
are assessed using incorrect gamma priors by running the MCMC sampler 50,000 times and skipping
the first 10,000 of those as burn-in. It is noted from Table 13 that the estimations developed from the
Bayes’ paradigm of γ, δ, R(t) and h(t) behaved better than others. Figure 5 supports the estimation
results reported in Table 13.
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Figure 5. The log-likelihoods of γ and δ from tensile strength data.
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Table 12. Three G-T2-PHC samples from tensile strength data.

Si S T1(d1) T2(d2) S ∗ T ∗ Data

S1

(
310, 029

)
1.95(6) 2.75(33) 6 2.75 1.312, 1.314, 1.700, 1.861, 1.865, 1.944, 1.958, 1.997, 2.006, 2.021,

2.027, 2.055, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301,
2.426, 2.490, 2.511, 2.514, 2.535, 2.554, 2.586, 2.629, 2.633, 2.642,
2.648, 2.684, 2.697

S2

(
014, 310, 015

)
2.01(13) 2.65(30) 9 2.65 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,

1.966, 1.997, 2.006, 2.021, 2.027, 2.063, 2.098, 2.179, 2.224, 2.240,
2.272, 2.301, 2.301, 2.359, 2.382, 2.554, 2.566, 2.570, 2.586, 2.642

S3

(
029, 310

)
2.05(15) 2.95(37) 8 2.85 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,

1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,
2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382,
2.426, 2.490, 2.554, 2.629, 2.633, 2.642, 2.848

Table 13. Estimates of γ, δ, R(t), and h(t) from tensile strength data.

Sample Par. MLE MCMC ACI HPD

Est. St-Er Est. St-Er Low. Upp. IW Low. Upp. IW

S1 γ 9.6114 1.2911 9.5086 0.1448 7.0809 12.1419 5.0609 9.3107 9.7080 0.3973
δ 2.3968 0.0660 2.3701 0.0588 2.2673 2.5262 0.2588 2.2666 2.4732 0.2066

R(2) 0.8506 0.0401 0.8317 0.0351 0.7719 0.9293 0.1574 0.7713 0.8862 0.1149
h(2) 0.7179 0.1590 0.8003 0.1625 0.4063 1.0295 0.6232 0.5429 1.0879 0.5451

S2 γ 7.2915 1.1360 7.1909 0.1414 5.0649 9.5181 4.4532 6.9876 7.3798 0.3922
δ 2.4825 0.0879 2.4447 0.0725 2.3104 2.6547 0.3444 2.3250 2.5656 0.2406

R(2) 0.8286 0.0394 0.8071 0.0357 0.7514 0.9059 0.1545 0.7509 0.8609 0.1100
h(2) 0.6248 0.1249 0.6934 0.1227 0.3799 0.8696 0.4896 0.5034 0.8984 0.3950

S3 γ 5.8159 0.8238 5.7143 0.1420 4.2013 7.4305 3.2292 5.5120 5.9029 0.3910
δ 2.5847 0.1029 2.5356 0.0846 2.3829 2.7864 0.4035 2.4041 2.6726 0.2686

R(2) 0.8163 0.0397 0.7936 0.0343 0.7384 0.8942 0.1557 0.7422 0.8426 0.1004
h(2) 0.5342 0.0976 0.5896 0.0914 0.3430 0.7254 0.3825 0.4497 0.7313 0.2816

Using Sample S1 (as an example), Figure 6 displays both the density and trace plots of γ, δ, R(t), and
h(t). For discrimination, for each sub-plot in Figure 6, the solid and dashed horizontal lines represent
the Bayes’ and 95% HPD interval estimates, respectively. Figure 6 shows that the recommended
MCMC approach clearly converges favorably.

To specify the best censoring S design used in the presence of tensile strength data, utilizing Table
12, the suggested optimum metrics Oi, i = 1, 2, 3, provided in Section 6 are computed; see Table 14.
It shows, for all given criteria Oi, i = 1, 2, 3, that the censoring S =

(
029, 310

)
used in Sample S3 is the

optimum plan than others. It also supports the same censoring design recommended in Monte Carlo
simulations.

Table 14. The optimum PT2C strategy from tensile strength data.

Sample O1 O2 O3

S1 104.4356 1.67125 0.00697
S2 154.1878 1.29829 0.00842
S3 239.6767 0.68922 0.00660
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Figure 6. The density and trace diagrams of γ, δ, R(t), and h(t) from tensile strength data.

7.2. Rainfall

This application looks at data collected in the real world. It includes 30 numbers that represent how
much rain fell in Minneapolis-Saint Paul (MSP) in March; see Table 15. This dataset was originally
provided by [41] and later reanalyzed by [42–44].

Table 15. Consecutive values (in inches) of MSP data.

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20
3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81
2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05

First, we need to check the fit of the LogL model to the complete MSP data. So, from Table 15, the
MLEs (with their St-Ers) of γ and δ are 8.4838(0.8531) and 2.4307(0.0598), respectively, while the
K-S statistic (with its P-value) is 0.0480(0.9974). It means that the LogL lifetime model fits the MSP
data satisfactorily. Figure 7 indicated that the LogL model is more suitable for the full MSP data as
well as that the MLEs γ̂ � 8.4838 and δ̂ � 2.4307 existed and are unique. Here, we proposed taking
the estimates γ̂ and δ̂ as initial guesses.

To evaluate the estimators of γ, δ, R(t), and h(t), three artificial G-T2-PHC samples (when m = 15)
are obtained from the MSP data; see Table 16. Using it, the estimates of γ, δ, R(t), and h(t) (at t = 5) are
evaluated; see Table 17. Just like the Bayesian analysis scenario discussed in Subsection 7.1, the Bayes
MCMC as well as 95% HPD interval estimates are developed. Thus, from Table 17, the estimates of
γ, δ, R(t), and h(t) exhibit the same behavior because they seem to be similar. Figure 8 shows the same
outcomes in Table 17. It also highlights the existence and uniqueness of γ̂ and δ̂.
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Figure 9 confirms the same facts presented in Figure 6. Table 18 shows that the censoring S =(
010, 35

)
(in Sample S3) is better than others. The ideal PT2C process provided here supports the same

findings in Section 5 also.
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Figure 7. Reliability (left) and contour (right) from MSP data.

Table 16. Various G-T2-PHC samples from MSP data.

Si S T1(d1) T2(d2) R∗ T ∗ Data

S1

(
35, 010

)
0.85(5) 2.05(12) 3 2.05 0.32, 0.47, 0.59, 0.77, 0.81, 0.96, 1.18, 1.20, 1.31, 1.51, 1.74, 1.95

S2

(
05, 35, 05

)
0.75(4) 1.25(9) 9 1.25 0.32, 0.47, 0.52, 0.59, 0.77, 0.81, 0.81, 0.96, 1.18

S3

(
010, 35

)
0.95(8) 1.55(13) 8 1.55 0.32, 0.47, 0.52, 0.59, 0.77, 0.81, 0.81, 0.90, 0.96, 1.18, 1.20, 1.35, 1.43

Table 17. Estimates of γ, δ, R(t), and h(t) from MSP data.

Sample Par. MLE MCMC ACI HPD

Est. St-Er Est. St-Er Low. Upp. IW Low. Upp. IW

S1 γ 2.8717 0.6265 1.6437 4.0997 2.4559 2.7723 0.1396 2.5860 2.9707 0.3847
δ 1.3456 0.2024 0.9488 1.7423 0.7935 1.2644 0.1189 1.1014 1.4368 0.3354

R(1) 0.7011 0.0875 0.5296 0.8725 0.3429 0.6544 0.0638 0.5667 0.7339 0.1672
h(1) 0.8585 0.2911 0.2880 1.4290 1.1410 0.9578 0.1570 0.7241 1.1911 0.4670

S2 γ 2.3497 0.6942 0.9891 3.7102 2.7211 2.2508 0.1396 2.0639 2.4503 0.3864
δ 1.5438 0.3301 0.8968 2.1908 1.2939 1.4551 0.1279 1.2791 1.6321 0.3530

R(1) 0.7350 0.0771 0.5840 0.8861 0.3021 0.6975 0.0487 0.6368 0.7560 0.1192
h(1) 0.6226 0.2608 0.1115 1.1337 1.0222 0.6802 0.0903 0.5509 0.8176 0.2667

S3 γ 2.2517 0.5494 1.1749 3.3284 2.1535 2.1526 0.1392 1.9659 2.3493 0.3833
δ 1.5922 0.2738 1.0555 2.1289 1.0734 1.5034 0.1276 1.3275 1.6794 0.3519

R(1) 0.7403 0.0701 0.6028 0.8777 0.2749 0.7047 0.0456 0.6499 0.7604 0.1105
h(1) 0.5848 0.1833 0.2256 0.9441 0.7185 0.6349 0.0784 0.5221 0.7535 0.2315

AIMS Mathematics Volume 10, Issue 5, 10709–10739.



10731

Table 18. The optimum PT2C strategy from MSP data.

Sample O1 O2 O3

S1 20.1190 0.59082 0.03256
S2 18.1473 0.43351 0.01873
S3 29.4698 0.37680 0.01471
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Figure 8. The log-likelihoods of γ and δ from MSP data.
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Figure 9. The density and trace diagrams of γ, δ, R(t), and h(t) from MSP data.

7.3. Automobile

This application illustrates a life dataset that represents the losses (of 32 items) from vehicle
insurance coverage for private passengers (VIC-PP) in the United Kingdom, given by [45]; see Table
19.

Table 19. The losses from VIC-PP data in UK.

5 21 23 40 44 63 92 96 123 129 140
151 162 166 169 171 245 260 266 304 312 318
343 361 381 448 479 504 578 719 859 970

First, we need to see if the proposed LogL model matches the complete VIC-PP data. So,
according to Table 19, the estimates of γ̂ and δ̂ (with their St-Ers) are 1.6015(0.2386) and
196.66(37.498), respectively, and the K-S statistic (with its P-value) is 0.0909(0.9319). This means
that the LogL model fits the VIC-PP dataset adequately. Figure 10 emphasized that results of γ̂ and δ̂
exist and are unique. Here, we suggest using the estimates γ̂ � 1.6015 and δ̂ � 196.66 as starting
points for any future calculations.

To see how well our estimated values for γ, δ, R(t), and h(t) work, from Table 19, we created three
sets of data; see 20. In Table 21, we evaluate the estimates of γ, δ, R(t), and h(t) (at t = 5). Similar to
the Bayesian analysis scenario mentioned in Subsections 7.1 and 7.2, the Bayes MCMC method and
95% HPD interval estimates are created. From Table 17, we can see that the findings of γ, δ, R(t), or
h(t) all show similar patterns as they are close in value to each other. We come to the same conclusion
when comparing the asymptotic and highest posterior density interval estimates. Figure 11 confirms

AIMS Mathematics Volume 10, Issue 5, 10709–10739.



10733

the findings in Table 21 and proves that the estimates of γ and δ exist and are unique.

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Automobile Insurance Policies

R
e

lia
b

ili
ty

Empirical

Estimated

1.58 1.59 1.60 1.61 1.62

1
9

4
1

9
6

1
9

8
2

0
0

gamma

d
e

lt
a

 −
21

4.
39

1 

 −
21

4.
39

1 

 −
214.3

9 

 −214.39 

 −214.389 

 −
214.3

89 

 −
214.389 

 −214.389 

 −214.388 

 −214.388 

 −214.388 

 −214.388 

 −214.387 

 −214.386 

 −214.385 

 −214.384 

 −214.383 

 −214.382 

Figure 10. Reliability (left) and contour (right) from VIC-PP data.

Table 20. Various G-T2-PHC samples from VIC-PP data.

Si S T1(d1) T2(d2) S ∗ T ∗ Data

S1

(
44, 012

)
350(18) 370(18) 2 350 5, 21, 40, 44, 63, 92, 96, 123, 129, 140, 151, 169, 171, 245, 266, 304, 318, 343

S2

(
06, 44, 06

)
80(6) 400(16) 0 381 5, 21, 23, 40, 44, 63, 92, 129, 140, 162, 169, 245, 266, 318, 343, 381

S3

(
012, 44

)
50(5) 250(15) 5 250 5, 21, 23, 40, 44, 63, 92, 96, 123, 129, 140, 151, 162, 171, 245

Table 21. Estimates of γ, δ, R(t), and h(t) from VIC-PP data.

Sample Par. MLE MCMC ACI HPD

Est. St-Er Est. St-Er Low. Upp. IW Low. Upp. IW

S1 γ 1.4030 0.2684 0.8770 1.9290 1.0520 1.3099 0.1312 1.1262 1.4897 0.3635
δ 210.78 8.4272 194.26 227.30 33.034 210.68 0.1443 210.48 210.88 0.3941

R(50) 0.8827 0.0398 0.8047 0.9608 0.1562 0.8673 0.0217 0.8364 0.8961 0.0597
h(50) 0.0033 0.0005 0.0023 0.0043 0.0020 0.0034 0.0002 0.0031 0.0037 0.0006

S2 γ 1.5184 0.3111 0.9087 2.1282 1.2196 1.4217 0.1353 1.2414 1.6136 0.3722
δ 205.85 8.4404 189.31 222.39 33.086 205.75 0.1440 205.55 205.94 0.3933

R(50) 0.8956 0.0409 0.8153 0.9758 0.1605 0.8813 0.0200 0.8541 0.9086 0.0545
h(50) 0.0032 0.0006 0.0020 0.0044 0.0024 0.0033 0.0002 0.0030 0.0037 0.0007

S3 γ 1.1944 0.2560 0.6927 1.6961 1.0034 1.1019 0.1304 0.9177 1.2793 0.3617
δ 240.01 8.3925 223.56 256.46 32.898 239.91 0.1442 239.71 240.11 0.3938

R(50) 0.8669 0.0464 0.7759 0.9579 0.1820 0.8482 0.0263 0.8149 0.8871 0.0722
h(50) 0.0032 0.0004 0.0023 0.0040 0.0017 0.0033 0.0002 0.0031 0.0035 0.0005

Figure 12 indicates that the MCMC technique demonstrates its efficiency by achieving a satisfactory
outcome for all unknown quantities. Furthermore, Table 22 shows how the VIC-PP data helps decide
the best PT2C plan. This means that using the removal design

(
012, 44

)
in Sample S3 is the best plan

compared to other plans. The best censoring mentioned here aligns with the same ideal censoring
developed in Section 5.
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Table 22. The optimum PT2C strategy from VIC-PP data.

Sample O1 O2 O3

S1 14.0261 71.0890 5.0683
S2 10.4734 71.3367 6.8112
S3 15.2909 70.4998 4.6106
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Figure 11. The log-likelihoods of γ and δ from VIC-PP data.
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Figure 12. The density and trace diagrams of γ, δ, R(t), and h(t) from VIC-PP data.

8. Concluding remarks

This paper provides several inferential analyses for various parameters of the log-logistic model
when samples are generated from the proposed censored strategy. The Newton-Raphson iterative
technique has been utilized to obtain the maximum likelihood with their asymptotic interval estimates
for all unknown subjects. Additionally, the symmetric Bayes’ and associated HPD interval estimates
have also been calculated using the Metropolis-Hastings sampler. Numerous simulation experiments
have been conducted to compare the acquired estimates. The numerical findings can be summarized
as follows:

• Bayesian estimates, especially those using informative gamma priors and the M-H sampler,
generally outperformed MLEs in terms of lower RMSE, MRAB, and shorter ACLs, while
maintaining high CPs.
• Increasing sample size n or failure percentage (FP%) improved estimation accuracy across all

estimators, while greater censoring (i.e., smaller n − m) slightly worsened performance.
• Prior-2 (with tighter prior variance) led to more efficient estimates than Prior-1, especially when

combined with Scheme-3 (right-censoring), which showed the best performance across all
parameter estimates.
• Convergence diagnostics (ACF, BGR, trace plots) confirmed that the MCMC chains mixed well,

and the posterior estimates were stable and reliable.
• Optimal PT2C designs were evaluated using criteria based on Fisher information, and the best

designs minimized the inverse trace or determinant, leading to more informative experiments.
• Three physics datasets on carbon fiber tensile strength, Minneapolis-Saint Paul rainfall, and

vehicle losses demonstrated the utility of the model, showing good fit through K-square tests and
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showing that Bayesian estimates provided better results compared to MLEs based on different
synthetic censoring scenarios.
• We think that the information and methods discussed in this study will be helpful for researchers

and statisticians.
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