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Abstract: Modern products often have long life cycles and high reliability, making it difficult to collect
comprehensive product life data with all unit failures for reliability and quality analysis. So, a new
sampling plan called the generalized Type-II progressive hybrid censored strategy has been suggested
to minimize test time and costs. This study introduces a novel statistical framework for modeling
lifetime data under generalized progressive hybrid censoring using the log-logistic (LogL) lifespan
model. Besides traditional methodologies, our approach integrates frequentist and Bayesian inferential
techniques to estimate key parameters and reliability metrics, such as the survival and hazard functions
of the LogL distribution. The relevant approximate confidence intervals for unknown numbers are also
constructed using the frequentest estimators’ normal approximations. Incorporating the Markovian
technique into Bayesian analysis, we leverage independent gamma priors and the Metropolis-Hastings
algorithm to enhance computational efficiency to calculate the Bayes’ point estimators along with
their highest posterior density interval estimators. Additionally, we propose an optimal progressive
censoring scheme that minimizes experimental costs while maintaining estimation accuracy. Extensive
Monte Carlo simulations confirm the superiority of the proposed estimators, while three real-world
applications in physics and engineering demonstrate their practical efficacy. The findings highlight
the versatility of the Logl. model and its potential as a robust survival analysis tool under complex
real-world conditions.
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1. Introduction

Reliability technology, defined as a system’s ability to execute its intended process under
predetermined conditions for a set amount of time, is becoming increasingly important. Many studies
have been conducted in this area. Thus, life-testing studies are frequently carried out in the presence
of practical limits such as time and/or cost limitations. Progressive Type-II censoring (PT2C) permits
surviving individual(s) to be withdrawn from a test at multiple points; see [1] for details. To establish
a PT2C test, at time zero, the experimenter must first put n independent (identical) units into a test,
assign the number of target failures m, and assign the progressive (removal) design
S =(51,52,...,8,) such that n = m + }7" | S;. When Xj.,,,, occurred, S (of n — 1) units must be
taken randomly and removed from the investigation. Similarly, when X,.,., is noticed, S, (of
n — S — 2) units are removed from the investigation, and so on. Lastly, at X,,,.,..,, all remaining units
(say S, =n—m-— Z]’Zl S ;) are withdrawn.

The primary disadvantage of the PT2C component is that it may take longer to finish the test when
the test units are of high quality. Consequently, [2] proposed Type-I progressively hybrid censoring
(T1-PHC), which combines PT2C and regular Type-I censoring. Furthermore, a drawback of T1-
PHC is that it has a limited amount of failures that may occur before time 7, which implies that
the estimators produced cannot sometimes be derived. Therefore, [3] proposed progressively Type-II
hybrid censoring (T2-PHC). This plan terminates the investigation at 7" = max {X,,.,,.., T }. Despite the
fact that the T2-PHC ensures an efficient quantity of apparent failures, gathering the requisite failures
may take some time. As a result, [4] proposed generalized progressive Type-II hybrid censoring (G-T2-
PHC). They stated that the experiment under G-T2-PHC is stopped at 7* = max {7, min {X,,.....n, 12}},
where the two thresholds 7;, i = 1,2(0 < T} < T,) and the number m(1 < m < n) are prefixed, where
d; and d, represent the total number of failures up to thresholds 7 and 75, respectively. If X,,,.,.., < T1,
the investigator will continue to discover failures in a lack of more removals up to 7 (Case-1), and
if Ty < Xymn < T», they will end the experiment at X,,.,.., (Case-2); otherwise, the test will end at
T, (Case-3). It is vital to note that the G-T2-PHC modifies the T2-PHC by ensuring that the test is
completed on time 7,. Thus, T, is the longest length of duration that the investigator is willing to
permit the test to proceed. So, the investigator will collect one of the following data types:

Case-1:  {(Xinn> S1)s oo s Kin—t:mns S m=1)s Kinzmen> 0)5 « s (Xgy 05 0)}
Case-2: {(Xiwmns S1)s v os Kayns S )+ - s Kin-timens S m=1)s K> Sm)} - ¢ = {X}.
Case-3:  {(Ximns S1)s e v s Kayns Sar)s + - s Kay-105 S ty-1)s Xayins S )}
Now, we assume that the variables {X} represent order lives collected from a continuous population

with reliability function (RF) R(-) and probability density function (PDF) f(-). Then, the joint PDF of
{X}is

Dy
Sj
=1
where Q is an unknown parametric vector and Sg(-) is a composite form of the RFs under consideration.
From (1.1), Table 1 reports the G-T2-PHC notations.
Remark 1: From G-T2-PHC, different sampling strategies can be acquired as special cases, namely:

e T1-PHC (by [2])if T} — O.
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Table 1. The G-T2-PHC notations.

C: D:  RAT,;Q) S

f dy+1

I I SRS+ D) d [RT:QP n—di - 35S,
2 LS Si+1) m 1 0

3I2, 3N S+ D) dy [RTuQP% n-dy— &S,

T2-PHC (by [3]) if T, — oo.

Hybrid-T1 (by [5])if T, —» 0,5;=0, j=1,2,....m—-1,and S, =n—m.
Hybrid-T2 (by [6]) if T, — 00, §;=0, j=1,2,...,m—1,and §,, =n —m.

Time censoring (by [7])if T, =0,m=1,5;=0, j=1,2,...,m—1,and S,, = n —m.
Failure censoring (by [7])if 71 =0,T, - 00,5, =0, j=1,2,....m—-1,and S, =n—m.

Several investigations have also been completed using G-T2-PHC data. For example, [8] based on
the Weibull model, [9] based on the Burr-XII model, [10] based on exponential competing risks, [11]
based on the inverted Nadarajah—Haghighi model; [12] based on the Kumaraswamy model, [13] based
on the inverted exponentiated-Rayleigh model, and [14,15] based on alpha-power inverted exponential
and Maxwell-Boltzmann distributions, respectively, among others.

The log-logistic (or Fisk) model has been widely used in recent decades to describe time-to-event
data, particularly in reliability and econometrics domains; one may refer to [16] for more details. Let
X be a random variable that follows the LogL distribution, simply X ~ LogL(y, §), where vy > 0(6 > 0)
is the scale (shape) parameter. Then, its PDF can be defined as:
5y° 30!

1Y,0) = ————,
f(x5y,0) o 1)

x>0, (1.2)

Moreover, the RF and HRF of X (at # > 0) can be represented as:
,yzS

R(t:v.0) = 5 rovl

t>0, (1.3)

and 1

510
h(t;y,0) = m, (1.4)

respectively. It should be remembered here that, setting 6 < 1(> 1) in (1.4), the HRF has a
monotonically decreasing (unimodal) shape.

Upon several choices of y and 9, Figure 1(a) reveals that the Logl. density can be positively (or
negatively) skewed, unimodal, and bell-shaped, whereas Figure 1(b) indicates that the LogL hazard
rate (1.4) has a monotonically decreasing or bathtub-down failure rate shape.

In the reliability literature, based on various censoring scenarios, different efforts have been made
to carry out significant studies on the LogL. model. For example, [17] for PT2C, [18] for Type-I and
Type-II hybrid, [19] for progressive Type-I interval, [20] for adaptive-PT2C, [21] for progressive first-
failure, [22] for entropy under PT2C, and [23] for reliability indices under PT2C, among others.
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Figure 1. Several shapes of the Logl’s density and hazard rate functions.

The novelty of this study, in the context of imperfect sampling, is that it is the first trial in which
likelihood and Bayes frameworks for the LoglL. distribution’s parameters have been compared since its
inception. The motivation for this study arises from the proposed generalized censored mechanism’s
usefulness in enhancing the effectiveness of statistical analysis when compared to its special cases. We
have two justifications to perform this study: (1) The LogL distribution’s HRF has an inverted bathtub-
shaped (or decreasing) form, which is advantageous in many practical applications. (2) The G-T2-
PHC plan is beneficial because it allows for the flexibility of stopping trials at a predefined period and
reducing overall test length while keeping the desired characteristics of progressive design in practical
research. So, far as we are aware, no discussion of inferential elements of the LogL. distribution exists,
particularly in a reliability context. The purpose of this work, which employs a G-T2-PHC strategy, is
to close this gap by demonstrating that the LogL lifetime model may be used as a survival model. As
a result, the current study has five contributions, which are as follows:

(1) The problem of estimating the distribution parameters (y, d,R(?),h(t)) of the LogL model from
G-T2-PHC is addressed.

(2) The Bayes estimates of v, 8, R(t), and h(t) against the squared-error loss (SEL) are assessed using
Markov-chain in Monte-Carlo (MCMC) methods using independent gamma conjugate density
priors.

(3) In terms of interval estimation, the same unknown parameters are estimated through the
approximate confidence interval (ACI) as well as the highest posterior density (HPD) interval.

(4) Since the joint likelihood (or posterior) function of y and ¢ cannot be formulated in closed
forms, two language packages via R programming software, namely ‘maxLik’ and ‘coda’, are
recommended.

(5) Find the optimal PT2C based on three popular criteria.

(6) Using a series of Monte Carlo comparisons, the effectiveness of the acquired estimates is
evaluated.

(7) From the physical domain, three real-world applications are analyzed to show the LogL
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distribution’s capacity to fit varied data kinds.

The remaining sections of the study are classified as follows: In Sections 2 and 3, frequentist and
Bayes inferences of vy, 6, R(¢), and A(t) are obtained, respectively. Section 4 presents different intervals.
Simulation outcomes are investigated in Section 5. Section 6 provides the metrics to determine the
best censoring design. Three applications are illustrated in Section 7. Ultimately, Section 8 lists some
concluding remarks.

2. Likelihood method

Let X = {Xjnn, S j} be a G-T2-PHC data (of size d,) created from the LogL(y, §) population with
PDF (1.2) and RF (1.3). Using (1.1), (1.2), and (1.3), where xj.,,,, = x; for simplicity, we can write
(1.1) up to proportional as

Ds . Ds _ .
Le (y,6]x) o< Re (Tn§% 5) 5Py (P S ) l_[j:1 B+ (5+2), 2.1)
6 Sz*11+1 J 5224-]
where R, (T'1;y,0) = [ﬁ 5] , R (T,]; Y, 6) = 1,and R3 (T;y,90) = [Tﬁw ] .

The log-likelihood function (say £z oc L) of (2.1) becomes
D,
le (7,61%) o< e (Ty37,8) + Dy log(6) + 6(D, + ZFI S ) log(y)
bs b 50
+6 Zj:l log (x;) - ijl (5, +2)1og (x5 +5°). (2.2)

where /¢ (T,];y, ) logﬂg( 0> Vs ) foré =1,2,3,andnp =1,2.
The MLEs % and é of y and 6, respectively, can be acquired from (2.2) as

T RT XD WK TR YA RS RS N NECR

and

%_%( Ty:7.6)+ Do + (D, +Z j)log(y)+2f;10g(x,-)

- ijl (5, +2) (¥ 1og (x)) + 7 log ) (0 + ) 2.4)

where, for £ = 1,3 and n = 1,2, we have

l/’g( nsYs ) SZ’ +157_1T6 (T6+76) 1’

lpg( 7Y ) wg( nYs ) =0

and B
Ui (T:7.0) = 8177 (loe )~ log (T,)) (5 + )

The MLEs of v and 6 must be determined by solving Eqs (2.3) and (2.4) simultaneously using
any iterative method. To establish this, we recommend employing iterative numerical optimization
techniques such as the Newton-Raphson (N-R) algorithm to get the estimates of ¥ and 6. To apply
this algorithm for evaluating % and & of y and 8, respectively, based on their functions (2.3) and (2.4),
follow the next steps:
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Step-1: Setk = 1.
Step-2: Set the initial guesses as (y, 0) = (Y%=, &1y,

Step-3: Compute score values U, and Uss of y and 6 from (2.3) and (2.4), respectively.

Pl L
H = oy:  9yds

Step-4: Compute the Hessian matrix:

Pl L
860y 362

Step-5: Apply the Newton-Raphson rule:
yO] [y Lo,
s | = |se-v|—H Us|”
Step-6: Stop the iteration (for a small tolerance €) if

y® -y P <e and 6% -5%" <€

otherwise, return to Step-3.

Then, the MLEs R(r) and /() can also be produced by substituting y and & with their respective 3

or  as ) )
oy e
Ry= —Y— and h()= 2,
B+ 49 £+ 4

respectively.
3. Bayes method

Instead of evaluating unknown parameter(s) as fixed values (like in classical approaches), using our
beliefs about a parameter as we gather more data, the Bayesian setup treats them as random variables
with their probability distributions. This framework allows us to combine prior knowledge (knowledge
of the parameters before seeing the data) with new evidence (the data) to form a posterior distribution
that reflects our updated beliefs. Depending on the SEL function, the Bayes estimators of y, d, R(?),
and A(), as well as their related HPD intervals, are produced in this section.

To do this, the LogL parameters y and ¢ are assumed to have independent gamma (Gammac(-)) priors
such as Gamma(6,,8,) and Gamma(6,,3,), respectively. The combined prior density (say, P(-)) of y
and ¢ is

P (% 5) o ,y91—1592—le—(7ﬁ1+5ﬁ2)’ (3.1)

where 6; > 0 and 3; > 0 for i = 1,2, are known. Subsequently, using (2.1) and (3.1), the joint posterior
PDF (say P;(-)) of yand ¢ is

Dy
6l61+Ds+ > S i |-1
P;(7,61%) = K'Re (T:7.6) 6™y ( - ’]
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D
~(yB1+3p2) S 60,0 5\—(S j+2
X e IPITOR | |j:1xj(xj+y) (5:+2) (3.2)

where K = fooo fom P(y,8) L¢ (7,6l x)dyds. Remember that assuming independent gamma priors
simplifies modeling by treating each parameter separately, which is especially useful when there is no
prior reason to believe that the parameters are related.

It is worth noting here that the proposed gamma distribution as a priori knowledge is often chosen
in Bayesian analysis due to: (a) it is flexible and works well for positive parameters like rates; (b) it is
conjugate to common likelihoods; (c) its ease of interpretation—the ratio of the shape and rate gives
the prior mean; and (d) larger shape values mean more confidence. Additionally, it is flexible enough to
be either informative (reflecting strong prior beliefs) or non-informative (letting the data speak more);
see [24].

Subsequently, the Bayes’ SEL estimate of y and & (for short, say Q(-)) is given by

200 = [ [ 20i0P0dlxis

The entire representation of the marginal density of y( or ¢) is not feasible, as shown by (3.2). As
a result, we recommend producing samples from (3.2) using Bayes MCMC algorithms to compute the
acquired Bayes estimates and build corresponding HPD intervals. As a result of (3.2), the conditional
PDFs (Cg(-) and Cg(-)) of v and ¢ are supplied, respectively, as follows:

Dy
szl ('}’| 5, 5) oC Rf (TU’ v, 6) ,)/5(91+Ds+2_,';1 Sj)—le)’,gl n (xf + ,y5)—(S_/+2) (33)
j=1
and
D DS
Cg (61y.x) < Ry (Trﬁ% 5) 592+DX—1Y6(01+DS+2J.;1s_/)—le—éﬁz n B + 10y~ (5+2). (3.4)
j=1

Obviously, from (3.3) and (3.4), there is no simple way to shrink the posterior distributions of y and
¢ to familiar distributions. As a result, the Metropolis-Hastings (M-H) technique is regarded as the best
alternative for resolving this problem; for further information, see [25] and [26].

By simulating a single G-T2-PHC dataset (when (n,m) = (100, 50) and (T, T») = (10, 30)) from
the Logl.(0.2,0.3), the plots of the conditional PDFs of y and ¢ are depicted in Figure 2. It indicates
that the posterior PDFs of y and ¢ behave similarly to the normal distribution.

So, the M-H steps are:

Step-1: Set the starting values: Y@ =% and 6 = 4.
Step-2: Seti = 1.
Step-3: Simulate y* from N(9, 6'%) and 6* from N(9, 6'(%).

¢l (v 167" .x)

, i (6° h"x)
cl (76D x)

&t (7 IHx)

Step-4: Calculate ¢, = and ¢5 =
Step-5: Create two variates (namely: u#; and u,) using the uniform U(0, 1) distribution.

AIMS Mathematics Volume 10, Issue 5, 10709-10739.



10716

1
8e-75

6e-75

Il
CX317.%)
4675

2e-75

Ci(v18,%)
0e+00 1e-73 2e-73 3e-73 4e-73

0e+00

o
IS

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6

¥ 3

Figure 2. Conditional PDFs of y (left) and ¢ (right).

Step-6: Set ¥ = y* and 6 = 6° if u; < minfl,¢,} and u, < min{1, ¢s}. Otherwise, put y = =D
and 0¥ = ¢ D,

Step-7: Seti =i+ 1.

Step-8: Redo steps 3—7 Q times and ignore the first simulated variated (say 9) (burn-in) to get ¥ and
Dfori=D+1,D+2,...,Q.

Step-9: Use ¥ and 6 for ¢ > 0 to compute R(¢) and h(t), respectively, as
' 0 &9 . 6(i) l5(i) -1
R(’)(l‘) = h and h(’)(l‘) = W
+ YU + YU
Step-10: Obtain the Bayes” MCMC estimate of y, 6, R(¢), or h(t) (say Q")) as
=P)
Q-D i=D+1

4. Interval inference

This part focuses on finding the ACIs (using the observed Fisher’s data) and HPD intervals (using
simulated Markovian variates) for y, 9, R(¢), and A(?).

4.1. Asymptotic intervals

For creating 100(1 — €)% AClIs, the asymptotic variance-covariance (AVC) matrix must first be
produced by inversely calculating the Fisher’s information. Following [27], we derive I"'(-) as

_ . 52
I'3.9) e[ A, ] = [ AR ] (4.1)
—i2] — 22 55 054 s
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where

I :lﬁ;"(T,,;y,cS -0y~ (D +Z ) y +1) 1))/5_22]_ (S +2)(x‘;+y5)_1,

I =y (T):7.6) - Do~
— ijl S+ 2) (x? + )/‘5)_1 [(x? log2 (xj) +9° log2 (y)) - (xf. log (xj) +9° log ()/))2 (xf; + yé)_l]

and

llz—llfg(n’% ( +Z,1 )

Sy (554 2) (6 +9) {1+ 6log () - 6 (i log () + ¥ log ) (¥ + ')
where
73 ( Y ) = _SZ,,+167_2T7(7S (T,f + 7’6)_1 [1 +6y° (T,f + 7’6)_1] ;
5 (Ty57:0) = STy (1o ) = tog (1)) (75 + )
X [log (T,]) - (T,‘]5 log (Tn) +7°log (7)) (Tg + 7‘5)_1]

and
0 (Tyiv.0) = S5, T (T3 +97) ' [1 = 677 (1og )~ og (1)) (T3 + )|

Thus, the respective 100(1 — €)% ACIs of y and ¢ are provided by

~ AD 2 A2
y+z%,/a? and 0 F zs a3,

where z¢ denotes the top § percentage points of the standard Gaussian distribution.

To bulld the ACI of R(?) (or h(t)), the delta idea is re-utilized to get the estimated variances O'Ii ® and
h() of R(r) and h(z) (see [28]) as

=0l (#.8)U; and 67, =0 (3.0)U;,

R(t) h(®)

respectively, where U}, = [ag—i’) M] 59) and U] = [%;’) %] o9)
So, the 100(1 — €)% ACIs of R(t) and h(r) are respectively provided by

R(t)+ze Ai() and h(t)+ze‘/Ah()

AIMS Mathematics Volume 10, Issue 5, 10709-10739.
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4.2. HPD intervals

To create an HPD interval estimator of vy, ¢, R(¢), or h(t) (say ), following the technique proposed
by [29], we first rank the simulated MCMC samples (developed in Section 3) of Q¥ fori = D+ 1, D+
2,...,Qas Qqy+1), Qqy+2)s - - - » Q- Hence, the 100(1 — €)% HPD interval of Q is

Qivy, Qi+ (1-e)Q-D))»

where i* = D+ 1,D+2,...,Q is specified as

Qi1 — O — Qv = min Q1o - Q.
(@ +(1-a@-0)) — Qi) l<KE(Q_@)[ @rl-o@-oy — Lol

5. Monte Carlo simulations

To demonstrate the true performance of the offered point (or interval) estimators of y, ¢, R(t), or h(?),
based on different options of 7;,i = 1,2, n, m, and S, several simulations are conducted. To establish
this objective, from LogL(0.5, 1.5), we replicate the G-T2-PHC strategy 1000 times. Taking ¢ = 0.25,
the true value of (R(?), h(t)) is taken as (0.7101,0.5798). Further, taking n(=50,80) and (T}, T») = (1,2)
and (2,5), the level of m is taken as a failure percent (FP%), such as *(=40,80)%. Various censoring
designs S are also provided, namely,

Scheme-1: S = (n —m, Om_l),
Scheme-2 : S = (O%_l,n - m,O%),
Scheme-3: S (O’”_l,n - m),

where S = (1,0, 0, 3) (for example) is denoted as S = (1, 0%, 3).

Once 1000 G-T2-PHC samples are collected, by installing the ‘maxLik’ package (by [30]) in R,
the MLEs and 95% ACI estimates of 7y, d, R(t), or h(t) are obtained via an N-R iterative sampler. The
initial guess points used in this iterative method are taken as the actual values of LogL(y, 6) proposed
in this part.

To carry out the Bayes’ inference, by installing the ‘coda’ package (by [31]) in R, 12,000 MCMC
samples are generated, and the first 2,000 iterations are ignored as burn-in. We now follow Kundu’s
[32] idea to determine the values of the hyper-parameters (6;,8;), i = 1,2. Following the mean and
variance associated with the proposed gamma priors, two sets are considered, namely:

e Prior-1 (P1): (61,6,) = (2.5,7.5)andB; =5, i=1,2;
e Prior-2 (P2): (6,,6,) = (5,15)and B; = 10, i = 1, 2.

To examine the validity and efficiency status of the collected 12,000 iterations of y, &, R(t), or h(t)
produced from the proposed Bayes MCMC sampler, using Scheme-1, Prior-1, (T, T>) = (1,2), and
n[FP%] = 50[40%] (as an example), three tools for visualizing the convergence of MCMC draws are
used, namely:

(1) Autocorrelation function (ACF) plot: It shows how much each sample in the chain differs from
the previous one. To put it another way, it indicates the degree of serial correlation between the
draws.

AIMS Mathematics Volume 10, Issue 5, 10709-10739.
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(2) Brooks-Gelman-Rubin (BGR) plot: It evaluates an MCMC'’s chain convergence by comparing
the variances within/between Markovian chains.

(3) Trace (with thinning) plot: It displays the sampled values for each chain and node during the
series of iterations.

To display these plots, we take every fourth point (for example) from a total of 12,000 MCMC
variables collected from the posterior of y and ¢, see Figure 3. Figure 3(a) shows that the sample
autocorrelation between the terms of the chain decreases as a function of their lag, thus the acquired
estimates for the acquired point (or interval) estimates of y, 6, R(¢), or h(¢f) become more reliable;
Figure 3(b) indicates there is no difference among the variances within and between simulated chains;
Figure 3(c) emphasizes that the collected MCMC iterations are suitably mixed and that the duration of
the draws discarded at the beginning of each chain is adequate to decrease autocorrelation. Thus, the
quality of MCMC evaluations is adequate to offer a precise estimate of the target distribution.

Specifically, the average estimates (Av.Es) of y (for instance) are given by

1 1000 .
AN v(l)
Av.E(y) = T000 E N

where 7 is the calculated estimate of y at the ith sample.
The root mean squared errors (RMSEs) and mean relative absolute biases (MRABs) for the point
estimates of y are compared as

1 1000 .
RMSE(y) = \/ 1000 Zi:l 7 -y,

and
1000 1

)
MRAB(Y) = 1000 Dt 5 Y

-,

respectively.
Moreover, to compare the acquired interval estimates of y, we consider two criteria, namely, average
confidence lengths (ACLs) and coverage percentages (CPs) as

1 1000
ACL(l_e)%(’}/) = m Zi:l ((L[y(i) - Li,(i))a

and 1 000
1
Po-as) = fog5 S 17
C (1-0%(¥) 1000 Zi:1 (-E?(iﬁ(uv(i))(’)/),

respectively, where 1*(-) is an indicator, and (£(-), U(-)) denotes the (lower,upper) limits of the (1-¢€)%
interval of .

From Tables 2-9, in terms of the smallest RMSE, MRAB, and ACL values, as well as the largest
CP values, we report the following facts:

e The acquired classical (or Bayes) estimates of y, d, R(¢), or h(t) show good performance; that is,
the main general note.

o As n (or FP%) grows, all offered estimates of y, d, R(¢), or h(¢) perform better. A similar
conclusion is obtained when n — m decreases.
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Figure 3. The ACF, BGR, and Trace diagrams for vy, 9§, R(f), and A(f) in Monte Carlo

simulation.
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e The MCMC estimates of all considered parameters, due to the priority of gamma information,
behave well compared to those developed by others. A similar comment is also reached for HPD
interval estimates.

e Because the variation in Prior-2 is comparatively lower than in Prior-1, for all unknown
parameters, MCMC analysis based on the prior provides more efficient estimates compared to
the others.

e AsT;, i =1,2, grow, it is noted that:

— The RMSE, MRAB, and ACL of vy, R(¢), and h(t) decrease, whereas their CPs grow.
— The RMSE, MRAB, and ACL of ¢ grow, while their CPs decrease.

e Comparing S : 1, 2, and 3, it is observed that the estimates of vy, d, R(¢), and h(f) behave well
based on Scheme-3 ‘right-censoring’.

e Asaconsequence, in the presence of data produced via a generalized Type-II progressively hybrid
mechanism, the Bayes Metropolis-Hastings-based methodology is recommended.

Table 2. The Av.Es (1% column), RMSEs (2 column), and MRABs (3" column) of 7.

(T),T>)  n[FP%]  Scheme MLE MCMC
Prior — Pl P2

(1,2) 50[40%] 0.6613 03189  0.2965 0.7961  0.1929  0.1725 0.5925  0.1883  0.1642
0.6535  0.2950  0.2751  0.6094  0.1874  0.1598  0.5727  0.1740  0.1565
0.6462 02263 02047 0.7034 0.1843  0.1561  0.5881  0.1534  0.1402

50[80%] 0.6003  0.2129  0.1918  0.6626  0.1790  0.1503  0.5747  0.1237  0.1239
05952 0.1867 0.1647 0.5578  0.1681  0.1476  0.5605  0.1102  0.1019
0.5911  0.1573  0.1393  0.6233  0.1500  0.1286  0.5709  0.1016  0.0925
80[40%] 0.6659  0.1477  0.1160  0.7751  0.1316  0.1067  0.6725  0.0969  0.0887
0.6461  0.1327  0.1083  0.5885  0.1177  0.0978  0.6402  0.0920  0.0815
0.6380  0.1237  0.1012  0.6914  0.0959  0.0892  0.6598  0.0843  0.0747
80[80%] 0.5991  0.1183  0.0991  0.4974 0.0851  0.0727  0.6038  0.0703  0.0575

0.5892  0.1121  0.0949 04572 0.0806 0.0686  0.5884  0.0652  0.0524
0.5925  0.1102  0.0930  0.4909  0.0697  0.0605 0.6018  0.0600  0.0488

0.6379 02853  0.2651 0.7646  0.1708  0.1568  0.5889  0.1681  0.1417
0.6317 02321 0.2118 0.5708 0.1669  0.1461  0.5651  0.1590  0.1370
0.6223  0.1918 0.1699  0.6679  0.1619  0.1423  0.5837  0.1555  0.1267

2,5) 50[40%]

50[80%] 0.5819  0.1553  0.1371  0.5397  0.1437  0.1240  0.5511  0.1236  0.1096
0.5772  0.1468  0.1256  0.5365 0.1382  0.1186  0.5516  0.1098  0.1019
0.5739  0.1359  0.1186  0.5680  0.1144  0.0985  0.5600  0.0975  0.0894
80[40%] 0.6399 0.1124  0.0902 0.7115  0.0999 0.0872  0.6568  0.0945  0.0814
0.6232  0.1091  0.0874  0.6155 0.0926  0.0817  0.6461  0.0826  0.0765
0.6162  0.1058 0.0846  0.6205 0.0858  0.0763  0.6423  0.0745  0.0651
80[80%] 0.5807  0.0999  0.0832  0.4799  0.0691  0.0600  0.5898  0.0595  0.0548

0.5725 0.0973  0.0794 04876  0.0639  0.0565 0.5957  0.0591  0.0499
0.5749  0.0925 0.0770  0.4754  0.0604 0.0511 0.5871  0.0565  0.0460

WM — WK = WK — WK — [N = WK — WK — Wk —
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Table 3. The Av.Es (1* column), RMSEs (2" column), and MRABs (3" column) of 6.

(T),T>)  n[FP%]  Scheme MLE MCMC
Prior — Pl P2

(12)  50[40%] 1 13383 1.8502 1.2611 14138 14318 12069 1.5180 009832  0.8869

2 12074 17136 12354 12783 13737 09346 15164 0.9592  0.8383

3 1.1858 14885 1.2055 1.6581 1.3410 0.8334 15166 09333  0.8083

50[80%] 1 13914 13722 11134 17195 12467 07835 15230 0.8192 0.7187

2 15043 12820 1.0950 15574 12231 07509 1.5249 07917  0.6987

3 13612 1.1992  1.0645 1.6533 1.1564 07361 15210 0.7841  0.6823

80[40%] 1 17055 1.0799  1.0043 1.8307 1.0657 07199 1.5883  0.4399  0.4921

2 1.7354 09559  0.8914 11673 09437 0.6730 1.5829 0.3898  0.3595

3 15645 09192 0.8612 15950 0.8283 0.6434 1.5834 03757 0.3278

80[80%] 1 1.5950  0.8954 0.8383 1.6278 07873 05416 1.5679 03626  0.2970

2 17961  0.7697 07074 15006 07403 05286 1.5711 03490 0.2622

3 1.6134 07495 0.6858 15796 0.6701 04966 1.5674 03386 0.2535

(2,5  50[40%] 1 21880 19710 1.3755 13555 15197 11791 15172  1.0021  0.9006

2 13956 1.8583 12901 1.3095 14751 09754 15165 0.9932  0.8897

3 1.8109  1.6591 1.2795 12992 14146 08936 1.5164 09701  0.8655

50[80%] 1 1.8041 14039 12757 15632 12320 07931 1.5249 0.8746  0.7936

2 1.6439 13778  1.1493 15334 12186 07673 1.5241 0.8433  0.7482

3 17272 12498 11216 14864 1.1582 07423 1.5232 08148 0.7132

80[40%] 1 20147 12145 1.0632 1.8755 1.1242 07145 15897 03969  0.3292

2 12825 1.0434  1.0334 16216 1.0938 06992 1.5886 0.3832  0.3041

3 1.7255 09543 09864 17757 08615 0.6519 1.5861 03788  0.2854

80[80%] 1 17312 09135  0.8555 17795 0.8007 05676 1.5774 03571 0.2813

2 1.5727 0.8825 0.8095 1.6493 07650 0.5454 1.5705 03437  0.2670

3 16762  0.8595 07992 17901  0.6595 04875 1.5716 03346  0.2498

Table 4. The Av.Es (1* column), RMSEs (2" column), and MRABs (3" column) of R(?).

(T, T,) n[FP%] Scheme MLE MCMC
Prior — P1 P2

(1,2) 50[40%] 1 0.7507 0.1503 0.1471 0.8514  0.0833 0.0880  0.7441 0.0706 0.0652
2 0.6971 0.1461 0.1413  0.7877 0.0812  0.0764  0.7372  0.0658  0.0608

3 0.7229 0.1211 0.1173 0.8179  0.0790  0.0637 0.7425 0.0593 0.0545

50[80%] 1 0.7352  0.1129  0.1078 0.8138 0.0748 0.0605 0.7384 0.0449 0.0416

2 0.7248 0.1093 0.1037 0.7808 0.0663 0.0543 0.7335 0.0441 0.0408

3 0.7269  0.0953 0.0893 0.7993 0.0632  0.0515 0.7369 0.0397  0.0366

80[40%] 1 0.7605 0.0927 0.0879 0.8572  0.0608 0.0495 0.7753 0.0375 0.0340

2 0.6985  0.0838 0.0777 0.7980 0.0606  0.0493 0.7646  0.0358  0.0324

3 0.7334  0.0783 0.0713 0.8274  0.0598 0.0484  0.7709 0.0340 0.0308

80[80%] 1 0.7397  0.0615 0.0518 0.7580  0.0541 0.0467  0.7516  0.0327  0.0291

2 0.7278  0.0598 0.0468 0.7470  0.0508 0.0415 0.7466  0.0306  0.0268

3 0.7340  0.0536 0.0462  0.7557 0.0468 0.0392 0.7509  0.0271 0.0234

2,5) 50[40%] 1 0.7557 0.1384  0.1386 0.8437 0.0810  0.0865 0.7428 0.0653 0.0604
2 0.7030  0.1279  0.1236  0.7782  0.0790 0.0816  0.7345 0.0615  0.0569

3 0.7288 0.1171 0.1168 0.8117 0.0763 0.0761 0.7410  0.0602 0.0554

50[80%] 1 0.7367  0.1060 0.1014  0.7760  0.0729  0.0694  0.7302  0.0421 0.0390

2 0.7263 0.0988 0.0943 0.7738 0.0666  0.0609 0.7304 0.0401 0.0371

3 0.7287  0.0809 0.0745 0.7843  0.0650  0.0550 0.7333  0.0391 0.0361

80[40%] 1 0.7652  0.0780 0.0684  0.8440 0.0625 0.0497 0.7705 0.0362  0.0327

2 0.7044  0.0739  0.0665 0.8044 0.0598 0.0483 0.7670  0.0343  0.0309

3 0.7388  0.0715 0.0644 0.8115 0.0588 0.0464 0.7655 0.0281 0.0244

80[80%] 1 0.7412  0.0580 0.0488 0.7566  0.0540  0.0444  0.7471 0.0267  0.0232

2 0.7290  0.0541 0.0444  0.7559 0.0506 0.0414 0.7490 0.0249  0.0203

3 0.7357  0.0501 0.0419  0.7550 0.0475 0.0386 0.7462  0.0238  0.0181
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Table 5. The Av.Es (1% column), RMSEs (2 column), and MRABs (3" column) of A(t).

(T),T>)  n[FP%]  Scheme MLE MCMC
Prior — Pl P2

(12)  50[40%] 1 0.6687 03705 0.2660 04567 0.1619 0.1464 0.6039 0.1000  0.1204

2 0.8025 03069 0.2348 05078 0.1338  0.1231  0.5999 00981 0.1178

3 0.7257 02990 0.2137 05001 0.1294 0.1216  0.6033  0.0856  0.1005

50[80%] 1 0.6343 02632 0.1928 04818 0.1272 0.1115 0.5992  0.0825  0.0970

2 0.6530 02235 0.1681 04794 0.1240 0.1107 0.5956  0.0806  0.0942

3 0.6447  0.1960 0.1477 04897 0.1152 0.1052 0.5986 0.0760  0.0891

80[40%] 1 0.6424  0.1778  0.1345 04335 0.1134 0.1035 0.5964 00740 0.0863

2 0.7862  0.1767  0.1323 04694 0.1047 0.1004 0.5970 00736  0.0858

3 0.6876  0.1720  0.1309 04698 0.1040  0.0980 0.5976 0.0733  0.0853

80[80%] 1 0.6223  0.1344  0.1031 04767 0.0955 0.0901 0.5970 00716 0.0830

2 0.6401  0.1311 0.1013 04582 0.0889 0.0797 0.5941 0.0697  0.0789

3 0.6293  0.1280 0.0991 04749 0.0783 0.0720 0.5968 00626 0.0717

(2,5  50[40%] 1 0.6298 03286 0.2315 04636 0.1603 0.1431  0.6033 0.0981 0.1177

2 0.7597 02869 0.1996 04975 0.1316 0.118%8  0.5981 0.0947  0.1131

3 0.6831 02605 0.1866 04913  0.1264 0.1183  0.6024 0.0790  0.0998

50[80%] 1 0.6107 02288 0.1680 04744 0.1240 0.1172 05931 00763  0.0934

2 0.6296  0.1905 0.1450 04769 0.1215 0.1162 0.5934 00741  0.0877

3 0.6213  0.1705 0.1324 04813  0.1189  0.1081 0.5957 00710 0.0826

80[40%] 1 0.6045 0.1657 0.1181 04350 0.1170  0.1065 0.5963 00704  0.0797

2 0.7430  0.1570 0.1168 0.4755 0.1084 0.1051 0.5963 00676  0.0785

3 0.6496 0.1533  0.1164 04611 0.1060 0.1029 0.5965 0.0634  0.0731

80[80%] 1 05995 0.1168 0.0985 04626 0.1021 0.0897 0.5944 00615  0.0707

2 0.6190 0.1149 0.0943 04718 0.0955 0.0885 0.5955 0.0601  0.0679

3 0.6066 0.1135 0.0888 0.4615 00868 0.0823 0.5939 00572 0.0646

Table 6. The ACLs (1* column) and CPs (2" column), of 95% ACI/HPD intervals of .
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(T, T) n[FP%] Scheme ACI HPD
Prior — P1 P2

(1,2) 50[40%] 1 0.554 0929 0482 0940 0.238 0.952
2 0.544 0931 0410 0943 0.218 0954

3 0.529 0934 0390 0946 0.197 0.957

50[80%] 1 0.443 0938 0359 0950 0.158 0.961

2 0425 0939 0333 0951 0.151 0.962

3 0412 0941 0325 0953 0.145 0.965

80[40%] 1 0407 0943 0313 0955 0.138 0.967

2 0396 0945 0297 0957 0.131 0.968

3 0.362 0948 0278 0960 0.128 0.972

80[80%] 1 0.330 0951 0.228 0963 0.127 0975

2 0.325 0952 0219 0964 0.116 0977

3 0.306 0953 0209 0967 0.109 0978

2,5) 50[40%] 1 0.518 0934 0427 0945 0215 0.957
2 0484 0936 038 0947 0.199 0.959

3 0467 0939 0358 0950 0.179 0.962

50[80%] 1 0415 0941 0313 0953 0.149 0964

2 0382 0944 0295 0955 0.138 0.967

3 0363 0946 0.287 0958 0.132  0.969

80[40%] 1 0.362 0948 0.281 0960 0.129 0.970

2 0.359 0950 0278 0962 0.126 0973

3 0.354 0951 0271 0963 0.121 0975

80[80%] 1 0.313 0955 0236 0967 0.118 0.980

2 0.282 0957 0215 0969 0.114 0981

3 0.268 0961 0205 0970 0.107 0.982
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Table 7. The ACLs (1* column) and CPs (2™ column), of 95% ACI/HPD intervals of 6.

(T\,T»)  n[FP%]  Scheme ACI HPD
Prior — Pl P2

(1,2)  50[40%] 1 3096 0.869 1.902 0.895 0.837 0.908

2 2809 0.884 1.838 0.897 0799 0915

3 2.190 0900 1.805 0909 0.780 0.923

50[80%] 1 1.965 0910 1774 0918 0.751 0.928

2 1.887 0913 1730 0920 0.739 0.932

3 1.875 0916 1702 0924 0708 0.936

80[40%] 1 1.819 0919 1492 0927 0569 0.941

2 1593 0923 1350 0931 0543  0.946

3 1371 0928 1234 0936 0531 0.949

80[80%] 1 1340 0931 1.190 0939 0526 0951

2 1275 0932 1.131 0943 0514 0.953

3 1181 0935 1.060 0947 0494 0.956

(2,5  50[40%] 1 3166 0.865 1.947 0.889 0.849  0.904

2 2814 0884 1.891 0.891 0822 0.909

3 2219 0896 1.885 0904 0.802 0916

50[80%] 1 1979 0905 1790 0913 0781 0.924

2 1.946 0909 1776 0914 0.757 0.927

3 1.885 0912 1717 0917 0712 0931

80[40%] 1 1.851 0914 1392 0922 0.648 0.937

2 1.609 0918 1357 0928 0585 0.941

3 1380 0923 1296 0931 0536 0.946

80[80%] 1 1359 0925 1226 0933 0531 0947

2 1347 0927 1.194 0937 0521 0.950

3 1188 0933  1.145 0940 0510 0.954

Table 8. The ACLs (1* column) and CPs (2" column),
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of 95% ACI/HPD intervals of R(t).

(T, T) n[FP%] Scheme ACI HPD
Prior — P1 P2

(1,2) 50[40%] 1 0.288 0937 0.136 0949 0.083  0.960
2 0.283 0938 0.133 0950 0.080 0.962

3 0276 0940 0.127 0952 0.077 0.964

50[80%] 1 0.230 0943 0.125 0953 0.066 0.967

2 0.228 0944 0.122 0954 0.057 0.969

3 0.225 0944 0.119 0956 0.054 0970

80[40%] 1 0.221 0946 0.115 0957 0.053 0970

2 0.219 0947 0.113 0959 0.051 0972

3 0216 0949 0.112 0960 0.049 0973

80[80%] 1 0.180 0952 0.110 0962 0.046 0975

2 0.179 0953 0.109 0963 0.045 0976

3 0.170 0955 0.108 0963 0.042 0977

2,5) 50[40%] 1 0.279 0940 0.133 0951 0.081 0.960
2 0276 0941 0.126 0952 0.078 0.963

3 0.269 0943 0.125 0952 0.073 0.964

50[80%] 1 0.226 0946 0.123 0955 0.059 0.968

2 0.225 0947 0.121 0956 0.053 0970

3 0.224 0947 0.118 0958 0.052 0971

80[40%] 1 0.216 0949 0.115 0959 0.051 0971

2 0.214 0950 0.113 0960 0.049 0973

3 0.211 0951 0.110 0962 0.047 0974

80[80%] 1 0.178 0953 0.105 0964 0.044 0976

2 0.177 0953 0.102 0965 0.042 0977

3 0.169 0955 0.099 0963 0.037 0979
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Table 9. The ACLs (1* column) and CPs (2" column), of 95% ACI/HPD intervals of A(f).

(T\,T»)  n[FP%]  Scheme ACI HPD
Prior — Pl P2

(1,2)  50[40%] 1 1.060 0918 0466 0936 0.139 0.949

2 0969 0920 0419 0940 0.136  0.950

3 0.899 0924 0385 0945 0.132  0.952

50[80%] 1 0.822 0929 0348 0948 0.131  0.953

2 0730 0935 0324 0951 0.129 0.958

3 0.684 0939 0312 0953 0.125 0.960

80[40%] 1 0.605 0944 0300 0955 0.123 0.962

2 0581 0946 0291 0957 0.120 0.963

3 0532 0949 0244 0961 0.119 0.964

80[80%] 1 0468 0954 0239 0963 0.115 0.967

2 0454 0956 0216 0967 0.112  0.969

3 0442 0958 0.198 0969 0.110 0974

(2,5  50[40%] 1 0945 0921 0454 0937 0.137 0.951

2 0.852 0926 0392 0943 0.134 0952

3 0.790 0930 0372 0947 0.130 0.954

50[80%] 1 0.731 0934 0361 0950 0.129 0.958

2 0.642 0940 0293 0953 0.128  0.960

3 0.600 0945 0286 0955 0.124 0.962

80[40%] 1 0549 0951 0263 0958 0.122 0.964

2 0532 0953 0247 0960 0.121  0.967

3 0525 0955 0226 0962 0.117 0.968

80[80%] 1 0442 0961 0208 0966 0.113 0.970

2 0428 0963 0.189 0968 0.110 0.973

3 0407 0966 0.176 0971 0.108 0976

6. Optimal PT2C designs

In the philosophy of reliability, a researcher aims to choose the best PT2C design among all possible
censoring designs to gather the most data about the unknown parameter(s) being investigated. For the
first time, [33] discussed the challenge of determining the best censoring. Many different ways of
deciding what is best have been suggested, and many different studies have been done on finding the
best censoring systems. When the experimenter assigns the values of n, m, and T;, i = 1,2, the ideal
PT2C design S can be easily determined. According to [34], the best PT2C plan is specified based
on the availability of resources, the facilities for experiments, and the importance of cost; see, for
example, [35-37], among others. In this study, Table 10 provides three metrics (say O;, i = 1,2,3) to
assist us in providing the ideal PT2C system.

Table 10. Three optimum criteria for the best PT2C plan.

Criterion Goal

O,
O,
Os

Maximize trace(I(¥, 5))
Minimize trace(I”' (3, §))
Minimize det(I"\(3, §))

Obviously, it should be noted that the best PT2C strategies should correspond to the highest (lowest)

value of O; (O, i =2,3).

AIMS Mathematics
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7. Physical applications

This part studies three sets of actual data from the physical field to determine if the suggested
estimating methods are accurate, useful, and relevant to real-world circumstances. These applications
demonstrated that the suggested inferential procedures perform well when applied to real-world data
utilizing the proposed strategy.

7.1. Carbon fibers

In this application, we consider a dataset representing the tensile strength of 69 carbon fibers,
measured in gigapascals (GPa), tested under tension at gauge lengths of 20 mm; see Table 11. This
dataset was first reported by [38] and reanalyzed by [39] and [40].

Table 11. Tensile strength of 69 carbon fibers.

1312 1314 1479 1552 1.700 1.803 1.861 1.865 1.944 1.958
1966 1997 2006 2.021 2027 2055 2063 2098 2140 2.179
2224 2240 2253 2270 2272 2274 2301 2301 2359 2382
2382 2426 2434 2435 2478 2490 2511 2514 2535 2554
2566 2570 2586  2.629 2.633 2.642 2.648 2684 2697 2726
2770 2773 2800 2809 2818 2.821 2848 2880 2954 3.012
3.067 3.084 3.090 3.096 3.128 3233 3433 3.585 3.585

| ,&\ = 4
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Figure 4. Reliability (left) and contour (right) from tensile strength data.

To show whether the given tensile strength data fit the proposed LogL(y, d) distribution or not,
the Kolmogorov—Smirnov (K-S) distance (in addition to its P-value) is computed. However, from
Table 11, we have the MLEs (with their standard-errors (St-Ers)) of y and ¢ as 2.7879(0.4215) and
1.4407(0.1653), respectively; meanwhile, the K-S (P-value) is 0.0741(0.9965). Hence, the LogL
lifetime model fits the tensile strength dataset quite well. Moreover, from graphical visualization,
Figure 4 displays (i) estimated and empirical LogL reliability R(¢) function and (ii) contour diagrams. It
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supports the same goodness-of-fit findings and shows that the acquired MLEs ¥ = 2.788 and 6 = 1.441
exist and are unique.

From tensile strength data (for m = 39), three artificial G-T2-PHC samples (denoted by S;, i =
1,2, 3,) are generated; see Table 12. For each sample in Table 12, the point estimates (in addition
to their St-Ers) and the 95% interval estimates (in addition to their interval widths (IWs)) of vy, 4,
R(?), or h(t) (at mission time ¢t = 2) are obtained; see Table 13. Clearly, because there is no prior
information regarding y and ¢ from the tensile strength dataset, the Bayes point/interval estimations
are assessed using incorrect gamma priors by running the MCMC sampler 50,000 times and skipping
the first 10,000 of those as burn-in. It is noted from Table 13 that the estimations developed from the
Bayes’ paradigm of vy, ¢, R(¢) and h(t) behaved better than others. Figure 5 supports the estimation
results reported in Table 13.
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-200

Profile log-likelihood
Profile log-likelihood

-300

-55 50 45 40 35 30

-400

Profile log-likelihood
-150

Profile log-likelihood

-250

-350

(b) Sample S,

Profile log-likelihood
80 70

Profile log-likelihood

90 -

-300 -250 -200 -150 -100 -50
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(c) Sample S;
Figure 5. The log-likelihoods of y and ¢ from tensile strength data.
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Table 12. Three G-T2-PHC samples from tensile strength data.

Si S

T\(d1)

Ta(dr)

S*

T

Data

S, (310, 029)

1.95(6)

2.75(33)

6

2.75

1.312, 1.314, 1.700, 1.861, 1.865, 1.944, 1.958, 1.997, 2.006, 2.021,
2.027,2.055, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301,
2.426,2.490,2.511,2.514, 2.535, 2.554, 2.586, 2.629, 2.633, 2.642,

2.648,2.684, 2.697

S, (014’310’015)

2.01(13)

2.65(30)

9

2.65

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.063, 2.098, 2.179, 2.224, 2.240,
2.272,2.301, 2.301, 2.359, 2.382, 2.554, 2.566, 2.570, 2.586, 2.642

S, (029, 3 10)

2.05(15)

2.95(37)

8

2.85

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958,
1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179,
2.224,2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382,
2.426, 2.490, 2.554, 2.629, 2.633, 2.642, 2.848

Table 13. Estimates of y, ¢, R(t), and h(f) from tensile strength data.

Sample  Par. MLE MCMC ACI HPD
Est. St-Er Est. St-Er Low. Upp. w Low. Upp. w

S, b 9.6114  1.2911 9.5086  0.1448  7.0809  12.1419  5.0609 9.3107 9.7080  0.3973
0 23968  0.0660 23701  0.0588  2.2673 2.5262  0.2588  2.2666  2.4732  0.2066

R(2) 0.8506 0.0401 0.8317 0.0351 0.7719  0.9293 0.1574  0.7713  0.8862  0.1149

n2) 07179  0.1590  0.8003  0.1625  0.4063 1.0295 0.6232  0.5429  1.0879  0.5451

S, b 72915  1.1360  7.1909  0.1414  5.0649  9.5181 44532 69876 73798  0.3922
0 24825 0.0879 24447 0.0725 23104 2.6547 0.3444 23250 2.5656  0.2406

R(2) 0.8286 0.0394 0.8071 0.0357 0.7514  0.9059 0.1545  0.7509  0.8609  0.1100

h2) 06248 0.1249  0.6934  0.1227 0.3799  0.8696  0.4896  0.5034  0.8984  0.3950

S; b 5.8159 0.8238 57143  0.1420 4.2013 7.4305 32292 55120 59029 0.3910
0 2.5847  0.1029  2.5356  0.0846  2.3829 27864  0.4035 24041 2.6726  0.2686

R(2) 08163 0.0397 0.7936  0.0343 0.7384  0.8942 0.1557  0.7422  0.8426  0.1004

h2) 05342 0.0976 0.5896 0.0914 0.3430  0.7254 03825 0.4497 0.7313  0.2816

Using Sample S; (as an example), Figure 6 displays both the density and trace plots of y, d, R(¢), and
h(t). For discrimination, for each sub-plot in Figure 6, the solid and dashed horizontal lines represent
the Bayes’ and 95% HPD interval estimates, respectively. Figure 6 shows that the recommended
MCMC approach clearly converges favorably.

To specify the best censoring S design used in the presence of tensile strength data, utilizing Table
12, the suggested optimum metrics O;, i = 1,2, 3, provided in Section 6 are computed; see Table 14.
It shows, for all given criteria O;, i = 1,2, 3, that the censoring S = (029, 310) used in Sample S; is the
optimum plan than others. It also supports the same censoring design recommended in Monte Carlo

simulations.

Table 14. The optimum PT2C strategy from tensile strength data.

AIMS Mathematics

Sample 0, 0, (OF
S 104.4356 1.67125 0.00697
S, 154.1878 1.29829 0.00842
S; 239.6767 0.68922  0.00660
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Figure 6. The density and trace diagrams of y, ¢, R(¢), and h(¢) from tensile strength data.

7.2. Rainfall

This application looks at data collected in the real world. It includes 30 numbers that represent how
much rain fell in Minneapolis-Saint Paul (MSP) in March; see Table 15. This dataset was originally
provided by [41] and later reanalyzed by [42—44].

Table 15. Consecutive values (in inches) of MSP data.

077 174 081 120 195 120 047 143 337 220
3.00 3.09 151 210 052 1.62 131 032 05 081
281 187 118 135 475 248 096 1.89 090 2.05

First, we need to check the fit of the LogL. model to the complete MSP data. So, from Table 15, the
MLEs (with their St-Ers) of v and ¢ are 8.4838(0.8531) and 2.4307(0.0598), respectively, while the
K-S statistic (with its P-value) is 0.0480(0.9974). It means that the LogL lifetime model fits the MSP
data satisfactorily. Figure 7 indicated that the Logl. model is more suitable for the full MSP data as
well as that the MLEs 9 = 8.4838 and § = 2.4307 existed and are unique. Here, we proposed taking
the estimates 4 and § as initial guesses.

To evaluate the estimators of y, ¢, R(¢), and h(?), three artificial G-T2-PHC samples (when m = 15)
are obtained from the MSP data; see Table 16. Using it, the estimates of vy, 9, R(¢), and h(t) (at t = 5) are
evaluated; see Table 17. Just like the Bayesian analysis scenario discussed in Subsection 7.1, the Bayes
MCMC as well as 95% HPD interval estimates are developed. Thus, from Table 17, the estimates of
v, 0, R(t), and h(t) exhibit the same behavior because they seem to be similar. Figure 8 shows the same
outcomes in Table 17. It also highlights the existence and uniqueness of % and 4.

AIMS Mathematics Volume 10, Issue 5, 10709-10739.

[ 10000 20000 30000 40000
Density Iterations Density Iterations



10730

Figure 9 confirms the same facts presented in Figure 6. Table 18 shows that the censoring S =

(010, 3° ) (in Sample S;) is better than others. The ideal PT2C process provided here supports the same
findings in Section 5 also.

Reliability
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0.8

0.6
1

0.4
1

0.2
1

— Empirical
—— Estimated

March Precipitation

delta
1.434 1436 1.438 1.440 1.442 1444 1.446

38,931

38,8312

38,9314

o
_ %

2770 2775 2780 2785 2790 2795 2800 2.805

gamma

Figure 7. Reliability (left) and contour (right) from MSP data.

Table 16. Various G-T2-PHC samples from MSP data.

Si S T,(d)) T)(d) R Data
S (35,010) 0.85(5) 2.05(12) 3 2.05 0.32,0.47,0.59,0.77, 0.81, 0.96, 1.18, 1.20, 1.31, 1.51, 1.74, 1.95
S, (05, 35,05) 0.75(4) 1.25(9) 9 1.25  0.32,0.47,0.52,0.59,0.77,0.81, 0.81, 0.96, 1.18
S; (010, 35) 0.95(8) 1.55(13) 8 1.55 0.32,0.47,0.52, 0.59, 0.77, 0.81, 0.81, 0.90, 0.96, 1.18, 1.20, 1.35, 1.43
Table 17. Estimates of y, ¢, R(t), and h(t) from MSP data.
Sample  Par. MLE MCMC ACIT HPD
Est. St-Er Est. St-Er Low. Upp. w Low. Upp. w
S b% 2.8717  0.6265 1.6437  4.0997 24559 2.7723 0.1396 2.5860 29707  0.3847
5 1.3456  0.2024  0.9488 1.7423  0.7935 1.2644  0.1189 1.1014 1.4368  0.3354
R(1) 0.7011 0.0875 0.5296  0.8725 0.3429 0.6544 0.0638 0.5667 0.7339  0.1672
h(l)  0.8585 0.2911  0.2880 1.4290 1.1410 09578 0.1570  0.7241 1.1911  0.4670
S, b% 2.3497  0.6942  0.9891 3.7102  2.7211 22508 0.1396  2.0639 24503  0.3864
) 1.5438 0.3301 0.8968 2.1908 1.2939 1.4551 0.1279 1.2791 1.6321 0.3530
R(1) 0.7350 0.0771 0.5840  0.8861 0.3021 0.6975 0.0487 0.6368 0.7560  0.1192
h(1) 0.6226  0.2608 0.1115 1.1337 1.0222  0.6802 0.0903 0.5509 0.8176  0.2667
S; b% 2.2517  0.5494 1.1749 33284  2.1535 2.1526  0.1392 1.9659 23493  0.3833
) 1.5922  0.2738 1.0555 2.1289 1.0734 1.5034  0.1276 1.3275 1.6794  0.3519
R(1) 0.7403  0.0701 0.6028  0.8777 0.2749  0.7047  0.0456  0.6499 0.7604  0.1105
h(1) 0.5848 0.1833 0.2256 0.9441 0.7185 0.6349 0.0784 0.5221 0.7535 0.2315
AIMS Mathematics Volume 10, Issue 5, 10709-10739.
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Table 18. The optimum PT2C strategy from MSP data.

Profile log-likelinood

Profile log-likelihood

Profile log-likelinood

Sample o} (o)) O3

S 20.1190 0.59082 0.03256
S, 18.1473  0.43351 0.01873
S3 29.4698 0.37680 0.01471
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Figure 8. The log-likelihoods of vy and 6 from MSP data.
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Figure 9. The density and trace diagrams of y, ¢, R(¢), and A(¢) from MSP data.

7.3. Automobile

This application illustrates a life dataset that represents the losses (of 32 items) from vehicle
insurance coverage for private passengers (VIC-PP) in the United Kingdom, given by [45]; see Table
19.

Table 19. The losses from VIC-PP data in UK.

5 21 23 40 44 63 92 96 123 129 140
151 162 166 169 171 245 260 266 304 312 318
343 361 381 448 479 504 578 719 859 970

First, we need to see if the proposed Logl model matches the complete VIC-PP data. So,
according to Table 19, the estimates of ¥ and 5 (with their St-Ers) are 1.6015(0.2386) and
196.66(37.498), respectively, and the K-S statistic (with its P-value) is 0.0909(0.9319). This means
that the LogL model fits the VIC-PP dataset adequately. Figure 10 emphasized that results of ¥ and 6
exist and are unique. Here, we suggest using the estimates ¥ = 1.6015 and 6 = 196.66 as starting
points for any future calculations.

To see how well our estimated values for 7y, ¢, R(f), and h(r) work, from Table 19, we created three
sets of data; see 20. In Table 21, we evaluate the estimates of y, ¢, R(¢), and h(¢) (at t = 5). Similar to
the Bayesian analysis scenario mentioned in Subsections 7.1 and 7.2, the Bayes MCMC method and
95% HPD interval estimates are created. From Table 17, we can see that the findings of y, ¢, R(f), or
h(t) all show similar patterns as they are close in value to each other. We come to the same conclusion
when comparing the asymptotic and highest posterior density interval estimates. Figure 11 confirms
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the findings in Table 21 and proves that the estimates of y and ¢ exist and are unique.
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Figure 10. Reliability (left) and contour (right) from VIC-PP data.

Table 20. Various G-T2-PHC samples from VIC-PP data.

Si S Ti(d1) To(d,) S* T Data

S (44,0]2) 350(18) 370(18) 2 350 5,21,40,44, 63,92, 96, 123, 129, 140, 151, 169, 171, 245, 266, 304, 318, 343
S, (06,44,06) 80(6) 400(16) 0 381 5,21, 23, 40, 44, 63, 92, 129, 140, 162, 169, 245, 266, 318, 343, 381

S; (012,44) 50(5) 250(15) 5 250 5,21, 23, 40, 44, 63, 92, 96, 123, 129, 140, 151, 162, 171, 245

Table 21. Estimates of y, ¢, R(?), and A(t) from VIC-PP data.

Sample Par. MLE MCMC ACI HPD
Est. St-Er Est. St-Er Low. Upp. w Low. Upp. w

S, b 1.4030  0.2684 0.8770 1.9290  1.0520  1.3099  0.1312  1.1262  1.4897  0.3635
3 210.78  8.4272 19426 22730 33.034  210.68 0.1443 21048 210.88  0.3941

R(50) 0.8827 0.0398 0.8047 09608 0.1562 0.8673  0.0217 0.8364 0.8961  0.0597

h(50)  0.0033  0.0005 0.0023 0.0043 0.0020 0.0034 0.0002 0.0031  0.0037  0.0006

S, b 1.5184 03111  0.9087  2.1282 12196  1.4217 0.1353 1.2414 1.6136  0.3722
0 205.85  8.4404  189.31 22239 33.086 205.75 0.1440 205.55 20594 0.3933

R(50) 0.8956 0.0409 0.8153 09758 0.1605 0.8813  0.0200 0.8541  0.9086  0.0545

h(50)  0.0032  0.0006 0.0020 0.0044 0.0024 0.0033 0.0002 0.0030 0.0037  0.0007

S;3 b 1.1944 02560 0.6927 1.6961  1.0034  1.1019 0.1304 09177 12793  0.3617
6 240.01  8.3925 22356 25646  32.898 23991 0.1442  239.71  240.11  0.3938

R(50) 0.8669 0.0464 0.7759 09579 0.1820 0.8482 0.0263 0.8149 0.8871  0.0722

h(50)  0.0032  0.0004 0.0023  0.0040 0.0017  0.0033  0.0002 0.0031  0.0035  0.0005

Figure 12 indicates that the MCMC technique demonstrates its efficiency by achieving a satisfactory
outcome for all unknown quantities. Furthermore, Table 22 shows how the VIC-PP data helps decide
the best PT2C plan. This means that using the removal design (012, 44) in Sample S; is the best plan
compared to other plans. The best censoring mentioned here aligns with the same ideal censoring
developed in Section 5.
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Table 22. The optimum PT2C strategy from VIC-PP data.
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-130 -125 -120 -115 -110 -105

Figure 11.
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S 14.0261 71.0890 5.0683
Sy 10.4734 71.3367 6.8112
S;3 15.2909 70.4998 4.6106
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The log-likelihoods of y and ¢ from VIC-PP data.
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Figure 12. The density and trace diagrams of vy, 9, R(¢), and h(t) from VIC-PP data.

8. Concluding remarks

This paper provides several inferential analyses for various parameters of the log-logistic model
when samples are generated from the proposed censored strategy. The Newton-Raphson iterative
technique has been utilized to obtain the maximum likelihood with their asymptotic interval estimates
for all unknown subjects. Additionally, the symmetric Bayes’ and associated HPD interval estimates
have also been calculated using the Metropolis-Hastings sampler. Numerous simulation experiments
have been conducted to compare the acquired estimates. The numerical findings can be summarized
as follows:

e Bayesian estimates, especially those using informative gamma priors and the M-H sampler,
generally outperformed MLEs in terms of lower RMSE, MRAB, and shorter ACLs, while
maintaining high CPs.

e Increasing sample size n or failure percentage (FP%) improved estimation accuracy across all
estimators, while greater censoring (i.e., smaller n — m) slightly worsened performance.

e Prior-2 (with tighter prior variance) led to more efficient estimates than Prior-1, especially when
combined with Scheme-3 (right-censoring), which showed the best performance across all
parameter estimates.

e Convergence diagnostics (ACF, BGR, trace plots) confirmed that the MCMC chains mixed well,
and the posterior estimates were stable and reliable.

e Optimal PT2C designs were evaluated using criteria based on Fisher information, and the best
designs minimized the inverse trace or determinant, leading to more informative experiments.

e Three physics datasets on carbon fiber tensile strength, Minneapolis-Saint Paul rainfall, and
vehicle losses demonstrated the utility of the model, showing good fit through K-square tests and
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showing that Bayesian estimates provided better results compared to MLEs based on different
synthetic censoring scenarios.

e We think that the information and methods discussed in this study will be helpful for researchers
and statisticians.
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