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Abstract: Last-mile distribution is a subject that has drawn significant attention from both academic and
industry researchers. There are several reasons for the adoption of drone delivery technology, including
the growing number of customers who want more flexible and faster delivery options. Currently, there is
a large selection of these models on the market. Therefore, there is a need to develop efficient methods to
select the most appropriate drone delivery service. This research employs Dombi aggregation operators
(AOs) within the context of linguistic Pythagorean fuzzy sets (LPFS) to tackle issues in drone delivery
operations. The incorporation of linguistic concepts within the Pythagorean fuzzy framework improves
the precision and dependability of delivery data analysis by providing a more thorough representation of
uncertainty, consistent with human intuition and qualitative assessments. The present study presents two
novel aggregation operators: the linguistic Pythagorean fuzzy Dombi weighted averaging (LPFDWA)
and the linguistic Pythagorean fuzzy Dombi weighted geometric (LPFDWG) operators. Essential
structural characteristics of these operators are demonstrated, and important particular cases are described.
Furthermore, we developed a systematic approach for handling multi-attribute decision-making issues
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that incorporate LPF data through the use of the suggested operators. In order to showcase the
effectiveness of the developed approaches, we provide a numerical illustration that identifies the top
drone delivery service. Finally, we execute an in-depth comparative assessment to evaluate the efficacy of
the proposed methods in relation to several established procedures.

Keywords: linguistic Pythagorean fuzzy sets; Dombi aggregation operators; multi-attribute
decision-making; drone delivery optimization
Mathematics Subject Classification: 03E72, 94D05

1. Introduction

1.1. Abbreviations and symbols

The descriptions of the abbreviations and symbols used in this article are provided in Tables 1 and 2,

respectively.

Table 1. List of abbreviations of the current study.

Abbreviations Description

MADM Multi-attribute decision-making

MAGDM Multiple-attribute group decision making

AO Aggregation operator

MD Membership degree

NMD Non-membership degree

IFS Intuitionistic fuzzy set

LIFS Linguistic intuitionistic fuzzy set

PFS Pythagorean fuzzy set

LPFS Linguistic Pythagorean fuzzy set

LPFN Linguistic Pythagorean fuzzy number

LPFDWA Linguistic Pythagorean fuzzy Dombi weighted averaging
LPFDWG Linguistic Pythagorean fuzzy Dombi weighted geometric

Table 2. List of symbols of the current study.

Symbols Description
U Membership degree
V) Non-membership degree
s Indeterminacy degree
U, Linguistic membership degree
Uy Linguistic non-membership degree

t Cardinality of the linguistic term set

@ To aggregate a collection of given LPFNs under certain s-norms
X To aggregate a collection of given LPFNs under certain t-norms
A A positive real number

y Operational parameter

U Linguistic term set
U Continuous linguistic term set
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1.2. Background

Previous studies and various decision-making methodologies [1-4] show that efficient
multi-attribute decision-making (MADM) requires comparing a range of options and selecting the
finest while considering a broad spectrum of criteria and features. Prior to a final decision being made,
multiple competing issues are taken into consideration by decision-makers in solving the real-world
situation. MADM’s systematic approach is useful in dealing with the difficulties of intricate
decision-making processes. Several groups, including those in public policy, healthcare, engineering,
business, and environmental management, can profit from it. Whenever there are multiple competing
issues to consider, MADM provides a straightforward and equitable method for selecting one option.
MADM has become more and more important due to its capability to undertake challenging problems.
Aggregation operators are essential components of the aggregation procedure, as they combine various
values to select one. Since the AOs are adaptable, they can be applied in various contexts to solve
difficult problems [5-7]. The methodologies proposed in [8,9] demonstrate the application of
advanced decision-making models in the financial and defense sectors, respectively.

Zadeh [10] introduced fuzzy sets in 1965, indicating that they could be applied to address several
problems as people were confronted with difficult situations using only exact numerical data. Fuzzy
sets are particularly effective in dealing with imperfect data, as is common in human assessments. In
1975, Kahne [11] introduced a decision-making framework that considers many features with varied
levels of importance. Jain [12] developed an alternative method for making decisions that finds a
problematic replacement. In 1978, Dubois and Prade [13] reviewed several procedures involving a
set of fuzzy variables. Yager [14] devised a number of aggregation operations based on fuzzy sets. In
order to address the absence of a clear representation of hesitancy in fuzzy sets, Atanassov [15]
extended upon Zadeh’s research by developing the concept of IFS. This extension involved assigning
MD and NMD to the elements, satisfying the condition with the hesitancy part. In 1994, Chen and
Tan [16] suggested a score function for IFS with the aim of addressing MADM issues. In 1996,
Szmidt and Kaepryzk [17] formulated an approach for solving MAGDM challenges within the
context of the IFS. Li [18] introduced MADM models and methods using IFS in 2005. In 2006, Xu
and Yager [19] developed some geometric AOs on IFS. In 2007, Xu [20] proposed arithmetic
aggregation procedures for IFS. Zhao et al. [21] presented generalized AOs on IFS as a solution to
the MADM issue. In [22], the authors proposed induced generalized AOs for intuitionistic fuzzy
group decision-making. The researchers have placed greater emphasis on the study of FS and IFS.
These studies have the potential to resolve quantitatively defined unpredictability. However, in
real-life situations, many decision-making issues require a qualitative representation of uncertainty
and imprecise information. When decision-makers evaluate someone, they tend to prefer using terms
such as “very high”, “high”, “medium”, “low”, or “very low” to describe their level of intellect.
Within this context, decision-makers can articulate their perspective on the item through the
utilization of linguistic factors. Wang [23] defined the LIFS, which originates from the foundational
principles of IFS. The LIFS employs an intuitionistic fuzzy number to precisely indicate the MDs
and NMDs of a linguistic variable. Zhang introduced a method for MAGDM utilizing linguistic
intuitionistic fuzzy numbers [24]. Ju et al. [25] proposed the MADM method by implementing
linguistic intuitionistic Maclaurin symmetric mean aggregation techniques. Liu et al. [26] developed
the linguistic intuitionistic geometric aggregation operator in their research. Liu presented the linguistic
intuitionistic weighted Bonferroni mean operator [27]. In addition, Liu and Wang [28] devised and
executed an improved LIF aggregation operator to solve MADM challenges.

The IFS theory shows its efficiency when making decisions and performing other operations.
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However, the sum of the MD and NMD can be higher than one. For example, authorities have
demonstrated interest in an alternative to the criterion with an MD of 0.8 and an NMD of 0.5.
However, the equation 0.8+0.5#1 does not meet the conditions of IFS. The concept of PFS,

introduced in [29] as an extension of IFS theory, satisfies the condition 0 < (u(x))” + (9())" < 1.
It clearly shows that 0.82 + 0.52 < 1 in the above example. The main difference between IFS and
PFS regards the extent of MD and NMD associated with them. The assessment of IFS and PFS
indicates that PFS demonstrates greater effectiveness than IFS in addressing unclear data within
MADM challenges.

Research on PFS theory and methodology has grown in three main areas: the development of
basic theories, the application of comparative analysis, and the incorporation of improved MADM
methods. In [30], researchers explored the relationship between PFS and complex numbers. The
extension of TOPSIS to PFS for MADM was investigated in [31]. Additionally, the introduction of
Pythagorean membership grades for MADM was discussed in [32]. Asif et al. [33] studied Hamacher
aggregation in PFSs, and Xiao et al. [34] introduced a g-rung orthopair fuzzy model for manufacturer
selection. A design concept evaluation method based on fuzzy weighted zero inconsistency and
combined compromise solutions was presented in [35]. New aggregation techniques using Einstein
operations have been proposed in [36,37], and symmetric Pythagorean fuzzy weighted
geometric/averaging operators have been applied to MADM problems in [38].

If a decision-maker expresses a preference for an item using a LIF number (u,, us), where u;
denotes a linguistic term t € [0,6], the LIFS fails to tackle this preference for the linguistic variable
as 4+ 3 > 6. Garg [39] proposed the notion of an LPFS, which is defined by the MDs and NMDs
that have a total of squares smaller than the cardinality of the set. Peng and Yang [40] introduced the
MADM approach using Pythagorean fuzzy linguistic sets, while Lin et al. [41] developed interaction
partitioned Bonferroni mean aggregation operators for enhanced MADM performance. Du et al. [42]
further extended these concepts by proposing a novel interval-valued Pythagorean fuzzy linguistic
decision-making method. The foundational concepts of fuzzy operators trace back to Dombi [43],
who defined a generalized class of fuzzy operators and measures. These operators demonstrate
substantial diversity in evaluating the impact of parameters. The utilization of Dombi AOs is a highly
efficient approach to address MADM challenges. Several researchers have contributed significantly
to the advancement of Dombi aggregation operators in decision-making frameworks. Liu et al. [44]
introduced intuitionistic fuzzy Dombi Bonferroni mean operators for multi-attribute group
decision-making. Akram et al. [45] and Jana et al. [46,47] extended the methodology to Pythagorean,
Q-rung orthopair, and bipolar fuzzy environments. Jana et al. [48] further explored picture fuzzy
Dombi operators, while Ashraf et al. [49] and Liu et al. [50] investigated spherical and interval-valued
hesitant fuzzy models, respectively, for complex decision-making scenarios. Masmali et al. [51]
utilized an all-encompassing mathematical framework to ascertain the optimal water purification
method through the implementation of an optimization strategy in 2021. Seikh and Chatterjee [52]
evaluated and selected E-learning websites using IF Dombi operators. In [53,54], Hussain et al. and
Sarfraz explored the application of T-spherical fuzzy operators in decision-making under uncertainty.

1.3. Existing research gaps, motivating factors, and contributions of the present study

PFS provides substantial advantages over IFS, namely, the increased flexibility in MDs and
NMDs. Although IFS limits the aggregate of these degrees to a maximum of 1, PFS permits the sum of
their squares to be no more than 1. This provides a more nuanced and refined way of expressing
uncertainty, making PFS more suitable for ambitious decision-making scenarios. However, PFS
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provides a framework for constraint management; it might not encompass linguistic or qualitative
assessments of uncertainty in their entirety. This research challenge encourages the investigation of
more generalized environments that can successfully handle decision-making situations. The
incorporation of linguistic expressions into the PF environment accommodates the limitations of the
exclusively numerical PF method, which could present a challenge for decision-makers who are more
accustomed to qualitative or verbal forms of representation. This phenomenon not only increases the
accessibility and interpretability of decision-making but also provides a more complete representation
of uncertainty, which is consistent with human intuition and qualitative assessments. The above
discussion motivates us to study the LPF environment in this article.

Aggregation operators are of critical importance in the process of condensing large datasets. They
perform information consolidation by combining multiple data elements into a single, significant value.
The Dombi AOs have immense importance in decision-making problems. These operators efficiently
manage the inherent uncertainty in implicit information and allow for parameter adjustment to model
various risk tolerances. Although the Dombi AOs are effective for aggregating information, they are
limited in PF settings. Initially, they are dependent on a particular dimension to accurately represent
the attitudinal nature of decision-making. Moreover, the Dombi parameter itself possesses
mathematical conceptualization, which may prevent coherent communication and comprehension for
individuals who are not familiar with mathematics. These decision-making challenges in the context of
the Dombi aggregation environment can effectively be addressed through the techniques presented in
this article.

Some of the main advantages of the newly suggested LPF Dombi AOs are as follows:

e The LPF Dombi weighted AOs employed in this article incorporate a versatile and adaptable
parameter, enabling several forms of aggregation behaviors, such as prioritizing some inputs
over others.

e The inclusion of a weighted vector in this setup enables the consideration of varying levels of
priority for each criterion, leading to more precise and comprehensive aggregate results.

e These strategies allow experts to articulate their preferences using everyday language phrases
by merging linguistic terms and the Dombi parameter. The primary characteristic of these
approaches is their role as a bridge between the theoretical foundation of Dombi operators and
the linguistic capabilities of human experts. Consequently, the aggregation of data in the LPF
Dombi framework is perceived as more trustworthy and user-oriented due to this integration.

The following factors significantly contribute to the paper’s exposition:

1) An updated score and accuracy function for MADM challenges within the LPF environment
are formulated. This advancement will enhance the ranking mechanism within the LPF system.

2) The LPFDWA and LPFDWG operators are introduced to handle intricate decision-making
situations. These operators elucidate the interrelationships among various components in
LPFNs and permit a more accurate estimation and evaluation of outcomes.

3) The basic structural characteristics of LPFDWA and LPFDWG operators, namely
monotonicity, boundedness, and idempotency, have been formally demonstrated. This
demonstrates the rationality of the proposed operators.

4) A comprehensive mathematical mechanism for MADM problems using the proposed
strategies within the context of LPF information is designed. In addition, the validity of these
newly defined approaches is established by applying them to the MADM problem of
selecting the most efficient and reliable drone delivery firm.
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5) A comprehensive comparative study is performed to evaluate the viability of the suggested
strategy in contrast to existing techniques. The proposed methodology is coherent and
dependable, as evidenced by the comparative results.

The structure of this paper is organized as follows: Section 2 offers a brief summary of the LPFS
aggregation operators. Section 3 describes the score and accuracy functions for solving MADM issues
in the LPF environment. The Dombi AO for LPFSs is presented, and its fundamental features are
investigated in Section 4. In Section 5, we employ the newly formed operators to find the most
efficient method for selecting the most reliable and efficient drone delivery firm. Section 6 presents a
comparative analysis of current strategies to illustrate how these new methodologies compare in terms
of effectiveness and feasibility. Finally, Section 7 presents a detailed explanation and examination of
the conclusion, along with an outline of potential directions for further studies.

2. Preliminaries

Within this section, we delve into the foundational aspects of the subject. We offer an overview
of the essential properties, operations, and techniques inherent to LPFSs defined on a non-empty
universal set.

Definition 1. [18] An IFS I on a universe X is defined as:

I = {(x, HI(X),ﬁI(X))l X € X}’

where y;: X — [0,1] and 9;: X — [0,1] represent the membership and non-membership functions,
satisfying the condition 0 < y;(x) +9;(x) <1 . The symbol m;(x) =1— p;(x)-9;(x),x
describes the hesitancy degree of x € X.

Definition 2. [45] APFS P is defined over a universal set X as:

P = {(X,HP(X),ﬁp(X))I X € X}a

where up: X - [0,1] and 9p: X — [0,1] are the membership and non-membership functions,
respectively, satisfying the condition 0 < (up(x))2 + (19,3(x))2 < 1. The hesitancy degree x € X is
defined as 7, (x) = /1 — p3(x) — 93 (x).
Definition 3. [55] Consider a set U = {y;|i = 0,1,2,...,t} consisting of linguistic terms, where the
cardinality of the set t is odd. The term wu; represents a possible qualitative value of the linguistic
variable. For example, the linguistic variable “quality” may be described by a tripartite set of
linguistic terms as U = {u, = poor, u; = fair,u, = good}. Let u; and w; represent two arbitrary
linguistic terms of U. These terms must adhere to the following properties:
a) Set U tobeanorderedset: i <j & u; <uy,
b) There are negation, maximum, and minimum operators as follows:
1) Neg(w;) = u;where j =t —i,
2) Max(u;,wj)) =uj ©i<j,
3) Min(u,wj)) =u; © i <j.
Definition 4. [55] Consider U = {u;|i = 0,1,2,...,t} to be a discrete linguistic terms set. A
continuous linguistic term set (CLTS) is defined as U = {u;|up < w; < u,,j € [0,¢t]}; within this
context, if u; € U, then it is denoted as an original linguistic term, and if u; & U, then it is termed as
virtual linguistic term.
Definition 5. [39] Let X be a universal setand U = {ujluo <Su; <u,j€|[o, t]} be a CLTS, then a
LPFS A is defined as:

AIMS Mathematics Volume 10, Issue 5, 10675-10708.
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A= {(x,uy, (%), uy(x)|x € X},

where wu, (x),ug(x) € U such that u, (x) represents the linguistic MD and u,(x) represents the
linguistic NMD for x € X. We denote the pair (u#(X),U,g (x)) as a = (uy, uy) known asa LPFN,

satisfying 0<u<¢0<9<t and 0<u?+92<t? for any x€X . The degree of
indeterminacy m, is defined as m,(x) = U fzamge
Definition 6. [39] Let a = (u,, uy), a; = (uy,uy,), and a, = (u,,,uy,) be any three LPFNs

where w,, ug, w,,, o, Uy, Us, € U = {ujlug < w; <u,,j€[0,¢]}. These LPFNs satisfy the

M1’ M2
following fundamental laws:

1) ay =a; iff u, =u,, and uy, = uy,.

2) ay < apiff u,, <wuy,and uy, > uy,.

3) a® = (uy,uy,), where a‘is the complement of a.

4) a;Va; = (max(uy,,u,,), min(uy,, ug,)).

5) ay Aay = (min(uy,,w,,), max(uyg,, uy,))-

Now, we present operational laws for LPFNs with respect to t-norm and s-norm.

Definition 7. [39] Let a = (uy, ug), a; = (u,,,uy,) and a, = (u,,,uy,) be any three LPFNs
where w,, ug, u,,, Uy, Uy, Uy, € U = {wjlug < w; <up,j€[0,¢]} and 2> 0 is a real number,
then

1) a; B a, =(u

|

Ut (9,9,/t2))

)i

uZ/t2+p3/t2—pfud/tt

2) oy @ ay = (Uguyp,/t?)

u
t\/ﬁf/t2+1922/t2—19f1922/t4

D = o)
A
4) @ = (Uygep v \/m)'

Definition 8. [45] The Dombi t-norm and s-norm are described as

1

T(a,b) = T, (2.1)
14](59"+(59)"
S(a,b)=1— ! . (2.2)
1]+

Here, ¥ > 1 is a real number and (a,b) € [0,1] x [0,1], and (2.1) is called Dombi product and (2.2)
is called Dombi sum.

3. Development of a novel ranking mechanism for LPFNs

In this section, we formulate a pair of new score and accuracy functions for LPFNs to address
MADM challenges. The purpose of developing this ranking mechanism is to facilitate the
comparison of two LPFNs, as these numbers are represented as ordered pairs and cannot be directly
compared. To enhance the decision-making process, it is crucial to establish a refined score function
that improves the evaluation, accuracy, and credibility assessment of LPFNs.

Definition 9. Let a = (w,, ug) With u,,ug € U = {uj|ug <w; <u,j €[0,t]} be a LPFN, then
the score function S for LPFN « is defined as follows:
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2_92
S(a) = u —z—57—, where fﬁe [0,1]. (3.1)
202292

2t2—p

The accuracy function A for LPFN « is defined as follows:

Al@) =u  where |—— ¢ [1 \/E] (3.2)

t2+u? 2t2-pu2+92  [v3’

2t2—p2+92
The comparison rules for any two LPFNs a and B by means of the above definition are described
as follows:
1. If S(a)>S(B),then a > B where > means “preferred to”;
2. If S(@)=S(B), and
e A(a) = A(B) then a = B;
e A(a) > A(B) then a > .
The subsequent example shows the validity of the above ranking mechanism.
Example 1. Let @ = (us,u;) and B = (uy, ug) represent two LPFNs defined on U = {ujlu0 <
u; < ug,j € [0,8]}. By substituting the value of LPFNs « and $ in Eq (3.1), we get

S(a) =u a2_12 _ — Up.7859; SB) =u a2_s2 _ — Ug.g498-
\/m Jm

In view of the obtained score values of a« and £ and using comparison rule 1 of Definition 9, we
conclude that g > a. This discernment signifies that S is preferred to a.

4. Dombi aggregation operators for LPFNs and their properties

This section explains the key characteristics of the Dombi operators within an LPF framework.
It further presents two Dombi-based weighted aggregation operators, the LPFDWA operator and the
LPFDWG operator, both formulated based on the Dombi operational laws for LPFNs. Moreover, the
structural attributes of these operators are examined in detail.
Definition 10. For any real number ¥ > 1, A > 0and for any three LPFNs a = (u,,uy), a; =

(U, tg,), and @, = (u,,,up,) defined on U = {uj|luy < wj <wuy,j € [0,t]}. In this context, the

Dombi operational laws for LPFNs are derived using Dombi t-norm and s-norm developed in [45] as
follows:

1. al@a2= u T yu 1

It follows that
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(4.1)

Moreover,

2. 1 Qa, =|u

It follows that

( \
a, @ a, = i ut , - _,u - N i (4.2)
\ e | e

la=|u U
1

t (1 % t ’ %
el T )

Proof. We confirm the theorem by employing mathematical induction on A.
For the initial case when A = 2, then in view of Eq (4.1), we have

(4.3)

1

20=a P a

AIMS Mathematics Volume 10, Issue 5, 10675-10708.
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\ | e ey

This verifies the result in the case of 1 = 2.
Moving ahead with the induction process, we assume that statement is valid for A = m, that is

| ] 5 o
\ | T )

Let A = m + 1, then the application of Eq (4.1) gives:

m+Da=maPa

=lu " U
t 1 .

.
Y\P Y\g
1+{(m+1)<%) } ju{(mﬂ)(tzﬂ_zgz) }

As the result is established for 4 = m + 1, it is consequently true for every positive integer A.

1

1

(4.4)

| 7l 3
T | )

The validity of the relation 4 is established by adopting the above mathematical procedure and using
Eq (4.2).
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4.1. Key features of Dombi weighted averaging operator in the context of LPFNs

We define the LPFDWA operator and examine its basic features in the ensuing section.
Definition 11. Consider a set @ = {a; = (u,, uy,),i = 1,2,...,n} having n LPFNs and w =
(wq,wy,...,wy)Tis the corresponding weight vector satisfying ¥, w; =1 with 0 <w; <1 and
operational parameter ¥ > 1. Then the LPFDWA operator is defined by a mapping LPFDWA:
@™ — @ such that:

LPFDWA(ay,as,...,ay) =wia; @ wya, @ ... O wya,. (4.5)

Theorem 1. Assume that a; = (u,,us), where i=12,...,n, are LPFNs and w=
(wq,wy,...,wy,)T is the corresponding weight vector satisfying ¥, w; =1 with 0 <w; <1 and
¥ > 1. The aggregated value achieved through the LPFDWA operator is an LPFN and can be
expressed as:

LPFDWA(aq, ay,..., an) =B, wia;

u ,u,

|
|
[ ¢t t .
RN NN 4
u? Y.
\ | k)| i)
L L

Proof. We confirm the theorem by employing mathematical induction.
Suppose that n = 2, we have a; = (u,,,ug,) and a, = (u,,,uy,). Utilizing Definition 11,
we get

(4.6)

=

w1 = u , U

Wzaz = u , U I

In accordance with Definition 11, the aggregated value of @, and a, is calculated in the following
manner:

LPFDWA(a,, a,) = wia, @ w,a,

AIMS Mathematics Volume 10, Issue 5, 10675-10708.
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— t 1 T t, T t . t,
\ 1+{W1(t21i%#:7[) } \]H{Wl(tzﬁ_;%) } \ 1+{W2(tzli%#%> } \]1+{w2<t2;%19%> }

Consequently,

LPFDWA(aq,a,) = | u U

t |1
2 \¥
FAWER]
The result holds true when n equals 2.
Moving ahead with the induction process, we assume that statement is valid for n = r, that is

€l
~
200
[
+
—
el
1l
fuy
=
//
T
S
=N &
N
~—
——
€l

LPFDWA(ay, @y, ..., ;) =@_, w;a;

Let n = r + 1, then,

LPFDWA(ay, &, ..., &y, @ry1) =Bj=g i@ @ Wyy1aryy
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Consequently,

| |
=|lu - U |
| ¢t :

1 tl .
2 \P\F TN AY 4
u? 292
\ sln(iSs) | J”{Zl@f () | /

Hence, the validity of the theorem has been established for n = r + 1, affirming that Theorem 1
holds for all integer values of n.

Example 2. Consider three customers who want to rank the food quality of a restaurant. The opinion
of three customers is summarized in the form of LPFNs, a; = (uy,u3), @, = (us,us), and a; =
(uy,uy) defined on CLTS U = {u;|uy < u; < ug, i € [0,6]} with the corresponding weight vectors
of the three customers w = (0.2,0.3,0.5)7and ¥ = 3. Then the LPFDWA operator can be effectively
utilized to aggregate the three LPFNs and hence we have,

LPFDWA(ay, @y, a3) =®%, wia;

LPFDWA(ay,ay,...,0r41)

1

Thus,
LPFDWA(ay, a3, a3) = (Uz.5924, U3 5499)-

Hence, we conclude that the preceding discussion demonstrates the validity of the fact indicated in

AIMS Mathematics Volume 10, Issue 5, 10675-10708.
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Theorem 1.

Proposition 1. Assume that a; = (u,,up,), Where i=12,...,n, are LPFNs and w =
(wy,ws,...,w,)T is the corresponding weight vector of a;, where 0 <w; <1 such that
Yicgwi=1and ¥ > 1.

P1 (Idempotency). If a; = (u,,, us,) = (u,, us) = a, forall i, then

LPFDWA(ay, ay,...,a,) = a. 4.7)

P2 (Monotonicity). Assume that B; = (uy,,, us,) is the LPFN. If u, <u,, and uy, = ug,,. Then,

LPFDWA(ay, ay, ..., ;) < LPFDWA(By, By -- -, Br). (4.8)

P3 (Boundedness). If a~ =miin(a1,a2,..,an) and a” =m?x(a1,a2,...,an) are two LPFNs.
Then,

a~ < LPFDWA(ay, ay,...,a,) < a™. 4.9

Equation (4.7) in fact describes that applying the weighted aggregation operator to the same input
LPFS multiple times produces the same result as applying it once.

Equation (4.8) shows that the output of the aggregation operators behaves consistently with the
changes in the input LPFS’s MD and NMD values.

Equation (4.9) ensures that the output of the weighted aggregation operator remains within certain
limits and is bound.

Proof. Since a; = (u,,, us,), Where i = 1,2,...,n, are LPFNs, which implies that w,,uy, € U =
{ujluo <wj <u,j€1[0,¢]} and p? + 97 < t2. Then,
P1. By applying the given conditions, we have a; = a

LPFDWA(aq, ay,...,an) =B, wia;

=l u ] ,u 1
t -t T
w2 \egn @ t2=92\cen P
1+(t2—u2>{2i=1wi} 1+< 92 ){Zi=1wi}

Consequently,

2 t2_92
92 )

t2—p

LPFDWA(ay,as,...,ay) = u —,Uu n = .
t |1
[
P2. Considering the provided condition, we may deduce that u,, < u,,, forall i.
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> u <u . (4.10)

2 LAY 21 Y\p

”{Z&”i(ﬁ) } “{Z?ﬂ“”i(tz——%) }
Moreover, in view of the given condition, we have u,, = Uy for all i, and by adapting the above
mathematical procedure, we get

ut , n : > ut , - : (4.12)
N oY 20T
[T et
Upon comparing Egs (4.10) and (4.11) and applying Definition 6, the following is obtained:
LPFDWA(ay, @, ...,a,) < LPFDWA(By, Bz, .-, Bn)-
P3. Let us apply the LPFDWA operator to the collection of LPFNs as follows:
LPFDWA(ay,ay,...,a,) = (u#,uﬁ).
Assume that o~ = (u,~,us-) and a* = (u,+ug+) , where u,- = ml,m(uﬂi) , Uy =

mlgx(ugi) and u,+ = mqu(uﬂi), Ug+ = ml,m(ulgi).

. A max
Since for each LPFN, miln(u#i) <u, < (W)
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max min

=
+
—~———
™M
T3
Y
=
N
o~
N
=
= |7
N
N———
<
€|
-

+
—~——
™M
S

Y
=
N
o~
N
1=
=70
=
N———
<
N e’
<

S u (4.12)

In addition, by utilizing the aforementioned mathematical process for the relationship max(ugi) <
ug, < min(uy,), this leads to the following result:

<u <u

1 1

‘| —_— —_— :
-\ T PPN AV )T
e R W s

= Uy~ < Uy, < Ug+. (4.13)

By comparing Eqgs (4.12) and (4.13), we get
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a~ < LPDFWA(ay, ay,...,a,) < a™.
4.2. Key features of Dombi weighted geometric operator in the context of LPFNs

In this section, we define the LPFDWG operator and examine its basic features.
Definition 12. Consider a set @ = {a; = (u,, us,),i = 1,2,...,n} having n LPFNs and w =
(W, Wy, ...,wy)T is the associated weight vector of «;, where 0 <w; <1 such that Y-, w; =1
and operational parameter ¥ > 1. Then the LPFDWG operator is defined by a mapping LPFDWG:
@™ — @ such that:

LPFDWG(aq,ay,...,a,) = ;"1 @ 2,2 QR...Q a,,"n. (4.14)

Theorem 2. Assume that «; = (u,,us,), Where i=12,...,n, are LPFNs and w=

(wy,ws,...,w,)T is the corresponding weight vector of a;, where 0 <w; <1 such that
,w; =1 and ¥ > 1. The aggregated value achieved through the LPFDWG operator is an LPFN

and can be expressed as:
LPFDWG(ay, @y, ..., a,) =Qi=; a;"i

(4.15)

U
-t

t
\E v
2_,2 2
1+ Zn i t—#l 1+ Zn A 19—"
=171 #2 =171 tz_ﬁlz
L

Proof. We confirm the theorem by employing mathematical induction.
For n = 2, we have a; = (u,,,uy,) and a, = (u,, uy,). Utilizing Definition 12, we get

1

:u, n

ES
7

w1 _
= - U - :
t - ot .
Z_Z'PW 2 PP
1+ w1< 2#1) 1+ wl( 2)
1 2-9
ar?=\|u u
2 I 1 ’ 1

In accordance with Definition 12, the aggregated value of @, and «a, is calculated in the following
manner:

LPFDWG(ay, @) = ) @ ay”
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It can be inferred that:

w w
a, Qa,>=|u ’

Consequently,

LPFDWG(ay,a;) =| u l
t 1 1
2.2 YNY 2 \g
J1+{2?=1wi(t u?“l> } 1+{zg=1wi(t2‘%> }
Hence, it holds forn = 2.

Moving ahead with the induction process, we assume that the statement of theorem holds for n = r,
that is,

LPFDWG(aq,ay,...,a;) =Qi-; a;"i

= u 1

‘| -
Y\ v
t2—pu? 92
[l | | )

1

S
[

Let n =r+1, then
LPFDWG(aqy,ay, ..., Qpy Aryq) =R ;Y @ a2
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Consequently,

LPFDWG(ay,ay,...,0041) =| U l n U "
t - t[1

N w
t2 -y 92
1+ Zir:fWi( 2 ‘) 1+ Z?wai<z—lz
J { uj te-9;

Hence, the validity of the theorem has been established for n = r + 1, affirming that Theorem 2
holds for all integer values of n.

Example 3. Applying the LPFDWG operator to the dataset presented in Example 2, we obtain

ES
7

LPFDWG (ay, ay, a3) =Q3_; a;"i

= u u
1 ’ 1
e U .
3\3 2 3)3
62—[,{-2 0;
1y (A 14y w2
J (5 Helaar
=lUu ‘ 1 YU 1
6 1 6 |1 1
62—12\3 62—32\3 62—22\3)3 32 \3 52 3 42 \3)3
j1+{0.2( = )+0.3( 7 )+o.5( = ) 1+ o.z(m) +0.3<62_52) +0.5(62_42)

= (U1.2887, U4.6823)-

Proposition 2. Assume that a; = (u,,us,), where i=12,...,n, are LPFNs and w =
(wy,wy,...,w,)T is the corresponding weight vector of «;, where 0 <w; <1 such that
tow;=1and ¥ > 1.

P1 (Idempotency). If a; = (uy, us,) = (u, up) = a, forall i, then
LPFDWG(aq, ay,...,a,) = Q. (4.16)
P2 (Monotonicity). Assume that f; = (uy,,, uy,) isthe LPFN. If u, < u,, and uy, > ug,. Then,

LPFDWG(ay, s, ..., an) < LPEDWG(By, Bay- ., Br)- (4.17)
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P3 (Boundedness). If a~ =mm(a1,a2,..,an) and a® =m?x(a1,a2,...,an) are two LPFNs.

[
Then,
a- < LPFDWG(ay, ay,...,a,) < a*. (4.18)

Proof. The proof of this proposition can be obtained by applying the same reasoning used in
Proposition 1.

5. Utilization of the LPF Dombi aggregation operators in MADM contexts

In the subsequent sections, we develop a decision-making methodology tailored to a scenario
where we apply the Dombi AO to the information presented in the form of LPFNs with the weight
vector of attributes. We denote the set of alternatives y = {x1, x2, ..., xm} and a set of attributes
T ={Ty,T,,..., T}, each associated with the weight vector w = {wy,w,,..., w,}", where w; >0,

for all j =(1,2,...,n) such that 37, w; = 1. Consider an LPF decision matrix F = [(a;)]

mxn
= [(uuij’uﬁij)]mxn where w, ., ug, € U = {ugluo < uy <upq €[0,t]} are the MD and NMD
of x € X to the LPF design matrix F awarded by a specialist based on how an alternative y;
satisfies the criteria T;.

To efficiently address the MADM challenges using suggested LPF aggregation operators, the
algorithm is formulated as follows:
Step 1: Formulate the LPF decision matrix F = [(aif)]mxn containing entries as LPFNs associated

with the given alternatives on all attributes.
Step 2: To calculate the aggregated value ¢; for all alternatives, use the LPFDWA operator as follows:

@; = LPEDWA(a;1, @i, ..., &)

=lu 1 YU T 1

1

T t
Y\Ng Y\
n “1'2]' n tz_ﬁlgj
i+ z:J'=1W]' tz_#iZj 1+ Zj:le 1912]_

In a similar way, to calculate the aggregated value ¢; for all alternatives, use the LPFDWG operator
as follows:

Qi = LPFDWG(a:l-l, dioy..t, (Zin)

= u 1 )u 1
l T t |1

t 1
2 2 P\y 192. Y\
I W —2#” 13wyl L
=1 =1 2_
J #ij J t 19ij

Step 3: Utilize the formula specified in Definition 9 to determine the score value for each «;.
Step 4: Evaluate each alternative based on its corresponding score value to identify the most optimal
choice.
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The schematic representation of the proposed decision-making framework is presented in Figure 1.

Evaluate the aggregated values
using LPFDWA\ LPFDWG operators

Determine the score values

/
@

Figure 1. Flowchart of the proposed decision-making algorithm using LPF Dombi
weighted aggregation operators for solving MADM problems.

5.1. llustrative example

Over the last several years, e-commerce firms have experienced an explosion in the daily quantity of
packages for transportation [56,57], along with a rise in the number of highly demanding consumer
requirements. Regarding this matter, the transportation method got excessively costly, especially for the
last kilometer. In order to maintain competitiveness and address growing needs, firms started exploring
novel autonomous delivery solutions for the final means of transportation. One such potential alternative
for the logistics sector is the use of autonomous unmanned aerial vehicles [58—60] or drones. Their
purpose is to autonomously carry products from one point to another. These devices utilize advanced
technology like GPS, sensors, and artificial intelligence to efficiently navigate and deliver products.
Recent advancements, such as anomaly detection methods based on wavelet decomposition and stacked
denoising autoencoders [61], as well as adaptive control mechanisms based on deep reinforcement
learning [62], have further enhanced the operational efficiency of drones. Drone delivery has the potential
to be used in a wide range of businesses, offering the advantages of quicker and more economical
deliveries for the final stage of the journey. With the proven effectiveness of drones in surveillance and
remote sensing, drone delivery systems are now being developed as an innovative alternative to decrease
both delivery costs and delivery time.

There are numerous uses for drone delivery in various fields, including retail, healthcare, and
emergency services. For example, drones are used to quickly deliver items purchased online in order
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to maintain total client loyalty. A drone may carry essential medicine to distant or challenging
locations, thus closing the healthcare gap. In addition, drones play a significant role in responding to
critical circumstances, as drones carrying supplies fly quicker than transit allows. In the future,
autonomous drone sharing systems will become an inevitable logistical solution, particularly due to
the new laws and recommendations implemented by the Flight World Organization regarding the
organization of operations for these unique unmanned airline systems. With the increasing need for
fast and effective delivery solutions, it is crucial to optimize drone delivery strategies. This case study
explores the complexities of improving efficiency and dependability, recognizing the potential
advantages these developments might offer to different businesses. By implementing strategic
optimization techniques, drone delivery possesses the capacity not only to fulfill but exceed existing
expectations, therefore influencing the future of logistics and transportation.

The principal aims of this case study are:

1) To optimize operational efficiency by streamlining the delivery procedure, consequently
decreasing the duration of item transportation and operating expenditures.

2) To enhance the reliability of drone delivery operations through the reduction of disruptions and
the improvement of overall dependability.

3) To optimize technological components and refine algorithms for obstacle detection, navigation
systems, battery management, and course planning.

The following key features are taken into consideration to accomplish the goals of drone delivery:

1) Incorporating technology:

« Work along with prominent drone manufacturers to integrate advanced navigation technologies,
guaranteeing accurate and effective routes.

« Utilize innovative obstacle detection technology to improve safety and prevent collisions in the
delivery process.

2) Optimizing battery management:

« Perform extensive testing to evaluate and enhance battery efficacy, with the goal of achieving
longer flight durations and minimizing the need for frequent recharging.

« Establish collaborations with battery technology firms to include state-of-the-art techniques for
storing and utilizing energy.

3) Route planning algorithm:

o Capitalize on the expertise and knowledge of data scientists and Al specialists in order to
enhance the performance of route planning algorithms. This involves integrating up-to-date
environmental data, traffic patterns, and delivery density as determinants of influence.

« Utilize machine learning techniques to iteratively enhance and adjust route planning tactics
using past data.

The application of the refined drone delivery techniques produces substantial outcomes:

e The refined path-planning algorithms result in a noteworthy 20% decrease in typical delivery
times.

e The implementation of advanced obstacle detection technologies results in a 30% reduction in
occurrences and enhanced overall safety.

e By implementing battery management improvements, flight durations are extended by 25%,
thereby lowering the frequency of recharging.

Drone delivery effectively enhances the efficiency and dependability of its delivery techniques,
showcasing a dedication to innovation in the logistics sector. Drone delivery has established itself as a
leader in efficient and dependable last-mile deliveries by adopting sophisticated technology and
consistently improving its operations. This allows it to effectively satisfy the ever-changing demands
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of contemporary logistics. The effectiveness of this optimization technique highlights the
revolutionary capacity for incorporating technology into conventional delivery systems.

5.2. Numerical implementation

In this section, we solve the MADM problem of optimizing the efficiency and reliability of
drone delivery technology using the proposed AOs within the context of the LPF environment.

A certain transportation firm faces difficulties in resolving the problem of transporting crucial
and delicate material from one place to another. Significant quantities of goods are transported
annually using conventional manual techniques and specialized logistics. However, these approaches
become insufficient in situations that need careful handling and urgent delivery. In order to address
these issues, the firm hires an expert with the objective of identifying the most suitable firm from
among various drone delivery firms that could effectively fulfill their requirements.

Let {x1, x2, X3, x4} be the set of four drone delivery firms (alternatives) selected by the expert
where

1) xq: Flytrex

2) Xz: Amazon Prime Air
3) x3: Zipline

4) x4: Google wing.

The effectiveness and dependability of these alternatives are assessed based on several attributes

{T,,T,, T5, T4}, where

1) T, = Weather conditions: They impact drone delivery by monitoring environmental factors
like wind, rain, and temperature to ensure safe and efficient operations.

2) T, = Obstacle detection: It enables drones to identify and avoid physical barriers using
advanced sensors, ensuring collision-free navigation during delivery.

3) T; = Battery management: It tracks and optimizes power usage to extend flight range,
ensuring drones complete deliveries and return safely before running out of charge.

4) T, = Path planning: It determines the safest and most efficient delivery routes by considering
real-time data on obstacles, weather, and airspace regulations.

The linguistic terms set U = {u, = extremely unreliable,u, = very unreliable,u, =
unreliable,u; = slightly unreliable,u, = neutral,us = slightly reliable,us = reliable,u,
very reliable, ug = extremely reliable}.

Step 1: Summarize the expert assessments provided by the decision-maker for each alternative in the
form of an LPF decision matrix (see Table 3) with respect to every attribute, having entries as
LPFNS.

Table 3. Decision matrix representing expert ratings of drone delivery firms using LPFNs.

Alternatives T4 T, T, T,

X1 (uz, uz) (us, us) (us, uz) (ug, us)
X2 (U, Uq) (uy,uz) (ue, u3) (us, us)
X3 (Ug, Ug) (u7,uq) (us, uy7) (us, us)
X4 (uz,uq) (uy, us) (up, ug) (uz, u3)

The associated weight vector of four attributes is w = (0.1,0.3,0.4,0.2)7, where Zj?zl w; = 1.
Step 2: Obtain the aggregated value ¢; for each alternative y; by implementing the LPFDWA
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operator on the data presented in Table 3, with the parameter setto ¥ = 3.

Let i =1, then
@1 = LPFDWA(ay1, @12, @13, 14)
= U g 1 , U T 1
t |1 T T
| N AY 4 | 2 a2 \P\?
Hij t2-9y;
| s, _) ey W(_)
\I { Jj=1 ]<t2—ﬂfj } \J { j=1"j 19%],
= u )
8 |1 1 .

‘| 1
2_432\3 2_g2\3 2_92,\3 2_£2\3)3
j1+{0.1(8 323 ) +o.3(8 525 ) +0.4(8 222 ) +0.2(8 525 ) }
@1 = (U3.3009, U2.2980)-
The results generated by this process are shown in Table 4.

Table 4. Aggregated values of alternatives using the LPFDWA operator.

Alternatives  ¢;

X1 (33915, U2.2980)
X2 (U6.6618) U1.4532)
X3 (Ug.6272) U1.2175)
Xa (Ug2115, Us 4542)

Step 3: Determine the score for each ¢; following the guidelines of Definition 9.
For instance, i = 1. We have

S((pl) =u 2_92 1
Nermr=r

=u 82-2.29802 !
2(8)2-3.39152-2.29802

= Up.7266-

Similarly, the score values of the remaining alternatives are calculated by adopting the above

mathematical procedure.

S(92) = uggr13, S(@3) = Upgeoe AN S(@4) = Ugga1o.
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Step 4: As the score values for ¢; were determined, the ranking sequence was established as
S(pz) > S(p3) > S(ps) > S(¢,). Consequently, all feasible alternatives have been ranked in the
following order:

X2 > X3 > Xa > X1-

Hence, Amazon Prime Air emerges as a preferred alternative.

Likewise, the MADM problem within the framework of the LPFDWG operator is addressed
through the following steps:
Step 2: Obtain the aggregated value ¢;, for each alternative y; by implementing the LPFDWG
operator on the data presented in Table 3, with the parameter setto ¥ = 3.

Let i =1, then

@1 = LPFDWG (a4, @12, @13, Q14)

—
I

=
=
+
—
—.h
1
fuy
<
<
/-~
o~
N
=)
EN =
RN
<.
<
|
P

Wl

g |
3 3 3 3
2_92 2_32 2_32 2_42
8«—-2 8<-3 8<-3 8<—4
\]1+{0.1< 22 > +0.3< 32 ) +0.4-< 32 ) +0.2<—4_2 ) I

1 = (Uz.6739, Ua.6477)-

The results generated by this process are shown in Table 5.

Table 5. Aggregated values of alternatives using the LPFDWG operator.

Alternatives ¢@;

X1 (U2.6739) Us.6477)
X2 (Us 6554 U4.2060)
X3 (U3.2160, Us.7255)
X4 (Uz.2907) Us.4763)

Step 3: Determine the score for each ¢; following the guidelines of Definition 9.
For instance, i = 1. We have
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S(p1) =u —z—z—,

=u 82-4.64772 !
2(8)2-2.67392-4.64772

= Up.6536-

Similarly, the score values of the remaining alternatives are calculated by adopting the above
mathematical procedure.

S(92) = U 7689, S(@3) = Ugs090and S(@4) = Uggsaz-

Step 4: As the score values for ¢; were determined, the ranking sequence was established as

S(pz) > S(ps) > S(pq) > S(p3). Consequently, all feasible alternatives have been ranked in the
following order:

X2 > X4 > X1 > X3-

Hence, Amazon Prime Air emerges as a preferred alternative.
The above discussion shows that Amazon Prime Air is the most efficient and reliable drone
delivery firm.

6. Comparative analysis

In this section, a comparison study is undertaken to evaluate the performance of the presented
methodologies. This analysis is performed by comparing these strategies with the established approaches,
namely the LIF weighted averaging (LIFWA) and LIF weighted geometric (LIFWG) operators
delineated in [24], as well as the LPF weighted averaging (LPFWA) and LPF weighted geometric
(LPFWG) operators elaborated in [39]. The outcomes of this comparison are displayed in Tables 6 and 7.

Table 6. Comparative analysis of aggregated values across established and proposed methods.

Operators X1 X2 X3 X4

LIFWA [24] (Us3102)U3.2031)  (Ug2383, U2.0770)  (Uaog20 Uz as17)  (U37177,Us5151)
LIFWG [24] (U3.0514 U38340) (Uo0s89, Uz3311)  (Usogi1 Usazas) (Uzo266 Us.oa24)
LPFWA [39] (Us.1638 U32031)  (Us2604 U2.9770) (Us 2208 Usas17)  (Us9992, Us5151)
LPFWG [39] (U3.0514 Ua.0035)  (U6.0500, Uzas72)  (Usogi1,Us7117)  (Uz.0266) Us.0a67)
LPFDWA (U3.3015, U22080) (Ueee18 Ur4532)  (Use272,U12175)  (Us2115 Ut.a542)
LPFDWG (Uz.6739, Ua6a77)  (Usessa Us2060)  (Us2160  Us7255)  (U22007, Uss763)

Table 7. Scoring and ranking analysis of alternatives utilizing existing and novel approaches.

Operators X1 X2 X3 X4 Ranking

LIFWAT[24]  ug7036 Uos200 Uo7ssa Uoz122 X2 > X3 > Xa > X1
LIFWG [24]  ugegss Uosi2z Uoesass Uoesss X2 > X1 > Xa > X3
LPFWA[39] uo7043 Uos304 Uo7657 Uo7199 X2 > X3 > Xa > X1
LPFWG [39] ugeg3s Uososs Uoezs1 Uoesiz X2 > X1 > Xa > X3
LPFDWA Ug7266 Uo.8713 U0.8699 Uo.8419 X2 = X3 > Xa > X1
LPFDWG Uge536  U0.7689  Uo5090  Uo6542 X2 > Xa > X1 > X3
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Comparison 1: The methodology described in [24] has several limitations in effectively representing
the relationship between MD and NMD in a cohesive framework. On the other hand, the LPF Dombi
operators overcome this drawback by offering a flexible approach that incorporates both MDs and
NMDs. This is achieved if the aggregate of their squares remains less than the number of elements of
the set. So, the LPF Dombi aggregation operators are useful when dealing with uncertainty in a more
complex way, going beyond what the normal LIF environment can do. The dynamic nature of this tool
makes it highly helpful in decision-making procedures that include complex and imprecise information.
Comparison 2: The methodology described in [39] demonstrates inherent limitations in addressing
intricate decision-making paradigms because it fails to deal with subtle complexities. On the other
hand, the proposed models are flexible as they provide a more adaptable method. By inserting a
parameter, it becomes possible to modify the effects of different factors, thereby offering a more
customized approach to dealing with uncertainty in the aggregation process. In situations where a
more precise management of ambiguity is required, this flexibility is particularly important, as it
surpasses the capacity of a standard aggregation operator.

Comparison 3: Spearman’s rank correlation coefficient is frequently employed to assess the strength
and direction of relationships between ranked variables. However, Spearman’s technique is confined to
ordinal data and inadequately addresses uncertainty or imprecision, rendering it less appropriate for the
analysis of LPF information. Our proposed solutions, including LPFD AOs, offer a more robust and
adaptable approach by accounting for both membership and non-membership grades. In contrast to
Spearman’s correlation, our methodologies maintain expert viewpoints presented in linguistic terms
and adeptly describe uncertainty and ambiguity in decision-making. Moreover, our methodologies
consider the interdependencies across factors, facilitating a more thorough assessment. Our strategies
produce more precise and dependable findings by including the entirety of ambiguity and expert
subjectivity. Consequently, in comparison to Spearman’s rank correlation coefficient, our
methodologies provide a more advanced framework for addressing intricate decision-making
challenges that involve LPF data.

The preceding explanation clearly emphasizes the greater applicability of the strategies provided
in this article in comparison to the current procedures. This is demonstrated by the ability of the
recently introduced LPF Dombi aggregation operator to adeptly accommodate shifts in preferences,
thus mitigating the inherent loss of information associated with traditional LPF operators. The
integration of parametric parameters highlights the versatility of the newly developed operators. The
LPF Dombi aggregation operators offer an improved approach compared to the LPFS and LIFS. It
successfully handles linguistic terms and Pythagorean uncertainty simultaneously, making it
applicable in many decision-making scenarios.

The graphical interpretation of the information given in Tables 6 and 7 is depicted in Figure 2.
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1

ek
i 0.8
= 0.6
o 0.4
5 0.2
3 0
B LIFWA 0.7036 0.829 0.7554 0.7122
B LIFWG 0.6885 0.8122 0.6459 0.6849
LPFWA 0.7043 0.8304 0.7657 0.7199
B LPFWG 0.6835 0.8099 0.6281 0.6817
m LPFDWA 0.7266 0.8713 0.8699 0.8419
LPFDWG 0.6536 0.7689 0.509 0.6542

Figure 2. Pictorial depiction of the ranking of the alternatives using different operators.
6.1. Advantages of the current study

The current study provides significant advantages compared to existing methods by addressing
essential gaps in decision-making amid ambiguity. The suggested LPF Dombi operators offer a
flexible and accurate approach for managing both quantitative and qualitative data. Incorporating
LPFNs allows experts to articulate their preferences in linguistic terms, hence enhancing the
decision-making process to be more intuitive and representative of real-world situations. The novelty
of this study is to facilitate significant flexibility through adaptable parameters by integrating the
Dombi t-norm and t-conorm, enabling enhanced adjustment among competing attributes. This
contrasts with traditional methods, which frequently depend on inflexible algebraic frameworks and
lack mechanisms to adequately represent hesitancy or expert uncertainty. The suggested operators
utilize weighted measures to reflect the differing significance of expert opinions, hence improving
their relevance to decision-making issues. In comparison to traditional methods like the SAW
technique, which use a linear model and have challenges with unknown data, the proposed model
provides a more adaptable, competitive, and comprehensible framework.

Table 8 describes the advantages of the proposed strategies compared to the existing techniques.

Table 8. Advantages of the proposed methods compared to the existing approaches.

Criteria Traditional operators Proposed LPF Dombi operators (LPFDWA,
(LIFWA, SAW, LPFWA) LPFDWG)

Handling of Limited modeling of Effectively captures hesitation and expert

uncertainty hesitation and ambiguity uncertainty via LPFNs

Data tvpe support Primarily quantitative or Integrates both qualitative (linguistic) and

ype supp limited linguistic quantitative information

Aggregation i . . Adaptive aggregation via Dombi

Flexibility Rigid algebraic operations t-norm/t-conorm with adjustable parameters

Linguistic Less intuitive, lacks Enhanced realism through direct use of

interpretability real-world alignment linguistic scales

Welght _ Uniform or fixed weights Welghted mechanism reflecting varied expert

incorporation importance

. Prone to bias under Balanced outcomes through flexible

Decision robustness L . .
conflicting data compensation strategies

Ranking stability May_ result in less stable Impr_oved ranking discrimination and
rankings consistency
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6.2. Managerial implications of the current study

The LPF Dombi aggregation operators discussed in this work provide significant management
insights for optimizing drone delivery systems through improved decision-making in uncertain and
dynamic contexts. These models enable managers to evaluate qualitative and quantitative data,
enhancing route planning, reducing delivery time, and increasing operational accuracy. They
facilitate risk assessment by recognizing potential threats, such as drone issues, enabling proactive
measures to assure dependable delivery. The adaptability of the Dombi operators facilitates scaling,
rendering them appropriate for both small and large-scale activities. This extensive decision-support
system assists managers in resource allocation, mitigates risks, and improves customer satisfaction
via accurate and efficient delivery solutions.

7. Conclusions

In this study, the notions of the LPFDWA and LPFDWG operators have been introduced. An
enhanced score function has been formulated to select the optimally appropriate choice in a
decision-making process. Additionally, various structural characteristics of newly defined operators
have been analyzed. A detailed mathematical protocol has been devised for MADM challenges using
recently proposed techniques under LPF data. Furthermore, the efficacy of these freshly articulated
techniques has been demonstrated by providing a solution to the MADM issue of selecting the most
efficient drone delivery service. A comparison study has also been conducted to demonstrate the
usefulness of the suggested methods in relation to the current body of information.

7.1. Study limitations

The techniques presented in this study have notable advantages but are not without certain
shortcomings:
e These techniques fail when the squared sum of linguistic MD and NMD is greater than the
square cardinality of the linguistic terms set.
e This study lacks a dynamic adjustment mechanism, limiting its suitability for varying-interval
data collection in MADM.

7.2. Potential goals of future studies

To address the limitations of this work, future research will extend the scope of recently
introduced methodologies to broader models, including linguistic Fermatean fuzzy sets and linguistic
dynamic Fermatean fuzzy sets. This article’s suggested methods will find effective application across
diverse domains such as Al and healthcare diagnostics, environmental modeling, and human—machine
interaction. Moreover, the scope of recently proposed techniques will be explored in [63,64].
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