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Abstract: Last-mile distribution is a subject that has drawn significant attention from both academic and 

industry researchers. There are several reasons for the adoption of drone delivery technology, including 

the growing number of customers who want more flexible and faster delivery options. Currently, there is 

a large selection of these models on the market. Therefore, there is a need to develop efficient methods to 

select the most appropriate drone delivery service. This research employs Dombi aggregation operators 

(AOs) within the context of linguistic Pythagorean fuzzy sets (LPFS) to tackle issues in drone delivery 

operations. The incorporation of linguistic concepts within the Pythagorean fuzzy framework improves 

the precision and dependability of delivery data analysis by providing a more thorough representation of 

uncertainty, consistent with human intuition and qualitative assessments. The present study presents two 

novel aggregation operators: the linguistic Pythagorean fuzzy Dombi weighted averaging (LPFDWA) 

and the linguistic Pythagorean fuzzy Dombi weighted geometric (LPFDWG) operators. Essential 

structural characteristics of these operators are demonstrated, and important particular cases are described. 

Furthermore, we developed a systematic approach for handling multi-attribute decision-making issues 
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that incorporate LPF data through the use of the suggested operators. In order to showcase the 

effectiveness of the developed approaches, we provide a numerical illustration that identifies the top 

drone delivery service. Finally, we execute an in-depth comparative assessment to evaluate the efficacy of 

the proposed methods in relation to several established procedures. 

Keywords: linguistic Pythagorean fuzzy sets; Dombi aggregation operators; multi-attribute 

decision-making; drone delivery optimization 

Mathematics Subject Classification: 03E72, 94D05 

 

1. Introduction  

1.1. Abbreviations and symbols 

The descriptions of the abbreviations and symbols used in this article are provided in Tables 1 and 2, 

respectively. 

Table 1. List of abbreviations of the current study.  

Abbreviations Description 

MADM Multi-attribute decision-making 

MAGDM Multiple-attribute group decision making 

AO Aggregation operator 

MD Membership degree 

NMD Non-membership degree 

IFS Intuitionistic fuzzy set 

LIFS Linguistic intuitionistic fuzzy set 

PFS Pythagorean fuzzy set 

LPFS Linguistic Pythagorean fuzzy set 

LPFN Linguistic Pythagorean fuzzy number 

LPFDWA Linguistic Pythagorean fuzzy Dombi weighted averaging 

LPFDWG Linguistic Pythagorean fuzzy Dombi weighted geometric 

Table 2. List of symbols of the current study. 

Symbols Description 

𝜇 Membership degree 

𝜗 Non-membership degree 

𝜋 Indeterminacy degree 

𝑢𝜇 Linguistic membership degree 

𝑢𝜗 

𝑡 
Linguistic non-membership degree 

Cardinality of the linguistic term set 

⊕ To aggregate a collection of given LPFNs under certain s-norms 

⊗ To aggregate a collection of given LPFNs under certain t-norms 

𝜆 A positive real number 

𝛹 Operational parameter 

𝑈 Linguistic term set 

𝑈 Continuous linguistic term set 
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1.2. Background 

Previous studies and various decision-making methodologies [1−4] show that efficient 

multi-attribute decision-making (MADM) requires comparing a range of options and selecting the 

finest while considering a broad spectrum of criteria and features. Prior to a final decision being made, 

multiple competing issues are taken into consideration by decision-makers in solving the real-world 

situation. MADM’s systematic approach is useful in dealing with the difficulties of intricate 

decision-making processes. Several groups, including those in public policy, healthcare, engineering, 

business, and environmental management, can profit from it. Whenever there are multiple competing 

issues to consider, MADM provides a straightforward and equitable method for selecting one option. 

MADM has become more and more important due to its capability to undertake challenging problems. 

Aggregation operators are essential components of the aggregation procedure, as they combine various 

values to select one. Since the AOs are adaptable, they can be applied in various contexts to solve 

difficult problems [5−7]. The methodologies proposed in [8,9] demonstrate the application of 

advanced decision-making models in the financial and defense sectors, respectively. 

Zadeh [10] introduced fuzzy sets in 1965, indicating that they could be applied to address several 

problems as people were confronted with difficult situations using only exact numerical data. Fuzzy 

sets are particularly effective in dealing with imperfect data, as is common in human assessments. In 

1975, Kahne [11] introduced a decision-making framework that considers many features with varied 

levels of importance. Jain [12] developed an alternative method for making decisions that finds a 

problematic replacement. In 1978, Dubois and Prade [13] reviewed several procedures involving a 

set of fuzzy variables. Yager [14] devised a number of aggregation operations based on fuzzy sets. In 

order to address the absence of a clear representation of hesitancy in fuzzy sets, Atanassov [15] 

extended upon Zadeh’s research by developing the concept of IFS. This extension involved assigning 

MD and NMD to the elements, satisfying the condition with the hesitancy part. In 1994, Chen and 

Tan [16] suggested a score function for IFS with the aim of addressing MADM issues. In 1996, 

Szmidt and Kaepryzk [17] formulated an approach for solving MAGDM challenges within the 

context of the IFS. Li [18] introduced MADM models and methods using IFS in 2005. In 2006, Xu 

and Yager [19] developed some geometric AOs on IFS. In 2007, Xu [20] proposed arithmetic 

aggregation procedures for IFS. Zhao et al. [21] presented generalized AOs on IFS as a solution to 

the MADM issue. In [22], the authors proposed induced generalized AOs for intuitionistic fuzzy 

group decision-making. The researchers have placed greater emphasis on the study of FS and IFS. 

These studies have the potential to resolve quantitatively defined unpredictability. However, in 

real-life situations, many decision-making issues require a qualitative representation of uncertainty 

and imprecise information. When decision-makers evaluate someone, they tend to prefer using terms 

such as “very high”, “high”, “medium”, “low”, or “very low” to describe their level of intellect. 

Within this context, decision-makers can articulate their perspective on the item through the 

utilization of linguistic factors. Wang [23] defined the LIFS, which originates from the foundational 

principles of IFS. The LIFS employs an intuitionistic fuzzy number to precisely indicate the MDs 

and NMDs of a linguistic variable. Zhang introduced a method for MAGDM utilizing linguistic 

intuitionistic fuzzy numbers [24]. Ju et al. [25] proposed the MADM method by implementing 

linguistic intuitionistic Maclaurin symmetric mean aggregation techniques. Liu et al. [26] developed 

the linguistic intuitionistic geometric aggregation operator in their research. Liu presented the linguistic 

intuitionistic weighted Bonferroni mean operator [27]. In addition, Liu and Wang [28] devised and 

executed an improved LIF aggregation operator to solve MADM challenges. 

The IFS theory shows its efficiency when making decisions and performing other operations. 
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However, the sum of the MD and NMD can be higher than one. For example, authorities have 

demonstrated interest in an alternative to the criterion with an MD of 0.8 and an NMD of 0.5. 

However, the equation 0.8+0.5≠1 does not meet the conditions of IFS. The concept of PFS, 

introduced in [29] as an extension of IFS theory, satisfies the condition 0 ≤ (𝜇(𝑥))
2
+ (𝜗(𝑥))

2
≤ 1. 

It clearly shows that 0. 82 + 0. 52 ≤ 1 in the above example. The main difference between IFS and 

PFS regards the extent of MD and NMD associated with them. The assessment of IFS and PFS 

indicates that PFS demonstrates greater effectiveness than IFS in addressing unclear data within 

MADM challenges.  

Research on PFS theory and methodology has grown in three main areas: the development of 

basic theories, the application of comparative analysis, and the incorporation of improved MADM 

methods. In [30], researchers explored the relationship between PFS and complex numbers. The 

extension of TOPSIS to PFS for MADM was investigated in [31]. Additionally, the introduction of 

Pythagorean membership grades for MADM was discussed in [32]. Asif et al. [33] studied Hamacher 

aggregation in PFSs, and Xiao et al. [34] introduced a q-rung orthopair fuzzy model for manufacturer 

selection. A design concept evaluation method based on fuzzy weighted zero inconsistency and 

combined compromise solutions was presented in [35]. New aggregation techniques using Einstein 

operations have been proposed in [36,37], and symmetric Pythagorean fuzzy weighted 

geometric/averaging operators have been applied to MADM problems in [38]. 

If a decision-maker expresses a preference for an item using a LIF number (𝑢4, 𝑢3), where 𝑢𝑡 
denotes a linguistic term 𝑡 ∈ [0,6], the LIFS fails to tackle this preference for the linguistic variable 

as 4 + 3 > 6. Garg [39] proposed the notion of an LPFS, which is defined by the MDs and NMDs 

that have a total of squares smaller than the cardinality of the set. Peng and Yang [40] introduced the 

MADM approach using Pythagorean fuzzy linguistic sets, while Lin et al. [41] developed interaction 

partitioned Bonferroni mean aggregation operators for enhanced MADM performance. Du et al. [42] 

further extended these concepts by proposing a novel interval-valued Pythagorean fuzzy linguistic 

decision-making method. The foundational concepts of fuzzy operators trace back to Dombi [43], 

who defined a generalized class of fuzzy operators and measures. These operators demonstrate 

substantial diversity in evaluating the impact of parameters. The utilization of Dombi AOs is a highly 

efficient approach to address MADM challenges. Several researchers have contributed significantly 

to the advancement of Dombi aggregation operators in decision-making frameworks. Liu et al. [44] 

introduced intuitionistic fuzzy Dombi Bonferroni mean operators for multi-attribute group 

decision-making. Akram et al. [45] and Jana et al. [46,47] extended the methodology to Pythagorean, 

Q-rung orthopair, and bipolar fuzzy environments. Jana et al. [48] further explored picture fuzzy 

Dombi operators, while Ashraf et al. [49] and Liu et al. [50] investigated spherical and interval-valued 

hesitant fuzzy models, respectively, for complex decision-making scenarios. Masmali et al. [51] 

utilized an all-encompassing mathematical framework to ascertain the optimal water purification 

method through the implementation of an optimization strategy in 2021. Seikh and Chatterjee [52] 

evaluated and selected E-learning websites using IF Dombi operators. In [53,54], Hussain et al. and 

Sarfraz explored the application of T-spherical fuzzy operators in decision-making under uncertainty. 

1.3. Existing research gaps, motivating factors, and contributions of the present study 

PFS provides substantial advantages over IFS, namely, the increased flexibility in MDs and 

NMDs. Although IFS limits the aggregate of these degrees to a maximum of 1, PFS permits the sum of 

their squares to be no more than 1. This provides a more nuanced and refined way of expressing 

uncertainty, making PFS more suitable for ambitious decision-making scenarios. However, PFS 
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provides a framework for constraint management; it might not encompass linguistic or qualitative 

assessments of uncertainty in their entirety. This research challenge encourages the investigation of 

more generalized environments that can successfully handle decision-making situations. The 

incorporation of linguistic expressions into the PF environment accommodates the limitations of the 

exclusively numerical PF method, which could present a challenge for decision-makers who are more 

accustomed to qualitative or verbal forms of representation. This phenomenon not only increases the 

accessibility and interpretability of decision-making but also provides a more complete representation 

of uncertainty, which is consistent with human intuition and qualitative assessments. The above 

discussion motivates us to study the LPF environment in this article. 

Aggregation operators are of critical importance in the process of condensing large datasets. They 

perform information consolidation by combining multiple data elements into a single, significant value. 

The Dombi AOs have immense importance in decision-making problems. These operators efficiently 

manage the inherent uncertainty in implicit information and allow for parameter adjustment to model 

various risk tolerances. Although the Dombi AOs are effective for aggregating information, they are 

limited in PF settings. Initially, they are dependent on a particular dimension to accurately represent 

the attitudinal nature of decision-making. Moreover, the Dombi parameter itself possesses 

mathematical conceptualization, which may prevent coherent communication and comprehension for 

individuals who are not familiar with mathematics. These decision-making challenges in the context of 

the Dombi aggregation environment can effectively be addressed through the techniques presented in 

this article.  

Some of the main advantages of the newly suggested LPF Dombi AOs are as follows:  

• The LPF Dombi weighted AOs employed in this article incorporate a versatile and adaptable 

parameter, enabling several forms of aggregation behaviors, such as prioritizing some inputs 

over others.  

• The inclusion of a weighted vector in this setup enables the consideration of varying levels of 

priority for each criterion, leading to more precise and comprehensive aggregate results.  

• These strategies allow experts to articulate their preferences using everyday language phrases 

by merging linguistic terms and the Dombi parameter. The primary characteristic of these 

approaches is their role as a bridge between the theoretical foundation of Dombi operators and 

the linguistic capabilities of human experts. Consequently, the aggregation of data in the LPF 

Dombi framework is perceived as more trustworthy and user-oriented due to this integration. 

The following factors significantly contribute to the paper’s exposition: 

1) An updated score and accuracy function for MADM challenges within the LPF environment 

are formulated. This advancement will enhance the ranking mechanism within the LPF system. 

2) The LPFDWA and LPFDWG operators are introduced to handle intricate decision-making 

situations. These operators elucidate the interrelationships among various components in 

LPFNs and permit a more accurate estimation and evaluation of outcomes.  

3) The basic structural characteristics of LPFDWA and LPFDWG operators, namely 

monotonicity, boundedness, and idempotency, have been formally demonstrated. This 

demonstrates the rationality of the proposed operators. 

4) A comprehensive mathematical mechanism for MADM problems using the proposed 

strategies within the context of LPF information is designed. In addition, the validity of these 

newly defined approaches is established by applying them to the MADM problem of 

selecting the most efficient and reliable drone delivery firm. 
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5) A comprehensive comparative study is performed to evaluate the viability of the suggested 

strategy in contrast to existing techniques. The proposed methodology is coherent and 

dependable, as evidenced by the comparative results. 

The structure of this paper is organized as follows: Section 2 offers a brief summary of the LPFS 

aggregation operators. Section 3 describes the score and accuracy functions for solving MADM issues 

in the LPF environment. The Dombi AO for LPFSs is presented, and its fundamental features are 

investigated in Section 4. In Section 5, we employ the newly formed operators to find the most 

efficient method for selecting the most reliable and efficient drone delivery firm. Section 6 presents a 

comparative analysis of current strategies to illustrate how these new methodologies compare in terms 

of effectiveness and feasibility. Finally, Section 7 presents a detailed explanation and examination of 

the conclusion, along with an outline of potential directions for further studies. 

2. Preliminaries 

Within this section, we delve into the foundational aspects of the subject. We offer an overview 

of the essential properties, operations, and techniques inherent to LPFSs defined on a non-empty 

universal set. 

Definition 1. [18] An IFS 𝐼 on a universe 𝑋 is defined as:  

𝐼 = {(𝑥, 𝜇𝐼(𝑥), 𝜗𝐼(𝑥))| 𝑥 ∈ 𝑋}, 

where 𝜇𝐼: 𝑋 → [0,1] and 𝜗𝐼: 𝑋 → [0,1] represent the membership and non-membership functions, 

satisfying the condition 0 ≤ 𝜇𝐼(𝑥) + 𝜗𝐼(𝑥) ≤ 1 . The symbol 𝜋𝐼(𝑥) = 1 − 𝜇𝐼(𝑥)– 𝜗𝐼(𝑥), 𝑥 

describes the hesitancy degree of 𝑥 ∈ 𝑋. 

Definition 2. [45] A PFS 𝑃 is defined over a universal set 𝑋 as: 

𝑃 = {(𝑥, 𝜇𝑃(𝑥), 𝜗𝑃(𝑥))| 𝑥 ∈ 𝑋}, 

where 𝜇𝑃: 𝑋 → [0,1] and 𝜗𝑃: 𝑋 → [0,1] are the membership and non-membership functions, 

respectively, satisfying the condition 0 < (𝜇𝑃(𝑥))
2
+ (𝜗𝑃(𝑥))

2
≤ 1. The hesitancy degree 𝑥 ∈ 𝑋 is 

defined as 𝜋𝑝(𝑥) = √1 − 𝜇𝑝2(𝑥) − 𝜗𝑝2(𝑥). 

Definition 3. [55] Consider a set 𝑈 = {𝑢𝑖|𝑖 = 0,1,2, . . . , 𝑡} consisting of linguistic terms, where the 

cardinality of the set 𝑡 is odd. The term 𝑢𝑖 represents a possible qualitative value of the linguistic 

variable. For example, the linguistic variable “quality” may be described by a tripartite set of 

linguistic terms as 𝑈 = {𝑢0 = poor, 𝑢1 = fair, 𝑢2 = good}. Let 𝑢𝑖  and 𝑢𝑗  represent two arbitrary 

linguistic terms of 𝑈. These terms must adhere to the following properties:  

a) Set 𝑈 to be an ordered set: 𝑖 < 𝑗 ⇔ 𝑢𝑖 < 𝑢𝑗 , 

b) There are negation, maximum, and minimum operators as follows:  

1) 𝑁𝑒𝑔(𝑢𝑖) = 𝑢𝑗where 𝑗 = 𝑡 − 𝑖, 

2) 𝑀𝑎𝑥(𝑢𝑖, 𝑢𝑗) = 𝑢𝑗 ⇔ 𝑖 < 𝑗, 

3) 𝑀𝑖𝑛(𝑢𝑖 , 𝑢𝑗) = 𝑢𝑖 ⇔ 𝑖 < 𝑗. 

Definition 4. [55] Consider 𝑈 = {𝑢𝑖|𝑖 = 0,1,2, . . . , 𝑡}  to be a discrete linguistic terms set. A 

continuous linguistic term set (CLTS) is defined as 𝑈 = {𝑢𝑗|𝑢0 ≤ 𝑢𝑗 ≤ 𝑢𝑡 , 𝑗 ∈ [0, 𝑡]}; within this 

context, if 𝑢𝑖 ∈ 𝑈, then it is denoted as an original linguistic term, and if 𝑢𝑖 ∉ 𝑈, then it is termed as 

virtual linguistic term.  

Definition 5. [39] Let 𝑋 be a universal set and 𝑈 = {𝑢𝑗|𝑢0 ≤ 𝑢𝑗 ≤ 𝑢𝑡 , 𝑗 ∈ [0, 𝑡]} be a CLTS, then a 

LPFS 𝐴 is defined as: 
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𝐴 = {(𝑥, 𝑢𝜇(𝑥), 𝑢𝜗(𝑥)|𝑥 ∈ 𝑋}, 

where 𝑢𝜇(𝑥), 𝑢𝜗(𝑥) ∈  𝑈 such that 𝑢𝜇(𝑥) represents the linguistic MD and 𝑢𝜗(𝑥) represents the 

linguistic NMD for 𝑥 ∈ 𝑋. We denote the pair (𝑢𝜇(𝑥), 𝑢𝜗(𝑥)) as 𝛼 = (𝑢𝜇, 𝑢𝜗) known as a LPFN, 

satisfying 0 ≤ 𝜇 ≤  𝑡, 0 ≤ 𝜗 ≤ 𝑡  and 0 ≤ 𝜇2 + 𝜗2 ≤ 𝑡2  for any 𝑥 ∈ 𝑋 . The degree of 

indeterminacy 𝜋𝐴 is defined as 𝜋𝐴(𝑥) = 𝑢
√𝑡2−𝜇2−𝜗2

. 

Definition 6. [39] Let 𝛼 = (𝑢𝜇, 𝑢𝜗), 𝛼1 = (𝑢𝜇1 , 𝑢𝜗1), and 𝛼2 = (𝑢𝜇2 , 𝑢𝜗2) be any three LPFNs 

where 𝑢𝜇 , 𝑢𝜗 , 𝑢𝜇1 , 𝑢𝜗1 , 𝑢𝜇2 , 𝑢𝜗2 ∈  𝑈 = {𝑢𝑗|𝑢0 ≤ 𝑢𝑗 ≤ 𝑢𝑡 , 𝑗 ∈ [0, 𝑡]} . These LPFNs satisfy the 

following fundamental laws: 

1) 𝛼1 = 𝛼2 iff 𝑢𝜇1 = 𝑢𝜇2 and 𝑢𝜗1 = 𝑢𝜗2. 

2) 𝛼1 < 𝛼2iff 𝑢𝜇1 < 𝑢𝜇2and 𝑢𝜗1 > 𝑢𝜗2. 

3) 𝛼𝑐 = (𝑢𝜗 , 𝑢𝜇), where 𝛼𝑐is the complement of 𝛼. 

4) 𝛼1 ∨ 𝛼2 = (𝑚𝑎𝑥( 𝑢𝜇1 , 𝑢𝜇2),𝑚𝑖𝑛( 𝑢𝜗1 , 𝑢𝜗2)). 

5) 𝛼1 ∧ 𝛼2 = (𝑚𝑖𝑛( 𝑢𝜇1 , 𝑢𝜇2),𝑚𝑎𝑥( 𝑢𝜗1 , 𝑢𝜗2)).  

Now, we present operational laws for LPFNs with respect to t-norm and s-norm. 

Definition 7. [39] Let 𝛼 = (𝑢𝜇, 𝑢𝜗), 𝛼1 = (𝑢𝜇1 , 𝑢𝜗1) and 𝛼2 = (𝑢𝜇2 , 𝑢𝜗2) be any three LPFNs 

where 𝑢𝜇 , 𝑢𝜗 , 𝑢𝜇1 , 𝑢𝜗1 , 𝑢𝜇2 , 𝑢𝜗2 ∈  𝑈 = {𝑢𝑗|𝑢0 ≤ 𝑢𝑗 ≤ 𝑢𝑡 , 𝑗 ∈ [0, 𝑡]} and 𝜆 > 0 is a real number, 

then 

1) 𝛼1⊕𝛼2 = (𝑢
𝑡√𝜇1

2/𝑡2+𝜇2
2/𝑡2−𝜇1

2𝜇2
2/𝑡4

, 𝑢𝑡(𝜗1𝜗2/𝑡2)); 

2) 𝛼1⊗𝛼2 = (𝑢𝑡(𝜇1𝜇2/𝑡2), 𝑢𝑡√𝜗12/𝑡2+𝜗22/𝑡2−𝜗12𝜗22/𝑡4
); 

3) 𝜆𝛼 = (𝑢
𝑡√1−(1−𝜇2/𝑡2)𝜆

, 𝑢𝑡(𝜗/𝑡)𝜆); 

4) 𝛼𝜆 = (𝑢𝑡(𝜇/𝑡)𝜆 , 𝑢
𝑡√1−(1−𝜗2/𝑡2)𝜆

). 

Definition 8. [45] The Dombi t-norm and s-norm are described as 

𝑇(𝑎, 𝑏) =
1

1+[(
1−𝑎

𝑎
)
𝛹
+(

1−𝑏

𝑏
)
𝛹
]

1
𝛹

,        (2.1) 

𝑆(𝑎, 𝑏) = 1 −
1

1+[(
𝑎

1−𝑎
)
𝛹
+(

𝑏

1−𝑏
)
𝛹
]

1
𝛹

.       (2.2) 

Here, 𝛹 ≥ 1 is a real number and (𝑎, 𝑏) ∈ [0,1] × [0,1], and (2.1) is called Dombi product and (2.2) 

is called Dombi sum.  

3. Development of a novel ranking mechanism for LPFNs  

In this section, we formulate a pair of new score and accuracy functions for LPFNs to address 

MADM challenges. The purpose of developing this ranking mechanism is to facilitate the 

comparison of two LPFNs, as these numbers are represented as ordered pairs and cannot be directly 

compared. To enhance the decision-making process, it is crucial to establish a refined score function 

that improves the evaluation, accuracy, and credibility assessment of LPFNs. 

Definition 9. Let 𝛼 = (𝑢𝜇 , 𝑢𝜗) with 𝑢𝜇 , 𝑢𝜗 ∈ 𝑈 = {𝑢𝑗|𝑢0 ≤ 𝑢𝑗 ≤ 𝑢𝑡 , 𝑗 ∈ [0, 𝑡]} be a LPFN, then 

the score function 𝑆 for LPFN 𝛼 is defined as follows: 



10682 

AIMS Mathematics  Volume 10, Issue 5, 10675–10708. 

𝑆(𝛼) = 𝑢
√

𝑡2−𝜗2

2𝑡2−𝜇2−𝜗2

, where √
𝑡2−𝜗2

2𝑡2−𝜇2−𝜗2
∈ [0,1].      (3.1) 

The accuracy function 𝐴 for LPFN 𝛼 is defined as follows: 

𝐴(𝛼) = 𝑢
√

𝑡2+𝜇2

2𝑡2−𝜇2+𝜗2

, where √
𝑡2+𝜇2

2𝑡2−𝜇2+𝜗2
∈ [

1

√3
, √2].      (3.2) 

The comparison rules for any two LPFNs 𝛼 and 𝛽 by means of the above definition are described 

as follows: 

1. If 𝑆(𝛼)>𝑆(𝛽), then 𝛼 ≻ 𝛽 where ≻ means “preferred to”; 

2. If 𝑆(𝛼)=𝑆(𝛽), and 

• 𝐴(𝛼) = 𝐴(𝛽) then 𝛼 = 𝛽; 

• 𝐴(𝛼) > 𝐴(𝛽) then 𝛼 ≻ 𝛽. 

The subsequent example shows the validity of the above ranking mechanism. 

Example 1. Let 𝛼 = (𝑢5, 𝑢1) and 𝛽 = (𝑢7, 𝑢5) represent two LPFNs defined on 𝑈 = {𝑢𝑗|𝑢0 ≤

𝑢𝑗 ≤ 𝑢8, 𝑗 ∈ [0,8]}. By substituting the value of LPFNs 𝛼 and 𝛽 in Eq (3.1), we get  

𝑆(𝛼) = 𝑢
√

82−12

2(8)2−52−12

= 𝑢0.7859;  𝑆(𝛽) = 𝑢
√

82−52

2(8)2−72−52

= 𝑢0.8498. 

In view of the obtained score values of 𝛼 and 𝛽 and using comparison rule 1 of Definition 9, we 

conclude that 𝛽 ≻ 𝛼. This discernment signifies that 𝛽 is preferred to 𝛼. 

4. Dombi aggregation operators for LPFNs and their properties 

This section explains the key characteristics of the Dombi operators within an LPF framework. 

It further presents two Dombi-based weighted aggregation operators, the LPFDWA operator and the 

LPFDWG operator, both formulated based on the Dombi operational laws for LPFNs. Moreover, the 

structural attributes of these operators are examined in detail. 

Definition 10. For any real number 𝛹 ≥ 1, 𝜆 > 0 and for any three LPFNs 𝛼 = (𝑢𝜇, 𝑢𝜗), 𝛼1 =

(𝑢𝜇1 , 𝑢𝜗1), and 𝛼2 = (𝑢𝜇2 , 𝑢𝜗2) defined on 𝑈 = {𝑢𝑗|𝑢0 ≤ 𝑢𝑗 ≤ 𝑢𝑡, 𝑗 ∈ [0, 𝑡]}. In this context, the 

Dombi operational laws for LPFNs are derived using Dombi t-norm and s-norm developed in [45] as 

follows: 

1. 𝛼1⊕𝛼2 =

(

 
 
 
 
 
 

𝑢
𝑡

√
  
  
  
  
  
  1−

1

1+

{
 
 

 
 

(

 
 

𝜇1
2

𝑡2

1−
𝜇1
2

𝑡2 )

 
 

𝛹

+

(

 
 

𝜇2
2

𝑡2

1−
𝜇2
2

𝑡2 )

 
 

𝛹

}
 
 

 
 

1
𝛹

, 𝑢
𝑡

√
  
  
  
  
  
  1

1+

{
 
 

 
 

(

 
 1−

𝜗1
2

𝑡2

𝜗1
2

𝑡2 )

 
 

𝛹

+

(

 
 1−

𝜗2
2

𝑡2

𝜗2
2

𝑡2 )

 
 

𝛹

}
 
 

 
 

1
𝛹

)

 
 
 
 
 
 

. 

It follows that  
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𝛼1⊕𝛼2 =

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{(
𝜇1
2

𝑡2−𝜇1
2)

𝛹

+(
𝜇2
2

𝑡2−𝜇2
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{(
𝑡2−𝜗1

2

𝜗1
2 )

𝛹

+(
𝑡2−𝜗2

2

𝜗2
2 )

𝛹

}

1
𝛹

)

 
 
 
 

.   (4.1) 

Moreover, 

2. 𝛼1⊗𝛼2 =

(

 
 
 
 
 
 

𝑢
𝑡

√
  
  
  
  
  
  1

1+

{
 
 

 
 

(

 
 1−

𝜇1
2

𝑡2

𝜇1
2

𝑡2 )

 
 

𝛹

+

(

 
 1−

𝜇2
2

𝑡2

𝜇2
2

𝑡2 )

 
 

𝛹

}
 
 

 
 

1
𝛹

, 𝑢
𝑡

√
  
  
  
  
  
  1−

1

1+

{
 
 

 
 

(

 
 

𝜗1
2

𝑡2

1−
𝜗1
2

𝑡2 )

 
 

𝛹

+

(

 
 

𝜗2
2

𝑡2

1−
𝜗2
2

𝑡2 )

 
 

𝛹

}
 
 

 
 

1
𝛹

)

 
 
 
 
 
 

. 

It follows that 

𝛼1⊗𝛼2 =

(

 
 
 
 

𝑢
𝑡

√

1

1+{(
𝑡2−𝜇1

2

𝜇1
2 )

𝛹

+(
𝑡2−𝜇2

2

𝜇2
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{(
𝜗1
2

𝑡2−𝜗1
2)

𝛹

+(
𝜗2
2

𝑡2−𝜗2
2)

𝛹

}

1
𝛹

)

 
 
 
 

.   (4.2) 

𝜆𝛼 =

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝜆(
𝜇2

𝑡2−𝜇2
)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝜆(
𝑡2−𝜗2

𝜗2
)

𝛹

}

1
𝛹

)

 
 
 
 

.     (4.3) 

Proof. We confirm the theorem by employing mathematical induction on 𝜆. 

For the initial case when 𝜆 = 2, then in view of Eq (4.1), we have 

2𝛼 = 𝛼 ⊕ 𝛼 

=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{(
𝜇2

𝑡2−𝜇2
)
𝛹

+(
𝜇2

𝑡2−𝜇2
)
𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{(
𝑡2−𝜗2

𝜗2
)
𝛹

+(
𝑡2−𝜗2

𝜗2
)
𝛹

}

1
𝛹

)
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=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{2(
𝜇2

𝑡2−𝜇2
)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{2(
𝑡2−𝜗2

𝜗2
)

𝛹

}

1
𝛹

)

 
 
 
 

. 

This verifies the result in the case of 𝜆 = 2. 

Moving ahead with the induction process, we assume that statement is valid for 𝜆 = 𝑚, that is  

𝑚𝛼 =

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝑚(
𝜇2

𝑡2−𝜇2
)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝑚(
𝑡2−𝜗2

𝜗2
)

𝛹

}

1
𝛹

)

 
 
 
 

. 

Let 𝜆 = 𝑚 + 1, then the application of Eq (4.1) gives: 

(𝑚 + 1) 𝛼 = 𝑚𝛼 ⊕ 𝛼 

=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝑚(
𝜇2

𝑡2−𝜇2
)
𝛹

+(
𝜇2

𝑡2−𝜇2
)
𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝑚(
𝑡2−𝜗2

𝜗2
)
𝛹

+(
𝑡2−𝜗2

𝜗2
)
𝛹

}

1
𝛹

)

 
 
 
 

 

=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{(𝑚+1)(
𝜇2

𝑡2−𝜇2
)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{(𝑚+1)(
𝑡2−𝜗2

𝜗2
)

𝛹

}

1
𝛹

)

 
 
 
 

. 

As the result is established for 𝜆 =  𝑚 +  1, it is consequently true for every positive integer 𝜆. 

𝛼𝜆 =

(

 
 
 
 

𝑢
𝑡

√

1

1+{𝜆(
𝑡2−𝜇2

𝜇2
)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{𝜆(
𝜗2

𝑡2−𝜗2
)

𝛹

}

1
𝛹

)

 
 
 
 

 .     (4.4) 

The validity of the relation 4 is established by adopting the above mathematical procedure and using 

Eq (4.2). 
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4.1. Key features of Dombi weighted averaging operator in the context of LPFNs 

We define the LPFDWA operator and examine its basic features in the ensuing section. 

Definition 11. Consider a set 𝛷 = {𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖), 𝑖 = 1,2, . . . , 𝑛}  having 𝑛  LPFNs and 𝑤 =

(𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇is the corresponding weight vector satisfying ∑ 𝑤𝑖

𝑛
𝑖=1 = 1 with 0 ≤ 𝑤𝑖 ≤ 1 and 

operational parameter 𝛹 ≥ 1. Then the LPFDWA operator is defined by a mapping 𝐿𝑃𝐹𝐷𝑊𝐴: 

𝛷𝑛 → 𝛷 such that: 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) = 𝑤1𝛼1⊕𝑤2𝛼2⊕…⊕𝑤𝑛𝛼𝑛.    (4.5) 

Theorem 1. Assume that 𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖) , where 𝑖 = 1,2, . . . , 𝑛 , are LPFNs and 𝑤 =

(𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇 is the corresponding weight vector satisfying ∑ 𝑤𝑖

𝑛
𝑖=1 = 1 with 0 ≤ 𝑤𝑖 ≤ 1 and 

𝛹 ≥ 1. The aggregated value achieved through the LPFDWA operator is an LPFN and can be 

expressed as: 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) =⊕𝑖=1
𝑛 𝑤𝑖𝛼𝑖 

=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝑡2−𝜗𝑖
2

𝜗𝑖
2 )

𝛹

}

1
𝛹

)

 
 
 
 

.     (4.6) 

Proof. We confirm the theorem by employing mathematical induction. 

Suppose that 𝑛 = 2, we have 𝛼1 = (𝑢𝜇1 , 𝑢𝜗1) and 𝛼2 = (𝑢𝜇2 , 𝑢𝜗2). Utilizing Definition 11, 

we get 

𝑤1𝛼1 =

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝑤1(
𝜇1
2

𝑡2−𝜇1
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝑤1(
𝑡2−𝜗1

2

𝜗1
2 )

𝛹

}

1
𝛹

)

 
 
 
 

, 

𝑤2𝛼2 =

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝑤2(
𝜇2
2

𝑡2−𝜇2
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝑤2(
𝑡2−𝜗2

2

𝜗2
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

In accordance with Definition 11, the aggregated value of 𝛼1 and 𝛼2 is calculated in the following 

manner:  

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2) = 𝑤1𝛼1⊕𝑤2𝛼2 
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=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝑤1(
𝜇1
2

𝑡2−𝜇1
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝑤1(
𝑡2−𝜗1

2

𝜗1
2 )

𝛹

}

1
𝛹

)

 
 
 
 

⊕

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝑤2(
𝜇2
2

𝑡2−𝜇2
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝑤2(
𝑡2−𝜗2

2

𝜗2
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

It can be inferred that: 

𝑤1𝛼1⊕𝑤2𝛼2 =

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝑤1(
𝜇1
2

𝑡2−𝜇1
2)

𝛹

+𝑤2(
𝜇2
2

𝑡2−𝜇2
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝑤1(
𝑡2−𝜗1

2

𝜗1
2 )

𝛹

+𝑤2(
𝑡2−𝜗2

2

𝜗2
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

Consequently,  

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2) =

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
2
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
2
𝑖=1 (

𝑡2−𝜗𝑖
2

𝜗𝑖
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

The result holds true when 𝑛 equals 2. 

Moving ahead with the induction process, we assume that statement is valid for 𝑛 = 𝑟, that is 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑟) =⊕𝑖=1
𝑟 𝑤𝑖𝛼𝑖 

=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑟
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑟
𝑖=1 (

𝑡2−𝜗𝑖
2

𝜗𝑖
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

Let 𝑛 = 𝑟 + 1, then, 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑟 , 𝛼𝑟+1) =⊕𝑖=1
𝑟 𝑤𝑖𝛼𝑖 ⊕𝑤𝑟+1𝛼𝑟+1 
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=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑟
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑟
𝑖=1 (

𝑡2−𝜗𝑖
2

𝜗𝑖
2 )

𝛹

}

1
𝛹

)

 
 
 
 

⊕

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{𝑤𝑟+1(
𝜇𝑟+1
2

𝑡2−𝜇𝑟+1
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{𝑤𝑟+1(
𝑡2−𝜗𝑟+1

2

𝜗𝑟+1
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

Consequently,  

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑟+1) =

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑟+1
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑟+1
𝑖=1 (

𝑡2−𝜗𝑖
2

𝜗𝑖
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

Hence, the validity of the theorem has been established for 𝑛 = 𝑟 + 1, affirming that Theorem 1 

holds for all integer values of 𝑛. 

Example 2. Consider three customers who want to rank the food quality of a restaurant. The opinion 

of three customers is summarized in the form of LPFNs, 𝛼1 = (𝑢1, 𝑢3), 𝛼2 = (𝑢3, 𝑢5), and 𝛼3 =

(𝑢2, 𝑢4) defined on CLTS 𝑈 = {𝑢𝑖|𝑢0 < 𝑢𝑖 < 𝑢6, 𝑖 ∈ [0,6]} with the corresponding weight vectors 

of the three customers 𝑤 = (0.2,0.3,0.5)𝑇and 𝛹 = 3. Then the LPFDWA operator can be effectively 

utilized to aggregate the three LPFNs and hence we have, 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, 𝛼3) =⊕𝑖=1
3 𝑤𝑖𝛼𝑖 

=

(

 
 
 
 

𝑢
6

√

1−
1

1+{∑ 𝑤𝑖
3
𝑖=1 (

𝜇𝑖
2

62−𝜇𝑖
2)

3

}

1
3

, 𝑢
6

√

1

1+{∑ 𝑤𝑖
3
𝑖=1 (

62−𝜗𝑖
2

𝜗𝑖
2 )

3

}

1
3

)

 
 
 
 

=

(

  
 
𝑢
6

√

1−
1

1+{0.2(
12

62−12
)

3

+0.3(
32

62−32
)

3

+0.5(
22

62−22
)

3

}

1
3

, 𝑢
6

√

1

1+{0.2(
62−32

32
)

3

+0.3(
62−52

52
)

3

+0.5(
62−42

42
)

3

}

1
3

)

  
 

. 

Thus, 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, 𝛼3) = (𝑢2.5924, 𝑢3.5499). 

Hence, we conclude that the preceding discussion demonstrates the validity of the fact indicated in 
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Theorem 1. 

Proposition 1. Assume that 𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖) , where 𝑖 = 1,2, . . . , 𝑛 , are LPFNs and 𝑤 =

(𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇  is the corresponding weight vector of 𝛼𝑖 , where 0 ≤ 𝑤𝑖 ≤ 1  such that 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 𝛹 ≥ 1.  

P1 (Idempotency). If 𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖) = (𝑢𝜇 , 𝑢𝜗) = 𝛼, for all 𝑖, then 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) = 𝛼.        (4.7) 

P2 (Monotonicity). Assume that 𝛽𝑖 = (𝑢𝜇𝑖′, 𝑢𝜗𝑖′) is the LPFN. If 𝑢𝜇𝑖 ≤ 𝑢𝜇𝑖′ and 𝑢𝜗𝑖 ≥ 𝑢𝜗𝑖′. Then, 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) ≤ 𝐿𝑃𝐹𝐷𝑊𝐴(𝛽1, 𝛽2, . . . , 𝛽𝑛).     (4.8) 

P3 (Boundedness). If 𝛼− =
𝑚𝑖𝑛
𝑖
(𝛼1, 𝛼2, . . , 𝛼𝑛) and 𝛼+ =

𝑚𝑎𝑥
𝑖
(𝛼1, 𝛼2, . . . , 𝛼𝑛) are two LPFNs. 

Then, 

𝛼− ≤ 𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) ≤ 𝛼+.        (4.9) 

Equation (4.7) in fact describes that applying the weighted aggregation operator to the same input 

LPFS multiple times produces the same result as applying it once.  

Equation (4.8) shows that the output of the aggregation operators behaves consistently with the 

changes in the input LPFS’s MD and NMD values. 

Equation (4.9) ensures that the output of the weighted aggregation operator remains within certain 

limits and is bound. 

Proof. Since 𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖), where 𝑖 = 1,2, . . . , 𝑛, are LPFNs, which implies that 𝑢𝜇𝑖 , 𝑢𝜗𝑖 ∈ 𝑈 =

{𝑢𝑗|𝑢0 ≤ 𝑢𝑗 ≤ 𝑢𝑡, 𝑗 ∈ [0, 𝑡]} and 𝜇𝑖
2 + 𝜗𝑖

2 ≤ 𝑡2. Then, 

P1. By applying the given conditions, we have 𝛼𝑖 = 𝛼 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) =⊕𝑖=1
𝑛 𝑤𝑖𝛼𝑖 

=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝑡2−𝜗𝑖
2

𝜗𝑖
2 )

𝛹

}

1
𝛹

)

 
 
 
 

  

=

(

  
 
𝑢
𝑡
√
1−

1

1+(
𝜇2

𝑡2−𝜇2
){∑ 𝑤𝑖

𝑛
𝑖=1 }

1
𝛹

, 𝑢
𝑡
√

1

1+(
𝑡2−𝜗2

𝜗2
){∑ 𝑤𝑖

𝑛
𝑖=1 }

1
𝛹

)

  
 

. 

Consequently, 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) = (𝑢
𝑡
√
1−

1

1+(
𝜇2

𝑡2−𝜇2
)

, 𝑢
𝑡
√

1

1+(
𝑡2−𝜗2

𝜗2
)

) = 𝛼. 

P2. Considering the provided condition, we may deduce that 𝑢𝜇𝑖 ≤ 𝑢𝜇𝑖′ for all 𝑖. 
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⇒ 𝑢
(

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹 ≤ 𝑢
(

𝜇𝑖
2′

𝑡2−𝜇𝑖
2′
)

𝛹  

⇒ 𝑢

{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹
≤ 𝑢

{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2′

𝑡2−𝜇𝑖
2′
)

𝛹

}

1
𝛹

  

⇒ 𝑢

(

 1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 

≤ 𝑢

(

 1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2′

𝑡2−𝜇𝑖
2′
)

𝛹

}

1
𝛹

)

 

 

⇒ 𝑢

(

 
 
 
 

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

≥ 𝑢

(

 
 
 
 

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2′

𝑡2−𝜇𝑖
2′
)

𝛹

}

1
𝛹

)

 
 
 
 

 

⇒ 𝑢

(

 
 
 
 

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

≤ 𝑢

(

 
 
 
 

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2′

𝑡2−𝜇𝑖
2′
)

𝛹

}

1
𝛹

)

 
 
 
 

 

⇒ 𝑢

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

≤ 𝑢

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2′

𝑡2−𝜇𝑖
2′
)

𝛹

}

1
𝛹

 

 ⇒ 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

≤ 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2′

𝑡2−𝜇𝑖
2′
)

𝛹

}

1
𝛹

.    (4.10) 

Moreover, in view of the given condition, we have 𝑢𝜗𝑖 ≥ 𝑢𝜗𝑖
′  for all 𝑖, and by adapting the above 

mathematical procedure, we get  

𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝑡2−𝜗𝑖
2

𝜗𝑖
2 )

𝛹

}

1
𝛹

≥ 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝑡2−𝜗𝑖
2′

𝜗𝑖
2′

)

𝛹

}

1
𝛹

.     (4.11) 

Upon comparing Eqs (4.10) and (4.11) and applying Definition 6, the following is obtained: 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) ≤ 𝐿𝑃𝐹𝐷𝑊𝐴(𝛽1, 𝛽2, . . . , 𝛽𝑛). 

P3. Let us apply the LPFDWA operator to the collection of LPFNs as follows: 

𝐿𝑃𝐹𝐷𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) = (𝑢𝜇 , 𝑢𝜗). 

Assume that 𝛼− = (𝑢𝜇− , 𝑢𝜗−)  and 𝛼+ = (𝑢𝜇+ , 𝑢𝜗+) , where 𝑢𝜇− =
𝑚𝑖𝑛
𝑖
(𝑢𝜇𝑖) , 𝑢𝜗− =

𝑚𝑎𝑥
𝑖
(𝑢𝜗𝑖) and 𝑢𝜇+ =

𝑚𝑎𝑥
𝑖
(𝑢𝜇𝑖), 𝑢𝜗+ =

𝑚𝑖𝑛
𝑖
(𝑢𝜗𝑖). 

Since for each LPFN, 
𝑚𝑖𝑛
𝑖
(𝑢𝜇𝑖) ≤ 𝑢𝜇𝑖 ≤

𝑚𝑎𝑥
𝑖
(𝑢𝜇𝑖) 
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⇒
𝑚𝑖𝑛
𝑖
(𝑢

(
𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹) ≤ 𝑢
(

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹 ≤
𝑚𝑎𝑥
𝑖

(𝑢
(

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹)  

⇒
𝑚𝑖𝑛
𝑖

(

 
 
𝑢

{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 
≤ 𝑢

{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹
≤
𝑚𝑎𝑥
𝑖

(

 
 
𝑢

{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 

  

⇒
𝑚𝑎𝑥
𝑖

(

 
 
 
 
 
 
 

𝑢

(

 
 
 
 

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

)

 
 
 
 
 
 
 

≤ 𝑢

(

 
 
 
 

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

≤
𝑚𝑖𝑛
𝑖

(

 
 
 
 
 
 
 

𝑢

(

 
 
 
 

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

)

 
 
 
 
 
 
 

  

⇒
𝑚𝑖𝑛
𝑖

(

 
 
 
 

𝑢

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

≤ 𝑢

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

≤
𝑚𝑎𝑥
𝑖

(

 
 
 
 

𝑢

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

 

⇒ 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇−2

𝑡2−𝜇−2
)

𝛹

}

1
𝛹

≤ 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇𝑖
2

𝑡2−𝜇𝑖
2)

𝛹

}

1
𝛹

≤ 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜇+2

𝑡2−𝜇+2
)

𝛹

}

1
𝛹

  

⇒ 𝑢𝜇− ≤ 𝑢𝜇𝑖 ≤ 𝑢𝜇+.         (4.12) 

In addition, by utilizing the aforementioned mathematical process for the relationship 𝑚𝑎𝑥(𝑢𝜗𝑖) ≤

𝑢𝜗𝑖 ≤ 𝑚𝑖𝑛(𝑢𝜗𝑖), this leads to the following result: 

𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝑡2−𝜗𝑖
−2

𝜗𝑖
−2 )

𝛹

}

1
𝛹

≤ 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝑡2−𝜗𝑖
2

𝜗𝑖
2 )

𝛹

}

1
𝛹

≤ 𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝑡2−𝜗𝑖
+2

𝜗𝑖
+2 )

𝛹

}

1
𝛹

 

⇒ 𝑢𝜗− ≤ 𝑢𝜗𝑖 ≤ 𝑢𝜗+.         (4.13) 

By comparing Eqs (4.12) and (4.13), we get 
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𝛼− ≤ 𝐿𝑃𝐷𝐹𝑊𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) ≤ 𝛼+. 

4.2. Key features of Dombi weighted geometric operator in the context of LPFNs  

In this section, we define the LPFDWG operator and examine its basic features. 

Definition 12. Consider a set 𝛷 = {𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖), 𝑖 = 1,2, . . . , 𝑛} having 𝑛  LPFNs and 𝑤 =

(𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇 is the associated weight vector of 𝛼𝑖, where 0 ≤ 𝑤𝑖 ≤ 1 such that ∑ 𝑤𝑖

𝑛
𝑖=1 = 1 

and operational parameter 𝛹 ≥ 1. Then the LPFDWG operator is defined by a mapping 𝐿𝑃𝐹𝐷𝑊𝐺: 

𝛷𝑛 → 𝛷 such that: 

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑛) = 𝛼1
𝑤1 ⊗𝛼2

𝑤2 ⊗. . .⊗ 𝛼𝑛
𝑤𝑛 .     (4.14) 

Theorem 2. Assume that 𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖) , where 𝑖 = 1,2, . . . , 𝑛 , are LPFNs and 𝑤 =

(𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇  is the corresponding weight vector of 𝛼𝑖 , where 0 ≤ 𝑤𝑖 ≤ 1  such that 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 𝛹 ≥ 1. The aggregated value achieved through the LPFDWG operator is an LPFN 

and can be expressed as: 

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑛) =⊗𝑖=1
𝑛 𝛼𝑖

𝑤𝑖 

=

(

 
 
 
 

𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝑡2−𝜇𝑖
2

𝜇𝑖
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑛
𝑖=1 (

𝜗𝑖
2

𝑡2−𝜗𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

.    (4.15) 

Proof. We confirm the theorem by employing mathematical induction. 

For 𝑛 = 2, we have 𝛼1 = (𝑢𝜇1 , 𝑢𝜗1) and 𝛼2 = (𝑢𝜇2 , 𝑢𝜗2). Utilizing Definition 12, we get  

𝛼1
𝑤1 =

(

 
 
 
 

𝑢
𝑡

√

1

1+{𝑤1(
𝑡2−𝜇1

2

𝜇1
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{𝑤1(
𝜗1
2

𝑡2−𝜗1
2)

𝛹

}

1
𝛹

)

 
 
 
 

; 

𝛼2
𝑤2 =

(

 
 
 
 

𝑢
𝑡

√

1

1+{𝑤2(
𝑡2−𝜇2

2

𝜇2
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{𝑤2(
𝜗2
2

𝑡2−𝜗2
2)

𝛹

}

1
𝛹

)

 
 
 
 

. 

In accordance with Definition 12, the aggregated value of 𝛼1 and 𝛼2 is calculated in the following 

manner: 

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2) = 𝛼1
𝑤1 ⊗𝛼2

𝑤2 
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=

(

 
 
 
 

𝑢
𝑡

√

1

1+{𝑤1(
𝑡2−𝜇1

2

𝜇1
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{𝑤1(
𝜗1
2

𝑡2−𝜗1
2)

𝛹

}

1
𝛹

)

 
 
 
 

⊗

(

 
 
 
 

𝑢
𝑡

√

1

1+{𝑤2(
𝑡2−𝜇2

2

𝜇2
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{𝑤2(
𝜗2
2

𝑡2−𝜗2
2)

𝛹

}

1
𝛹

)

 
 
 
 

. 

It can be inferred that: 

𝛼1
𝑤1 ⊗𝛼2

𝑤2 =

(

 
 
 
 

𝑢
𝑡

√

1

1+{𝑤1(
𝑡2−𝜇1

2

𝜇1
2 )

𝛹

+𝑤2(
𝑡2−𝜇2

2

𝜇2
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{𝑤1(
𝜗1
2

𝑡2−𝜗1
2)

𝛹

+𝑤2(
𝜗2
2

𝑡2−𝜗2
2)

𝛹

}

1
𝛹

)

 
 
 
 

. 

Consequently, 

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2) =

(

 
 
 
 

𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
2
𝑖=1 (

𝑡2−𝜇𝑖
2

𝜇𝑖
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
2
𝑖=1 (

𝜗𝑖
2

𝑡2−𝜗𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

. 

Hence, it holds for 𝑛 = 2. 

Moving ahead with the induction process, we assume that the statement of theorem holds for 𝑛 = 𝑟, 

that is, 

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑟) =⊗𝑖=1
𝑟 𝛼𝑖

𝑤𝑖 

=

(

 
 
 
 

𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑟
𝑖=1 (

𝑡2−𝜇𝑖
2

𝜇𝑖
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑟
𝑖=1 (

𝜗𝑖
2

𝑡2−𝜗𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

. 

Let 𝑛 = 𝑟 + 1, then 

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑟 , 𝛼𝑟+1) =⊗𝑖=1
𝑟 𝛼𝑖

𝑤𝑖 ⊗𝛼𝑟+1
𝑤𝑟+1 

=

(

 
 
 
 

𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑟
𝑖=1 (

𝑡2−𝜇𝑖
2

𝜇𝑖
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑟
𝑖=1 (

𝜗𝑖
2

𝑡2−𝜗𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

⊗
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(

 
 
 
 

𝑢
𝑡

√

1

1+{𝑤𝑟+1(
𝑡2−𝜇𝑟+1

2

𝜇𝑟+1
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{𝑤𝑟+1(
𝜗𝑟+1
2

𝑡2−𝜗𝑟+1
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

Consequently,  

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑟+1) =

(

 
 
 
 

𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
𝑟+1
𝑖=1 (

𝑡2−𝜇𝑖
2

𝜇𝑖
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
𝑟+1
𝑖=1 (

𝜗𝑖
2

𝑡2−𝜗𝑖
2)

𝛹

}

1
𝛹

)

 
 
 
 

. 

Hence, the validity of the theorem has been established for 𝑛 = 𝑟 + 1, affirming that Theorem 2 

holds for all integer values of 𝑛. 

Example 3. Applying the LPFDWG operator to the dataset presented in Example 2, we obtain  

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, 𝛼3) =⊗𝑖=1
3 𝛼𝑖

𝑤𝑖 

=

(

 
 
 
 

𝑢
𝑡

√

1

1+{∑ 𝑤𝑖
3
𝑖=1 (

62−𝜇𝑖
2

𝜇𝑖
2 )

3

}

1
3

, 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑖
3
𝑖=1 (

𝜗𝑖
2

62−𝜗𝑖
2)

3

}

1
3

)

 
 
 
 

 

=

(

 
 
 
 

𝑢
6

√

1

1+{0.2(
62−12

12
)
3

+0.3(
62−32

32
)
3

+0.5(
62−22

22
)
3

}

1
3

, 𝑢
6

√

1−
1

1+{0.2(
32

62−32
)
3

+0.3(
52

62−52
)
3

+0.5(
42

62−42
)
3

}

1
3

)

 
 
 
 

 

= (𝑢1.2887, 𝑢4.6823). 

Proposition 2. Assume that 𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖) , where 𝑖 = 1,2, . . . , 𝑛 , are LPFNs and 𝑤 =

(𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇  is the corresponding weight vector of 𝛼𝑖 , where 0 ≤ 𝑤𝑖 ≤ 1  such that 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 𝛹 ≥ 1.  

P1 (Idempotency). If 𝛼𝑖 = (𝑢𝜇𝑖 , 𝑢𝜗𝑖) = (𝑢𝜇 , 𝑢𝜗) = 𝛼, for all 𝑖, then 

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑛) = 𝛼.        (4.16) 

P2 (Monotonicity). Assume that 𝛽𝑖 = (𝑢𝜇𝑖′, 𝑢𝜗𝑖′) is the LPFN. If 𝑢𝜇𝑖 ≤ 𝑢𝜇𝑖′ and 𝑢𝜗𝑖 ≥ 𝑢𝜗𝑖′. Then, 

𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑛) ≤ 𝐿𝑃𝐹𝐷𝑊𝐺(𝛽1, 𝛽2, . . . , 𝛽𝑛).     (4.17) 
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P3 (Boundedness). If 𝛼− =
𝑚𝑖𝑛
𝑖
(𝛼1, 𝛼2, . . , 𝛼𝑛) and 𝛼+ =

𝑚𝑎𝑥
𝑖
(𝛼1, 𝛼2, . . . , 𝛼𝑛) are two LPFNs. 

Then, 

𝛼− ≤ 𝐿𝑃𝐹𝐷𝑊𝐺(𝛼1, 𝛼2, . . . , 𝛼𝑛) ≤ 𝛼+.        (4.18) 

Proof. The proof of this proposition can be obtained by applying the same reasoning used in 

Proposition 1.  

5. Utilization of the LPF Dombi aggregation operators in MADM contexts 

In the subsequent sections, we develop a decision-making methodology tailored to a scenario 

where we apply the Dombi AO to the information presented in the form of LPFNs with the weight 

vector of attributes. We denote the set of alternatives 𝜒 = {𝜒1, 𝜒2, . . . , 𝜒𝑚} and a set of attributes 

𝑇 = {𝑇1, 𝑇2, . . . , 𝑇𝑛} , each associated with the weight vector 𝑤 = {𝑤1, 𝑤2, . . . , 𝑤𝑛}
𝑇, where 𝑤𝑗 > 0, 

for all 𝑗 = (1,2, . . . , 𝑛) such that ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . Consider an LPF decision matrix 𝐹 = [(𝛼𝑖𝑗)]𝑚×𝑛 

= [(𝑢𝜇𝑖𝑗 , 𝑢𝜗𝑖𝑗)]𝑚×𝑛
 where 𝑢𝜇𝑖𝑗 , 𝑢𝜗𝑖𝑗 ∈  𝑈 = {𝑢𝑞|𝑢0 ≤ 𝑢𝑞 ≤ 𝑢𝑡 , 𝑞 ∈ [0, 𝑡]} are the MD and NMD 

of 𝑥 ∈ 𝑋 to the LPF design matrix 𝐹 awarded by a specialist based on how an alternative 𝜒𝑖 
satisfies the criteria 𝑇𝑗.  

To efficiently address the MADM challenges using suggested LPF aggregation operators, the 

algorithm is formulated as follows: 

Step 1: Formulate the LPF decision matrix 𝐹 = [(𝛼𝑖𝑗)]𝑚×𝑛 containing entries as LPFNs associated 

with the given alternatives on all attributes.  

Step 2: To calculate the aggregated value 𝜑𝑖 for all alternatives, use the LPFDWA operator as follows: 

𝜑𝑖 = 𝐿𝑃𝐹𝐷𝑊𝐴(𝛼𝑖1, 𝛼𝑖2, . . . , 𝛼𝑖𝑛) 

=

(

 
 
 
 

𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑗
𝑛
𝑗=1 (

𝜇𝑖𝑗
2

𝑡2−𝜇𝑖𝑗
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1

1+{∑ 𝑤𝑗
𝑛
𝑗=1 (

𝑡2−𝜗𝑖𝑗
2

𝜗𝑖𝑗
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

In a similar way, to calculate the aggregated value 𝜑𝑖 for all alternatives, use the LPFDWG operator 

as follows: 

𝜑𝑖 = 𝐿𝑃𝐹𝐷𝑊𝐺(𝛼𝑖1, 𝛼𝑖2, . . . , 𝛼𝑖𝑛) 

=

(

 
 
 
 

𝑢
𝑡

√

1

1+{∑ 𝑤𝑗
𝑛
𝑗=1 (

𝑡2−𝜇𝑖𝑗
2

𝜇𝑖𝑗
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√

1−
1

1+{∑ 𝑤𝑗
𝑛
𝑗=1 (

𝜗𝑖𝑗
2

𝑡2−𝜗𝑖𝑗
2 )

𝛹

}

1
𝛹

)

 
 
 
 

. 

Step 3: Utilize the formula specified in Definition 9 to determine the score value for each 𝛼𝑖. 
Step 4: Evaluate each alternative based on its corresponding score value to identify the most optimal 

choice. 
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The schematic representation of the proposed decision-making framework is presented in Figure 1. 

 

Figure 1. Flowchart of the proposed decision-making algorithm using LPF Dombi 

weighted aggregation operators for solving MADM problems. 

5.1. Illustrative example 

Over the last several years, e-commerce firms have experienced an explosion in the daily quantity of 

packages for transportation [56,57], along with a rise in the number of highly demanding consumer 

requirements. Regarding this matter, the transportation method got excessively costly, especially for the 

last kilometer. In order to maintain competitiveness and address growing needs, firms started exploring 

novel autonomous delivery solutions for the final means of transportation. One such potential alternative 

for the logistics sector is the use of autonomous unmanned aerial vehicles [58−60] or drones. Their 

purpose is to autonomously carry products from one point to another. These devices utilize advanced 

technology like GPS, sensors, and artificial intelligence to efficiently navigate and deliver products. 

Recent advancements, such as anomaly detection methods based on wavelet decomposition and stacked 

denoising autoencoders [61], as well as adaptive control mechanisms based on deep reinforcement 

learning [62], have further enhanced the operational efficiency of drones. Drone delivery has the potential 

to be used in a wide range of businesses, offering the advantages of quicker and more economical 

deliveries for the final stage of the journey. With the proven effectiveness of drones in surveillance and 

remote sensing, drone delivery systems are now being developed as an innovative alternative to decrease 

both delivery costs and delivery time. 

There are numerous uses for drone delivery in various fields, including retail, healthcare, and 

emergency services. For example, drones are used to quickly deliver items purchased online in order 
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to maintain total client loyalty. A drone may carry essential medicine to distant or challenging 

locations, thus closing the healthcare gap. In addition, drones play a significant role in responding to 

critical circumstances, as drones carrying supplies fly quicker than transit allows. In the future, 

autonomous drone sharing systems will become an inevitable logistical solution, particularly due to 

the new laws and recommendations implemented by the Flight World Organization regarding the 

organization of operations for these unique unmanned airline systems. With the increasing need for 

fast and effective delivery solutions, it is crucial to optimize drone delivery strategies. This case study 

explores the complexities of improving efficiency and dependability, recognizing the potential 

advantages these developments might offer to different businesses. By implementing strategic 

optimization techniques, drone delivery possesses the capacity not only to fulfill but exceed existing 

expectations, therefore influencing the future of logistics and transportation. 

The principal aims of this case study are: 

1) To optimize operational efficiency by streamlining the delivery procedure, consequently 

decreasing the duration of item transportation and operating expenditures.  

2) To enhance the reliability of drone delivery operations through the reduction of disruptions and 

the improvement of overall dependability. 

3) To optimize technological components and refine algorithms for obstacle detection, navigation 

systems, battery management, and course planning. 

The following key features are taken into consideration to accomplish the goals of drone delivery:  

1) Incorporating technology: 

• Work along with prominent drone manufacturers to integrate advanced navigation technologies, 

guaranteeing accurate and effective routes. 

• Utilize innovative obstacle detection technology to improve safety and prevent collisions in the 

delivery process. 

2) Optimizing battery management: 

• Perform extensive testing to evaluate and enhance battery efficacy, with the goal of achieving 

longer flight durations and minimizing the need for frequent recharging. 

• Establish collaborations with battery technology firms to include state-of-the-art techniques for 

storing and utilizing energy. 

3) Route planning algorithm: 

• Capitalize on the expertise and knowledge of data scientists and AI specialists in order to 

enhance the performance of route planning algorithms. This involves integrating up-to-date 

environmental data, traffic patterns, and delivery density as determinants of influence. 

• Utilize machine learning techniques to iteratively enhance and adjust route planning tactics 

using past data. 

The application of the refined drone delivery techniques produces substantial outcomes: 

• The refined path-planning algorithms result in a noteworthy 20% decrease in typical delivery 

times. 

• The implementation of advanced obstacle detection technologies results in a 30% reduction in 

occurrences and enhanced overall safety. 

• By implementing battery management improvements, flight durations are extended by 25%, 

thereby lowering the frequency of recharging. 

Drone delivery effectively enhances the efficiency and dependability of its delivery techniques, 

showcasing a dedication to innovation in the logistics sector. Drone delivery has established itself as a 

leader in efficient and dependable last-mile deliveries by adopting sophisticated technology and 

consistently improving its operations. This allows it to effectively satisfy the ever-changing demands 



10697 

AIMS Mathematics  Volume 10, Issue 5, 10675–10708. 

of contemporary logistics. The effectiveness of this optimization technique highlights the 

revolutionary capacity for incorporating technology into conventional delivery systems. 

5.2. Numerical implementation  

In this section, we solve the MADM problem of optimizing the efficiency and reliability of 

drone delivery technology using the proposed AOs within the context of the LPF environment. 

A certain transportation firm faces difficulties in resolving the problem of transporting crucial 

and delicate material from one place to another. Significant quantities of goods are transported 

annually using conventional manual techniques and specialized logistics. However, these approaches 

become insufficient in situations that need careful handling and urgent delivery. In order to address 

these issues, the firm hires an expert with the objective of identifying the most suitable firm from 

among various drone delivery firms that could effectively fulfill their requirements. 

Let {𝜒1, 𝜒2, 𝜒3, 𝜒4} be the set of four drone delivery firms (alternatives) selected by the expert 

where 

1) χ1: Flytrex 

2) χ2: Amazon Prime Air 

3) χ3: Zipline 

4) χ4: Google wing. 

The effectiveness and dependability of these alternatives are assessed based on several attributes 

{𝑇1, 𝑇2, 𝑇3, 𝑇4}, where 

1) 𝑇1 = Weather conditions: They impact drone delivery by monitoring environmental factors 

like wind, rain, and temperature to ensure safe and efficient operations. 

2) T2 = Obstacle detection: It enables drones to identify and avoid physical barriers using 

advanced sensors, ensuring collision-free navigation during delivery. 

3) T3 = Battery management: It tracks and optimizes power usage to extend flight range, 

ensuring drones complete deliveries and return safely before running out of charge. 

4) T4 = Path planning: It determines the safest and most efficient delivery routes by considering 

real-time data on obstacles, weather, and airspace regulations. 

The linguistic terms set 𝑈 = {𝑢0 = 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒, 𝑢1 = 𝑣𝑒𝑟𝑦 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒, 𝑢2 =
𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒, 𝑢3 = 𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒, 𝑢4 = 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑢5 = 𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒, 𝑢6 = 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒, 𝑢7 =
𝑣𝑒𝑟𝑦 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒, 𝑢8 = 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒}.  
Step 1: Summarize the expert assessments provided by the decision-maker for each alternative in the 

form of an LPF decision matrix (see Table 3) with respect to every attribute, having entries as 

LPFNs. 

Table 3. Decision matrix representing expert ratings of drone delivery firms using LPFNs. 

Alternatives 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 

𝝌𝟏 (𝑢2, 𝑢3) (𝑢3, 𝑢5) (𝑢3, 𝑢2) (𝑢4, 𝑢5) 
𝝌𝟐 (𝑢6, 𝑢1) (𝑢7, 𝑢3) (𝑢6, 𝑢3) (𝑢5, 𝑢5) 
𝝌𝟑 (𝑢4, 𝑢4) (𝑢7, 𝑢1) (𝑢3, 𝑢7) (𝑢3, 𝑢5) 

𝝌𝟒 (𝑢7, 𝑢1) (𝑢4, 𝑢5) (𝑢2, 𝑢4) (𝑢3, 𝑢3) 

The associated weight vector of four attributes is 𝑤 = (0.1,0.3,0.4,0.2)𝑇, where ∑ 𝑤𝑗
4
𝑗=1 = 1.  

Step 2: Obtain the aggregated value 𝜑𝑖 for each alternative 𝜒𝑖 by implementing the LPFDWA 
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operator on the data presented in Table 3, with the parameter set to 𝛹 = 3.  

Let 𝑖 = 1, then 

𝜑1 = 𝐿𝑃𝐹𝐷𝑊𝐴(𝛼11, 𝛼12, 𝛼13, 𝛼14) 

=

(

 
 
 
 

𝑢
𝑡

√
  
  
  
  
 
1−

1

1+{∑ 𝑤𝑗
4
𝑗=1 (

𝜇1𝑗
2

𝑡2−𝜇1𝑗
2 )

𝛹

}

1
𝛹

, 𝑢
𝑡

√
  
  
  
  
 1

1+{∑ 𝑤𝑗
4
𝑗=1 (

𝑡2−𝜗1𝑗
2

𝜗1𝑗
2 )

𝛹

}

1
𝛹

)

 
 
 
 

 

=

(

 
 
 
 

𝑢
8

√

1−
1

1+{0.1(
22

82−22
)
3

+0.3(
32

82−32
)
3

+0.4(
32

82−32
)
3

+0.2(
42

82−42
)
3

}

1
3

,

𝑢
8

√

1

1+{0.1(
82−32

32
)
3

+0.3(
82−52

52
)
3

+0.4(
82−22

22
)
3

+0.2(
82−52

52
)
3

}

1
3

)

 
 
 
 

; 

𝜑1 = (𝑢3.3909, 𝑢2.2980). 
The results generated by this process are shown in Table 4.  

Table 4. Aggregated values of alternatives using the LPFDWA operator. 

Alternatives 𝝋𝒊 

𝝌𝟏 (𝑢3.3915, 𝑢2.2980) 
𝝌𝟐 (𝑢6.6618, 𝑢1.4532) 
𝝌𝟑 (𝑢6.6272, 𝑢1.2175) 
𝝌𝟒 (𝑢6.2115, 𝑢1.4542) 

Step 3: Determine the score for each 𝜑𝑖 following the guidelines of Definition 9. 

For instance, 𝑖 = 1. We have  

𝑆(𝜑1) = 𝑢
√

𝑡2−𝜗2

2𝑡2−𝜇2−𝜗2

, 

= 𝑢
√

82−2.29802

2(8)2−3.39152−2.29802

, 

= 𝑢0.7266. 

Similarly, the score values of the remaining alternatives are calculated by adopting the above 

mathematical procedure.  

𝑆(𝜑2) = 𝑢0.8713, 𝑆(𝜑3) = 𝑢0.8699 and 𝑆(𝜑4) = 𝑢0.8419. 
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Step 4: As the score values for 𝜑𝑖 were determined, the ranking sequence was established as 

𝑆(𝜑2) > 𝑆(𝜑3) > 𝑆(𝜑4) > 𝑆(𝜑1). Consequently, all feasible alternatives have been ranked in the 

following order: 

𝜒2 > 𝜒3 > 𝜒4 > 𝜒1. 

Hence, Amazon Prime Air emerges as a preferred alternative. 

Likewise, the MADM problem within the framework of the LPFDWG operator is addressed 

through the following steps: 

Step 2: Obtain the aggregated value 𝜑𝑖, for each alternative 𝜒𝑖 by implementing the LPFDWG 

operator on the data presented in Table 3, with the parameter set to 𝛹 = 3.  

Let 𝑖 = 1, then 

𝜑1 = 𝐿𝑃𝐹𝐷𝑊𝐺(𝛼11, 𝛼12, 𝛼13, 𝛼14) 

=

(
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. 

𝜑1 = (𝑢2.6739, 𝑢4.6477). 

The results generated by this process are shown in Table 5.  

Table 5. Aggregated values of alternatives using the LPFDWG operator. 

Alternatives 𝝋𝒊 

𝝌𝟏 (𝑢2.6739, 𝑢4.6477) 
𝝌𝟐 (𝑢5.6554, 𝑢4.2060) 
𝝌𝟑 (𝑢3.2160, 𝑢6.7255) 
𝝌𝟒 (𝑢2.2907, 𝑢4.4763) 

Step 3: Determine the score for each 𝜑𝑖 following the guidelines of Definition 9. 

For instance, 𝑖 = 1. We have  
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𝑆(𝜑1) = 𝑢
√

𝑡2−𝜗2

2𝑡2−𝜇2−𝜗2

, 

= 𝑢
√

82−4.64772

2(8)2−2.67392−4.64772

, 

= 𝑢0.6536. 

Similarly, the score values of the remaining alternatives are calculated by adopting the above 

mathematical procedure. 

𝑆(𝜑2) = 𝑢0.7689, 𝑆(𝜑3) = 𝑢0.5090and 𝑆(𝜑4) = 𝑢0.6542. 

Step 4: As the score values for 𝜑𝑖 were determined, the ranking sequence was established as 

𝑆(𝜑2) > 𝑆(𝜑4) > 𝑆(𝜑1) > 𝑆(𝜑3). Consequently, all feasible alternatives have been ranked in the 

following order:  

𝜒2 > 𝜒4 > 𝜒1 > 𝜒3. 

Hence, Amazon Prime Air emerges as a preferred alternative. 

The above discussion shows that Amazon Prime Air is the most efficient and reliable drone 

delivery firm. 

6. Comparative analysis 

In this section, a comparison study is undertaken to evaluate the performance of the presented 

methodologies. This analysis is performed by comparing these strategies with the established approaches, 

namely the LIF weighted averaging (LIFWA) and LIF weighted geometric (LIFWG) operators 

delineated in [24], as well as the LPF weighted averaging (LPFWA) and LPF weighted geometric 

(LPFWG) operators elaborated in [39]. The outcomes of this comparison are displayed in Tables 6 and 7. 

Table 6. Comparative analysis of aggregated values across established and proposed methods. 

Operators 𝝌𝟏 𝝌𝟐 𝝌𝟑 𝝌𝟒 

𝐋𝐈𝐅𝐖𝐀 [𝟐𝟒] (𝑢3.3102, 𝑢3.2931) (𝑢6.2383, 𝑢2.9770) (𝑢4.9829, 𝑢3.4517) (𝑢3.7177, 𝑢3.5151) 

LIFWG [24] (𝑢3.0514, 𝑢3.8340) (𝑢6.0589, 𝑢3.3311) (𝑢3.9811, 𝑢5.4345) (𝑢3.0266, 𝑢3.9424) 

LPFWA [39] (𝑢3.1638, 𝑢3.2931) (𝑢6.2604, 𝑢2.9770) (𝑢5.2208, 𝑢3.4517) (𝑢3.9992, 𝑢3.5151) 

LPFWG [39] (𝑢3.0514, 𝑢4.0035) (𝑢6.0590, 𝑢3.4572) (𝑢3.9811, 𝑢5.7117) (𝑢3.0266, 𝑢4.0467) 

LPFDWA (𝑢3.3915, 𝑢2.2980) (𝑢6.6618, 𝑢1.4532) (𝑢6.6272, 𝑢1.2175) (𝑢6.2115, 𝑢1.4542) 
LPFDWG (𝑢2.6739, 𝑢4.6477) (𝑢5.6554, 𝑢4.2060) (𝑢3.2160, 𝑢6.7255) (𝑢2.2907, 𝑢4.4763) 

Table 7. Scoring and ranking analysis of alternatives utilizing existing and novel approaches. 

Operators 𝝌𝟏 𝝌𝟐 𝝌𝟑 𝝌𝟒 Ranking 

LIFWA [24] 𝑢0.7036 𝑢0.8290 𝑢0.7554 𝑢0.7122 𝜒2 > 𝜒3 > 𝜒4 > 𝜒1 

LIFWG [24] 𝑢0.6885 𝑢0.8122 𝑢0.6459 𝑢0.6849 𝜒2 > 𝜒1 > 𝜒4 > 𝜒3 

LPFWA [39] 𝑢0.7043 𝑢0.8304 𝑢0.7657 𝑢0.7199 𝜒2 > 𝜒3 > 𝜒4 > 𝜒1 

LPFWG [39] 𝑢0.6835 𝑢0.8099 𝑢0.6281 𝑢0.6817 𝜒2 > 𝜒1 > 𝜒4 > 𝜒3 

LPFDWA 𝑢0.7266 𝑢0.8713 𝑢0.8699 𝑢0.8419 𝜒2 > 𝜒3 > 𝜒4 > 𝜒1 

LPFDWG 𝑢0.6536 𝑢0.7689 𝑢0.5090 𝑢0.6542 𝜒2 > 𝜒4 > 𝜒1 > 𝜒3 
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Comparison 1: The methodology described in [24] has several limitations in effectively representing 

the relationship between MD and NMD in a cohesive framework. On the other hand, the LPF Dombi 

operators overcome this drawback by offering a flexible approach that incorporates both MDs and 

NMDs. This is achieved if the aggregate of their squares remains less than the number of elements of 

the set. So, the LPF Dombi aggregation operators are useful when dealing with uncertainty in a more 

complex way, going beyond what the normal LIF environment can do. The dynamic nature of this tool 

makes it highly helpful in decision-making procedures that include complex and imprecise information. 

Comparison 2: The methodology described in [39] demonstrates inherent limitations in addressing 

intricate decision-making paradigms because it fails to deal with subtle complexities. On the other 

hand, the proposed models are flexible as they provide a more adaptable method. By inserting a 

parameter, it becomes possible to modify the effects of different factors, thereby offering a more 

customized approach to dealing with uncertainty in the aggregation process. In situations where a 

more precise management of ambiguity is required, this flexibility is particularly important, as it 

surpasses the capacity of a standard aggregation operator. 

Comparison 3: Spearman’s rank correlation coefficient is frequently employed to assess the strength 

and direction of relationships between ranked variables. However, Spearman’s technique is confined to 

ordinal data and inadequately addresses uncertainty or imprecision, rendering it less appropriate for the 

analysis of LPF information. Our proposed solutions, including LPFD AOs, offer a more robust and 

adaptable approach by accounting for both membership and non-membership grades. In contrast to 

Spearman’s correlation, our methodologies maintain expert viewpoints presented in linguistic terms 

and adeptly describe uncertainty and ambiguity in decision-making. Moreover, our methodologies 

consider the interdependencies across factors, facilitating a more thorough assessment. Our strategies 

produce more precise and dependable findings by including the entirety of ambiguity and expert 

subjectivity. Consequently, in comparison to Spearman’s rank correlation coefficient, our 

methodologies provide a more advanced framework for addressing intricate decision-making 

challenges that involve LPF data. 

The preceding explanation clearly emphasizes the greater applicability of the strategies provided 

in this article in comparison to the current procedures. This is demonstrated by the ability of the 

recently introduced LPF Dombi aggregation operator to adeptly accommodate shifts in preferences, 

thus mitigating the inherent loss of information associated with traditional LPF operators. The 

integration of parametric parameters highlights the versatility of the newly developed operators. The 

LPF Dombi aggregation operators offer an improved approach compared to the LPFS and LIFS. It 

successfully handles linguistic terms and Pythagorean uncertainty simultaneously, making it 

applicable in many decision-making scenarios. 

The graphical interpretation of the information given in Tables 6 and 7 is depicted in Figure 2. 
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Figure 2. Pictorial depiction of the ranking of the alternatives using different operators. 

6.1. Advantages of the current study 

The current study provides significant advantages compared to existing methods by addressing 

essential gaps in decision-making amid ambiguity. The suggested LPF Dombi operators offer a 

flexible and accurate approach for managing both quantitative and qualitative data. Incorporating 

LPFNs allows experts to articulate their preferences in linguistic terms, hence enhancing the 

decision-making process to be more intuitive and representative of real-world situations. The novelty 

of this study is to facilitate significant flexibility through adaptable parameters by integrating the 

Dombi t-norm and t-conorm, enabling enhanced adjustment among competing attributes. This 

contrasts with traditional methods, which frequently depend on inflexible algebraic frameworks and 

lack mechanisms to adequately represent hesitancy or expert uncertainty. The suggested operators 

utilize weighted measures to reflect the differing significance of expert opinions, hence improving 

their relevance to decision-making issues. In comparison to traditional methods like the SAW 

technique, which use a linear model and have challenges with unknown data, the proposed model 

provides a more adaptable, competitive, and comprehensible framework. 

Table 8 describes the advantages of the proposed strategies compared to the existing techniques. 

Table 8. Advantages of the proposed methods compared to the existing approaches. 

Criteria 
Traditional operators 

(LIFWA, SAW, LPFWA) 

Proposed LPF Dombi operators (LPFDWA, 

LPFDWG) 

Handling of 

uncertainty 

Limited modeling of 

hesitation and ambiguity 

Effectively captures hesitation and expert 

uncertainty via LPFNs 

Data type support 
Primarily quantitative or 

limited linguistic 

Integrates both qualitative (linguistic) and 

quantitative information 

Aggregation 

Flexibility 
Rigid algebraic operations 

Adaptive aggregation via Dombi 

t-norm/t-conorm with adjustable parameters 

Linguistic 

interpretability 

Less intuitive, lacks 

real-world alignment 

Enhanced realism through direct use of 

linguistic scales 

Weight 

incorporation 
Uniform or fixed weights 

Weighted mechanism reflecting varied expert 

importance 

Decision robustness 
Prone to bias under 

conflicting data 

Balanced outcomes through flexible 

compensation strategies 

Ranking stability 
May result in less stable 

rankings 

Improved ranking discrimination and 

consistency 

LIFWA 0.7036 0.829 0.7554 0.7122

LIFWG 0.6885 0.8122 0.6459 0.6849

LPFWA 0.7043 0.8304 0.7657 0.7199

LPFWG 0.6835 0.8099 0.6281 0.6817

LPFDWA 0.7266 0.8713 0.8699 0.8419

LPFDWG 0.6536 0.7689 0.509 0.6542
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6.2. Managerial implications of the current study  

The LPF Dombi aggregation operators discussed in this work provide significant management 

insights for optimizing drone delivery systems through improved decision-making in uncertain and 

dynamic contexts. These models enable managers to evaluate qualitative and quantitative data, 

enhancing route planning, reducing delivery time, and increasing operational accuracy. They 

facilitate risk assessment by recognizing potential threats, such as drone issues, enabling proactive 

measures to assure dependable delivery. The adaptability of the Dombi operators facilitates scaling, 

rendering them appropriate for both small and large-scale activities. This extensive decision-support 

system assists managers in resource allocation, mitigates risks, and improves customer satisfaction 

via accurate and efficient delivery solutions. 

7. Conclusions 

In this study, the notions of the LPFDWA and LPFDWG operators have been introduced. An 

enhanced score function has been formulated to select the optimally appropriate choice in a 

decision-making process. Additionally, various structural characteristics of newly defined operators 

have been analyzed. A detailed mathematical protocol has been devised for MADM challenges using 

recently proposed techniques under LPF data. Furthermore, the efficacy of these freshly articulated 

techniques has been demonstrated by providing a solution to the MADM issue of selecting the most 

efficient drone delivery service. A comparison study has also been conducted to demonstrate the 

usefulness of the suggested methods in relation to the current body of information. 

7.1. Study limitations 

The techniques presented in this study have notable advantages but are not without certain 

shortcomings: 

• These techniques fail when the squared sum of linguistic MD and NMD is greater than the 

square cardinality of the linguistic terms set. 

• This study lacks a dynamic adjustment mechanism, limiting its suitability for varying-interval 

data collection in MADM. 

7.2. Potential goals of future studies 

To address the limitations of this work, future research will extend the scope of recently 

introduced methodologies to broader models, including linguistic Fermatean fuzzy sets and linguistic 

dynamic Fermatean fuzzy sets. This article’s suggested methods will find effective application across 

diverse domains such as AI and healthcare diagnostics, environmental modeling, and human–machine 

interaction. Moreover, the scope of recently proposed techniques will be explored in [63,64]. 

Author contributions 

Asima Razzaque: Conceptualization, formal analysis, methodology, writing − original draft, 

review & editing; Umme Kalsoom: Conceptualization, investigation, methodology, writing − original 

draft, review & editing; Dilshad Alghazzawi: Formal analysis, validation, review & editing; Abdul 



10704 

AIMS Mathematics  Volume 10, Issue 5, 10675–10708. 

Razaq: Supervision, project administration, review & editing; Ghaliah Alhamzi: Resources, 

visualization, review & editing. All authors have read and approved the final version of the 

manuscript for publication. 

Use of Generative-AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Fundings 

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate 

Studies and Scientific Research, King Faisal University, Saudi Arabia [KFU251556]. 

Conflicts of interest  

The authors declare no conflict of interest. 

References  

1. H. Alolaiyan, U. Kalsoom, U. Shuaib, A. Razaq, A. W. Baidar, Q. Xin, Precision measurement for 

effective pollution mitigation by evaluating air quality monitoring systems in linguistic Pythagorean 

fuzzy Dombi environment, Sci. Rep., 14 (2024), 31944. https://doi.org/10.1038/s41598-024-83478-1  

2. D. Alghazzawi, A. Noor, H. Alolaiyan, H. A. E. W. Khalifa, A. Alburaikan, Q. Xin, et al., A 

novel perspective on the selection of an effective approach to reduce road traffic accidents under 

Fermatean fuzzy settings, PLoS One, 19 (2024), e0303139. 

https://doi.org/10.1371/journal.pone.0303139  

3. M. R. Seikh, U. Mandal, Multiple attribute group decision making based on quasirung orthopair 

fuzzy sets: Application to electric vehicle charging station site selection problem, Eng. Appl. 

Artif. Intell., 115 (2022), 105299. https://doi.org/10.1016/j.engappai.2022.105299  

4. D. Zhu, Z. Han, X. Du, D. Zuo, L. Cai, C. Xue, Hybrid model integrating fuzzy systems and 

convolutional factorization machine for delivery time prediction in intelligent logistics, IEEE 

Trans. Fuzzy Syst., 33 (2025), 406–417. https://doi.org/10.1109/TFUZZ.2024.3472043 

5. U. Mandal, M. R. Seikh, Interval-valued spherical fuzzy MABAC method based on Dombi 

aggregation operators with unknown attribute weights to select plastic waste management 

process, Appl. Soft Comput., 145 (2023), 110516. https://doi.org/10.1016/j.asoc.2023.110516  

6. A. Hussain, K. Ullah, M. Mubasher, T. Senapati, S. Moslem, Interval-valued Pythagorean fuzzy 

information aggregation based on Aczel-Alsina operations and their application in multiple 

attribute decision making, IEEE Access, 11 (2023), 34575–34594. 

https://doi.org/10.1109/ACCESS.2023.3244612  

7. M. R. Seikh, U. Mandal, *q*-Rung orthopair fuzzy Archimedean aggregation operators: 

Application in the site selection for software operating units, Symmetry, 15 (2023), 1680. 

https://doi.org/10.3390/sym15091680  

8. O. Y. Akbulut, Analysis of the corporate financial performance based on Grey PSI and Grey 

MARCOS model in Turkish insurance sector, Knowl. Decis. Syst. Appl., 1 (2025), 57–69. 

https://doi.org/10.59543/kadsa.v1i.13623  

https://doi.org/10.1038/s41598-024-83478-1
https://doi.org/10.1371/journal.pone.0303139
https://doi.org/10.1016/j.engappai.2022.105299
https://doi.org/10.1109/TFUZZ.2024.3472043
https://doi.org/10.1016/j.asoc.2023.110516
https://doi.org/10.1109/ACCESS.2023.3244612
https://doi.org/10.3390/sym15091680
https://doi.org/10.59543/kadsa.v1i.13623


10705 

AIMS Mathematics  Volume 10, Issue 5, 10675–10708. 

9. H. A. Dağıstanlı, Weapon system selection for capability-based defense planning using 

Lanchester models integrated with fuzzy MCDM in computer assisted military experiment, 

Knowl. Decis. Syst. Appl., 1 (2025), 11–23. https://doi.org/10.59543/kadsa.v1i.13601  

10. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.2307/2272014 

11. S. Kahne, A contribution to the decision making in environmental design, Proc. IEEE, 63 (1975), 

518–528. https://doi.org/10.1109/PROC.1975.9779 

12. R. Jain, A procedure for multiple-aspect decision making using fuzzy sets, Int. J. Syst. Sci., 8 

(1977), 1–7. https://doi.org/10.1080/00207727708942017  

13. D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613-626. 

https://doi.org/10.1080/00207727808941724 

14. R. R. Yager, Aggregation operators and fuzzy systems modeling, Fuzzy Set. Syst., 67 (1994), 

129–145. https://doi.org/10.1016/0165-0114(94)90082-5  

15. K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag HD, 1999, 1–137. 

https://doi.org/10.1007/978-3-7908-1870-3_1  

16. M. Chen, J. M. Tan, Handling multicriteria fuzzy decision-making problems based on vague set 

theory, Fuzzy Set. Syst., 67 (1994), 163–172. https://doi.org/10.1016/0165-0114(94)90084-1  

17. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in group decision making, Note. IFS, 2 (1996). 

Available from: http://ifigenia.org/wiki/issue:nifs/2/1/15-32.  

18. D. F. Li, Multiattribute decision making models and methods using intuitionistic fuzzy sets, J. 

Comput. Syst. Sci., 70 (2005), 73–85. https://doi.org/10.1016/j.jcss.2004.06.002  

19. Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. 

J. Gen. Syst., 35 (2006), 417–433. https://doi.org/10.1080/03081070600574353  

20. Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 

1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678  

21. H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets, 

Int. J. Intell. Syst., 25 (2010), 1–30. https://doi.org/10.1002/int.20386  

22. Y. Xu, H. Wang, The induced generalized aggregation operators for intuitionistic fuzzy sets and 

their application in group decision making, Appl. Soft Comput., 12 (2012), 1168–1179. 

https://doi.org/10.1016/j.asoc.2011.11.003  

23. J. Q. Wang, J. J. Li, The multi-criteria group decision making method based on multi-granularity 

intuitionistic two semantics, Sci. Tech. Inform., 33 (2009), 8–9. 

24. H. Zhang, Linguistic intuitionistic fuzzy sets and application in MAGDM, J. Appl. Math., 2014 

(2014), 432092. https://doi.org/10.1155/2014/432092  

25. Y. Ju, X. Liu, D. Ju, Some new intuitionistic linguistic aggregation operators based on 

Maclaurin symmetric mean and their applications to multiple attribute group decision making, 

Soft Comput., 20 (2016), 4521–4548. https://doi.org/10.1007/s00500-015-1761-y  

26. P. Liu, L. Rong, Y. Chu, Y. Li, Intuitionistic linguistic weighted Bonferroni mean operator and 

its application to multiple attribute decision making, Sci. World J., 2014 (2014), 545049. 

https://doi.org/10.1155/2014/545049  

27. P. Liu, Some geometric aggregation operators based on interval intuitionistic uncertain linguistic 

variables and their application to group decision making, Appl. Math. Model., 37 (2013), 

2430–2444. https://doi.org/10.1016/j.apm.2012.05.032  

28. P. Liu, P. Wang, Some improved linguistic intuitionistic fuzzy aggregation operators and their 

applications to multiple-attribute decision making, Int. J. Inf. Technol. Decis. Mak., 16 (2017), 

817–850. https://doi.org/10.1142/S0219622017500110  

https://doi.org/10.59543/kadsa.v1i.13601
https://doi.org/10.2307/2272014
https://doi.org/10.1109/PROC.1975.9779
https://doi.org/10.1080/00207727708942017
https://doi.org/10.1080/00207727808941724
https://doi.org/10.1016/0165-0114(94)90082-5
https://doi.org/10.1007/978-3-7908-1870-3_1
https://doi.org/10.1016/0165-0114(94)90084-1
http://ifigenia.org/wiki/issue:nifs/2/1/15-32
https://doi.org/10.1016/j.jcss.2004.06.002
https://doi.org/10.1080/03081070600574353
https://doi.org/10.1109/TFUZZ.2006.890678
https://doi.org/10.1002/int.20386
https://doi.org/10.1016/j.asoc.2011.11.003
https://doi.org/10.1155/2014/432092
https://doi.org/10.1007/s00500-015-1761-y
https://doi.org/10.1155/2014/545049
https://doi.org/10.1016/j.apm.2012.05.032
https://doi.org/10.1142/S0219622017500110


10706 

AIMS Mathematics  Volume 10, Issue 5, 10675–10708. 

29. R. R. Yager, Pythagorean fuzzy subsets, In: Proc. Joint IFSA World Congress and NAFIPS Annual 

Meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375  

30. R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision 

making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584  

31. X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean 

fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 

32. R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. 

Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989  

33. M. Asif, U. Ishtiaq, I. K. Argyros, Hamacher aggregation operators for Pythagorean fuzzy set and 

its application in multi-attribute decision-making problem, Spectrum Oper. Res., 2 (2025), 27–40. 

https://doi.org/10.31181/sor2120258  

34. L. Xiao, G. Huang, W. Pedrycz, D. Pamucar, L. Martínez, G. Zhang, A q-rung orthopair fuzzy 

decision-making model with new score function and best-worst method for manufacturer 

selection, Information Sci., 608 (2022), 153–177. https://doi.org/10.1016/j.ins.2022.06.061  

35. L. Xiao, T. Fang, G. Huang, M. Deveci, An integrated design concept evaluation method based 

on fuzzy weighted zero inconsistency and combined compromise solution considering inherent 

uncertainties, Adv. Eng. Inform., 65 (2025), 103097. https://doi.org/10.1016/j.aei.2024.103097  

36. H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein 

operations and its application to decision making, Int. J. Intell. Syst., 31 (2016), 886–920. 

https://doi.org/10.1002/int.21809  

37. H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm 

and t-conorm for multicriteria decision-making process, Int. J. Intell. Syst., 32 (2017), 597–630. 

https://doi.org/10.1002/int.21860  

38. Z. Ma, Z. Xu, Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their 

application in multicriteria decision-making problems, Int. J. Intell. Syst., 31 (2016), 1198–1219. 

https://doi.org/10.1002/int.21823  

39. H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making 

process, Int. J. Intell. Syst., 33 (2018), 1234–1263. https://doi.org/10.1002/int.21979  

40. X. D. Peng, Y. Yang, Multiple attribute group decision making methods based on Pythagorean 

fuzzy linguistic set, Comput. Eng. Appl., 52 (2016), 50–54. 

41. M. Lin, J. Wei, Z. Xu, R. Chen, Multiattribute group decision-making based on linguistic 

Pythagorean fuzzy interaction partitioned Bonferroni mean aggregation operators, Complexity, 

2018 (2018), 9531064. https://doi.org/10.1155/2018/9531064  

42. Y. Du, F. Hou, W. Zafar, Q. Yu, Y. Zhai, A novel method for multiattribute decision making with 

interval-valued Pythagorean fuzzy linguistic information, Int. J. Intell. Syst., 32 (2017), 

1085–1112. https://doi.org/10.1002/int.21881  

43. J. Dombi, A general class of fuzzy operators, the DeMorgan class of fuzzy operators and 

fuzziness measures induced by fuzzy operators, Fuzzy Set. Syst., 8 (1982), 149–163. 

https://doi.org/10.1016/0165-0114(82)90005-7  

44. P. Liu, J. Liu, S. M. Chen, Some intuitionistic fuzzy Dombi Bonferroni mean operators and their 

application to multi-attribute group decision making, J. Oper. Res. Soc., 69 (2018), 1–24. 

https://doi.org/10.1057/s41274-017-0190-y  

45. M. Akram, W. A. Dudek, J. M. Dar, Pythagorean Dombi fuzzy aggregation operators with 

application in multicriteria decision-making, Int. J. Intell. Syst., 34 (2019), 3000–3019. 

https://doi.org/10.1002/int.22183  

https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
https://doi.org/10.1002/int.21584
https://doi.org/10.1109/TFUZZ.2013.2278989
https://doi.org/10.31181/sor2120258
https://doi.org/10.1016/j.ins.2022.06.061
https://doi.org/10.1016/j.aei.2024.103097
https://doi.org/10.1002/int.21809
https://doi.org/10.1002/int.21860
https://doi.org/10.1002/int.21823
https://doi.org/10.1002/int.21979
https://doi.org/10.1155/2018/9531064
https://doi.org/10.1002/int.21881
https://doi.org/10.1016/0165-0114(82)90005-7
https://doi.org/10.1057/s41274-017-0190-y
https://doi.org/10.1002/int.22183


10707 

AIMS Mathematics  Volume 10, Issue 5, 10675–10708. 

46. C. Jana, G. Muhiuddin, M. Pal, Some Dombi aggregation of Q-rung orthopair fuzzy numbers in 

multiple-attribute decision making, Int. J. Intell. Syst., 34 (2019), 3220–3240. 

https://doi.org/10.1002/int.22191  

47. C. Jana, M. Pal, J. Q. Wang, Bipolar fuzzy Dombi aggregation operators and its application in 

multiple-attribute decision-making process, J. Amb. Intel. Hum. Comp., 10 (2019), 3533–3549. 

https://doi.org/10.1007/s12652-018-1076-9  

48. C. Jana, T. Senapati, M. Pal, R. R. Yager, Picture fuzzy Dombi aggregation operators: Application to 

MADM process, Appl. Soft Comput., 74 (2019), 99–109. https://doi.org/10.1016/j.asoc.2018.10.021  

49. S. Ashraf, S. Abdullah, T. Mahmood, Spherical fuzzy Dombi aggregation operators and their 

application in group decision making problems, J. Amb. Intel. Hum. Comp., 11 (2020), 

2731–2749. https://doi.org/10.1007/s12652-019-01333-y  

50. H. B. Liu, Y. Liu, L. Xu, Dombi interval-valued hesitant fuzzy aggregation operators for 

information security risk assessment, Math. Probl. Eng., 2020 (2020), 1–12. 

https://doi.org/10.1155/2020/3198645  

51. I. Masmali, A. Khalid, U. Shuaib, A. Razaq, H. Garg, A. Razzaque, On selection of the efficient 

water purification strategy at commercial scale using complex intuitionistic fuzzy Dombi 

environment, Water, 15 (2023), 1907. https://doi.org/10.3390/w15101907  

52. M. R. Seikh, P. Chatterjee, Evaluation and selection of E-learning websites using intuitionistic 

fuzzy confidence level based Dombi aggregation operators with unknown weight information, 

Appl. Soft Comput., 163 (2024), 111850. https://doi.org/10.1016/j.asoc.2024.111850  

53. A. Hussain, K. Ullah, H. Garg, T. Mahmood, A novel multi-attribute decision-making approach 

based on T-spherical fuzzy Aczel Alsina Heronian mean operators, Granul. Comput., 9 (2024), 

21. https://doi.org/10.1007/s41066-023-00442-6  

54. M. Sarfraz, Application of interval-valued T-spherical fuzzy Dombi Hamy mean operators in the 

antiviral mask selection against COVID-19, J. Decis. Anal. Intell. Comput., 4 (2024), 67–98. 

https://doi.org/10.31181/jdaic10030042024s  

55. Y. Liu, J. Liu, Y. Qin, Pythagorean fuzzy linguistic Muirhead mean operators and their 

applications to multiattribute decision-making, Int. J. Intell. Syst., 35 (2020), 300–332. 

https://doi.org/10.1002/int.22212  

56. H. Sheng, S. Wang, H. Chen, D. Yang, Y. Huang, J. Shen, et al., Discriminative feature learning 

with co-occurrence attention network for vehicle ReID, IEEE T. Circ. Syst. Vid., 34 (2024), 

3510–3522. https://doi.org/10.1109/TCSVT.2023.3326375  

57. G. Sun, Y. Zhang, D. Liao, H. Yu, X. Du, M. Guizani, Bus-trajectory-based street-centric routing 

for message delivery in urban vehicular ad hoc networks, IEEE T. Veh. Tech., 67 (2018), 

7550-7563. https://doi.org/10.1109/TVT.2018.2828651  

58. H. Ni, Q. Zhu, B. Hua, K. Mao, Y. Pan, F. Ali, et al., Path loss and shadowing for UAV-to-ground 

UWB channels incorporating the effects of built-up areas and airframe, IEEE T. Intell. Transp. 

Syst., 25 (2024), 17066−17077. https://doi.org/10.1109/TITS.2024.3418952 

59. Z. Zou, S. Yang, L. Zhao, Dual-loop control and state prediction analysis of QUAV trajectory 

tracking based on biological swarm intelligent optimization algorithm, Sci. Rep., 14 (2024), 

19091. https://doi.org/10.1038/s41598-024-69911-5  

60. X. Zhao, T. Wang, Y. Li, B. Zhang, K. Liu, D. Liu, et al., Target-driven visual navigation by using 

causal intervention, IEEE T. Intell. Vehicl., 9 (2024), 1294−1304. 

https://doi.org/10.1109/TIV.2023.3288810 

https://doi.org/10.1002/int.22191
https://doi.org/10.1007/s12652-018-1076-9
https://doi.org/10.1016/j.asoc.2018.10.021
https://doi.org/10.1007/s12652-019-01333-y
https://doi.org/10.1155/2020/3198645
https://doi.org/10.3390/w15101907
https://doi.org/10.1016/j.asoc.2024.111850
https://doi.org/10.1007/s41066-023-00442-6
https://doi.org/10.31181/jdaic10030042024s
https://doi.org/10.1002/int.22212
https://doi.org/10.1109/TCSVT.2023.3326375
https://doi.org/10.1109/TVT.2018.2828651
https://doi.org/10.1038/s41598-024-69911-5
https://doi.org/10.1109/TIV.2023.3288810


10708 

AIMS Mathematics  Volume 10, Issue 5, 10675–10708. 

61. S. Zhou, Z. He, X. Chen, W. Chang, An anomaly detection method for UAV based on wavelet 

decomposition and stacked denoising autoencoder, Aerospace, 11 (2024), 393. 

https://doi.org/10.3390/aerospace11050393 

62. Y. Yin, Z. Wang, L. Zheng, Q. Su, Y. Guo, Autonomous UAV Navigation with adaptive control 

based on deep reinforcement learning, Electronics, 13 (2024), 2432. 

https://doi.org/10.3390/electronics13132432 

63. S. Moslem, A novel parsimonious spherical fuzzy analytic hierarchy process for sustainable 

urban transport solutions, Eng. Appl. Artif. Intell., 128 (2024), 107447. 

https://doi.org/10.1016/j.engappai.2023.107447  

64. S. Moslem, Evaluating commuters’ travel mode choice using the Z-number extension of 

Parsimonious Best Worst Method, Appl. Soft Comput., 173 (2025), 112918. 

https://doi.org/10.1016/j.asoc.2025.112918  

© 2025 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.3390/aerospace11050393
https://doi.org/10.3390/electronics13132432
https://doi.org/10.1016/j.engappai.2023.107447
https://doi.org/10.1016/j.asoc.2025.112918

