
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(5): 10650–10674.
DOI: 10.3934/math.2025485
Received: 04 February 2025
Revised: 16 April 2025
Accepted: 23 April 2025
Published: 09 May 2025

Research article

Retrial tandem queueing system with correlated arrivals

Vladimir Vishnevsky1, Valentina Klimenok2, Olga Semenova1,*, and Minh Cong Dang3

1 Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia
2 Belarusian State University, Minsk, Belarus
3 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia

* Correspondence: Email: olgasmnv@gmail.com; Tel: +7-495-198-17-20.

Abstract: In this paper, we investigate a retrial tandem queueing system with a finite number of
queues. Each queue consists of a finite buffer and a single server with phase-type distributed service
times. Customers arrive at the system according to a Markovian arrival process (MAP). At any queue, a
customer that finds both the server busy and the buffer full enters a common orbit and makes repeated
attempts to rejoin the first queue after exponentially distributed time intervals. This system models
telecommunication networks with linear topology that implement retransmission protocols for lost
data packets. We provide a complete mathematical analysis for the two-queue system with an infinite-
capacity orbit, deriving the ergodicity condition, stationary state distribution, and key performance
characteristics. For systems with an arbitrary number of queues, we develop a comprehensive solution
approach that combines queueing theory methods, discrete-event simulation, and machine learning
techniques to predict the mean sojourn time. We implement and compare multiple machine learning
methods, evaluating their predictive performance through extensive numerical experiments.

Keywords: tandem queues; retrial; Markovian arrival process; phase-type distribution; stationary
performance characteristics; machine learning
Mathematics Subject Classification: 60K25, 60K30, 68T07

1. Introduction

Modern telecommunication networks have become critical infrastructure components in
contemporary society. The efficient operation of these networks relies heavily on accurate
mathematical modeling techniques. Consequently, queueing theory methods have received increasing
attention in telecommunications research. A particularly active research direction involves analyzing
queueing networks by studying their fundamental building blocks under realistic assumptions about
arrival processes and service mechanisms. Within this domain, two-stage queueing systems have

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025485

10651

attracted significant interest as they represent both an important subclass of linear-topology networks
and effective models for network segments in general topologies [1, 2].

The literature contains numerous studies on two-stage queueing systems. Early work primarily
examined systems with Poisson input processes (see, e.g., [3]). However, modern telecommunication
traffic exhibits non-stationarity and correlation that cannot be adequately captured by Poisson models.
More sophisticated mathematical models for such traffic were introduced by Neuts [4] and
Lucantoni [5] through the batch Markovian arrival process (BMAP) and its single-arrival variant
MAP. These have become the predominant models for correlated bursty traffic, leading to numerous
analytical studies of tandem queueing systems with MAP arrivals [6–8], BMAP arrivals [9] or marked
MAP (MMAP) arrivals [10] in recent decades.

While retrial mechanisms are inherent in many telecommunication systems (e.g., TCP’s
retransmission protocol), relatively few studies have addressed retrial tandem queueing systems with
non-MAP arrivals [11, 12] or BMAP/MAP arrivals [13–15]. The mathematical analysis of retrial
systems presents greater challenges than conventional queueing systems due to the spatial
inhomogeneity of their underlying Markov chains [16]. Comprehensive reviews of early retrial queue
research (pre-2008) can be found in [17, 18], with MAP/BMAP models proving particularly valuable
for modern network design and performance evaluation [19–21]. Most existing work assumes retrials
only occur from the first station, with blocked customers at subsequent stations being lost. Our work
addresses the more general case of a common orbit serving all stations. To our knowledge,
only [22–24] have considered such systems.

In [22], for a tandem queueing system with a finite arbitrary number of stations, the authors
elaborate on the approximation procedures to find the mean sojourn time. No restrictions are imposed
on the distributions characterizing the input arrivals, service times, and inter-retrial times. The
assumption is that the blocking probability at every station is known and fixed. Based on results for
the system with two stations, the authors conclude that the approximation works well under light
traffic. The paper [23] is devoted to a tandem queueing system with two single server stations with a
common orbit for retrials and no buffers. The service times at the first server have a general
distribution, and the service times at the second server are distributed exponentially. Assuming that
the retrial rate is extremely small, the authors prove that the scaled version of the number of
customers in the orbit asymptotically follows a diffusion process, which is further utilized to obtain an
approximation to the number of customers in the orbit in the stationary state.

The system in [24] is similar to one studied in [23], but the input is MMPP (Markov-modulated
Poisson arrivals), and the service times at the first server are exponentially distributed. The authors
obtain the necessary condition for the Markov chain describing the system behavior to be ergodic and
the asymptotic distribution of the scaled version of the number of customers in the orbit in case the
retrial rate is extremely small.

In the present paper we consider the tandem (multi-station linear topology) model with a common
orbit and an arbitrary number of stations. In contrast to known publications, the paper proposes a new
model of a multi-phase queuing system of large size with an orbit and retrial facility. The novelty of the
model is presented by the following aspects: 1) The input is MAP, which is more general than MMPP;
2) service times have PH distribution; 3) the system stations have finite buffers. The common orbit
mechanism handles all blocked customers uniformly: whether arriving externally at the first station or
transitioning internally from previous stations, any customer encountering a full buffer joins the orbit

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10652

and must restart service from the first station. This architecture models wireless networks with linear
topologies, extending the framework of [25] with retrial capabilities while excluding cross traffic.

Unlike the papers listed above, we propose the combined solutions and analyze the model having
an arbitrary number of stations by combining the methods of queueing theory, simulation tools and
machine learning methods. As the investigation of retrial tandem queueing system with more than
two stations is of considerable difficulty, the system analysis by means of queueing theory methods is
given here for the case of two stations. The math part of the analysis is based on the matrix analytical
method. In the second part, for the system with arbitrary finite number of stations, we study employing
machine learning methods to predict the mean sojourn time of system. Machine learning applications
in queueing theory are well-established [26–28]. A tandem queueing system closely related to our
model has been studied using machine learning methods [29]; however, each system requires careful
method selection and parameter tuning. The paper is organized as follows: Section 2 presents the
problem formulation and mathematical model. In Section 3 we provide the closed-form solution for
the case of two stations by means of queueing theory methods and present the algorithm to calculate
the performance measures. In Section 4 we apply the machine learning methods to predict the mean
sojourn time for the systems with an arbitrary number of stations. We also provide the comparison
analysis of the analytical and machine learning results. Section 5 contains the conclusion to the paper.

2. Problem statement

In this paper we consider a tandem queuing system with a finite number of stations and a common
orbit (Figure 1). The input arrivals to the system of MAP type; each station consists of a single server
with a finite buffer in front of it, and the service times of each server have a phase-type (PH)
distribution. The PH distribution provides a versatile modeling framework that generalizes many
common distributions used in queueing theory. As demonstrated in [30], PH distributions can
approximate any positive-valued distribution with arbitrary accuracy, making them particularly
valuable for modeling realistic service time distributions.

blocked blocked blocked

Station 1 Station 2 Station K

Orbit

Figure 1. Tandem queueing system with a common retrial orbit.

A tandem queueing system consists of N stations and a common orbit for retrials, N ≥ 2. Station
i is a single server queueing system with finite buffer of size Ki. Customers arrive at the first station
according to a Markovian arrival process (MAP) which is specified by the underlying process (Markov

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10653

chain) νt, t ≥ 0, with the state space {0, 1, . . . ,W} and (W + 1) × (W + 1) matrices D0 and D1. In
the MAP, customers can arrive only at the transition moments of process νt, t ≥ 0. The rates of νt,
t ≥ 0 transitions accompanied by the generation of a customer are specified by the matrix D1. “Idle”
transitions of the underlying process not accompanied by a generation of a customer are specified by
the off-diagonal entries of the matrix D0. The matrix D0+D1 is an infinitesimal generator of the process
νt, t ≥ 0. The average rate λ of arrivals is defined as λ = θD1e, where θ is a vector of the stationary
distribution of the process νt, t ≥ 0. This vector is calculated as the unique solution of the system
θ(D0 + D1) = 0, θe = 1. Here and below, e is a column vector consisting of ones, and 0 is a row vector
consisting of zeros. A more detailed description of MAP as a partial case of BMAP and its properties
can be found in [5, 30].

The service time of a customer by the k-th server has a PH distribution with an irreducible
representation (βk, S k), k = 1,N. This time can be interpreted as time until the underlying Markov
chain m(k)

t , t ≥ 0, with a finite state space {1, . . . ,Mk,Mk + 1} reaches the single absorbing state Mk + 1
given that the initial state of this process is chosen within the states 1, . . . ,Mk according to the
stochastic row vector βk = (β(1)

k , . . . , β
(Mk)
k). Transition rates of the process m(k)

t within the set
{1, . . . ,Mk} are defined by the sub-generator S k, and transition rates into the absorbing state (which
lead to a service completion) are given by the entries of the column vector S(k)

0 = −S ke. The service
rate is calculated as µk = −[βkS

−1
k e]−1 and average service time is bk = µ

−1
k , k = 1,N. More

information about PH distribution can be found in [30, 31].
The system operates under the following service discipline:

• First Station Arrivals:

– If the server is idle, service begins immediately,
– If the server is busy but buffer space is available, the customer joins the buffer queue,
– If both server and buffer are occupied, the customer enters the infinite-capacity orbit.

• Orbital Behavior:

– Customers in orbit make independent retrials after exponentially distributed time intervals,
– Each retrial attempts to access either:

* The first station’s server (if available), or

* Its buffer (if server busy but space available).

• Inter-station Transitions (k = 1, ...,N − 1):

– Upon completing service at station k, the customer:

* Immediately starts service at station k + 1 if its server is idle,

* Joins station k + 1’s buffer if server busy but space available,

* Enters the common orbit if station k + 1’s buffer is full.

• Service Completion:

– Customers reaching station N exit the system after service completion,
– Orbital customers persist until successfully completing all N service stages.

Thus, each customer in the orbit, no matter which station it came from, makes repeated attempts to
get to the first station at random time intervals, exponentially distributed with the parameter αi, where
i is the total number of customers in orbit. We assume that α0 = 0, αi → ∞ for i → ∞. Such a
dependence includes, in particular, the linear retrial strategy αi = iα, α > 0.

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10654

3. Analysis of two stations model

Our primary objective is to derive key performance metrics, particularly focusing on the mean
sojourn time. The subsequent sections develop our analytical approach, where we analyze the model
by means of queueing theory methods. Below we consider the stochastic process describing the system
behavior and show that it is an asymptotically quasi-Toeplitz Markov chain (AQTMC) [32]. This
allows us to apply the algorithm elaborated in [32] to calculate the stationary state distribution and get
the performance characteristics. Due to the complexity of the analysis with an arbitrary K, below we
present results for the system with two stations, K = 2. In Section 4, the results obtained for K = 2 are
used to verify the simulation model for arbitrary K, and both results from the analytical solution and
simulation are used for machine learning tools to get results for an arbitrary number of stations.

3.1. Markov Chain

Let at time t:

• it be a number of customers in the orbit, i ≥ 0,
• jt be a number of customers at the first station, jt = 0,K1,
• nt be a number of customers at the second station, nt = 0,K2,
• νt be the state of the underlying process of the MAP, νt = 0,W,
• m(k)

t be the state of the PH service process on the k-th station server, m(k)
t = 1,M(k), k = 1, 2.

The process of the system operation is described by a regular irreducible Markov chain ξt, t ≥ 0,
with state space

Ω = {(i, j, n, ν), i ≥ 0, j = 0, n = 0, ν = 0,W}
⋃

{(i, j, n, ν,m(1)), i ≥ 0, j = 0,K1, n = 0, ν = 0,W,m(1) = 1,M(1)}
⋃

{(i, j, n, ν,m(2)), i ≥ 0, j = 0, n = 0,K2, ν = 0,W,m(2) = 1,M(2)}
⋃

{(i, j, n, ν,m(1),m(2)), i ≥ 0, j = 0,K1, n = 0,K2, ν = 0,W,m(1) = 1,M(1),m(2) = 1,M(2)}.

In what follows, we assume that the states of the Markov chain under consideration are ordered in
lexicographical order and form an infinitesimal generator Q of the Markov chain. Let us denote by
Qi,i′ the matrix of transition rates of the Markov chain from the states corresponding to the level i of
the countable component it to the states corresponding to the level i′, i, i′ ≥ 0. Matrix Qi,i′ consists
of blocks Qi,i′(j, j′), j, j′ = 0,K1, containing the rates of transitions from the states corresponding to
the levels i, j of components it, jt to the states corresponding to the levels i′, j′ of these components.
Matrix Qi,i′(j, j′) consists of blocks Q(n,n′)

i,i′ (j, j′), n, n′ = 0,K2, containing the rates of transitions of
the underlying process of the MAP and the PH service processes on the first and the second servers
from the states corresponding to the levels i, j, n of components it, jt, nt to the states corresponding to
the levels i′, j′, n′ of these components. Then the infinitesimal generator Q has the following block
structure:

Q =
(
Qi,i′

)
i,i′≥0
=

(
Qi,i′(j, j′)

)
j, j′=0,K1, i,i′≥0

=

(
Q(n,n′)

i,i′ (j, j′)
)

n,n′=0,K2, j, j′=0,K1, i,i′≥0
. (1)

In order to describe the matrix Q, we use the following notations:

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10655

• I is an identity matrix, O is a zero matrix, In is an identity matrix of size n× n, On is a zero matrix
of size n × n, Om×n is a zero matrix of size m × n,
• diag+{a1, a2, . . . , an} is a matrix that consists of (n + 1) × (n + 1) blocks (not necessarily square)

whose over-diagonal blocks are equal to the matrices listed in the brackets and the remaining
blocks are zero,
• diag−{a1, a2, . . . , an} is a matrix that consists of (n+1)× (n+1) blocks whose sub-diagonal blocks

are equal to the matrices listed in the brackets and the remaining blocks are zero,
• δ(i, j) is the Kronecker symbol.

The infinitesimal generator Q of the Markov chain ξt, t ≥ 0 has a block tridiagonal structure:

Q =



Q0,0 Q0,1 O O O . . .

Q1,0 Q1,1 Q1,2 O O . . .

O Q2,1 Q2,2 Q2,3 O . . .

O O Q3,2 Q3,3 Q3,4 . . .
...

...
...

...
...
. . .


with the non-zero blocks Qi,i′ also have a block tridiagonal structure and are defined by the following
matrices:

Qi,i−1(j, j − 1) = O, i ≥ 1, j = 1,K1,

Qi,i−1(j, j) = O, i ≥ 1, j = 0,K1,

Qi,i−1(0, 1) = αidiag{IW ⊗ β1, IW ⊗ β1 ⊗ IM2︸ ︷︷ ︸
K2

}, i ≥ 1,

Qi,i−1(j, j + 1) = αiIWR, i ≥ 1, j = 1,K1 − 1,

Qi,i(1, 0) = diag+{IW ⊗ S(1)
0 ⊗ β2, IW ⊗ S(1)

0 ⊗ IM2︸ ︷︷ ︸
K2−1

}, i ≥ 0,

Qi,i(j, j − 1) = diag+{IW ⊗ S(1)
0 β1 ⊗ β2, IW ⊗ S(1)

0 β1 ⊗ IM2︸ ︷︷ ︸
K2−1

}, i ≥ 0, j = 2,K1,

Qi,i(0, 0) = diag{D0,D0 ⊕ S 2︸ ︷︷ ︸
K2

} + diag−{IW ⊗ S(2)
0 , IW ⊗ S(2)

0 β2︸ ︷︷ ︸
K2−1

} − αiI, i ≥ 0,

Qi,i(j, j) = diag{D0 ⊕ S 1,D0 ⊕ S 1 ⊕ S 2︸ ︷︷ ︸
K2

}+

diag−{IWM1 ⊗ S(2)
0 , IWM1 ⊗ S(2)

0 β2︸ ︷︷ ︸
K2−1

} − [1 − δ(j,K1)]αiI, i ≥ 0, j = 1,K1,

Qi,i(0, 1) = diag{D1 ⊗ β1,D1 ⊗ β1 ⊗ IM2︸ ︷︷ ︸
K2

}, i ≥ 0,

Qi,i(j, j + 1) = diag{D1 ⊗ IM1 ,D1 ⊗ IM1 ⊗ IM2︸ ︷︷ ︸
K2

}, i ≥ 0, j = 1,K1 − 1,

Qi,i+1(1, 0) = diag{OWM1×W ,OWM1 M2×WM2︸ ︷︷ ︸
K2−1

, IW ⊗ S(1)
0 ⊗ IM2}, i ≥ 0,

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10656

Qi,i+1(j, j − 1) = diag{OW(R−M1 M2), IW ⊗ S(1)
0 β1 ⊗ IM2}, i ≥ 0, j = 2,K1,

Qi,i+1(j, j) = O, i ≥ 0, j = 1,K1 − 1,
Qi,i+1(K1,K1) = diag{D1 ⊗ IM1 ,D1 ⊗ IM1 M2︸ ︷︷ ︸

K2

}, i ≥ 0,

Qi,i+1(j, j + 1) = O, i ≥ 0, j = 1,K1 − 1,

where R = M1(1 + M2K2).
Explanation: It is seen from formula (1) that an infinitesimal generator Q of the Markov chain ξt, t ≥ 0
consists of zeroes and blocks Qi,i′(j, j′) containing rates of transitions from the states corresponding to
the levels i, j of the chain components it, jt to the states corresponding to the levels i′, j′ of these
components.

Blocks Qi,i−1(j, j′) describe the rates of transitions of the Markov chain ξt, t ≥ 0, which lead to a
decrease in the number of customers in the orbit by one and a change in the number of customers
at the first station from j to j′. Let j′ = j − 1. As it follows from the description of the queue
under consideration, the transitions from the states corresponding to the levels i, j of it, jt to the states
corresponding to the levels i − 1, j − 1 and i − 1, j of these components are impossible. Therefore,
Qi,i−1(j, j − 1) = O, Qi,i−1(j, j) = O.

Blocks Qi,i−1(j, j+1) describe the rates of transitions of the Markov chain ξt, t ≥ 0 which entails the
successful retry from the orbit to the first station. If the first station is empty (j = 0), such transitions
are accompanied by the starting of the initial phase for the service on the first server according to the
probabilistic vector β1.

Blocks Qi,i(j, j′) describe the rates of transitions of the Markov chain ξt, t ≥ 0 that do not lead to a
change of the number of customers in the orbit. Let j′ = j−1. If j = 1, the transitions are accompanied
by the completion of the service of a customer on the first server (the matrix S(1)

0) and the transmission
of this customer to the second station. If the server of the second station is idle (n = 0), the customer
goes to the initial phase of the PH service process on the second server according to the probabilistic
vector β2 and starts its service. Otherwise, the customer is buffered. In the case j > 1 the released
server of the first station is occupied by a customer from the buffer. This customer goes to the initial
phase for the PH service process on the first server according to the probabilistic vector β1 and starts
its service. In the case j′ = j, transition rates of the Markov chain depend on the level j:

(1) j = 0. The matrix Qi,i(0, 0) contains the rates of transitions of the Markov chain ξt, t ≥ 0 caused
by:
- Idle transitions of the underlying process of the MAP (the matrix D0), if n = 0;
- Idle transitions of the underlying processes of the MAP or the PH service on the second server
(the matrix D0 ⊕ S 2) or transitions which are accompanied by the completion of the service on
the second server (the matrix S(2)

0) , if n = 1;
- Idle transitions of the underlying processes of the MAP or the PH service on the second server
(the matrix D0⊕S 2) or transitions which are accompanied by the completion of the service on the
second server and installation of the initial phase for the next service on this server (the matrix
S(2)

0 β2), if n > 1.
(2) 0 < j ≤ K1. The matrix Qi,i(j, j) contains the rates of transitions of the Markov chain ξt, t ≥ 0

caused by:
- Idle transitions of the underlying processes of the MAP or the PH service on the first server (the

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10657

matrix D0 ⊕ S 1), if n = 0;
- Idle transitions of the underlying processes of the MAP or the PH service on the first or the
second server (the matrix D0 ⊕ S 1 ⊕ S 2) or transitions which are accompanied by the completion
of the service on the second server (the matrix S(2)

0), if n = 1;
- Idle transitions of the underlying processes of the MAP or the PH service on the first or the
second server (the matrix D0 ⊕ S 1 ⊕ S 2) or transitions which are accompanied by the completion
of the service on the second server and installation of the initial phase for the next service on this
server (the matrix S(2)

0 β2), if n > 1. Note that S(2)
0 β2 is the square matrix whose entry (i, j) is the

product of the i-th entry of vector S(2)
0 by the j-th entry of vector β2,

S(2)
0 β2 =

((
S(2)

0

)
i

(
β2

)
j

)
i, j=1,M2

.

Blocks Qi,i+1(j, j′) describe the rates of transitions of the Markov chain ξt, t ≥ 0 that leads to an
increase in the number of customers in the orbit by one.

Blocks Qi,i+1(j, j),Qi,i+1(j, j + 1), j = 0,K1 − 1, consist of zeroes. This follows from the description
of the queue under consideration.

Blocks Qi,i+1(j, j − 1), j = 1,K1, contain the rates of transitions of the Markov chain ξt, t ≥ 0 that
occur when the second station is completely occupied at the moment of the service completion of a
customer on the first station (the column vector S(1)

0). Then this customer is forced to go into the orbit,
and the initial phase for the next service is installed on the first server (the row vector β2).

Blocks Qi,i+1(K1,K1) contain the rates of transitions of the Markov chain ξt, t ≥ 0 caused by an
arrival of a customer in the MAP (the matrix D1). This customer is forced to go into orbit since the
first station buffer is full upon its arrival.

Corollary 1. The Markov chain ξt, t ≥ 0, is an asymptotically quasi-Toeplitz Markov chain (AQTMC)
defined in [32].

Proof. Let Ti be a diagonal matrix with diagonal entries defined as the absolute values of the diagonal
entries of the matrix Qi,i, i ≥ 0. According to [32], the corollary will be proven if we show that limits

Y0 = lim
i→∞

T−1
i Qi,i−1, Y1 = lim

i→∞
T−1

i Qi,i + I, Y2 = lim
i→∞

T−1
i Qi,i+1

exist and matrix Y0 + Y1 + Y2 is stochastic.
Note that the matrices Qi,i(K1,K1 − 1), Qi,i(K1,K1), Qi,i+1(K1,K1), and Qi,i+1(K1,K1 − 1) do not

depend on i and K1. Henceforth we will use the notations A, B,C for these matrices. Namely,

A = Qi,i(K1,K1 − 1), B = Qi,i(K1,K1) + Qi,i+1(K1,K1),C = Qi,i+1(K1,K1 − 1). (2)

Then, after some algebra, we obtain the following expressions for the matrices Y0,Y1,Y2:

Y0 =



O IWR O . . . O
O O IWR . . . O
...
...

...
. . .

...

O O O . . . IWR

O O O . . . O


,

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10658

Y1 =


O . . . O O
...
. . .

...
...

O . . . O O
O . . . T−1A T−1C + I

 ,

Y2 =


O . . . O O
...
. . .

...
...

O . . . O O
O . . . O T−1B


where T is a diagonal matrix formed by the moduli of the diagonal entries of the matrix C.

It is easy to check that the matrix Y0 + Y1 + Y2 is stochastic. Thus, the corollary is proved. □

3.2. Ergodicity condition

The ergodicity condition for the AQTMC ξt, t ≥ 0, can be formulated in terms of the matrices
Y0,Y1,Y2. Following [32], we first obtain an expression for the generating function Y(z) of these
matrices.

Lemma 1. The matrix generating function Y(z) = Y0 + Y1z + Y2z2 has the form

Y(z) =



OWR IWR O . . . O O
O O IWR . . . O O
...

...
...
. . .

...
...

O O O . . . O IWR

O O O . . . T−1Az z[T−1(C + Bz)] + zI


where matrices A, B,C are defined in (2).

Theorem 1. (i) The Markov chain ξt, t ≥ 0 is ergodic if the following inequality holds:

λ <
1
2

{
[y0 +

K2−1∑
n=1

yn(IM1 ⊗ eM2)]S
(1)
0 + yK2

(eM1 ⊗ IM2)S
(2)
0

}
(3)

where vector y = (y0, y1, . . . , yK2
) is the unique solution of the system

yV = 0, ye = 1 (4)

where matrix V has the form

V = diag+{S(1)
0 β1 ⊗ β2,S

(1)
0 β1 ⊗ IM2︸ ︷︷ ︸

K2−1

}

+diag{S 1, S 1 ⊗ S 2︸ ︷︷ ︸
K2−1

, S 1 ⊗ S 2 + S(1)
0 β1 ⊗ IM2} + diag−{IM1 ⊗ S(2)

0 , IM1 ⊗ S(2)
0 β2︸ ︷︷ ︸

K2−1

};

(ii) The Markov chain ξt, t ≥ 0 is non-ergodic if the inequality (3) taken with the opposite sign holds.

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10659

Proof. Matrix Y(1) is reducible. Let us denote by Y {N}(1) its normal form (see [33]):

Y {N}(z) =



z[T−1(C + Bz)] + zI T−1Az O . . . O O
IWR O O . . . O O
O IWR O . . . O O
...

...
...
. . .

...
...

O O O . . . IWR O


.

It is easy to see that matrix Y {N}(1) contains only one irreducible stochastic diagonal block. The
corresponding block of matrix Y {N}(z) has the form

Ỹ(z) =
(
z[T−1(C + Bz)] + zI T−1Az

IWR O

)
.

From ([32], Theorem 2), it follows that the Markov chain ξt, t ≥ 0 is ergodic if[
det(zI − Ỹ(z))

]′
z=1 > 0. (5)

Using the block structure of matrix Ỹ(z), we can reduce the determinant in (5) to the following form:

det(zI − Ỹ(z)) = det(zT−1)det[−z(C + Bz) − A]. (6)

At z = 1, the second determinant on the right side of (6) is zero due to the properties of an infinitesimal
generator. Note that det(zT−1) > 0 for z = 1. Therefore, inequality (5) is equivalent to the following
inequality:

[det(−z(C + Bz) − A)]′z=1 > 0. (7)

Following the proof of Theorem 2, [32], we can show that inequality (7) is equivalent to

x(C + 2B)e < 0 (8)

where x is the unique solution of the system

x(C + B + A) = 0, xe = 1. (9)

Consider vector x in the form

x = (θ ⊗ y0, θ ⊗ y1, . . . , θ ⊗ yK2
) (10)

where vector y0 is of order M1, and vectors y1, . . . , yK2
are of order M1M2.

Next, we substitute vector x in the form (10) and the expressions for matrices A, B,C defined in (2)
into (9). Taking into account that θ(D0 + D1) = 0, θe = 1, after some algebra we obtain (4) for vector
y = (y0, y1, . . . , yK2

). Thus, system (9) for vector x is reduced to (4) for vector y.
Now consider inequality (8). Substituting vector x in form (10) and matrices B,C defined by (2)

into (8) and taking into account the relation θD1e = λ, after some algebraic transformations we obtain
the inequality (3) equivalent to (8).

Thus, the statement (i) of the theorem is proven.
Taking into account the statement (i), we immediately prove statement (ii) of the theorem by using

the results of [32], Theorem 2. □

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10660

Corollary 2. In the case of the tandem system without buffers in front of the servers and exponential
distributions of service times at both the stations:

(i) the sufficient condition for the Markov chain ξt, t ≥ 0 ergodicity is

λ <
µ1µ2

µ1 + µ2
; (11)

(ii) the sufficient condition for the Markov chain ξt, t ≥ 0 non-ergodicity is inequality (11) taken
with the opposite sign.

Proof. of the corollary follows from Theorem 1, given that K1 = K2 = 1,Mk = 1, S k = −µk,βk = 1, k =
1, 2.

Note that the system, defined in Corollary 2, coincides with the system investigated in [24] if we
assume that the input arrivals are not a MAP, but its special case – an MMPP. Paper [24] provides the
necessary condition for the system stability in form (11). Here we have proven that inequality (11) is
also sufficient for the Markov chain ξt, t ≥ 0 to be ergodic.

Moreover, under the opposite sign inequality (11) is turning into the sufficient condition for non-
ergodicity of the Markov chain. □

3.3. Stationary distribution and performance measures

Let us denote by pi, i ≥ 0, vectors of the stationary probabilities of the Markov chain ξt, t ≥ 0,
corresponding to state i of the countable component. These vectors are of order W[1 + M2K2 + (M1 +

M1M2K2)K1]. To find the vectors pi, i ≥ 0, we use a special algorithm for calculating the stationary
distribution of asymptotically quasi-Toeplitz Markov chains presented in [32].

Algorithm 1. (1) Calculate matrix G as the minimal non-negative solution of matrix equation G =
Y(G).

(2) Calculate matrices Gi0−1,Gi0−2, . . . ,G0 using the back recursion equation

Gi = (−Qi+1,i+1 − Qi+1,i+2Gi+1)−1Qi+1,i,

i = i0 − 1, i0 − 2, . . . , 0, with the boundary condition Gi = G, i ≥ i0, where i0 is a non-negative
integer such that the inequality ||Gi0 −G|| < ε holds for some positive ε (calculation accuracy).

(3) Calculate matrices Q̄i,i = Qi,i + Qi,i+1Gi, Q̄i,i+1 = Qi,i+1, i ≥ 0, where Gi = G, i ≥ i0.

(4) Calculate matrices Fi, i ≥ 1 using the recurrent formula F0 = I, Fi = Fi−1Q̄i−1,i(−Q̄i,i)−1, i ≥ 1.
(5) Calculate vector p0 as the unique solution to system p0(−Q̄0,0) = 0, p0

∑∞
i=0 Fie = 1.

(6) Calculate vectors pi as pi = p0Fi, i ≥ 1.

To calculate the vectors pi, i ≥ 0, we need to truncate the number of vectors to calculate (step 5).
Truncation level can be max{i0,N∗}, where N∗ is chosen such that |pN∗ − pN∗−1| < ε.

Having calculated the stationary distribution pi, i ≥ 0, we can obtain a number of performance
measures of the system under consideration and apply Little’s Law to obtain the mean sojourn time in
the whole system.

• Stationary distribution of the number of customers in the orbit pi = pie, i ≥ 0.
• Average number of customers in the orbit L =

∑∞
i=1 ipie.

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10661

• The stationary distribution of the number of customers at the first station or at the second station
can be calculated from the joint distribution qi(j, n), i ≥ 0, j = 0,K1, n = 0,K2 of the number of
customers in the orbit at the first and second stations. Here, qi(j, n) is a probability that there are i
customers in the orbit, j customers at the first station, and n customers at the second station. The
expressions for probabilities qi(0, 0), qi(j, 0), qi(0, n), qi(j, n) are calculated by using the following
formulas:

qi(0, 0) = pi

(
eW

0T
W(M2K2+RK1)

)
, i ≥ 0,

qi(0, n) = pi


0T

W[1+M2(n−1)]
eWM2

0T
W[M2(K2−n)+RK1]

 , i ≥ 0, n = 1,K2,

qi(j, 0) = pi


0T

W[1+M2K2+R(j−1)]

eWM1

0T
W[M1 M2K2+R(K1− j)]

 , i ≥ 0, j = 1,K1,

qi(j, n) = pi


0T

W[1+M2K2+R(j−1)+M1(1+M2(n−1))]

eWM1 M2

0T
W[M1 M2(K2−n)+R(K1− j)]

 , i ≥ 0, j = 1,K1, n = 1,K2.

• Stationary distribution of the number of customers at the first station

q(1)
j =

∞∑
i=0

pi

K2∑
n=0

qi(j, n), j = 0,K1.

• Average number of customers at the first station

L1 =

K1∑
j=1

jq(1)
j .

• Stationary distribution of the number of customers at the second station

q(2)
n =

∞∑
i=0

pi

K1∑
j=0

qi(j, n), n = 0,K2.

• Average number of customers at the second station

L2 =

K2∑
n=1

nq(2)
n .

• Average sojourn time of customers in the system, by Little’s theorem: W = (L + L1 + L2)λ−1.

4. Performance evaluation of tandem queueing systems with a common retrial orbit and
arbitrary number of single server stations using machine learning methods

In practical applications involving computer networks, such as those discussed in [25], it is essential
to consider systems with more than two stations. When dealing with multiple stations, mathematical

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10662

analysis becomes challenging, necessitating the use of Monte Carlo discrete event simulation to model
the queueing process. The accuracy of the simulation model is verified using numerical methods for
the case of two stations. Depending on the parameters of the queuing system and the required number
of samples, the simulation process can take a considerable amount of time to complete. In this section,
we investigate the use of machine learning methods to predict the mean sojourn time of a tandem
queueing system with a common orbit based on its parameters. Previously, a limited attempt at using
machine learning methods for systems with Poisson arrivals and exponentially distributed service times
had been studied in [34].

4.1. Generation of synthetic dataset

We have developed a simulation program for a tandem queuing system with a common orbit,
utilizing Markov arrival processes (MAP) for input arrivals and phase-type (PH) distributed service
times. Unlike the theoretical system described above, our simulated system can accommodate an
arbitrary number of stations while incorporating a finite number of places in the orbit and a constant
retrial policy. This setup closely mimics the retrial processes found in real computer networks. The
simulation program requires the following input parameters to characterize the queuing system:

• Matrices D0,D1 represent MAP arrivals,
• Number N of stations,
• Matrices S i, βi represent PH service times at i-th station, i = 0,N,
• Buffer size Ki at i-th station, i = 0,N,
• Orbit retrial rate α,
• Number Korbit of places at orbit

and outputs various performance characteristics of the queueing system, such as mean sojourn time,
average packet loss rate, average number of packets in the system, etc.

In order to train machine learning models, we need a dataset with a large number of data points
(X, y), where X corresponds to the input parameters of the simulation program and y is the mean
sojourn time. This dataset is obtained by performing simulation on various randomly generated input
parameters:

• Number N of stations – uniform discrete random variable on [2, 15];
• Size of matrices D0,D1 – uniform discrete random variable on [1, 16];
• Size of matrices S i, βi – uniform discrete random variable on [1, 16];
• Buffer size Ki – uniform discrete random variable on [0, 32];
• Number of places at orbit, Korbit – uniform discrete random variable on [0, 512].

For non-diagonal entries of stochastic matrices D0,D1, S i (i.e. transition rates) and orbit retrial rate
α, to make the dataset more varied, we use the following two ways:

• Method 1. The non-diagonal entries of matrices D0, and D1 are generated as uniform continuous
random variables on the range [1, 1024]. The non-diagonal entries of matrices S i, the transition
rates S(0)

i into absorption, and the orbit retrial rate α are generated as uniform continuous random
variables on the range [2, 2048];

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10663

• Method 2. The non-diagonal entries of matrices D0, and D1 are generated as ep; the non-diagonal
entries of matrices S i, the transition rates S(0)

i into absorption, and the orbit retrial rate α are
generated as 2ep, where p is a uniform continuous random variable on the range [−2.5, 2.5]

Then, we regularize the input parameters, by dividing all matrices D0,D1, S i, and orbit retrial rate α
by a factor equal to λ (the average rate of arrivals). This step ensures all inputs will have the same arrival
rate equal to 1. Note that by multiplying all transition rates by a common factor m, all non-temporal
characteristics of the queueing process remain the same, only the temporal characteristics (such as
mean sojourn time) are changed by a factor 1

m . Therefore, there is no downside to this regularization
step; and the upside is that the machine learning algorithms will work more effectively.

We then collect and divide the simulation results data into the following datasets:

• Dataset300k: Dataset of 200000 data points (X, y) generated by method 1 and 100000 data points
generated by method 2 for training purpose;
• Test60k: A dataset of 60000 data points (X, y) generated by method 1 for testing purpose;
• Sample: A small non-random dataset of 32 data points (X, y), all have Poisson arrivals (D0 =[
−1

]
, D1 =

[
1
]
), exponentially distributed service times (S i =

[
−1

]
, βi =

[
1
]
), and orbit retrial

rate α = 1, for the purpose of testing the generalization ability of machine learning models
on unseen data. In theory, the data points in this set can be randomly generated by the above
procedures; however, the chance is improbable in practice.

The final step of data preparation is dimension reduction. As matrices are high-dimensional data,
using them directly in training may lead to ineffective learning results. Therefore, we employ the
approximation procedure described in [35] to reduce the matrices D0, and D1 into 5-dimension tuples
(m1,m2,m3, l1, l2) and matrices S i,βi into 3-dimension tuples (m(i)

1 ,m
(i)
2 ,m

(i)
3).

Where mk is the k-th moment of MAP

mk = k!π(−D0)−ke, k ≥ 1.

π is the solution of the system π(−D0)−1D1 = π,

πe = 1.

lk is the k-th lags of MAP

lk =
λ2π(−D0)−1[(−D0)−1D1]k(−D0)−1e − 1

λ2π(−D0)−2e − 1
, k ≥ 1.

m(i)
k is the k-th moment of PH distribution at i-th station

m(i)
k = k!βi(−S)−ke, k ≥ 1.

We perform training with three types of machine learning methods: gradient boosting, random
forest and artificial neural network. We do not experiment with support vector machine (SVM), which
is also a powerful classical machine learning method [36], as the computational complexity of the
SVM method can be from quadratic to cubic in relation to the number of data samples, and hence it
is impractical for our case. Meanwhile, the training time complexity of gradient boosting and random
forest methods is only O(n log(n)), and of neural network is O(n), where n is the number of data
samples.

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10664

4.2. Gradient boosting

Boosting is a technique in machine learning, where an ensemble of weak prediction models are
used to train stronger models (hence the name boosting) [37]. Gradient boosting is a machine learning
method that is based on boosting technique and has applications in many fields. In this paper, we
use the machine learning programming library Scikit-learn to train gradient boosting models for the
problem.

As the experiments in [34] had shown that training models for prediction of sojourn time with mean
squared error (MSE) loss function is not as effective as training with mean squared log error (MSLE),
as sojourn times can have a wide range of values, from very small to very large. Therefore, in our
experiments, we train two types of models, one that predicts the mean sojourn time y of the queueing
system and one that predicts the natural logarithm of the mean sojourn time ln(y). Using the MSE
criterion to train the second type has the same effect as using the MSLE criterion:

MSE(ŷ, ln(y)) =
1
N

N∑
j=1

(ŷ j − ln(y j))
2 =

1
N

N∑
j=1

(ln(eŷ j) − ln(y j))
2,

MLSE(ŷ, y) =
1
N

N∑
j=1

(ln(ŷ j + 1) − ln(y j + 1))2.

Because the sojourn time is strictly positive, its logarithm is always well defined. As all machine
learning programming libraries support the MSE loss function, but not every one of them has MSLE
(for example, the gradient boosting implementation in Scikit-learn), training the model to predict the
logarithm of the target value is a valid alternative.

Correspondingly, for the evaluation of trained models, we use the absolute value of the log accuracy
ratio as the evaluation score: Score = | ln(ŷ) − ln(y)| = | ln ŷ

y |.

We train the gradient boosting models with default parameters, a learning rate = 0.01, least squared
criterion, and 10000 training iterations. From the evaluation results in Table 1, we can see that the
model, trained to predict the logarithm of mean sojourn time ln(y), works significantly better in all
cases.

Table 1. Evaluation results of Gradient Boosting models.

Dataset
Training without

Log-transform target
Training with

Log-transform target
Mean Score σ Mean Score σ

Dataset300k 0.5988 1.8435 0.0790 0.1351
Test60k 0.5659 1.8155 0.0900 0.2021
Sample 5.1667 5.2363 0.1807 0.1241

In Figure 2, we show the evaluation scores of gradient boosting model, trained with the logarithm
transform of the target value, during the training process. We can see that the training process is stable,
with the gradual decreasing of the error rate on both the training set (Dataset300k) and the test set
(Test60k). For the sample set, due to its higher difference with the training set, the decreasing of the

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10665

error rate is slower, but overall, there is no overfitting phenomenon (i.e., the error rate on the training
set is decreasing, but the error rate on the test set is increasing).

0 2000 4000 6000 8000 10000
Boosting Iterations

0.10

1.00

0.08

0.20

0.50

Ev
al

ua
tio

n
Sc

or
e

Dataset300k
Test60k
Sample

Figure 2. Evaluation results of Gradient Boosting model trained with Logarithm transform
of target value during training process.

4.3. Random Forest

Random Forest is a popular method that belongs to the class of ensemble machine learning
techniques. By combining the results of multiple randomized decision trees, the random forest
method can achieve strong performance and reduce the tendency of overfitting (i.e., performing well
on seen data but poorly on unseen data) that is often present in single decision trees.

Similar to gradient boosting, we will use the implementation available in the Scikit-learn library
to train models using default parameters, with a learning rate of 0.01, the least squares criterion, and
various numbers of estimators (or trees). The evaluation results are presented in Tables 2 and 3.

Table 2. Evaluation results of Random Forest models trained without Logarithm transform
of target value.

Dataset

Models trained without Log-transform
Number of estimators

100 200 300 400
Score σ Score σ Score σ Score σ

Dataset300k 0.0551 0.1603 0.0551 0.1591 0.0551 0.1587 0.0551 0.1581
Test60k 0.1176 0.2693 0.1179 0.2695 0.1181 0.2703 0.1177 0.2688
Sample 0.2696 0.2660 0.2675 0.2918 0.2768 0.2618 0.2623 0.2675

500 600 700 800
Score σ Score σ Score σ Score σ

Dataset300k 0.0551 0.1580 0.0551 0.1582 0.0552 0.1585 0.0551 0.1579
Test60k 0.1180 0.2694 0.1179 0.2696 0.1179 0.2694 0.1177 0.2686
Sample 0.2693 0.2586 0.2660 0.2563 0.2672 0.2579 0.2731 0.2693

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10666

Table 3. Evaluation results of Random Forest models with Logarithm transform of target
value.

Dataset

Models trained with Log-transform
Number of estimators

100 200 300 400
Score σ Score σ Score σ Score σ

Dataset300k 0.0467 0.0914 0.0460 0.0903 0.0458 0.0897 0.0457 0.0894
Test60k 0.1097 0.2357 0.1090 0.2348 0.1089 0.2344 0.1088 0.2349
Sample 0.2207 0.1823 0.2274 0.1766 0.2120 0.1790 0.2249 0.1834

500 600 700 800
Score σ Score σ Score σ Score σ

Dataset300k 0.0456 0.0893 0.0456 0.0891 0.0455 0.0892 0.0455 0.0891
Test60k 0.1085 0.2343 0.1086 0.2348 0.1084 0.2343 0.1085 0.2343
Sample 0.2259 0.1846 0.2261 0.1839 0.2287 0.1917 0.2193 0.1807

As shown in Tables 2 and 3, the models trained using the logarithmic transformation of the target
value perform better with random forest, although the improvement is not as significant as that seen
with gradient boosting. Additionally, increasing the number of estimators-which is akin to increasing
the number of training iterations in gradient boosting-does not enhance the performance of the
random forest models. Therefore, when training random forest models, it is advisable not to set the
number of estimators too high, as this can result in very large model sizes (for example, 20 GB with
800 estimators) and consequently longer prediction times. Furthermore, a comparison of the results in
Table 1 with those in Table 3 indicates that random forest exhibits a higher tendency for overfitting, as
evidenced by its superior accuracy on the training set compared to gradient boosting (∼ 4.6% vs.
∼ 7.9%), but worse on unseen datasets (Test60k and Sample). One of the downsides of using a
random forest model is its significantly large size. For instance, with the default number of estimators
set to 100, the model can reach a size of 2.6 GB. This large size is primarily due to the default
parameters in the Scikit-learn library, which do not impose any limits on the depth of the decision
trees (parameter maxDepth = 0). As a result, when working with a large training dataset, the decision
trees grow extensively, leading to a considerable increase in the overall model size. To mitigate this
issue and reduce the model’s size, we can set the parameter maxDepth > 0, at the cost of lower
accuracy (Table 4).

Table 4. Random Forest models trained with Logarithm transform target value, number of
estimators = 100, varying maxDepth.

Maximum Tree Depth

Dataset

Model size
Dataset300k Test60k Sample

Score σ Score σ Score σ

4 0.5205 0.5744 0.4781 0.5450 0.6057 0.6072 243 KB
8 0.2601 0.3397 0.2419 0.3417 0.4361 0.3284 3.49 MB

16 0.1153 0.1429 0.1399 0.2500 0.2657 0.2069 209 MB
32 0.0476 0.0905 0.1098 0.2358 0.2028 0.1580 2.34 GB
64 0.0467 0.0915 0.1094 0.2350 0.2234 0.1580 2.60 GB

0 (Unlimited) 0.0467 0.0914 0.1097 0.2357 0.2207 0.1823 2.60 GB

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10667

4.4. Neural Network

Artificial neural networks (ANNs) are currently the most widely used machine learning method,
applicable across various fields. Although ANNs are one of the oldest machine learning techniques,
their practical training on large datasets has only become feasible in recent decades. This is largely
due to advancements in computer hardware that enhance matrix computation capabilities. As a result,
deep neural networks with a high number of parameters can now be trained effectively, allowing them
to achieve superior predictive performance compared to other methods.

For training our neural network models, we utilize PyTorch, a library that is more specialized for
developing neural network architectures, rather than using Scikit-learn as we did with gradient boosting
and random forest. Our network is designed with three hidden layers, each consisting of 1,024 neurons
(as shown in Figure 3). Based on previous experiments and findings from [34], which indicated that
models using the logarithmic transformation of the target variable produced better predictions, we will
only train one type of model this time (i.e., using the logarithm of the target value), instead of two
types as in previous experiments.

Hidden layers

Linear

NLReLU

Linear

NLReLU

Linear

NLReLU

Linear

Identity

Figure 3. Neural Network model structure.

Initially, we used the standard ReLU activation function between each of the hidden layers.
However, we encountered a problem during training: the loss value became excessively high due to
gradient exploding, rendering the model untrainable. A straightforward solution to this issue is to
change the activation function to a logarithmic variant of ReLU [38]:

NLReLU(x) = ln(ReLU(x) + 1)
= ln(max(0, x) + 1)

We train the neural network models using the AdamW optimizer and the mean squared rrror (MSE)
loss function, with a constant learning rate of 10−4 and a batch size of 1024, over 10000 epochs.
Throughout the training process, the loss value decreases steadily without any sudden spikes (see
Figure 4). We save the model’s state at regular intervals during training and then perform validation on
both the Test60k and Sample datasets (refer to Figure 5).

The validation results indicate that the network generalizes well on the Test60k dataset. However,
the validation scores on the sample dataset exhibit instability during training, although there are

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10668

instances where the model achieves good predictive results. In Table 5, we present specific validation
values from several training epochs.

From Table 5 and Figure 5, it is evident that the model at epoch 6912 is sufficiently robust to be
considered as the final result, rather than the latest epoch, as further training beyond epoch 6912 does
not yield improvements. Additionally, the results demonstrate that the neural network has a stronger
generalization ability compared to gradient boosting and random forest, both of which fail to achieve
an error rate of less than 10% on the sample dataset.

0 2000 4000 6000 8000 10000
Training Epochs

0.02

0.10

1.00

Lo
ss

Figure 4. Neural Network training loss.

0 2000 4000 6000 8000 10000
Training Epochs

0.10

0.20

6 × 10 2

3 × 10 1

4 × 10 1

Ev
al

ua
tio

n
Sc

or
e

Test60k
Sample

Figure 5. Evaluation results of Neural Network model at certain training epochs

Table 5. Evaluation results of Neural Network model at certain training epochs.

Dataset

Epoch
5670 6912 8448 9344 10112

Score σ Score σ Score σ Score σ Score σ

Test60k 0.0733 0.2068 0.0707 0.1950 0.0761 0.2048 0.0741 0.1986 0.0779 0.1950
Sample 0.0646 0.0936 0.0576 0.1005 0.0659 0.1317 0.0646 0.0716 0.1402 0.0955

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10669

4.5. Case of two stations system

For comparison purposes, Tables 6 and 7 present the average sojourn time calculated using various
methods for a simple system with two stations. The system features an input arrival process described
by a Markov arrival process (MAP) (D0,D1), service time at the first station modeled as a phase-type
(PH) distribution (S 1,β1), a buffer size at the first station denoted as K1, service time at the second
station also modeled as a PH distribution (S 2,β2), a buffer size at the second station represented as K2,
and a fixed retrial rate α. From the ten numerical examples provided, it is evident that machine learning
methods frequently perform well in predicting the mean sojourn time for the two-station system with
an infinite-size orbit (where the orbit size is sufficiently large to function similarly to an infinite one).

However, there are instances where the prediction errors from all three machine learning methods
are notably high, such as in the third row of Table 6. Additionally, we observe that the random forest
model often produces considerably larger prediction errors compared to the other methods, as shown in
Table 7. In contrast, the neural network and gradient boosting models tend to exhibit fewer significant
errors than the random forest model.

To investigate this further, we examined 1,000 examples, the results of which are summarized in
Table 8. Overall, the neural network model outperformed the others. While the random forest model
resulted in more predictions with small errors (≤ 10%) than the gradient boosting model, it also had
a higher number of samples with unacceptable errors (≥ 90%). Interestingly, the gradient boosting
model had the fewest samples with small errors, as well as the fewest samples with extremely high
errors.

Table 6. Numerical results of various methods in the case of system with two stations.

D0, D1 S 1, β1 S 2, β2 α K1 K2 Analytical Simulation
Neural

Network
Grad.

Boosting
Rand.
Forest[

−1.42 0.11
6.66 −13.0

]
[
0.56 0.75
1.70 4.64

]
[
−18.2 9.87
2.07 −4.26

]
[
0.532 0.468

]
[
−4.30 3.16
1.40 −12.7

]
[
0.528 0.472

] 5.37 29 7 1.2728 1.2643 1.2115 1.2595 1.1379

[
−2.80 2.31
1.02 −1.42

]
[
0.11 0.38
0.27 0.13

]
[
−19.6 2.07
0.229 −1.42

]
[
0.797 0.203

]
[
−2.64 1.52
1.65 −13.7

]
[
0.286 0.714

] 9.77 26 13 0.5908 0.5852 0.5773 0.8313 0.6633

[
−3.57 1.17
0.12 −0.43

]
[
0.44 1.96
0.20 0.11

]
[
−19.62 0.45

0.52 −0.91

]
[
0.238 0.762

]
[
−11.2 10.9
0.96 −1.99

]
[
0.745 0.255

] 16.70 16 3 5.6972 5.7862 6.5020 6.5473 7.4541

[
−12.36 9.47

0.53 −1.80

]
[
0.17 2.72
0.80 0.46

]
[
−7.39 0.38
0.54 −1.38

]
[
0.471 0.529

]
[
−7.65 6.21
1.06 −19.31

]
[
0.578 0.422

] 3.72 17 28 2.4771 2.4712 4.0656 3.0351 3.1902

[
−4.98 1.06
0.16 −1.39

]
[
1.62 2.30
1.02 0.21

]
[
−7.01 6.83
0.53 −4.39

]
[
0.095 0.905

]
[
−4.83 1.62
20.86 −34.07

]
[
0.870 0.130

] 0.48 28 17 1.3501 1.3516 1.4492 1.1897 1.3931

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10670

Table 7. Numerical results of various methods in the case of system with two stations (cont.).

D0; D1 S 1; β1 S 2; β2 α K1 K2 Analytical Simulation
Neural

Network
Grad.

Boosting
Rand.
Forest[

−1.49 1.11
0.37 −2.09

]
[
0.25 0.13
1.03 0.69

]
[
−15.01 0.65

0.56 −1.25

]
[
0.336 0.664

]
[
−5.17 2.74
2.17 −3.57

]
[
0.512 0.488

] 4.58 3 9 3.1472 3.1502 3.6450 3.9505 6.7534

[
−4.70 0.10
0.79 −4.28

]
[
1.01 3.59
1.58 1.91

]
[
−9.94 0.47
8.12 −22.09

]
[
0.764 0.236

]
[
−16.33 0.17
22.50 −22.85

]
[
0.526 0.474

] 0.20 8 15 0.2851 0.2850 0.5385 0.4195 0.8624

[
−2.60 0.21
4.95 −6.09

]
[
0.13 2.26
0.62 0.52

]
[
−2.95 2.64
0.67 −7.26

]
[
0.769 0.231

]
[
−10.73 10.39

0.72 −23.36

]
[
0.869 0.131

] 0.54 8 27 3.3706 3.3382 3.0185 3.1438 5.6815

[
−1.61 0.57
2.78 −3.38

]
[
0.85 0.19
0.39 0.21

]
[
−30.94 20.60
12.13 −14.44

]
[
0.653 0.347

]
[
−10.58 8.67

1.10 −6.17

]
[
0.959 0.041

] 2.05 32 18 0.5825 0.5831 0.5566 0.5317 0.5701

[
−2.32 0.25
0.14 −2.38

]
[
0.09 1.97
2.00 0.25

]
[
−9.52 5.35
0.33 −3.49

]
[
0.598 0.402

]
[
−10.56 0.21

0.84 −7.07

]
[
0.816 0.184

] 5.36 25 27 0.9635 0.9804 0.7594 0.8355 1.4875

Table 8. Verification results on 1000 examples.

Neural
Network

Gradient
Boosting

Random
Forest

Number of examples with error ≤ 10% 532 347 474
Number of examples with error ≥ 50% 66 90 89
Number of examples with error ≥ 90% 35 25 43

4.6. Comparison of training and execution time

The primary motivation for applying machine learning methods to queueing theory problems is to
enhance execution speed, albeit with some sacrifices in accuracy. For instance, generating a single
sample in the datasets used in the aforementioned experiments takes an average of 4 seconds of
simulation time. While this duration may seem minimal, simulating large datasets comprising
hundreds of thousands or even millions of samples could take days or weeks. As illustrated in Table 9,
even the slowest machine learning methods are significantly faster than traditional simulations.

However, this substantial speedup comes at a cost. Machine learning methods require more memory
for loading models and incur higher computational costs during the training process. Table 10 provides
a summary of model sizes and training time costs for each method. Most models, except for the neural
network, were trained on an Intel Xeon E5-2680 CPU. The neural network model, on the other hand,
was trained using an NVIDIA RTX 3070 Ti GPU.

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10671

Table 9. Comparison of average execution time of methods for one data point.

Method Execution time
(seconds)

Simulation 4
Gradient Boosting 2 × 10−4

Random Forest 1 × 10−7

Neural Network 3 × 10−5

Table 10. Comparison of model size and training time of machine learning methods.

Method Model size Training iterations Total training time
Gradient Boosting 34.5 MB 10000 143 secs

Random Forest 2.6 GB 100 306 secs
Neural Network (GPU) 24.8 MB 10000 13 hours

It is important to note that since gradient boosting and random forest are ensemble-based methods,
the model size increases with the number of training iterations (i.e., the number of decision trees). In
contrast, the size of the neural network model remains constant with respect to the number of training
iterations; it is determined solely by the number of trainable parameters (layers and weights) in the
model. As a result, we can train the neural network model for extended periods without impacting its
size.

5. Conclusions

In this paper, we examined a multiphase queueing system with a finite number of stations and a
common orbit. The incoming arrivals to the system are of the Markovian arrival process (MAP) type,
and each station consists of a single server with a finite buffer. The service times for each server follow
a phase-type (PH) distribution.

For the system with two stations and an infinite orbit, we derived the ergodicity condition, stationary
distribution, and several performance indicators. In contrast, for the system with an arbitrary number of
stations and a finite orbit, we employed various machine learning methods to predict the mean sojourn
time of the system.

Overall, all methods demonstrated the capability to learn the problem effectively. Among these,
gradient boosting and random forest-both ensemble methods based on decision trees—stand out for
their ease of use, requiring minimal parameter tuning. Meanwhile, while neural networks necessitate
more design choices to ensure a stable training process, they can potentially provide superior prediction
performance.

Author contributions

Vladimir Vishnevsky: Conceptualization, Investigation, Formal analysis, Writing-review and
editing, Supervision; Valentina Klimenok: Conceptualization, Investigation, Methodology, Formal
analysis, Writing-review and editing, Supervision; Olga Semenova: Investigation, Formal analysis,

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

10672

Writing-original draft preparation, Writing-review and editing; Minh Cong Dang: Writing-original
draft preparation, Software, Validation, Formal analysis, Writing-review and editing. All authors have
read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. A. Heindl, K. Mitchell, A. van de Liefvoort, Correlation bounds for second order MAPs
with application to queueing network decomposition, Perform. Eval., 63 (2006), 533–577.
http://doi.org/10.1016/j.peva.2005.06.003

2. S. Balsamo, Queueing networks with blocking: Analysis, solution algorithms and properties,
In: Lecture Notes in Computer Science, Berlin: Springer, 5233 (2011), 233–257.
http://doi.org/10.1007/978-3-642-02742-0 11

3. B. W. Gnedenko, D. Konig, Handbuch der bedienungstheorie, Berlin: Akademie Verlag, 1983.

4. M. F. Neuts, A versatile Markovian point process, J. Appl. Prob., 16 (1979), 764–779.
http://doi.org/10.2307/3213143

5. D. M. Lucantoni, New results on the single server queue with a batch markovian arrival process,
Commun. Stat. Stoch. Models, 7 (1991), 1–46. http://doi.org/10.1080/15326349108807174

6. S. A. Dudin, A. N. Dudin, O. S. Dudina, S. R. Chakravarthy, Analysis of a tandem queuing
system with blocking and group service in the second node, Int. J. Syst. Sci. Oper. Log., 10 (2023),
2235270. http://doi.org/10.1080/23302674.2023.2235270

7. Z. Lian, L. Liu, A tandem network with MAP inputs, Oper. Res. Lett., 36 (2008), 189–195.
http://doi.org/10.1016/j.orl.2007.04.004

8. A. Gomez-Corral, A tandem queue with blocking and Markovian arrival process, Queueing Syst.,
41 (2002), 343–370. http://doi.org/10.1023/A:1016235415066

9. C. Kim, A. Dudin, V. Klimenok, O. Taramin, A Tandem BMAP/G/1 → •/M/N/0 queue with
group occupation of servers at the second station, Math. Prob. Eng., 2012 (2012), 324604.
http://doi.org/10.1155/2012/324604

10. C. Kim, S. Dudin, Priority tandem queueing model with admission control, Comput. Indust. Eng.,
61 (2011), 131–140. http://doi.org/10.1016/j.cie.2011.03.003

11. B. K. Kumar, R. Sankar, R. N. Krishnan, R. Rukmani, Performance analysis of multi-processor
two-stage tandem call center retrial queues with non-reliable processors, Methodol. Comput. Appl.
Probab., 24 (2022), 95–142. http://doi.org/10.1007/s11009-020-09842-6

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

https://dx.doi.org/http://doi.org/10.1016/j.peva.2005.06.003
https://dx.doi.org/http://doi.org/10.1007/978-3-642-02742-0_11
https://dx.doi.org/http://doi.org/10.2307/3213143
https://dx.doi.org/http://doi.org/10.1080/15326349108807174
https://dx.doi.org/http://doi.org/10.1080/23302674.2023.2235270
https://dx.doi.org/http://doi.org/10.1016/j.orl.2007.04.004
https://dx.doi.org/http://doi.org/10.1023/A:1016235415066
https://dx.doi.org/http://doi.org/10.1155/2012/324604
https://dx.doi.org/http://doi.org/10.1016/j.cie.2011.03.003
https://dx.doi.org/http://doi.org/10.1007/s11009-020-09842-6

10673

12. A. Dudin, A. Nazarov, On a tandem queue with retrials and losses and state
dependent arrival, service and retrial rates, Int. J. Oper. Res., 29 (2017), 170–182.
http://doi.org/10.1504/IJOR.2017.083954

13. C. Kim, A. Dudin, V. Klimenok, Tandem retrial queueing system with correlated arrival
flow and operation of the second station described by a Markov chain, In: Computer
Networks: 19th International Conference, CN 2012, Szczyrk, Poland, 291 (2012), 370–382.
http://doi.org/10.1007/978-3-642-31217-5 39

14. C. S. Kim, V. Klimenok, O. Taramin, A tandem retrial queueing system with two
Markovian flows and reservation of channels, Comput. Oper. Res,, 37 (2010), 1238–1246.
http://doi.org/10.1016/j.cor.2009.03.030

15. C. S. Kim, S. H. Park, A. Dudin, V. Klimenok, G. V. Tsarenkov, Investigaton of the BMAP/G/1
→ •/PH/1/M tandem queue with retrials and losses, Appl. Math. Model., 34 (2010), 2926–2940.
http://doi.org/10.1016/j.apm.2010.01.003

16. A. N. Dudin, R. Manzo, R. Piscopo, Single server retrial queue with group admission of customers,
Comput. Oper. Res., 61 (2015), 89–99. https://doi.org/10.1016/j.cor.2015.03.008

17. G. Falin, J. G. C. Templeton, Retrial queues, Florida: CRC Press, 1997.

18. J. R. Artalejo, A. Gomez-Corral, Retrial queueing systems, Berlin: Springer, 2008.

19. V. Klimenok, O. Dudina, Retrial tandem queue with controllable strategy of repeated attempts,
Qual. Technol. Quant. Manag., 14 (2016), 74–93. http://doi.org/10.1080/16843703.2016.1189177

20. C. S. Kim, V. Klimenok, A. Dudin, Priority tandem queueing system with retrials and
reservation of channels as a model of call center, Comput. Indust. Eng., 96 (2016), 61–71.
http://doi.org/10.1016/j.cie.2016.03.012

21. S. Dudin, A. Dudin, R. Manzo, L. Rarità, Analysis of semi-open queueing network
with correlated arrival process and multi-server nodes, Oper. Res. Forum, 5 (2024), 99.
https://doi.org/10.1007/s43069-024-00383-z

22. K. Avrachenkov, U. Yechiali, On tandem blocking queues with a common retrial queue, Comput.
Oper. Res., 37 (2010), 1174–1180. http://doi.org/10.1016/j.cor.2009.10.004

23. S. V. Paul, A. A. Nazarov, T. Phung-Duc, M. Morozova, Mathematical model of the tandem
retrial queue M/GI/1/M/1 with a common orbit, In: Communications in Computer and Information
Science, Berlin: Springer, 1605 (2022), 131–143. http://doi.org/10.1007/978-3-031-09331-9 11

24. A. A. Nazarov, S. V. Paul, T. Phung-Duc, M. Morozova, Analysis of tandem retrial queue with
common orbit and MMPP incoming flow, In: Lecture Notes Comput. Sci., Berlin: Springer, 13766
(2023), 270–283. http://doi.org/10.1007/978-3-031-23207-7 21

25. V. M. Vishnevsky, A. N. Dudin, D. V. Kozyrev, A. A. Larionov, Methods of performance evaluation
of broadband wireless networks along the long transport routes, In: Distributed Computer and
Communication Networks. DCCN 2015. Communications in Computer and Information Science,
Spinger, 601 (2016), 72–85. http://doi.org/10.1007/978-3-319-30843-2 8

26. V. M. Vishnevsky, A. V. Gorbunova, Application of machine learning methods to solving problems
of queuing theory, In: International Conference on Information Technologies and Mathematical
Modelling, Springer, 1605 (2022), 304–316. http://doi.org/10.1007/978-3-031-09331-9 24

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

https://dx.doi.org/http://doi.org/10.1504/IJOR.2017.083954
https://dx.doi.org/http://doi.org/10.1007/978-3-642-31217-5_39
https://dx.doi.org/http://doi.org/10.1016/j.cor.2009.03.030
https://dx.doi.org/http://doi.org/10.1016/j.apm.2010.01.003
https://dx.doi.org/https://doi.org/10.1016/j.cor.2015.03.008
https://dx.doi.org/http://doi.org/10.1080/16843703.2016.1189177
https://dx.doi.org/http://doi.org/10.1016/j.cie.2016.03.012
https://dx.doi.org/https://doi.org/10.1007/s43069-024-00383-z
https://dx.doi.org/http://doi.org/10.1016/j.cor.2009.10.004
https://dx.doi.org/http://doi.org/10.1007/978-3-031-09331-9_11
https://dx.doi.org/http://doi.org/10.1007/978-3-031-23207-7_21
https://dx.doi.org/http://doi.org/10.1007/978-3-319-30843-2_8
https://dx.doi.org/http://doi.org/10.1007/978-3-031-09331-9_24

10674

27. V. Vishnevsky, V. Klimenok, A. Solokov, A. Larionov, Performance evaluation of the priority
multi-server system MMAP/PH/M/N using machine learning methods, Mathematics, 9 (2021),
3236. http://doi.org/10.3390/math9243236

28. V. Vishnevsky, V. Klimenok, A. Solokov, A. Larionov, Investigation of the fork-join system with
markovian arrival process arrivals and phase-type service time distribution using machine learning
methods, Mathematics, 12 (2024), 0659. http://doi.org/10.3390/math12050659

29. V. M. Vishnevsky, A. A. Larionov, A. A. Mukhtarov, A. M. Sokolov, Investigation of tandem
queueing systems using machine learning methods, Control Sci., 4 (2024), 10–21.

30. A. N. Dudin, V. I. Klimenok, V. M. Vishnevsky, The theory of queuing systems with correlated
flows, Switzerland: Springer, 2020. http://doi.org/10.1007/978-3-030-32072-0

31. M. F. Neuts, Structured stochastic matrices of M/G/1 type and their applications, New York: Marcel
Dekker, 1989.

32. V. Klimenok, A. Dudin, Multi-dimensional asymptotically quasi-Toeplitz Markov
chains and their application in queueing theory, Queueing Syst., 54 (2006), 245–259.
http://doi.org/10.1007/s11134-006-0300-z

33. F. Gantmakher, The matrix theory, Moscow: Science, 1967.

34. M. C. Dang, Prediction of a multiphase queuing system performance using machine learning
method, in Russian, Trudy MFTI, 16 (2024), 37–45.

35. V. Vishnevsky, A. Larionov, I. Roman, O. Semenova, Estimation of IEEE 802.11 DCF access
performance in wireless networks with linear topology using PH service time approximations
and MAP input, In: IEEE 11th Int. Conf. on Application of Information and Communication
Technologies, 2017. http://doi.org/10.1109/ICAICT.2017.8687247

36. V. N. Vapnik, The nature of statistical learning theory, New York: Springer, 2000.

37. R. E. Schapire, The strength of weak learnability, Mach. Learn., 5 (1990), 245–259.
http://doi.org/10.1007/BF00116037

38. Y. Liu, J. Zhang, C. Gao, J. Qu, L. Ji, Natural-logarithm-rectified activation function in
convolutional neural networks, In: 2019 IEEE 5th International Conference on Computer and
Communications, 2019, 2000–2008. http://doi.org/10.1109/ICCC47050.2019.9064398

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 5, 10650–10674.

https://dx.doi.org/http://doi.org/10.3390/math9243236
https://dx.doi.org/http://doi.org/10.3390/math12050659
https://dx.doi.org/http://doi.org/10.1007/978-3-030-32072-0
https://dx.doi.org/http://doi.org/10.1007/s11134-006-0300-z
https://dx.doi.org/http://doi.org/10.1109/ICAICT.2017.8687247
https://dx.doi.org/http://doi.org/10.1007/BF00116037
https://dx.doi.org/http://doi.org/10.1109/ICCC47050.2019.9064398
https://creativecommons.org/licenses/by/4.0

	Introduction
	Problem statement
	Analysis of two stations model
	Markov Chain
	Ergodicity condition
	Stationary distribution and performance measures

	Performance evaluation of tandem queueing systems with a common retrial orbit and arbitrary number of single server stations using machine learning methods
	Generation of synthetic dataset
	Gradient boosting
	Random Forest
	Neural Network
	Case of two stations system
	Comparison of training and execution time

	Conclusions

