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Abstract: In this study, we examined the nonlinear dynamics of the Boussinesq equation, a 

foundational equation in ocean engineering to model and investigate the behavior of waves in 

shallow water. The novel (G'/G²)-expansion method was employed to obtain different soliton 

solutions, including periodic, bright, W-type, and bell-shaped soliton solutions. These solutions are 

illustrated through 2D, 3D, and contour plots. We discovered different dynamical behavior, including 

periodic, quasi-periodic, and weak chaos, depending on the choice of initial conditions and 

parameters. The important outcomes included the detection of multistable attractors and the presence 

of weak chaotic behavior supported by Lyapunov exponents. These understandings have important 

effects in practical uses such as energy harvesting and wave control in ocean systems, where 

handling and understanding system transitions and stability is crucial. These findings also give a 

framework for further examination of stability and control in nonlinear wave systems. 
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1. Introduction 

The Boussinesq equation was first presented in 1871; nonlinear wave equations have attracted a 

lot of interest. Numerous solutions and weak variants of these equations have been thoroughly 

studied by researchers, and we carry on that tradition. Researchers have concentrated on thorough 

analyses of higher-order models and the two-dimensional Boussinesq equation because these 

equations become more difficult when higher-order elements are included or when the 

two-dimensional Boussinesq equation is taken into account. Additionally, the Korteweg–de Vries 

hierarchy and non-integrable additional interactions between two solitons have been taken into 

consideration while examining convergence to asymptotic behavior. Together, these works show that 

the Boussinesq equation may be used to evaluate wave behavior and nonlinearity in a wide range of 

applications, such as shallow water transport and other physical systems. This equation will continue 

to inspire mathematical physics study because of its characteristics and importance in both 

theoretical and applied mathematics. Numerous application areas covered in the current study can be 

investigated with the help of this equation. The Boussinesq equation, broadly used in modeling long 

surface waves in shallow water, attains robust physical significance from basic studies in sediment 

transport and wave dynamics. Grass in 1981 studied sediment transport together with the effect of 

waves and currents, setting base for wave–current interaction models supporting Boussinesq-type 

models [1]. Moreover, Qian et al. in 2018 and Castro et al. in 2008 developed numerical techniques 

for sediment transport model in shallow water, which depend on similar expectations to those 

supporting the Boussinesq equation [2,3]. In 1965, De Vries examined non-steady bed-load transport 

in open channels, presenting important visions into unsteady flow systems where Boussinesq 

frameworks are useable [4]. Armanini in 2018 extended on river hydraulics and sediment dynamics, 

further supporting the requirement of higher-order shallow water formulations like the Boussinesq 

equation [5]. Mayer et al. in 1998 explored a fractional step method for unsteady free-surface flows, 

strengthening the usefulness of nonlinear wave models, particularly in demonstrating wave 

interactions and propagation [6]. Together, these researchers created the physical explanation for 

using the Boussinesq equation in modeling dispersive, nonlinear, and sediment-influenced wave 

phenomena in shallow environments. 

In present day studies, dealing with nonlinear PDEs, various analytical methods have been 

applied to obtain exact soliton solutions. The bilinear method, mainly Hirota’s approach, has proven 

useful in constructing soliton, breather, and rogue wave solutions, as observed in the work of Wang 

et al. and others, in which interactive behaviors in Boussinesq-type and Schrödinger type systems are 

discovered [7,8]. 

The Boussinesq water wave equation is widely used in many different mathematical and 

practical domains; hence it is essential to create and identify mathematical models for particular 

equation systems. These models include solutions to solitary waves, conservation laws, and Lie 

symmetry analysis. Several important techniques include the modified F-expansion approach [9], 

He’s variational iteration method and Adomian’s decomposition method [10], the New extended 

(G’/G)-expansion method [11], (G′/G, 1/G)-expansion method [12], (G'/G)-expansion method [13], 

Exp-function method [14], (G’/G2)-expansion method [15–18], Novel (G’/G2)-expansion method [19], 

modified (G’/G2)-expansion method [20,21]. Our developed, novel modified (G'/G²)-expansion 

method [22] is a major step forward within the understanding of soliton waves for non-linear 

fractional differential conditions. This approach moves forward the effectiveness and quality of these 
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examinations, opening the door for more in-depth discoveries in consequent studies. 

New advances in solving nonlinear evolution equations using methods such as fractional and 

extended function methods have gained important visions through modeling wave dynamics in 

shallow water systems. Researchers have applied techniques such as Khater Method and the 

modified extended tanh function method to Boussinesq-type and shallow water wave equations, 

producing bright, dark, singular, and periodic type soliton solutions [23,24]. These methods increase 

the usefulness of the models in nonlinear physical systems like optics, particle physics, and ocean 

engineering. 

On the other hand, many of these studies are conducted to mostly solitary wave or traveling 

wave solutions without discovering the qualitative behavior of the system in detail. We discriminate 

by using the novel (G'/G²)-expansion method to obtain new exact traveling wave solutions and by 

performing a detailed bifurcation and chaotic analysis of the system. Unlike other studies, we 

discover the multistability, periodic, quasi-periodic, and chaotic behaviors of the Boussinesq 

equation with phase portraits and time-series analysis. This combination of dynamical and analytical 

method gives new intuitions into the complex behavior of nonlinear dispersive models, which has 

not been widely studied in other works. 

In this work, we employ novel (G'/G²)-expansion method, which was first presented by Shakeel 

et al. [19] in 2022, to obtain the exact solutions to the fourth-order nonlinear Boussinesq water wave 

equation. The recommended approach is special, and steady, and has advantages over other 

approaches to discover a compelling solution for PDE. The importance of handling of nonlinear 

equations is highlighted within the paper, so that it may be utilized in models with distinctive sorts of 

nonlinearity. When utilized with particular free parameters, the novel (G'/G²)-expansion method 

gives a significant range of exact traveling wave solutions. The resulting solutions are exact and can 

be utilized to depict both physical and visual nonlinear systems. The novel (G'/G²)-expansion method 

is better suited for the Boussinesq equation than other methods such as Hirota's bilinear method or 

inverse scattering because of its capability to deal with the complex nonlinearities of the equation. 

Hirota's method is typically restricted to integrable equations with soliton solutions, while inverse 

scattering needs integrability conditions that are not usually applicable to the Boussinesq equation. 

Contrary, the novel (G'/G²)-expansion method, provides exact solutions for a broader range of 

nonlinear wave equations and efficiently captures soliton and non-soliton behaviors. This flexibility 

makes it useful for practical applications where exact integrability is not attainable. 

Multiple wave interactions make it significant to consider how these waves carry on in liquid 

elements and plasma physics. Although a few conventional equations have been created, such as the 

Kortewegâ-de Vries (KdV) equation, wave soundness does not bolster them [25]. This can be the 

case for the Benjamin–Bona–Mahony (BBM) equation and the regularized long-wave condition 

(RLWE), which are less susceptible to these issues than the KdV and give interesting characteristics 

for the examination of marvels like shallow water and plasma waves [26]. Because of its versatility, 

RLWE is the best model for nonlinear dispersive work. It is pivotal to understand how water carries 

on when it shows long, minor undulations. Our objective of this work is to solve the Boussinesq 

condition in a logical and successive way. 

A thorough examination of liquid flow is made easier by the Boussinesq condition, which 

addresses issues counting shoaling, diffraction, and weak nonlinearities in shallow waters. Its 

usefulness goes beyond fluid dynamics and includes string vibrations, plasma sound wave propagation, 

and lattice wave modelling. These different applications highlight the significance of the equation in 
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hypothetical and viable settings, which empowers continued study of its behaviors and solutions in a 

range of scientific and physical situations. The Boussinesq condition is composed underneath: 

( ) .02 =−−− xxxxxxxtt uuuu 
         (1.1) 

A classical model used in shallow-water wave analysis, the Boussinesq equation is essential for 

analyzing the dynamics of phenomena like wave wrinkling. In this case, utt measures the wave's 

acceleration, is the second partial derivative of u with respect to time. The wave's curvature is shown 

by the term uxx, which is the second derivative with respect to space x. The second spatial partial 

derivative of u2 scaled by β is included in the nonlinear term β(u2)xx. Moreover, higher-order 

dispersion effects are taken into account by δuxxx, the third partial derivative of u with respect to xxx 

scaled by δ. 

Shoaling weak non-linearities, diffraction, and refraction are among the different liquid 

elements issues in shallow waters that can be examined with this equation. The importance of this 

finding amplifies beyond physics since it has applications in a number of areas, counting nonlinear 

string vibrations, particle sound waves in plasma, long wave engendering in intertidal zones, and 

one-dimensional linear cross section wave approximation. Its wide appropriateness and continuous 

research are illustrated in the literature [27,28]. 

( ) .02 =−+−− xxxtxxxxxxtt uuuuu 
       (1.2) 

This equation contains major that define various features of wave forms. Together with, it also 

contains δuxxxx, a higher order dispersion phenomena which is fourth order partial derivative of u 

with respect to x. The second order partial derivative of u with the temporal derivative is αuxt in 

which illustrates the time–space coupling in wave evolutions is a significant term. Parameter α 

effects the speed and shape changes of waves and indicates the temporal-spatial influence on their 

structures. A wave process's nonlinearity is shown by β, which describes the degree of nonlinear 

effects on parameters like amplitude and waveform space time deviation. Finally, δ represents higher 

order dispersion with respect to the wave distribution or ripple formation throughout the formation 

process of flow. All these concepts deliver a comprehensive framework for assessing many aspects 

of complex wave behavior, especially in shallow water and other related situations. 

Bifurcation analysis is a crucial tool in nonlinear dynamical frameworks, enabling the 

investigation of subjective changes in system behavior as control parameters are changed. These 

changes, known as bifurcations, happen when little perturbation in system parameters lead to critical 

moves in system dynamics, such as the emergence of periodic, quasi-periodic, or chaotic behavior. 

Within the setting of our system, bifurcation investigation gives basic bits of knowledge into the move 

from stable to unstable directions, distinguishing the onset of complex dynamics, including chaos, 

multistability, and Lyapunov exponents. By analyzing the bifurcation structure, we can identify basic 

limits where subjective shifts happen, offering a more thoughtful understanding of the exchange 

between system parameters (e.g., damping, perturbation amplitude, and frequency). Such 

examinations are fundamental in deciding the stability and chaos of the system, as well as in 

recognizing parameter areas where particular dynamic states, like periodicity or chaos, prevail. 

Bifurcation analysis hence serves as an effective tool in revealing the rich dynamical behaviour in 

nonlinear systems, which is a main concern of our [29,30]. 
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Our fundamental objective of this work is to investigate the dynamic behavior of the condition 

utilizing bifurcation and to analytically examine the water wave condition by novel 

(G’/G2)-expansion method. This strategy produces a wide range of solutions, comprising periodic 

soliton, bright solitons, hybrid solitons, and asymmetric solitons. Contrary to other studies, our 

solutions incorporate free parameters, which cover a more extensive range of physical phenomena. 

Our results are generalized by the expansion of arbitrary constants, which empowers intensive 

depiction utilizing two and three dimensional plots. By using this comprehensive method, we can 

improve our comprehension of nonlinear dynamics and offer new visions on how Eq (1.2) works in 

different scenarios, leading to more broad applications in fields like building, engineering, ecology, 

and telecommunications. 

The motivation for our work is in the requirement to understand the nonlinear wave behavior in 

shallow water systems. The Boussinesq equation is important in studying long waves in fluids, and 

gathering its various dynamical features, together with solitons and chaos, is vital for applications in 

wave examination and ocean engineering. 

We offer a comprehensive combination of analytical soliton solutions with bifurcation and 

chaos analysis. As the novel (G’/G2)-expansion method itself is conventional, its application to the 

Boussinesq equation, together with dynamical analysis, is innovative and unique. 

2. The description of novel (G’/G2)-expansion method 

In this section, we discuss the algorithm of novel (G’/G2)-expansion method [19]. 

Consider the NLPDE as follows: 

( ) ,0,...,,,,, =xtttxxtx uuuuuuN         (2.1) 

where ( )txuu ,=  is an unknown function, N is a polynomial in ( )txuu ,=  and its partial 

derivatives. The major steps of the proposed method are given below: 

Step 1: Suppose the wave variable has the following representation tx  −= , where   

represents the speed of wave. In light of this, Eq (2.1) can be simplified to the following nonlinear 

ODE: 

( ) 0,...,,, = UUUUN ,        (2.2) 

where ( ) ( )., Utxuu ==  

Step 2: Let us assume that the solution of Eq (2.2) can be expressed as a finite power series of the 

form ( )2/ GGH + : 
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where ),,...,1(,,,0 nibaa ii =  and H are un-known constants to be calculated later, and nn ba ,  cannot 

be zero at the same time. By considering the homogeneous balance principle, which involves 

balancing the highest-order derivative term with the nonlinear term in Eq (2.2), we can determine the 
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degree of the positive integer n. It is supposed that )(GG =  satisfies the Riccati equation: 

( ) ( ) ,//
222 GGBAGG +=


        (2.4) 

in which ,1A  and 0B  are arbitrary integers. 

Step 3: If the degree of nUU == )]([Deg)(  , then, following formulas can be used to determine 

the degree of the terms listed below. 

( )
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  (2.5) 

Step 4: By plugging Eqs (2.3) and (2.4) into Eq (2.2), we derive a polynomial in ( )2/ GGH +  By 

gathering the coefficients of the similar powers of ( )iGGH 2/+ , represented as ,...,,2,1,0 ni =  we 

can establish a set of nonlinear algebraic equations. To solve this set, we set each coefficient of 

( )iGGH 2/+  equal to zero, which yields a set of equations with unknown constants 

. and,,,,0 Hkbaa ii  We can utilize a symbolic software like Maple to potentially solve this algebraic 

system and find the unknown constants. 

Step 5: Based on the values of A and B, the solutions to Eq (2.4) are divided into three cases given 

below: 

Case 1: If AB > 0, then Eq (2.4) has a solution in the form of trigonometric functions, which can be 

expressed as: 

( ) ( )
( ) ( )
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2 ,      (2.6) 

where A and B represent arbitrary integers, while P and Q denote nonzero constants. 

Case 2: If AB < 0, then Eq (2.4) has the following solution: 
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       (2.7) 

This can also be written in the form of hyperbolic function solution as: 

( ) ( )( )
( ) ( )( )QABPABPB

QABPABPAB

G

G

−+

++
−=







2cosh2sinh

2cosh2sinh

2
,    (2.8) 

where P and Q are non-zero constants. 

Case 3: If A = 0 and 0B , then Eq (2.4) has the solution: 
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( )
.

2 QPB

P

G

G

+
−=




         (2.9) 

By putting the acquired values of ( ) Hknibaa ii  and,,,...,1,,,0 =
 
and the solutions (2.6)–(2.9) 

into Eq (2.3) and using the transformation stated above, we can derive the precise traveling wave 

solution of Eq (1.2). This process allows us to determine the complete expression for the traveling 

wave solutions. 

3. Applications of the novel (G’/G2)-expansion method 

In this section, Eq (1.2) is solved, and exact solutions are obtained using the novel 

(G’/G2)-expansion method. Using the transformation txk  −=  into Eq (1.2), we obtain the 

following equation: 

( ) ( ) .022 2442222 =−−−−− ukukukuukuku     (3.1) 

After twice integration, Eq (3.1) can be transformed into a nonlinear ordinary differential 

equation of the form: 

( ) .022224 =+−−+ ukkukuk        (3.2) 

Now by homogeneous balancing between the highest-order derivative and the nonlinear term in 

Eq (3.2), we get .2=N  Hence, from Eq (2.3), we obtain: 

( ) ( )( ) ( )( ) ( )( ) ( )( ) .////
22
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22
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2
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++++++++= GGHBGGHAGGHBGGHAAu   (3.3) 

Putting Eq (3.3) into Eq (3.2) along with Eq (2.4), then equating the coefficients of 

( ) ,...)2,1,0()/( 2 =+ iGGH
i

 to zero, we obtain a system of nonlinear algebraic equations. By 

solving this system with the help of Maple 18, we obtain the following solution sets. 
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By substituting the above constants in Eq (3.3), using different conditions stated in Eqs (2.6) 

to (2.9), we get three cases for Set 1 which are given below: 

Case 1: If ,0AB  then we get the following solution: 
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( )
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Case 2: If 0AB , then we have the following hyperbolic solution: 
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Case 3: If 0,0 = BA , then we get the following rational solution: 
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Set 2: 
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By substituting the above constants in Eq (3.3), using different conditions stated in Eqs (2.6) 

to (2.9), we get three cases for Set 2 which are given below: 

Case 1: If ,0AB  then we get the following solution: 
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Case 2: If 0AB , then we have the following hyperbolic solution: 

( )
( ) ( )( )

( ) ( )( )

( ) ( )( )
( ) ( )( )

.
2cosh2sinh

2cosh2sinh

3

3

3

8

2cosh2sinh

2cosh2sinh

3

3

3

84

2
2

1
222

22

−

−















−+

++
−

−
−















−+

++
−

−

−
−−=

QABPABPB

QABPABPAB

B

BAkA

QABPABPB

QABPABPAB

B

BA

AB

BkAkBA
u






















(3.10)

 



10634 
 

 

Case 3: If 0,0 = BA , then we get the following rational solution: 
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  (3.12) 

By substituting the above constants in Eq (3.3), using different conditions stated in Eqs (2.6) 

to (2.9), we get three cases for Set 3 which are given below: 

Case 1: If ,0AB  then we get the following solution: 
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Case 2: If 0AB , then we have the following hyperbolic solution: 
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Case 3: If 0,0 = BA , then we get the following rational solution: 
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4. Graphical representation 

In this section, we explore the obtained solutions and analyze their distinct characteristics by 

examining the physical structure of the solutions for the governing equation. The dynamic behaviour 

of these solutions is demonstrated through a series of graphical representations. All the parameter sets 

are chosen to reflect shallow water or plasma wave models, confirming that the solution lies within a 

physically realistic and mathematically stable range. 

Figure 1 demonstrates the 3D, 2D, and contour plot of the soliton solution ),(11 txu  obtained for 

the parameters k =1.05, A = 2, B = 1, α = 1, β = 1, H =1, δ =1, P = 0.5, Q = 1. The 3D plot with x ∈ [−1, 

1] and t ∈ [−1, 1] discloses a periodic wave-like structure propagating along the spatial temporal 

domain, whereas the 2D plot over x ∈ [−3, 3] displays regular oscillations, specify a cnoidal wave. The 

contour plot over x ∈ [−1, 1] and t ∈ [−1, 1] also confirms the space-temporal symmetry and periodic 

pattern. These plots indicate that the solution preserves its periodic shape during propagation, 

signifying a balance between nonlinearity and dispersion. Figure 2 displays 3D, 2D, and contour plots 

of the soliton solution u12(x, t) obtained for the parameters k = 1.05, A = 1, B = −1, α = 4, β = 1, H =1, 

δ = 1, P = 0.5, Q =1. The 3D and contour plots are displayed over x ∈ [−1, 1] and t ∈ [−1, 1] whereas 

the 2D plot is displayed at t = 0 and x ∈ [−5, 5]. The soliton solution presented is of bright-type W 

shaped, characterized by a localized peak that remains stable over time. The balance between 

dispersion and nonlinearity governed by the chosen parameters leads to this clear wave pattern. Figure 3 

shows 3D, 2D, and contour plots of the soliton solution ),(21 txu  obtained for the parameters k =0.4, A 

= 2, B =1, α =1, β =1, δ =−1, P =0.5, Q =1. The 3D and contour plots are showed over x ∈ [−5, 5] and 

t ∈ [−5, 5], whereas the 2D plots is displayed at t =0 and x ∈ [−8, 8]. The resulting soliton is a 

bright-type periodic soliton, displaying repeated localized peaks. Figure 4 demonstrates 3D, 2D, and 

contour plots of the soliton solution ( )txu ,22  obtained for the parameters k = 0.4, A = 2, B = −1, α = 1, 

β = 1, H =1, δ =1, P = 0.5, Q =1. The 3D and contour plots are displayed over x ∈ [−1, 1] and t ∈ [−1, 1], 

whereas the 2D plots is displayed over t=0 and x ∈ [−4, 4]. The 2D and 3D plots show single-peaked 

bright-type soliton, demonstrating a localized increase in amplitude that remains stable over time and 

space. The wave is regular and smooth, with energy localized around the center. Figure 5 displays 3D, 

2D, and contour plots of the soliton solution ( )txu ,31  
obtained for the parameters k =1, A =1, B =1, α 

=1, β = 1.5, H =0, ω =1, P =0, and Q =1. The 3D and contour plots are shown over x ∈ [0, 10] and t ∈ 
[0, 10], whereas the 2D plot is displayed over t =0 and x ∈ [0, 10], showing a periodic formation of 

soliton peaks. The solution is of bright-type that is characterized by sharp, localized positive amplitude 

peaks that repeat over time. Figure 6 demonstrates 3D, 2D, and contour plots of the soliton solution 

( )txu ,32  obtained for the parameters k =1, A =1, B =−1, α =1, β =1, H =0, ω = −1, P =1, and Q = −1. 

The 3D and contour plots are displayed over x, t ∈ [−5, 5], showing a sharply peaked single, localized 

bright soliton structure propagating along the spatial temporal domain. The 2D plot is displayed over t 

=0 and x ∈ [−5, 5], disclosing a smooth, bell-shaped soliton centered at the origin. 
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Figure 1. 3D, 2D, and contour plots of ( )txu ,11
 for ,1,1,1,2,05.1 ===== BAk

,5.0,1,1 === PH  and .1=Q  

 

Figure 2. 3D, 2D, and contour plots of ( )txu ,12
 for ,1,4,1,1,05.1 ==−=== BAk

,5.0,1,1 === PH  and .1=Q  

 

Figure 3. 3D, 2D, and contour plots of ( )txu ,21
 for ,1,1,1,2,4.0 ===== BAk

,5.0,1 =−= P and .1=Q  
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Figure 4. 3D, 2D, and contour plots of ( )txu ,22  for ,1,1,1,2,4.0 ==−=== BAk

,5.0,1,1 === PH  and .1=Q  

 

Figure 5. 3D, 2D, and contour plots of ( )txu ,31  for ,1,1,1,10, ===== BAkH

,0,1,5.1 =−== P and .1=Q  

 

Figure 6. 3D, 2D, and contour plots of ( )txu ,32  for ,1,1,1,1,1 ==−=== BAk

,1,10, =−== PH  and .1−=Q  

5. Comparison table 

The comparison table shows a comparative analysis of the exact solutions constructed in our 

study and those formerly established by Almusawa et al. [31]. It shows the conditions under which 

both sets of solutions are obtained, representing their differences and similarities. These solutions 

specify that, under specific selection of parameters, the results in our work become those obtained by 

Almusawa et al., hence verifying the method. Furthermore, Table 1 illustrates that the choice of 

parameters has an impact on the solutions, supporting the applicability and flexibility of the present 
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method in solving nonlinear PDEs. 

Table 1. Comparison between new exact solutions derived in this study and results by 

Almusawa et al. [31]. 

If we put ,1,1,1,1,1,1,0 −===−==== QPBAkH    

,1,1 −==   and ( ) ),(132 txuu =  in Eq (3.14), 

then 

).(sec
2

3
),( 2

1 txhtxu −−=  

If we put ,1,1,1,1,1,1,0 −===−==== QPBAkH    

,1,1 −==   and ( ) ),(232 txuu = in Eq (3.14), 

then 

( ).)(tanh31
2

1
),( 2

2 txtxu −−=  

If we put 1,1,1,1 ==== k  in Eq (11), 

then 

).(sec
2

3
),( 2

1 txhtxu −−=  

 

 

If we put 1,1,1,1 ==== k  in Eq (13), 

then 

( ).)(tanh31
2

1
),( 2

2 txtxu −−=  

6. Bifurcation analysis 

Bifurcation analysis looks at dynamical systems and observes how the system behaves at 

different parameter values, regardless of whether the parameters are dependent on one another or not. 

The observed second-order differential Eq (3.2) may be transformed into two first-order differential 

equations by applying the Galilean transformation [32]: 













+=

=

,2

21 uFuF
d

dv

v
d

du




         (6.1) 

where ( ) ./and/ 42

2

422

1 kkFkkkF  −=+−=  The equilibrium points of dynamic 

system (6.1) are (0, 0) and ( )21 / FF− . Once we have the fixed points, we can analyze the stability of 

these points by computing the Jacobian matrix of the system (6.1). It is given by: 
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where det (J) = .2 21 uFF +  

To investigate the system’s stability (6.1), we calculate the eigenvalues by solving the following  

equation. 
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The physical interpretation of eigenvalues, depends on the sign of (𝐹1+2𝐹2𝑢), which is 

discussed below: 

Case 1: When 𝐹1 > 0, 𝐹2 > 0 ⟹ 𝐹1+2𝐹2𝑢 > 0, this leads to real and opposite eigenvalues. This 

corresponds to a saddle point, and small perturbations cause the system to diverge in at least one 

direction, causing an unstable equilibrium. 

Case 2: When 𝐹1 > 0, 𝐹2 < 0. In this case, the sign of (𝐹1+2𝐹2𝑢) decides the stability. 

If (𝐹1+2𝐹2𝑢) > 0, the eigenvalues are real and opposite, resulting to a saddle point. 

If (𝐹1+2𝐹2𝑢) < 0, the eigenvalues become pure imaginary, resulting in oscillatory behavior. 

Case 3: When 𝐹1 < 0, 𝐹2 < 0 ⟹ (𝐹1+2𝐹2𝑢) < 0, this leads to pure imaginary eigenvalues. This then 

leads to a center, i.e., small perturbations that cause periodic oscillations. 

Case 4: When 𝐹1 < 0, 𝐹2 > 0, the sign of (𝐹1+2𝐹2𝑢) determines the stability.  

If (𝐹1+2𝐹2𝑢) > 0, the eigenvalues are real and opposite, resulting in a saddle point. 

If (𝐹1+2𝐹2𝑢) < 0, the eigenvalues become pure imaginary, resulting in oscillatory behavior. 

The Jacobian gives a linear approximation of the system near the fixed or equilibrium points 

and helps classify these points as saddle points or center points based on the eigenvalues. This 

analysis is fundamental in understanding the local stability of a dynamical system. 

Phase space analysis is used in this paper to examine the qualitative behavior of the nonlinear 

dynamical system obtained from the Boussinesq equation. By transforming the equation into a 

system of first-order ODEs, the trajectories in phase space give graphical analysis of the dynamics of 

the system. This examination is beneficial to recognize different attractors, such as fixed points or 

more complex trajectories related with chaos. It also discloses the sensitivity of the system to initial 

conditions, which is important for intuitions of multistability and chaotic behavior. Moreover, it 

clarifications on the nature of oscillations, differentiating periodic, quasi-periodic, and chaotic 

behaviors. Thus, the phase space analysis facilitates a stronger understanding of how the system 

changes over time and gives a visual understanding of stability and chaos, proving it a useful tool for 

investigating the complex nonlinear wave models. 

The two phase portraits in Figure 7(a,b) illustrate how the sign of 𝐹2 influence the stability flow 

patterns of the system. In both cases, the saddle point (0, 0) displays the instability, affecting the 

trajectories to diverge in at least one direction. On the other hand, the location of the center point 

shown that oscillatory behavior changes location due to the sign of 𝐹2. In Figure 7a, when 𝐹2 < 0 the 

center lies at (1, 0), establishing bounded oscillations around the center. Moreover, in Figure 7b, when 

𝐹2 > 0 the center shifts to (-1, 0), keeping oscillatory behavior but changing the region where it lies. 

These portraits show that the saddle point frequently causes instability, and the sign of 𝐹2 decides the 

location of the oscillatory areas. 
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(a)            (b) 

Figure 7. Phase portraits illustrating the impact of varying initial conditions on trajectory 

patterns for (a) F1 = 1, F2 = -1 and (b) F1 =1, F2 = 1. 

7. Chaotic analysis 

In this section, we add an external force in the dynamical system (6.1) to make it perturbed as 

shown below: 

( )












++=

=

,cos2

21 




uFuF
d

dv

v
d

du

       (7.1) 

where ( ) cos  is known as perturbation term. In your system of equations, τ represents the 

frequency of the external perturbation, determining how often the external force oscillates over time, 

while ρ is the amplitude of the perturbation, controlling the strength of the external force [33]. The 

term ρcos(τ) models this periodic forcing. A higher τ means faster oscillations, and a larger ρ means a 

stronger force. Together, they define the nature of the perturbation, with stronger and more frequent 

forces potentially driving the system toward more complex or chaotic behavior, while weaker or 

slower perturbations tend to produce smoother, more regular dynamics. 
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(a)          (b) 

 

(c) 

Figure 8. Quasi-periodic behavior of the dynamic system. (a) 2D phase portrait with 

complex, nested trajectories. (b) Time series plot showing irregular oscillations. (c) 3D 

phase portrait displaying a bounded, spiral structure. 
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(a)         (b) 

 

(c) 

Figure 9. Periodic behavior of the dynamic system. (a) 2D phase portrait showing closed, 

symmetric trajectories. (b) Time series analysis displaying regular oscillations over time. 

(c) 3D phase portrait illustrating a smooth, cylindrical structure. 

To deeply investigate the chaotic behavior of the dynamic system, we study its phase portraits and 

time series figures. The behavior of the system is estimated through Figures 8 and 9 with initial 

conditions [0.01, 0.01]. Figure 8 is displayed with the parameter sets ,5.0,1,1.0 −===  and 1= . 

In Figure 8a, the examination of the 2D phase portrait shows a pattern categorized by nested 

trajectories that do not settle into a fixed limit cycle. They form complex, intertwined loops, signifying 

quasi-periodicity instead of strict periodicity. Unlike chaotic attractors that show sensitivity to initial 

conditions, the system is not exponentially divergent to nearby trajectories but shows organized yet 

non-repeating arrangements. In Figure 8b, the time series plot confirms this behavior by showing 

oscillations with uneven frequencies and amplitudes. The absence of periodic behavior in these 

oscillations shows multiple irregular frequencies leading the system’s motion. In Figure 8c, the 3D 

phase portrait illustrates a constrained, toroid type pattern with spiralling curves. This shows that the 

system changes in a bounded yet non-repeated way, approving the quasi-periodic nature. On the other 

hand, Figure 9 demonstrates the periodic motion with the parameters ,5.0,1,01.0 −===   and 
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1= . In Figure 9a, the 2D phase portrait shows organized, bounded trajectories, a characteristic of 

periodic motions. In Figure 9b, the time series plot shows regular, stable motions, confirming the 

presence of a single frequency governing the dynamics of the system. Furthermore, the 3D phase 

portrait in Figure 9c displays a regular cylindrical pattern, a symbol of periodic behavior. However, 

Figures 8 and 9 depict quasi-periodic and periodic behaviors, respectively. In this no obvious sign of 

deterministic chaos is detected. In real-world systems, weak chaos describes a condition where minor 

perturbations can cause major, unpredictable changes in behavior as time progresses. This sensitivity 

to initial conditions makes long-term forecasting challenging, particularly in systems such as 

economics, ecosystems, or weather, where even small variations can lead to significant effects. 

To enhance the understanding of chaotic behavior and multistability in nonlinear system’s 

dynamics, researchers have highlighted the importance of phase space analysis methods, including 

strange attractors, Lyapunov exponents, and fractal basin boundaries, in diagnosing complex 

transitions between periodic, quasi-periodic, and chaotic behaviors [34]. Taking motivation from these 

studies, we use tools, such as 2D and 3D phase portraits, multistability figures, time series analysis, 

and Lyapunov exponents, to deeply examine the dynamics of the system under different initial 

conditions and perturbation parameters. These tools enable us to detect the coexisting attractors and 

sensitivity to initial conditions, which are important signs of chaos detection. The observed behaviors 

support the phenomena reported in [34], hence strengthening the validity and complexity of this study, 

illustrating the strong dynamical behavior of the perturbed Boussinesq system. 

8. Multistability 

Multistability refers to the presence of multiple stable states or behaviors that a dynamical system 

can exhibit under the same set of system parameters. It shows that the system can settle into different 

long-term behaviors depending on its initial conditions. In a multistable system, different trajectories 

can lead to periodic, quasi-periodic, or chaotic outcomes, even though the system’s parameters remain 

unchanged. This phenomenon highlights how sensitive the system is to initial conditions, where small 

variations in starting points can result in vastly different dynamics [35,36]. 

In practical terms, multistability is important because it indicates that the system can respond to 

perturbations or initial differences in a variety of ways, revealing complex underlying structures like 

attractors. It is commonly observed in systems like biological processes, climate dynamics, and 

mechanical systems, where different operational modes can coexist. 

The analysis of the system's dynamics through the multistability phase portrait and time series 

plot in Figure 10(a,b) highlights the presence of periodic multistability, where multiple stable 

attractors coexist. 

The multistability phase portrait and time series analysis in Figure 10 use ,1,01.0 ==   

,1,5.0 =−=   and five distinct initial conditions: [0.01, 0.01], [-0.02, 0.03], [0.05, -0.01], [-0.10, 

0.20], and [0.20, -0.10]. Each trajectory is represented with unique colours, i.e., blue, orange, yellow, 

green, and purple, respectively, to distinguish the states and their corresponding stable attractors in the 

system. Figure 10(a) uncovers well-defined and distinct trajectories, each corresponding to unique 

initial conditions, highlighting the sensitivity of the system to its initial conditions. The time series 

analysis encourages this periodic behavior, presenting stable oscillations with shifting amplitudes and 

phases for different initial conditions. The regular and controlled nature of these trajectories shows the 

absence of chaos, affirming that the system remains predictable, stable, and periodic. This multistable 



10644 
 

 

behavior highlights the nonlinear dynamics of the system, making it an appropriate prospect for future 

investigation in multistability phenomena and nonlinear stability investigation. 

     

(a)           (b) 

Figure 10. Multi-stability analysis for the perturbed system (7.1) at different, initial 

conditions. 

In practical applications, like wave control in ocean engineering, multistability plays an important 

character in modelling effective frameworks. The capability of the system to settle into diverse steady 

states depends on initial conditions that can be used to develop efficient wave energy converters, 

where various parameters correspond to changing environmental conditions. Moreover, coexisting 

attractors assist in the design of complex control techniques for moderating undesirable oscillations in 

marine structures, thus improving their flexibility beside external perturbations. Future research can 

reveal how variation in parameters affects the attractor transferring, giving strong understandings of 

the optimization and controllability of such systems in engineering field. The resilience of 

multistability to noise and parameter variations is an important feature in defining the dependability of 

the system. If the system keeps its attractors, even with small perturbations, it shows strong 

multistability, confirming periodic behavior. On the other hand, if minor changes cause a switch in the 

attractors, this means that the system is sensitive to noise, which can show instability. 

Depending on the application, the presence of multistability can be advantageous or mitigated. In 

wave control and energy harvesting systems, multiple attractors support adaptation to changing 

conditions, enhancing system performance. On the other hand, unexpected state shifts can be 

problematic in control systems. In such situations, using feedback control or adjusting parameters can 

keep the system in a stable state, making it more reliable. Grasping these aspects can result in designed 

systems where the effect of multistability can be advantageous or suppressed, depending on the desired 

result. 

9. Lyapunov exponent 

Lyapunov exponents are utilized to analyze the sensitivity of a system to its initial conditions by 

evaluating the rate of convergence or divergence of adjacent trajectories in phase portraits. A positive 
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Lyapunov exponent demonstrates a chaotic conduct, where small perturbations develop exponentially 

over time, whereas a negative exponent recommends steadiness, stability or convergence to a fixed 

point or periodic trajectory. These exponents are basic for recognizing and characterizing chaos, 

stability, and consistency in nonlinear dynamical systems [37]. 

Figure 11 demonstrates the system’s behaviors using Lyapunov exponents, which help recognize 

chaotic dynamics by measuring the rate of convergence or divergence between trajectories. In this case, 

the Lyapunov exponents (λ1 and λ2) are analyzed for the given parameter set: ρ = 0.01, ω = 1.0, F1 = − 

0.5, F2 = 0.5, with an initial condition of [0.01, 0.01]. The results express that λ1 (red) converges to a 

positive value 0.003, whereas λ2 (blue) stabilizes to a negative value −0.0029. The positive λ1 shows a 

divergence in the trajectories of the system, showing sensitivity to initial conditions and signifying the 

existence of chaotic behavior. On the other hand, the negative λ2 reveals dispersion in another direction, 

demonstrating stability in the system. The approximately equal values of the two exponents, having 

opposite sign, propose that the system is near-conservative with weak chaos. This combination of 

parameters and initial conditions highlights the complex balance of stability and instability inside the 

system dynamics. Such results are important for understanding the long-term performance of the 

system beneath perturbations and variations in parameters. 

 

Figure 11. Investigating chaotic behavior in the system (7.1) using the Lyapunov 

exponent chaos detection technique for the parameters ρ = 0.01, ω = 1.0, F1 = − 0.5, and F2 

= 0.5 with the initial condition set to [0.01, 0.01]. 

10. Conclusions 

We present a comprehensive investigation of the Boussinesq equation by applying the novel 

(G'/G²)-expansion method, yielding various soliton solutions such as periodic solitons, bright solitons, 

W type, and bell shaped solitons. We identify the complex dynamical behaviors including periodic, 

quasi-periodic, and weak chaos, using techniques like phase portraits and time series analysis. 

Bifurcation analysis shows a variation in the dynamics of the system as F2 varies. It shows that the 
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center point shifts from (1, 0) to (−1, 0) when F2 changes sign, while the saddle point remains unstable. 

This indicates a shift in oscillatory behavior and stability structure due to bifurcation. Chaos analysis, 

together with 2D phase portraits and time series plots, confirms the quasi-periodic nature of the system, 

where trajectories show non-repeating, bounded structures. The multistability analysis exhibits the 

coexistence of different stable attractors, highlighting the nonlinear stability of the system and its 

reliance on initial conditions. Finally, the Lyapunov exponents assess the stability and chaotic 

behavior of the system, with positive and negative exponents demonstrating weak chaos and 

directional stability, respectively. Our results hold notable significance for different areas of applied 

mathematics and nonlinear science. The study of solitonic solutions contributes to understanding wave 

propagation in optics, plasma physics, and fluid dynamics, where localization and transport of energy 

are a matter of interest. This research serves as a benchmark for future investigation of higher-order 

soliton solutions, multi-dimensional chaotic attractors, and their stability under perturbations. By 

continuing the understanding of solidness, stability, chaos, and multistability in nonlinear systems, this 

study sets the foundation for practical applications and encourages research in related scientific fields. 

However, we focus on a specific parameter range without considering environmental noise. To further 

advance the research, researchers should examine how these phenomena behave under random 

fluctuations and uncertainties and expand the research to include more realistic boundary conditions 

and control strategies. This will enable the practical use of these findings in ocean engineering, 

including wave energy harvesting and coastal structure design. 
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