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1. Introduction

The first Heisenberg group H!, whose points are denoted by ¢ = (z,f) = (x,y,1), is the Lie
group (R?, o) with the composition law defined by

ol =(x+x,y+y,t+1 +2(x"y—y'x).

Let X = 0, + 2y0, and Y = 0, — 2x0,. Then the sub-Laplace operator Ay = X? + Y? and the horizontal
gradient operator Vg = (X,Y). For any vector-valued function (w,v), the horizontal divergence
divg(w,v) = Xw + Yv. Itis well-known that the sub-Laplace operator Ay is degenerate at any point of
H', and there are many different characteristics compared with the classical Laplacian operator A. Here,
we refer the readers to [1] for more details on the Heisenberg group and the sub-Laplacian operator.


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025482

10606

Now, let us begin to consider the following nonlocal sub-Laplacian system:

- (a +b fQ IVHulzdg) Agu = Aju+ pulog u? + ﬁlul"‘zlvlﬂu, £eq,

—la+b fg |VHv|2d§) Apv = v + upvlogv? + (f%ﬁlul"lvlﬂ‘zv, £ e (1.1)

u=v=_0, & € 0Q,

where Q is a smooth bounded domain of H', @,8 > 1, @« + 8 = 4, and A;,u; (i = 1,2) are some
parameters. Due to the presence of integral term fg |V - |?d¢ and the condition a+3 = 4, problem (1.1)
is a nonlocal critical sub-Laplacian system and, of course, is also a typical Kirchhoff type system with
sub-Laplacian operator Ay. This system arises in many different research fields such as Brownian
motion, kinetic theory of gases, mathematical models in finance, and in human vision (see [1, Some
Historical Overviews]). In addition, it is obvious that if » = 0, problem (1.1) reduces to the following
sub-Laplacian system with critical exponent and logarithmic perturbation:

—aAgu = Qju + pulogu® + ﬁlul“‘zlvlﬂu, £eQ,
—alAyv = v + upvlogv? + a’%ﬂlmalvlﬁ‘zv, £eq, (1.2)
u=v=0, & € 0Q.

Further, if 4; = A4, w; = 0, @ = 4, and S = 0 in (1.2), then problem (1.2) becomes the classical
Brezis-Nirenberg problem with the sub-Laplacian operator, which was studied by Loiudice in [2].

On the other hand, we would love to mention that there are many studies on the logarithmic
perturbation problems in the Euclidean case, e.g., Deng et al. [3] studied the following equation:

1.3
u = 0, X € 69, ( )

{—Au = du+ pulogu® + [u* u, xeQ,
where Q is a smooth bounded domain of R". The authors proved that problem (1.3) has a positive
least energy solution if 4 € R, and u > 0. Later, Liu et al. [4] employed the subcritical approximation
method to prove the existence of sign-changing solutions to problem (1.3) whenn > 6,4 € Rand u > 0.
Additionally, Hajaiej et al. [5, 6] investigated a coupled elliptic system and established the existence
and nonexistence results under other conditions. Here, we refer the interested readers to [7—11] and the
references therein for more details on the existence and multiplicity of solutions for partial differential
equations with logarithmic-type nonlinearities in the Euclidean case. Nonetheless, as far as we know,
there are few works dealing with the logarithmic perturbation problems shaped like problem (1.1) in
the Heisenberg group. We have only found the reference [12], which obtained normalized solutions in
the LP-subcritical case for a critical Choquard equation with logarithmic nonlinearity.

2. Main results

In this section, we will present our main results. First, we define the Folland-Stein space S (l)(Q),
which is a Hilbert space, by the closure of C’(€2) with respect to the norm lul> = fQ |V yul>dé. Let H
be the product spaces S () x S ;(Q) with the norm ||z||* = [|ul|* + ||v||* for all z = (u,v) € H. Then, H is

also a Hilbert space, and if 1 < p < 4, the embedding H — L”(Q) x L7(2) is continuous and compact,
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while if p = 4, the embedding is just continuous (see [13]). Let

Ai

b i
D;(u) = g||u||2 gl =5 fgbﬁdg - % fg u* (logu? — 1) d&, Yu € S§(Q)\ {0},

Then, the energy functional associated with problem (1.1) is defined by
1
J(2) = Oy (u) + Da(v) — 4 f ul*Pdé, Yz = (u,v) € H\{(0,0)}. (2.1)
Q
It follows from a standard argument that J € C'(H \ {(0, 0)}, R). Moreover, for any ¢ = (¢, ) € H,

(J’(Z),¢>=<®1(u),90>+<®'2(V),¢>—% fg Jul* 2| Msodf—'g fg Jul* P2 v dég. (2.2)

Next, it is necessary for us to clarify a basic concept. That is, we say that a function z = (u,v) € H
is called a solution to problem (1.1) if and only if (J'(z),¢) = 0 for all § = (p,¢) € H. Then, it
follows from a + 8 = 4 that every critical point of the energy functional J(z) corresponds to a solution
of problem (1.1).

In what follows, let S denote the best Sobolev embedding constant from § (l)(Q) to LY(Q), i.e.,

\vj 2
S = inf Mg (2.3)

ues (Q\(0) (f |u|4d<f)%
Q

Therefore, by Young’s inequality, (2.3), and a + 8 = 4, it is easily seen that the following constant S .,z
is well-defined:

Joy (V12 + 1V v?) d

- (2.4)
(J, luleIvpdg)*

Sep= inf
2€H\{(0.0)}

Meanwhile, for convenience, let |Q2| denote the measure of € and

@Sty Q>
Ao = (/11’/11;/12’/12):/lia,uz'ER,z_sz + 5 Z’uie no>0% .
af i=1

Theorem 2.1. Let Q be a smooth bounded domain of H', a,b >0, a+b >0, a,8> 1, and o + 8 = 4.
If uy, up < 0 and one of the following (i) and (ii) holds:

(i) bSiﬂ -2 < 0and (A1, uy; Az, 1) € Agp;

(ii) bSi’,j -2>0and A; €R,i=1,2.
Then, problem (1.1) has a sequence {z;} of nontrivial solutions such that J(z;) <0, z; # 0, for all k € N
and limk_m k= 0.

Obviously, when b is equal to zero in Theorem 2.1, the case (ii) is impossible. Therefore, from
Theorem 2.1, we have the following corollary.
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Corollary 2.2. Let Q be a smooth bounded domain of H', a > 0, @, > 1, and a + 8 = 4. If
M1, po < 0 and

2
4
azSiﬁ + ¢|Q] Z,u,-e_ﬂT >0, 4 €R,
i=1
then problem (1.2) has a sequence {z;} of nontrivial solutions such that J(z;) < 0, zx # 0, for all k € N
and limy_,. 7% = 0.

Remark 2.3. It is well-known that the logarithmic term A;ulog u® usually exerts a significantly greater
influence than the term Au on the existence of solutions. Furthermore, when the Heisenberg group
and the Euclidean space share the same topological dimension of n = 3, the critical exponent in
the Heisenberg group case, denoted as 2, = 4, is strictly smaller than that in the Euclidean case,
which is 2* = 6 (see [14]). Therefore, it is more complicated and difficult to study the existence and
multiplicity of nontrivial solutions for problem (1.1), and the relevant results of the Euclidean case
cannot be directly generalized to the Heisenberg group case. Moreover, to the best of our knowledge,
Theorem 2.1 remains novel even in the Euclidean case and when b is equal to zero, e.g., Corollary 2.2
is not covered by the recent results presented in [5, Theorem 1.1]. In addition, Theorem 2.1 is
established on the first Heisenberg group. In fact, it is also true on the n-th Heisenberg group when we
appropriately adjust the range of certain parameters.

The structure of the rest of this paper is as follows: In Section 3, we introduce some notations and
basic facts. In Section 4, we will use Lemma 3.2 to prove the existence of a sequence {u;} of solutions
to problem 1.1, more specifically, Section 4 is divided into two Subsections 4.1 and 4.2, where the
proofs of the cases (i) and (if) in Theorem 2.1 are presented in Subsections 4.1 and 4.2, respectively.

3. Preliminaries

In this section, we collect some definitions and basic facts. First, we give some basic inequalities,
whose proofs are elementary and are omitted. Namely, for any # > 0 and 6 > 0, we have

1 1
—~ <tlogt < —1*, (3.1)
e oe

Meanwhile, for any 0 < 7 < 1, we also have

1
ltlogt| < —. 3.2)
e
For any 1,1, € R, we also have
1
E(t% +E2P <th+ i <@+ )7 (3.3)

In addition, if {u,} is a bounded sequence in S (l)(Q) such that 4, — u almost everywhere in €, then

lim | u?logu’dé = f u? log u?dé, (3.4)
Q Q

n—oo
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and
lim f Up log u2dé = f uplogu?de, Vo € SHQ). (3.5)
n—eo Ja Q

In fact, it follows from u, — u almost everywhere in Q that u? logu?> — u?log u* almost everywhere
in Q as n — oo. Moreover, it follows from (3.1) and (3.2) that

IA

lim

n—oo

d&

2 2
u, logu,
Q noee Jo

3 (1+1|u|2<1+6>)d§, (3.6)
e Jo 0

where ¢ is chosen to satisfy 0 < ¢ < 1. It follows from (3.6) and Lebesgue’s dominated convergence
theorem that (3.4) is true. Meanwhile, by an argument similar to the proof of (3.4), we can also deduce
that (3.5) is true.

1 1
lim — (1 + 3|un|2<1+‘”)d§

Definition 3.1. [15, Section 7] Let E be a Banach space. We say a subset A of E is symmetric if and
only if 7 € A and —z € A. For a closed symmetric set A that does not contain the origin, we define a
genus y(A) of A by the smallest integer k such that there exists an odd continuous mapping from A to
R\{0}. If there does not exist a finite such k, set y(A) = +oco. Moreover; set y(0) = 0.

Let I'; denote the family of closed symmetric subsets A of E such that 0 ¢ A and y(A) > k. Next,
we introduce the the symmetric mountain pass lemma by Kajikiya [16, Theorem 1].

Lemma 3.2. [16, Theorem 1] Let E be a Banach space and J € C'(E,R). Assume that

(A1) J(2) is even (ie., J(—z) = J(2) for all z € E) and bounded from below, J(0) = 0, and J(z)
satisfies the global (P.S.) condition. That is, any sequence {z;} in E such that {J(z;)} is bounded and
limy_,o, J'(zx) = 0 has a convergent subsequence.

(Ay) For each k € N, there exists an Ay € Iy such that sup ., J(2) <O.
Then there exists a sequence {z;} of critical points such that

J(z) <0, zx # 0, and l}im 7z = 0.

Remark 3.3. In Lemma 3.2, the functional J(z) is required to satisfy the global (P.S.) condition.
However, by a careful examination of the proof of [16, Theorem 1], it is sufficient that the functional
J(z) satisfies the local (P.S.). condition, e.g., for some c¢* > 0, any sequence {z;} in E satisfying
limy oo J(zx) = ¢ < ¢ and limy_,, J'(zx) = 0 has a convergent subsequence. That is to say, if we
replace the (P.S.) condition in (Ay) with the (P.S.). condition, then Lemma 3.2 also holds.

In addition, due to the fact that problem (1.1) is critical, the proof of the (P.S.). condition
usually needs the following concentration compactness principle for the system proved by Pucci and
Temperini [17].

Lemma 3.4. [17, Theorem 1.2] Let {z,} be a sequence in H. Suppose that there exists z € H and two
bounded nonnegative Radon measures u and v on H' such that z, — z weakly in H and

Vil + Vv, Pdé — p in M(HD),
vl dE — v in MH),
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where M(H') is the space of all bounded regular Borel measures on H'. Then, there exists an at
most countable set J, a family of points {&) C H', and two families of nonnegative numbers {{1}res
and {vi ey such that

w0z (Viul + \VvP)dg + > o,
keJ

1
y = |u|"|v|ﬁd§ + Z Vibe,  Mr = Sqpv, for all ke J,
keJ

where S .5 is as in (2.4) and 6, is the Dirac function at the point & of H'.

Remark 3.5. Lemma 3.4 is a special case of [17, Theorem 2.1]. Meanwhile, the concentration
compactness principle is an important tool for addressing nonlinear problems that lack compactness.
Therefore, in addition to [17, Theorem 2.1], we would also love to mention the concentration
compactness principle of [18, Theorem 1.1], which can be applied to the study of certain elliptic
systems with critical exponents and Hardy terms in the Heisenberg group.

4. Proof of main results

In this section, we will use Lemma 3.2 to obtain the existence of nontrivial solutions for problem 1.1.
More specially, this section will be divided into two Subsections 4.1 and 4.2 later. The proofs of the
cases (7) and (ii) of Theorem 2.1 are treated in Subsections 4.1 and 4.2, respectively.

To begin with, it is necessary for us to clarify that (®}(u), ) and (P5(v),¢) in (2.2) for any ¢
= (p,¥) € H. That is,

(@ (1), 9) = (a+ blulP) fﬂ VoV ppdé — A, fg updt — i fg ug log e, @.1)
(@400 = (@ + bIbP) f VioVadé - 2y f WdE — i f vy log 2dé. 4.2)
Q Q Q

In addition, for any u € § (l)(Q) \ {0}, by (3.1), one has

a b /ll' i
@) = Gl + Flt - 5 [ aide -5 [ 12 (loga? - 1)t
Q Q

a b /Ji 1—ﬁ ﬁ_] 2 ﬁ—l 5
2 4 2 o

Hi 4

b
> gllull2 + L—lllull4 +5e . (4.3)

In the following, we divided into two subsections to complete the proof of Theorem 2.1.

4.1. The case bSiﬁ <2

In this subsection, we always assume bS iﬂ < 2and (Ay, u1; A2, o) € Ag. We will complete the proof
of the case (i) of Theorem 2.1. To begin with, it follows from (2.1), (2.4), (3.3), and (4.3) that

1
J(@) = 1) + Do (v) - 7 f lul*vPdé
Q

AIMS Mathematics Volume 10, Issue 5, 10605-10623.
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a _4
> Slull? + ||u||4 Lol - < f ulvfdé
2 2 o
+ SV +—||v|| + e EjQ)
2-bS Q|
a Q
Sl 52, ﬁn I+ 22 Zule

Now, we define a function f : [0, +o0) — R, V¢ € [0, +00),

2-bS? Q 2 4
f) =57 - —5Lr+ % W
85 aff i=1
. . . 2452
It is easily seen that there exists a 1)y = /5= S“f > 0, such that

10 >0, 1 €(0,1m),
1@ =0, 1= tu,
f'() <0, t € (ty,+00).
In other words, f(¢) attains its maximum at 7, and the maximum
252
_TPe
= f(ty) = e .
fu = fltn) = 1_ 2b52 Zﬂe

Since (A1, uy; A2, 42) € Ay, that is,

a2S? 2 _
ap e|Q| 4
+ E uie #i > 0.
2
2 - bSaﬁ 2 par

Note that y;(i = 1,2) <0 and § > 1. Therefore, it follows from (4.7) that

252

L &
i€ = + Q2 e Fi
4- 2b52 Z“ 2[2 sz "Z“e ]

That is to say, the maximum fj, of f(¢) is greater than zero. Let

2 2
1 S |Q|
fo=qn=g_ 4sz Z”Ze -

AIMS Mathematics
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4.7)

(4.8)
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Then fy is also greater than zero. Therefore, it follows from (4.6) that there exists a unique #y € (0, #))
such that f(79) = fy. In the following, we need an appropriate truncation on the critical term. That is to
say, we may define a smooth truncation function g : [0, +c0) — R such that

1, t€[0,7],
g =30<g <1, tel,nl,

bs§/j 2aS Igl 2

-t ( 1ﬂz€ i fu), 1€ [B,+00).

Now, let us define the following functional in H. That is, for any z = (u,v) € H,
1
Jo(2) = Dy(u) + Da(v) — Zg(llzllz)f ul* P dé. 4.9)
Q

Then, it follows from [19, Theorem C.1] and the definition of g that J, € C'(H,R). Furthermore, for
any ¢ = (p,¥) € H, we have

(L0, 4) = (@) ) + @300 ~ 52 (Il fg V¥ o fQ P
- Z&id) f P updé ~ 2 (el f P2
Q Q
1
~ 3 IP) f VoV s f e, (4.10)
Q Q

Lemma 4.1. Leta,b >0, a+b > 0and u,,u, < 0. Then J,(z) is bounded from below in H.
Proof. 1t follows from (2.4), (3.3), and (4.3) that, for any z = (u,v) € H\{(0,0)},

1
Jg(2) = @1 (u) + D2(v) - —g(llzllz) f lul*vFdé

a Q|
> I +—||z|| - 432 sl + 22 Zule A
- 3”2”2_(452 2l - )nzn + —Zu,e (@11
Define f : [0, +00) — R, ¥ € [0, +00),
— a, Q|
flo =37 (432 g(r*) - ]t + = Z,u,e (4.12)

By the definition of g(#) and a straightforward calculation, we have

]z(f) = f(t), te[0,1],
J:(t) > f(t), te€ [ty tul, (4.13)
@ = fu, t € [ty, +00).
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Hence, it follows from (4.11) and (4.13) that

2
J(@) = FUEIP) > F0) = '72 e,
=1

which proves that J,(z) is bounded from below in H.

Lemma 4.2. Under the conditions of this subsection, assume that

Cl2S2 2 A

. o e|Q| A

c<c' = + uie Fi. (4.14)
8 —4bS flﬁ 8 ;

Then J,(z) satisfies the (P.S.). condition.
Proof. Let z, = (u,, v,) be a (P.S.). sequence of J,(z). That is,
Jg(z,) = ¢ and Jy(z,) > 0 as n — oo. (4.15)
It follows from (4.14) and the first expression of (4.15) that
PS> 2

, 49 2y
J.(z,) < e Hiy 4.16
(@) < oo 4bs?,ﬁ . ;ue (4.16)

for n large enough. In addition, by the definition of f(¢), fy, and (4.13), for any ¢ € [#y, +00), one has
) 2
— 1 A |Q|
N=>fo== i m. 4.17
F0) 2 fo= 5fu == 4sz Zue (4.17)

Now we claim that ||z,|| < #, for n large enough.
In fact, if not, it follows from (4.17), u; < 0, and the process of (4.11) that

A P (S R
‘] n Z n = = 5 - l _;Ti
o) 2 Fllalf) 2 o— w7, 4;ue
61232 2 A;
> Tt g Zﬂie (4.18)
ap i=1

Obviously, there is a contradicts between (4.16) and (4.18), that is to say, ||z,|| < #o for n large enough.
Therefore, it follows from the definition of g(#) and the claim that

glllz,l”) = 1 and g'(lzl*) = 0, (4.19)

for n large enough, that by (3.1), (4.1), (4.2), (4.19), & + B = 4, and the definition of J,(z,), for n large
enough, we have

1 1 1
Jg(Zn) - Z(J(;(Zn)a Zn) = (D](un) - Z(q)’l(un)a un) + (I)Z(Vn) - Z(qyl(vn), Vn)

AIMS Mathematics Volume 10, Issue 5, 10605-10623.
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a A M K
= gl = Zollaall3 + =l = fQ u, log u,d¢

a o Ao M2 o /12f 2 2
+ =Wl = =1vall; + =lVall; == | v, logv,
g vall™ = e lvally + = lvally = 7 o8 d&

a 1 -4 4 _ 4
= Ml - G h fg en 2 log (en 2 dg

A A A
B2 2E feﬂg_zvﬁ log (eﬂi_zvﬁ)df
Q
Q] < i
leall? + == D e (4.20)

It follows from (4.15) and (4.20) that {z,,} is bounded in H. Hence, we may assume that
(uy, vy) = (u,v) weakly in H. “4.21)
Passing to the subsequence, we may also assume that

u, — u, v, — v weakly in L*(Q),
u, — u, v, — v almost everywhere in Q, 4.22)
u, = u, v, = v strongly in L”(QQ) for 1 < p <4.

Further, since J,(z,) = J,(|z,|), we may also assume that u,, v, > 0 and u,v > 0. Hence, it follows from
the concentration compactness principle for system (Lemma 3.4) that

(IVgua* + |VHVn|2)d§ L (IVaul® + |VHV|2)d§ + Dkes HiOs s (4.23)
||Vl dE — v = [ul]*WPdE + Yies ViSe,,
and 1
M Vi 20, e > Sopv], (4.24)

where J is an at most countable index set, & € €, and ¢, is the Dirac function at the point & of H!.
We claim that J = 0.
In fact, if we assume on the contrary that J # @ and fix k € J, then, for p > 0 small enough, it
follows from [20, Lemma 3.2] that there exists a cut-off function ¢ : C7'(€2) — [0, 1] such that

¢(&) =1 for any & € By (&, p),
¢(&) =0 for any & € Q\By(&, 2p),
IVug(é)l < 2 for any & € Q.

For convenience, let

Lij(u) = (a + bllulP) f uV quV y¢dé — A, f WApdé — f Wologude, i=1,2.
Q Q Q

Then, for n large enough, it follows from (3.3), (4.1), (4.2), and (4.19) that

(J5(20), pz0) = (D (un), Pt} + (D5(v,), Pv,) — f vl pdé
Q

AIMS Mathematics Volume 10, Issue 5, 10605-10623.
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~(a-+ bln?) [ Wi Pode + (a-+ bwP) [ 19miFoce
- f WP SAE + L (u) + L(0,)

>a [ (|vHun|2+|van|2)¢d§+b( | |vHun|2¢df)2+b( | IVanI2¢d§)2
- fg a7 P BE + L) + L2(0,)

>a [ (T + v, e + g( [ v + IVan|2)¢>d§)2

- fg Vo POAE + Lyu) + L2(0,). (4.25)

Now, let us estimate the last two terms L;)(un) and Li(vn) in (4.25). In fact, it follows from the
boundedness of {z,,}, Holder’s inequality, and the definition of ¢ that

’

Q
<C, {( |unVH¢|2d§)2+ f updg + f u2¢logu2d§}+on<1>
(914 (914 Q

< Cy {( f |u|4d§)4 + f u?dé + f u2(5+1)d§}+0n(1), (4.26)
(9% Q’ Q’

where C;(i = 1,2, 3) are some positive constants, Q' = Q N B(&, 2p), and lim,,_,, 0,(1) = 0. Hence, if
follows from (4.26) that

|L;<un>|scl{ 1,V 114,V Pl + f Uy pdé + f uiqsloguidf}
’ Q Q

L;j(u,,) — 0 as n— o and p — 0. 4.27)
In the same way, we also have
Lé(vn) — 0 as n— o0 and p — 0. (4.28)

By (4.15), (4.23), (4.27), (4.28), and letting n — oo and p — 0 in (4.25), we have
b
0> auy + E[Ji — Vk. (429)

Substituting (4.24) into (4.29) yields a range of values for v;, and then substituting the resulting v, back
into (4.24), we have
2
2aS B

> 7 4.30
T 2-p82 (339

J7i
Besides, it follows from (4.15), (4.20), and the definition of ¢ that
. 1

AIMS Mathematics Volume 10, Issue 5, 10605-10623.
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> 11m { ||Zn|| €| | Z,u,e #z}
. Q|
231_{2{ f('VHun| +|Vyu n| )¢ + Zﬂze #'}-

By (4.30), (41, u1; A2, i12) € Ag, and letting p — 0 in (4.31), one has

_a o , 4o 2y
g D e e b
% Z“ == 2bS2 5 ;“e

a*S? A
ap e|Q)| _A
> + E i€ Hi,
_8—4bS§ﬁ 8 i=1,ue

It follows from (4.7) that (4.32) contradicts with (4.14). Therefore, J = () yields

f|un|"|vn|ﬂd§—> f|bt|”|bt|ﬁd§ as n — oo.
Q Q

Hence, for n large enough, it follows from (3.4), (3.5), (4.10), (4.19), (4.22), and (4.33) that

(Jo(@), (= 11,0)) = (@ + blus| ) f

Q

Vau,Vu(u, —u)dé — 4 f u,(u, — u)dé

Q
- f (1t — ) log u2dé — f 21Vt (1t — 1)dE
Q 4 Jao
=(a+ bllu,?) fg V114,V 1 (1t = )A€ + 0,(1)
= (a + blluta|*) (leall* = 1) + 0,(1).
In the second equals sign of (4.34), we use the fact that
2l — a2 u in LF7(Q),
which is proved in [17, 4.12]. Similarly, for n large enough, we also have
Tz (0, v, = v)) = (a =+ bIwall) (Ivall® = IVIP) + 04(1).
It follows from (4.15), (4.34), (4.36), and the boundedness of {z,} that
lim [, = [l Tim [, = VI
Hence, by (4.22) and (4.37), one has
lim |z, - 2l = lim (flus, — ul> +llve = vIH) =0

which means that z, — zin H as n — oo. That is, J,(z) satisfies the (P.S.). condition.
To apply Lemma 3.2, it remans to prove that the condition (A;) in Lemma 3.2 holds.

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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Lemma 4.3. Assume that a,b >0, a+ b > 0, and u; < 0. Then for any k € N, there is an Ay € T'y such
that sup, ., J,(z) <O0.

Proof. Let E; be a k-dimensional subspace of H and z; = (u, vi) € Ex\{(0,0)}, ||zx|| < min {1, #y} for all
k € N. Then, we have g(||z/|*) = 1. Set

& = (o Yi) = ( Vk)

loag I MIvll

and then ||| = ¥kl = 1. Therefore, by (2.3), (3.6), and Holder’s inequality, we have

[ msstaes (1 boloew L L [ g
Q

Q1 . 1 . %
< + —Q7 + — d
s, e6| | e(S( Q|90k| &
Q1 i 1
< + —|Q|?7 + —— £ (4, 4.39
e e6| | esStxs — (4.39)

where ¢ is chosen to satisfy 0 < 6 < 1. In addition, we pay special attention to the fact that E; is a
finite dimensional subspace of H (dim E; = k), and hence all the norms are equivalent. That is to say,
there are two positive constants y; and y, such that

= yilledl < lleills < vallgrll = 2. (4.40)

Recall that i, < 0, |l¢il| = 1, and log |jug|*> < log|lzxl|> < 0. Then, by (4.39) and (4.40), one has

a b A u
1) = Sl + el = = 2Ll + £ || w3 - 31 f u? log uldé
Q
a b |41 M1
§5||Mk||2+1||”k||4 7” k||2 5 Quklogukdf
al\y + |44 b M1
< 2—A1||uk||2 + Znukn“ - Enuknzlognuknz Qwidg
M2 2 2
7 (7| |(>0k log 90k|d§
Q
ahi+|4l - b 2 2 /11 4
< el + ol = Sl P log lugg| — P
2A, k ] k 2 k g Uy SDkdf Ug
alNy + 4| — A C b nyy
< 21A .- 4||uk||2+4—1||uk||4— 11||uk|| log ||z, (4.41)
1

where A; is the first eigenvalue of —Ay with the Dirichlet boundary condition. Meanwhile, if we
replace ¢, with ;. in (4.39) and (4.40), then they are also true. Therefore, by an argument similar to
the proof of (4.41), we also have

al\; + || — A C
Do) < o P + 2 2wl = E22 vy P og el P (4.42)
1
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Hence, it follows from the definition of g(¢), (4.41), and (4.42) that
1
Jo(zi) = Oy () + Po(vi) — Zg(llzkllz) f el i dé < @y () + Da(vi)
Q

Ao , b s bo 2 2
< — + - - = 1
<5 |zl 4||Zk|| > llzxll” log ||zl

_
2

b
(ao + E”Zkllz — by log IIZkIIZ), (4.43)

where by = max{u,y;, uyy:} and

aly + || — A1 Cy al\y +|2,] —#2A1C4}

4o = max{ oA, : oA,

Noting that by < 0 and lim,,+ log? = —oo, then by (4.43), we may choose 0 < p; < ty and M; > 0
such that if z; € Ey and ||zil| = px, J4(zx) £ —M; < 0 for each k € N. Let

A =z € Ex : |zl = o}

It follows from the Borsuk-Ulam theorem (see [19, Proposition 5.4]) that y(A;) = k. Therefore, we
have A, € T and sup,,, J,(z) < 0. This completes the proof of Lemma 4.3.
Proof of Theorem 2.1 with the case (i). Obviously, by the conditions of Theorem 2.1, one has

J, € C'(H,R), J,(0) = 0, and J,(2) is even in H.

Moreover, if bS (215 —2 < 0and (4, uy; A2, p) € Ag, Lemmas 4.1-4.3 hold, where the (P.S.) condition
in (A) is replaced by the (P.S.). condition. Therefore, it follows from Lemma 3.2 and Remark 3.5 that
there exists a sequence of critical points {z;} of J,(z) such that

Jo(zx) £0, 7 # 0, and %im 7, = 0.
Hence, passing to the subsequence, we may choose that the norm of the sequence of critical points {z;}
is less than #y. Note that
Jo(z) = J(z) for any z € H \ {(0,0)} and ||z]| < 1.
Therefore, we conclude that {z;} are also the critical points of J(z). This completes the proof of

Theorem 2.1 with the case (7).

4.2. The case bS iﬁ >2

In this subsection, we always assume bS iﬁ >2,a>0,4; €R,and u; < 0. We prove the case (ii) of
Theorem 1.1. First, we give the global compactness result for the functional J(z).

Lemma 4.4. Let bS iﬁ -22>20 14 €R andy; <0 (i =1,2). Then, the functional J(z) satisfies the
global (P.S.) condition.

Proof. Let {z,} be a (P.S.) sequence of J(z). That is,

|J(z))] < M € R" and J'(z,) = 0 as n — oo. (4.44)
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Similar to the proof of (4.4), we also have

sz | 2
J(zn>>—||zn|| + 852 Po =2 s 721 e (4.45)

Noting that bS? — 2 > 0 and a > 0, then it follows from (4.44) and (4.45) that {z,} is bounded in H,
which means that we may assume that

(Uy, vy) — (u,v) weakly in H. (4.46)
Passing to the subsequence, we may also assume that

u, — u, v, —v weakly in L*Q),
u, = u, v, — v almost everywhere in Q, 4.47)

u, = u, v, = v strongly in L”(Q) for 1 < p <4.
Let w, = u, —u and w), = v, — v. Passing to the subsequence, from (4.47), we may assume
leaall® = [wall® + 1l + 0(1),  [vall® = (W1 + VP + 0a(1), (4.48)

where lim,_,, 0,(1) = 0, and the same applies below. In addition, we claim that

flunlalvnlﬁd§=flwnlo‘lw;lﬁd§+fIMIQIVIﬁd§+0n(1)- (4.49)
Q Q Q

The proof of the claim is similar to the proof of [17, Lemma 3.1]. However, for the reader’s
convenience, we give the details of the proof. In fact, let I = [0, 1] and define f,, g, : Q X I — R,

Ful&,5) = |ty — sul* 2, Pw,, g€, s) = Wl v, — svP 2 (v, — sv), YeQxI.

It follows from Fubini’s theorem that f,u € L'(Q x I) and g,v € L'(Q x I). Therefore, by Tonelli’s
theorem, we have

f f foudéds + B f f gvdéds = a f f |, — sul* v, Pw,udéds

QxI QxI QxI

+p3 f f Wl v, — VP2 (v, — sv)vdéds

Qx1

od
:fh/nlﬁdff (——Iun—suI“)ds
0 dS
Q
Y'od
+flwn|“d§f (——Ivn—SVIﬂ)ds
0 dS
Q

=f|un|“|vn|'3d§—flwnl"lw;fgd& (4.50)
Q Q
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Moreover, by (4.47), as n — oo, we have
fo = (=) u*?vPu and g, — 0 almost everywhere in Q X I.
It follows from (4.51) and Holder’s inequality that

[[ 1areraeas < [f

Qx1I Qx1

a-—1

a+f-1 %
|ty — su|“+ﬁd§ds] [ f |vn“+ﬁd§ds] <C,

Qx1

since @ + 8 = 4, where C is a positive constant. Similarly, we also have

ff g7 déds < C.

QxI

Therefore, from (4.51)—(4.53), one has
£ = (1= )" 2 vffu and g, — 0 weakly in L#1(Q x I).

Hence, from this, we get

« f f fuudéds = o f f (1 = 5)* ul*vPdéds + 0,(1) = f lu|*vPdE + 0,(1),
QxI QxI °
ﬁffgn‘}d'fds = On(l)'

Qx1

and

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

It follows from (4.50), (4.55), and (4.56) that the claim holds. That is, (4.49) holds. Therefore, it

follows from (4.35) and (4.47)—(4.49) that

(' (z), W, 0)) = (@ + blues|I) f

Q

Vau,Vyw,dé — A, f u,W,dé

Q

- ﬂl f UpWy log uidg - g f |un|(l_2|vn|ﬂunwnd§
Q 4 Q

a ’
(a+ bllw, ) Ibwil = f walIw, PdE + 0,(1)
Q

2 2 a s
> (a + blluyP) Ihwal* - 4Siﬁu(wn,wn)n +0,(1).
In the same way, we also have
(I (z): (0, W) = (@ + bllval ) Ihw} 1> = L wOII* + 0,(1).
aB

From (4.57), (4.58), and a + 8 = 4, one has

(' @) O W) 2 (@ + bl ) Iwal® + (a + bllvall?) w1

(4.57)

(4.58)
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a+p
- 2
4Saﬁ

2 2 2 2
> (a + blluts| ) wal + (a + bllval) W,

1w WII* + 04(1)

2 ’

- S—z(llwnll4 + W) + on(1)
ap

bS2, -2
2

Saﬂ

2
bS2, -2
2
Saﬁ

2 4 2 2
= allwlI” + wall™ + Dllwl"llull” + 0,(1)

2 4 2 2
+alw,ll” + W™+ Dlwy IV (4.59)

Now, let

Therefore, from (4.44), the boundedness of {(w,, w))}, and letting n — oo in (4.59), we get
2 2

bS B B
0> aly + —5—10 + bl |lull® + aly + —5—1 + bh|vI*. (4.60)
af ap
Note that bS iﬁ—Z > 0 and /;(i = 1, 2) are all nonnegative. Hence, it follows from (4.60) that/; = 1, = 0.
That is to say,

u, > uand v, - vinSj(Q) asn — oo,

which means that z, — z strongly in H. This completes the proof of Lemma 4.4.
Proof of Theorem 2.1 with the case (ii). Obviously, by the conditions of Theorem 2.1, one has

J e C'(H,R), J(0) = 0, and J(z) is even in H.

Moreover, if bS i >2, 4 e€R,and y; <0 (i =1,2), Lemma 4.3 is valid. In addition, it follows from
the argument similar to the proof of Lemma 4.3 that for all k € N, there exists an Ay € I'; such that
sup,c,, J(2) < 0. Therefore, it follows from Lemma 3.2 that J(z) has a sequence of critical points {z;}
converging to zero with J(z;) < 0 and z; # O for all £ € N. This completes the proof of Theorem 2.1

with the case (ii).
5. Conclusions

In this study, we have investigated a nonlocal sub-Laplacian system with critical growth and
logarithmic perturbation. By employing the symmetric mountain pass lemma, an appropriate
truncation of the critical term, and a careful analysis of the structure of the energy functional, we
obtained the sufficient conditions for the existence of a sequence {z;} of nontrivial solutions satisfying
lim;_,, zx = O for this system. The results of this paper are new even for the Euclidean case.
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