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1. Introduction

The first Heisenberg group H1, whose points are denoted by ξ = (z, t) = (x, y, t), is the Lie
group (R3, ◦) with the composition law defined by

ξ ◦ ξ′ = (x + x′, y + y′, t + t′ + 2(x′y − y′x)).

Let X = ∂x + 2y∂t and Y = ∂y − 2x∂t. Then the sub-Laplace operator ∆H = X2 + Y2 and the horizontal
gradient operator ∇H = (X,Y). For any vector-valued function (ω, ν), the horizontal divergence
divH(ω, ν) = Xω + Yν. It is well-known that the sub-Laplace operator ∆H is degenerate at any point of
H1, and there are many different characteristics compared with the classical Laplacian operator ∆. Here,
we refer the readers to [1] for more details on the Heisenberg group and the sub-Laplacian operator.
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Now, let us begin to consider the following nonlocal sub-Laplacian system:
−

(
a + b

∫
Ω
|∇Hu|2dξ

)
∆Hu = λ1u + µ1u log u2 + α

α+β
|u|α−2|v|βu, ξ ∈ Ω,

−
(
a + b

∫
Ω
|∇Hv|2dξ

)
∆Hv = λ2v + µ2v log v2 +

β

α+β
|u|α|v|β−2v, ξ ∈ Ω,

u = v = 0, ξ ∈ ∂Ω,

(1.1)

where Ω is a smooth bounded domain of H1, α, β > 1, α + β = 4, and λi, µi (i = 1, 2) are some
parameters. Due to the presence of integral term

∫
Ω
|∇H · |

2dξ and the condition α+β = 4, problem (1.1)
is a nonlocal critical sub-Laplacian system and, of course, is also a typical Kirchhoff type system with
sub-Laplacian operator ∆H. This system arises in many different research fields such as Brownian
motion, kinetic theory of gases, mathematical models in finance, and in human vision (see [1, Some
Historical Overviews]). In addition, it is obvious that if b = 0, problem (1.1) reduces to the following
sub-Laplacian system with critical exponent and logarithmic perturbation:

−a∆Hu = λ1u + µ1u log u2 + α
α+β
|u|α−2|v|βu, ξ ∈ Ω,

−a∆Hv = λ2v + µ2v log v2 +
β

α+β
|u|α|v|β−2v, ξ ∈ Ω,

u = v = 0, ξ ∈ ∂Ω.

(1.2)

Further, if λi = λ, µi = 0, α = 4, and β = 0 in (1.2), then problem (1.2) becomes the classical
Brezis-Nirenberg problem with the sub-Laplacian operator, which was studied by Loiudice in [2].

On the other hand, we would love to mention that there are many studies on the logarithmic
perturbation problems in the Euclidean case, e.g., Deng et al. [3] studied the following equation:−∆u = λu + µu log u2 + |u|2

∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

where Ω is a smooth bounded domain of Rn. The authors proved that problem (1.3) has a positive
least energy solution if λ ∈ R, and µ > 0. Later, Liu et al. [4] employed the subcritical approximation
method to prove the existence of sign-changing solutions to problem (1.3) when n ≥ 6, λ ∈ R and µ > 0.
Additionally, Hajaiej et al. [5, 6] investigated a coupled elliptic system and established the existence
and nonexistence results under other conditions. Here, we refer the interested readers to [7–11] and the
references therein for more details on the existence and multiplicity of solutions for partial differential
equations with logarithmic-type nonlinearities in the Euclidean case. Nonetheless, as far as we know,
there are few works dealing with the logarithmic perturbation problems shaped like problem (1.1) in
the Heisenberg group. We have only found the reference [12], which obtained normalized solutions in
the Lp-subcritical case for a critical Choquard equation with logarithmic nonlinearity.

2. Main results

In this section, we will present our main results. First, we define the Folland-Stein space S 1
0(Ω),

which is a Hilbert space, by the closure of C∞0 (Ω) with respect to the norm ‖u‖2 =
∫

Ω
|∇Hu|2dξ. Let H

be the product spaces S 1
0(Ω)× S 1

0(Ω) with the norm ‖z‖2 = ‖u‖2 + ‖v‖2 for all z = (u, v) ∈ H. Then, H is
also a Hilbert space, and if 1 ≤ p < 4, the embedding H ↪→ Lp(Ω)× Lp(Ω) is continuous and compact,
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while if p = 4, the embedding is just continuous (see [13]). Let

Φi(u) =
a
2
‖u‖2 +

b
4
‖u‖4 −

λi

2

∫
Ω

u2dξ −
µi

2

∫
Ω

u2
(
log u2 − 1

)
dξ, ∀u ∈ S 1

0(Ω) \ {0}.

Then, the energy functional associated with problem (1.1) is defined by

J(z) = Φ1(u) + Φ2(v) −
1
4

∫
Ω

|u|α|v|βdξ, ∀z = (u, v) ∈ H \ {(0, 0)}. (2.1)

It follows from a standard argument that J ∈ C1(H \ {(0, 0)},R). Moreover, for any φ = (ϕ, ψ) ∈ H,

〈J′(z), φ〉 = 〈Φ′1(u), ϕ〉 + 〈Φ′2(v), ψ〉 −
α

4

∫
Ω

|u|α−2|v|βuϕdξ −
β

4

∫
Ω

|u|α|v|β−2vψdξ. (2.2)

Next, it is necessary for us to clarify a basic concept. That is, we say that a function z = (u, v) ∈ H
is called a solution to problem (1.1) if and only if 〈J′(z), φ〉 = 0 for all φ = (ϕ, ψ) ∈ H. Then, it
follows from α + β = 4 that every critical point of the energy functional J(z) corresponds to a solution
of problem (1.1).

In what follows, let S denote the best Sobolev embedding constant from S 1
0(Ω) to L4(Ω), i.e.,

S = inf
u∈S 1

0(Ω)\{0}

∫
Ω
|∇Hu|2dξ(∫

Ω
|u|4dξ

) 1
2

. (2.3)

Therefore, by Young’s inequality, (2.3), and α + β = 4, it is easily seen that the following constant S αβ

is well-defined:

S αβ = inf
z∈H\{(0,0)}

∫
Ω

(
|∇Hu|2 + |∇Hv|2

)
dξ(∫

Ω
|u|α|v|βdξ

) 1
2

. (2.4)

Meanwhile, for convenience, let |Ω| denote the measure of Ω and

A0 =

(λ1, µ1; λ2, µ2) : λi, µi ∈ R,
a2S 2

αβ

2 − bS 2
αβ

+
e|Ω|

2

2∑
i=1

µie
−
λi
µi > 0

 .
Theorem 2.1. Let Ω be a smooth bounded domain of H1, a, b ≥ 0, a + b > 0, α, β > 1, and α + β = 4.
If µ1, µ2 < 0 and one of the following (i) and (ii) holds:

(i) bS 2
αβ − 2 < 0 and (λ1, µ1; λ2, µ2) ∈ A0;

(ii) bS 2
αβ − 2 ≥ 0 and λi ∈ R, i = 1, 2.

Then, problem (1.1) has a sequence {zk} of nontrivial solutions such that J(zk) ≤ 0, zk , 0, for all k ∈ N
and limk→∞ zk = 0.

Obviously, when b is equal to zero in Theorem 2.1, the case (ii) is impossible. Therefore, from
Theorem 2.1, we have the following corollary.

AIMS Mathematics Volume 10, Issue 5, 10605–10623.
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Corollary 2.2. Let Ω be a smooth bounded domain of H1, a > 0, α, β > 1, and α + β = 4. If
µ1, µ2 < 0 and

a2S 2
αβ + e|Ω|

2∑
i=1

µie
−
λi
µi > 0, λi ∈ R,

then problem (1.2) has a sequence {zk} of nontrivial solutions such that J(zk) ≤ 0, zk , 0, for all k ∈ N
and limk→∞ zk = 0.

Remark 2.3. It is well-known that the logarithmic term λiu log u2 usually exerts a significantly greater
influence than the term λiu on the existence of solutions. Furthermore, when the Heisenberg group
and the Euclidean space share the same topological dimension of n = 3, the critical exponent in
the Heisenberg group case, denoted as 2∗Q = 4, is strictly smaller than that in the Euclidean case,
which is 2∗ = 6 (see [14]). Therefore, it is more complicated and difficult to study the existence and
multiplicity of nontrivial solutions for problem (1.1), and the relevant results of the Euclidean case
cannot be directly generalized to the Heisenberg group case. Moreover, to the best of our knowledge,
Theorem 2.1 remains novel even in the Euclidean case and when b is equal to zero, e.g., Corollary 2.2
is not covered by the recent results presented in [5, Theorem 1.1]. In addition, Theorem 2.1 is
established on the first Heisenberg group. In fact, it is also true on the n-th Heisenberg group when we
appropriately adjust the range of certain parameters.

The structure of the rest of this paper is as follows: In Section 3, we introduce some notations and
basic facts. In Section 4, we will use Lemma 3.2 to prove the existence of a sequence {uk} of solutions
to problem 1.1, more specifically, Section 4 is divided into two Subsections 4.1 and 4.2, where the
proofs of the cases (i) and (ii) in Theorem 2.1 are presented in Subsections 4.1 and 4.2, respectively.

3. Preliminaries

In this section, we collect some definitions and basic facts. First, we give some basic inequalities,
whose proofs are elementary and are omitted. Namely, for any t > 0 and δ > 0, we have

−
1
e
≤ t log t ≤

1
δe

tδ+1. (3.1)

Meanwhile, for any 0 < t ≤ 1, we also have

|t log t| ≤
1
e
. (3.2)

For any t1, t2 ∈ R, we also have

1
2

(t2
1 + t2

2)2 ≤ t4
1 + t4

2 ≤ (t2
1 + t2

2)2. (3.3)

In addition, if {un} is a bounded sequence in S 1
0(Ω) such that un → u almost everywhere in Ω, then

lim
n→∞

∫
Ω

u2
n log u2

ndξ =

∫
Ω

u2 log u2dξ, (3.4)
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and

lim
n→∞

∫
Ω

unφ log u2
ndξ =

∫
Ω

uφ log u2dξ, ∀φ ∈ S 1
0(Ω). (3.5)

In fact, it follows from un → u almost everywhere in Ω that u2
n log u2

n → u2 log u2 almost everywhere
in Ω as n→ ∞. Moreover, it follows from (3.1) and (3.2) that

lim
n→∞

∫
Ω

∣∣∣u2
n log u2

n

∣∣∣ dξ ≤ lim
n→∞

1
e

∫
Ω

(
1 +

1
δ
|un|

2(1+δ)
)

dξ

=
1
e

∫
Ω

(
1 +

1
δ
|u|2(1+δ)

)
dξ, (3.6)

where δ is chosen to satisfy 0 < δ < 1. It follows from (3.6) and Lebesgue’s dominated convergence
theorem that (3.4) is true. Meanwhile, by an argument similar to the proof of (3.4), we can also deduce
that (3.5) is true.

Definition 3.1. [15, Section 7] Let E be a Banach space. We say a subset A of E is symmetric if and
only if z ∈ A and −z ∈ A. For a closed symmetric set A that does not contain the origin, we define a
genus γ(A) of A by the smallest integer k such that there exists an odd continuous mapping from A to
Rk\{0}. If there does not exist a finite such k, set γ(A) = +∞. Moreover, set γ(∅) = 0.

Let Γk denote the family of closed symmetric subsets A of E such that 0 < A and γ(A) ≥ k. Next,
we introduce the the symmetric mountain pass lemma by Kajikiya [16, Theorem 1].

Lemma 3.2. [16, Theorem 1] Let E be a Banach space and J ∈ C1(E,R). Assume that
(A1) J(z) is even (i.e., J(−z) = J(z) for all z ∈ E) and bounded from below, J(0) = 0, and J(z)

satisfies the global (P.S .) condition. That is, any sequence {zk} in E such that {J(zk)} is bounded and
limk→∞ J′(zk) = 0 has a convergent subsequence.

(A2) For each k ∈ N, there exists an Ak ∈ Γk such that supz∈Ak
J(z) < 0.

Then there exists a sequence {zk} of critical points such that

J(zk) ≤ 0, zk , 0, and lim
k→∞

zk = 0.

Remark 3.3. In Lemma 3.2, the functional J(z) is required to satisfy the global (P.S .) condition.
However, by a careful examination of the proof of [16, Theorem 1], it is sufficient that the functional
J(z) satisfies the local (P.S .)c condition, e.g., for some c∗ > 0, any sequence {zk} in E satisfying
limk→∞ J(zk) = c < c∗ and limk→∞ J′(zk) = 0 has a convergent subsequence. That is to say, if we
replace the (P.S .) condition in (A1) with the (P.S .)c condition, then Lemma 3.2 also holds.

In addition, due to the fact that problem (1.1) is critical, the proof of the (P.S .)c condition
usually needs the following concentration compactness principle for the system proved by Pucci and
Temperini [17].

Lemma 3.4. [17, Theorem 1.2] Let {zn} be a sequence in H. Suppose that there exists z ∈ H and two
bounded nonnegative Radon measures µ and ν on H1 such that zn ⇀ z weakly in H and|∇Hun|

2 + |∇Hvn|
2dξ ⇀ µ in M(H1),

|un|
α|vn|

βdξ ⇀ ν in M(H1),

AIMS Mathematics Volume 10, Issue 5, 10605–10623.
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where M(H1) is the space of all bounded regular Borel measures on H1. Then, there exists an at
most countable set J, a family of points {ξk} ⊂ H

1, and two families of nonnegative numbers {µk}k∈J

and {νk}k∈J such that

µ ≥ (|∇Hu|2 + |∇Hv|2)dξ +
∑
k∈J

µkδξk ,

ν = |u|α|v|βdξ +
∑
k∈J

νkδξk , µk ≥ S αβν
1
2
k for all k ∈ J,

where S αβ is as in (2.4) and δξk is the Dirac function at the point ξk of H1.

Remark 3.5. Lemma 3.4 is a special case of [17, Theorem 2.1]. Meanwhile, the concentration
compactness principle is an important tool for addressing nonlinear problems that lack compactness.
Therefore, in addition to [17, Theorem 2.1], we would also love to mention the concentration
compactness principle of [18, Theorem 1.1], which can be applied to the study of certain elliptic
systems with critical exponents and Hardy terms in the Heisenberg group.

4. Proof of main results

In this section, we will use Lemma 3.2 to obtain the existence of nontrivial solutions for problem 1.1.
More specially, this section will be divided into two Subsections 4.1 and 4.2 later. The proofs of the
cases (i) and (ii) of Theorem 2.1 are treated in Subsections 4.1 and 4.2, respectively.

To begin with, it is necessary for us to clarify that 〈Φ′1(u), ϕ〉 and 〈Φ′2(v), ψ〉 in (2.2) for any φ

= (ϕ, ψ) ∈ H. That is,

〈Φ′1(u), ϕ〉 = (a + b‖u‖2)
∫

Ω

∇Hu∇Hϕdξ − λ1

∫
Ω

uϕdξ − µ1

∫
Ω

uϕ log u2dξ, (4.1)

〈Φ′2(v), ψ〉 = (a + b‖v‖2)
∫

Ω

∇Hv∇Hψdξ − λ2

∫
Ω

vψdξ − µ2

∫
Ω

vψ log v2dξ. (4.2)

In addition, for any u ∈ S 1
0(Ω) \ {0}, by (3.1), one has

Φi(u) =
a
2
‖u‖2 +

b
4
‖u‖4 −

λi

2

∫
Ω

u2dξ −
µi

2

∫
Ω

u2
(
log u2 − 1

)
dξ

=
a
2
‖u‖2 +

b
4
‖u‖4 −

µi

2
e1− λi

µi

∫
Ω

(e
λi
µi
−1u2) log(e

λi
µi
−1u2)dξ

≥
a
2
‖u‖2 +

b
4
‖u‖4 +

µi

2
e−

λi
µi |Ω|. (4.3)

In the following, we divided into two subsections to complete the proof of Theorem 2.1.

4.1. The case bS 2
αβ < 2

In this subsection, we always assume bS 2
αβ < 2 and (λ1, µ1; λ2, µ2) ∈ A0. We will complete the proof

of the case (i) of Theorem 2.1. To begin with, it follows from (2.1), (2.4), (3.3), and (4.3) that

J(z) = Φ1(u) + Φ2(v) −
1
4

∫
Ω

|u|α|v|βdξ

AIMS Mathematics Volume 10, Issue 5, 10605–10623.
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≥
a
2
‖u‖2 +

b
4
‖u‖4 +

µ1

2
e−

λ1
µ1 |Ω| −

1
4

∫
Ω

|u|α|v|βdξ

+
a
2
‖v‖2 +

b
4
‖v‖4 +

µ2

2
e−

λ2
µ2 |Ω|

≥
a
2
‖z‖2 −

2 − bS 2
αβ

8S 2
αβ

‖z‖4 +
|Ω|

2

2∑
i=1

µie
−
λi
µi . (4.4)

Now, we define a function f : [0,+∞)→ R, ∀t ∈ [0,+∞),

f (t) =
a
2

t2 −
2 − bS 2

αβ

8S 2
αβ

t4 +
|Ω|

2

2∑
i=1

µie
−
λi
µi . (4.5)

It is easily seen that there exists a tM =

√
2aS 2

αβ

2−bS 2
αβ

> 0, such that


f ′(t) > 0, t ∈ (0, tM),
f ′(t) = 0, t = tM,

f ′(t) < 0, t ∈ (tM,+∞).

(4.6)

In other words, f (t) attains its maximum at tM and the maximum

fM = f (tM) =
a2S 2

αβ

4 − 2bS 2
αβ

+
|Ω|

2

2∑
i=1

µie
−
λi
µi .

Since (λ1, µ1; λ2, µ2) ∈ A0, that is,

a2S 2
αβ

2 − bS 2
αβ

+
e|Ω|

2

2∑
i=1

µie
−
λi
µi > 0. (4.7)

Note that µi(i = 1, 2) < 0 and e
2 > 1. Therefore, it follows from (4.7) that

a2S 2
αβ

4 − 2bS 2
αβ

+
|Ω|

2

2∑
i=1

µie
−
λi
µi =

1
2

 a2S 2
αβ

2 − bS 2
αβ

+ |Ω|

2∑
i=1

µie
−
λi
µi


≥

1
2

 a2S 2
αβ

2 − bS 2
αβ

+
e|Ω|

2

2∑
i=1

µie
−
λi
µi


> 0. (4.8)

That is to say, the maximum fM of f (t) is greater than zero. Let

f0 =
1
2

fM =
a2S 2

αβ

8 − 4bS 2
αβ

+
|Ω|

4

2∑
i=1

µie
−
λi
µi .
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Then f0 is also greater than zero. Therefore, it follows from (4.6) that there exists a unique t0 ∈ (0, tM)
such that f (t0) = f0. In the following, we need an appropriate truncation on the critical term. That is to
say, we may define a smooth truncation function g : [0,+∞)→ R such that

g(t) =


1, t ∈ [0, t2

0],
0 ≤ g(t) ≤ 1, t ∈ [t2

0, t
2
M],

bS 2
αβ

2 +
2aS 2

αβ

t +
4S 2

αβ

t2
( |Ω|

2

∑2
i=1 µie

−
λi
µi − fM

)
, t ∈ [t2

M,+∞).

Now, let us define the following functional in H. That is, for any z = (u, v) ∈ H,

Jg(z) = Φ1(u) + Φ2(v) −
1
4

g(‖z‖2)
∫

Ω

|u|α|v|βdξ. (4.9)

Then, it follows from [19, Theorem C.1] and the definition of g that Jg ∈ C1(H,R). Furthermore, for
any φ = (ϕ, ψ) ∈ H, we have

〈J′g(z), φ〉 = 〈Φ′1(u), ϕ〉 + 〈Φ′2(v), ψ〉 −
1
2

g′(‖z‖2)
∫

Ω

∇Hu∇Hϕdξ
∫

Ω

|u|α|v|βdξ

−
α

4
g(‖z‖2)

∫
Ω

|u|α−2|v|βuϕdξ −
β

4
g(‖z‖2)

∫
Ω

|u|α|v|β−2vψdξ

−
1
2

g′(‖z‖2)
∫

Ω

∇Hv∇Hψdξ
∫

Ω

|u|α|v|βdξ. (4.10)

Lemma 4.1. Let a, b ≥ 0, a + b > 0 and µ1, µ2 < 0. Then Jg(z) is bounded from below in H.

Proof. It follows from (2.4), (3.3), and (4.3) that, for any z = (u, v) ∈ H\{(0, 0)},

Jg(z) = Φ1(u) + Φ2(v) −
1
4

g(‖z‖2)
∫

Ω

|u|α|v|βdξ

≥
a
2
‖z‖2 +

b
8
‖z‖4 −

1
4S 2

αβ

g(‖z‖2)‖z‖4 +
|Ω|

2

2∑
i=1

µie
−
λi
µi

=
a
2
‖z‖2 −

 1
4S 2

αβ

g(‖z‖2) −
b
8

 ‖z‖4 +
|Ω|

2

2∑
i=1

µie
−
λi
µi . (4.11)

Define f̃ : [0,+∞)→ R, ∀t ∈ [0,+∞),

f̃ (t) =
a
2

t2 −

 1
4S 2

αβ

g(t2) −
b
8

 t4 +
|Ω|

2

2∑
i=1

µie
−
λi
µi . (4.12)

By the definition of g(t) and a straightforward calculation, we have
f̃ (t) = f (t), t ∈ [0, t0],
f̃ (t) ≥ f (t), t ∈ [t0, tM],
f̃ (t) = fM, t ∈ [tM,+∞).

(4.13)
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Hence, it follows from (4.11) and (4.13) that

Jg(z) ≥ f̃ (‖z‖2) ≥ f̃ (0) =
|Ω|

2

2∑
i=1

µie
−
λi
µi ,

which proves that Jg(z) is bounded from below in H.

Lemma 4.2. Under the conditions of this subsection, assume that

c < c∗ =
a2S 2

αβ

8 − 4bS 2
αβ

+
e|Ω|

8

2∑
i=1

µie
−
λi
µi . (4.14)

Then Jg(z) satisfies the (P.S .)c condition.

Proof. Let zn = (un, vn) be a (P.S .)c sequence of Jg(z). That is,

Jg(zn)→ c and J′g(zn)→ 0 as n→ ∞. (4.15)

It follows from (4.14) and the first expression of (4.15) that

Jg(zn) <
a2S 2

αβ

8 − 4bS 2
αβ

+
e|Ω|

8

2∑
i=1

µie
−
λi
µi , (4.16)

for n large enough. In addition, by the definition of f (t), f0, and (4.13), for any t ∈ [t0,+∞), one has

f̃ (t) ≥ f0 =
1
2

fM =
a2S 2

αβ

8 − 4bS 2
αβ

+
|Ω|

4

2∑
i=1

µie
−
λi
µi . (4.17)

Now we claim that ‖zn‖ < t0 for n large enough.
In fact, if not, it follows from (4.17), µi < 0, and the process of (4.11) that

Jg(zn) ≥ f̃ (‖zn‖
2) ≥

a2S 2
αβ

8 − 4bS 2
αβ

+
|Ω|

4

2∑
i=1

µie
−
λi
µi

≥
a2S 2

αβ

8 − 4bS 2
αβ

+
e|Ω|

8

2∑
i=1

µie
−
λi
µi . (4.18)

Obviously, there is a contradicts between (4.16) and (4.18), that is to say, ‖zn‖ < t0 for n large enough.
Therefore, it follows from the definition of g(t) and the claim that

g(‖zn‖
2) = 1 and g′(‖zn‖

2) = 0, (4.19)

for n large enough, that by (3.1), (4.1), (4.2), (4.19), α + β = 4, and the definition of Jg(zn), for n large
enough, we have

Jg(zn) −
1
4
〈J′g(zn), zn〉 = Φ1(un) −

1
4
〈Φ′1(un), un〉 + Φ2(vn) −

1
4
〈Φ′1(vn), vn〉
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=
a
4
‖un‖

2 −
λ1

4
‖un‖

2
2 +

µ1

2
‖un‖

2
2 −

µ1

4

∫
Ω

u2
n log u2

ndξ

+
a
4
‖vn‖

2 −
λ2

4
‖vn‖

2
2 +

µ2

2
‖vn‖

2
2 −

µ2

4

∫
Ω

v2
n log v2

ndξ

=
a
4
‖zn‖

2 −
µ1

4
e2− λ1

µ1

∫
Ω

e
λ1
µ1
−2u2

n log
(
e
λ1
µ1
−2u2

n

)
dξ

−
µ2

4
e2− λ2

µ2

∫
Ω

e
λ2
µ2
−2v2

n log
(
e
λ2
µ2
−2v2

n

)
dξ

≥
a
4
‖zn‖

2 +
e|Ω|

4

2∑
i=1

µie
−
λi
µi . (4.20)

It follows from (4.15) and (4.20) that {zn} is bounded in H. Hence, we may assume that

(un, vn) ⇀ (u, v) weakly in H. (4.21)

Passing to the subsequence, we may also assume that
un ⇀ u, vn ⇀ v weakly in L4(Ω),
un → u, vn → v almost everywhere in Ω,

un → u, vn → v strongly in Lp(Ω) for 1 ≤ p < 4.

(4.22)

Further, since Jg(zn) = Jg(|zn|), we may also assume that un, vn ≥ 0 and u, v ≥ 0. Hence, it follows from
the concentration compactness principle for system (Lemma 3.4) that(|∇Hun|

2 + |∇Hvn|
2)dξ ⇀ µ ≥ (|∇Hu|2 + |∇Hv|2)dξ +

∑
k∈J µkδξk ,

|un|
α|vn|

βdξ ⇀ ν = |u|α|v|βdξ +
∑

k∈J νkδξk ,
(4.23)

and
µk, νk ≥ 0, µk ≥ S αβν

1
2
k , (4.24)

where J is an at most countable index set, ξk ∈ Ω, and δξk is the Dirac function at the point ξk of H1.
We claim that J = ∅.
In fact, if we assume on the contrary that J , ∅ and fix k ∈ J, then, for ρ > 0 small enough, it

follows from [20, Lemma 3.2] that there exists a cut-off function φ : C∞0 (Ω)→ [0, 1] such that
φ(ξ) = 1 for any ξ ∈ BH(ξk, ρ),
φ(ξ) = 0 for any ξ ∈ Ω\BH(ξk, 2ρ),
|∇Hφ(ξ)| ≤ 2

ρ
for any ξ ∈ Ω.

For convenience, let

Li
φ(u) =

(
a + b‖u‖2

) ∫
Ω

u∇Hu∇Hφdξ − λi

∫
Ω

u2φdξ − µi

∫
Ω

u2φ log u2dξ, i = 1, 2.

Then, for n large enough, it follows from (3.3), (4.1), (4.2), and (4.19) that

〈J′g(zn), φzn〉 = 〈Φ′1(un), φun〉 + 〈Φ
′
2(vn), φvn〉 −

∫
Ω

|un|
α|vn|

βφdξ
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=
(
a + b‖un‖

2
) ∫

Ω

|∇Hun|
2φdξ +

(
a + b‖vn‖

2
) ∫

Ω

|∇Hvn|
2φdξ

−

∫
Ω

|un|
α|vn|

βφdξ + L1
φ(un) + L2

φ(vn)

≥ a
∫

Ω

(|∇Hun|
2 + |∇Hvn|

2)φdξ + b
(∫

Ω

|∇Hun|
2φdξ

)2

+ b
(∫

Ω

|∇Hvn|
2φdξ

)2

−

∫
Ω

|un|
α|vn|

βφdξ + L1
φ(un) + L2

φ(vn)

≥ a
∫

Ω

(|∇Hun|
2 + |∇Hvn|

2)φdξ +
b
2

(∫
Ω

(|∇Hun|
2 + |∇Hvn|

2)φdξ
)2

−

∫
Ω

|un|
α|vn|

βφdξ + L1
φ(un) + L2

φ(vn). (4.25)

Now, let us estimate the last two terms L1
φ(un) and L2

φ(vn) in (4.25). In fact, it follows from the
boundedness of {zn}, Hölder’s inequality, and the definition of φ that

|L1
φ(un)| ≤ C1

{∫
Ω′
|un∇Hun∇Hφ|dξ +

∫
Ω′

u2
nφdξ +

∫
Ω′

u2
nφ log u2

ndξ
}

≤ C2


(∫

Ω′
|un∇Hφ|

2dξ
) 1

2

+

∫
Ω′

u2φdξ +

∫
Ω′

u2φ log u2dξ

 + on(1)

≤ C3


(∫

Ω′
|u|4dξ

) 1
4

+

∫
Ω′

u2dξ +

∫
Ω′

u2(δ+1)dξ

 + on(1), (4.26)

where Ci(i = 1, 2, 3) are some positive constants, Ω′ = Ω ∩ B(ξk, 2ρ), and limn→∞ on(1) = 0. Hence, if
follows from (4.26) that

L1
φ(un)→ 0 as n→ ∞ and ρ→ 0. (4.27)

In the same way, we also have

L2
φ(vn)→ 0 as n→ ∞ and ρ→ 0. (4.28)

By (4.15), (4.23), (4.27), (4.28), and letting n→ ∞ and ρ→ 0 in (4.25), we have

0 ≥ aµk +
b
2
µ2

k − νk. (4.29)

Substituting (4.24) into (4.29) yields a range of values for νk, and then substituting the resulting νk back
into (4.24), we have

µk ≥
2aS 2

αβ

2 − bS 2
αβ

. (4.30)

Besides, it follows from (4.15), (4.20), and the definition of φ that

c = lim
n→∞

{
Jg(zn) −

1
4
〈J′g(zn), zn〉

}
AIMS Mathematics Volume 10, Issue 5, 10605–10623.
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≥ lim
n→∞

{a
4
‖zn‖

2 +
e|Ω|

4

2∑
i=1

µie
−
λi
µi

}
≥ lim

n→∞

a
4

∫
Ω

(|∇Hun|
2 + |∇Hun|

2)φ +
e|Ω|

4

2∑
i=1

µie
−
λi
µi

 . (4.31)

By (4.30), (λ1, µ1; λ2, µ2) ∈ A0, and letting ρ→ 0 in (4.31), one has

c ≥
a
4
µk +

e|Ω|
4

2∑
i=1

µie
−
λi
µi ≥

a2S 2
αβ

4 − 2bS 2
αβ

+
e|Ω|

4

2∑
i=1

µie
−
λi
µi

≥
a2S 2

αβ

8 − 4bS 2
αβ

+
e|Ω|

8

2∑
i=1

µie
−
λi
µi . (4.32)

It follows from (4.7) that (4.32) contradicts with (4.14). Therefore, J = ∅ yields∫
Ω

|un|
α|vn|

βdξ →
∫

Ω

|u|α|u|βdξ as n→ ∞. (4.33)

Hence, for n large enough, it follows from (3.4), (3.5), (4.10), (4.19), (4.22), and (4.33) that

〈J′g(zn), (un − u, 0)〉 =
(
a + b‖un‖

2
) ∫

Ω

∇Hun∇H(un − u)dξ − λ1

∫
Ω

un(un − u)dξ

− µ1

∫
Ω

un(un − u) log u2
ndξ −

α

4

∫
Ω

|un|
α−2|vn|

βun(un − u)dξ

=
(
a + b‖un‖

2
) ∫

Ω

∇Hun∇H(un − u)dξ + on(1)

=
(
a + b‖un‖

2
) (
‖un‖

2 − ‖u‖2
)

+ on(1). (4.34)

In the second equals sign of (4.34), we use the fact that

|un|
α−2|vn|

βun → |u|α−2|v|βu in L
α+β
α+β−1 (Ω), (4.35)

which is proved in [17, 4.12]. Similarly, for n large enough, we also have

〈J′g(zn), (0, vn − v)〉 =
(
a + b‖vn‖

2
) (
‖vn‖

2 − ‖v‖2
)

+ on(1). (4.36)

It follows from (4.15), (4.34), (4.36), and the boundedness of {zn} that

lim
n→∞
‖un‖

2 = ‖u‖2, lim
n→∞
‖vn‖

2 = ‖v‖2. (4.37)

Hence, by (4.22) and (4.37), one has

lim
n→∞
‖zn − z‖2 = lim

n→∞
(‖un − u‖2 + ‖vn − v‖2) = 0, (4.38)

which means that zn → z in H as n→ ∞. That is, Jg(z) satisfies the (P.S .)c condition.
To apply Lemma 3.2, it remans to prove that the condition (A2) in Lemma 3.2 holds.

AIMS Mathematics Volume 10, Issue 5, 10605–10623.
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Lemma 4.3. Assume that a, b ≥ 0, a + b > 0, and µi < 0. Then for any k ∈ N, there is an Ak ∈ Γk such
that supz∈Ak

Jg(z) < 0.

Proof. Let Ek be a k-dimensional subspace of H and zk = (uk, vk) ∈ Ek\{(0, 0)}, ‖zk‖ < min {1, t0} for all
k ∈ N. Then, we have g(‖zk‖

2) = 1. Set

φk = (ϕk, ψk) =

(
uk

‖uk‖
,

vk

‖vk‖

)
,

and then ‖ϕk‖ = ‖ψk‖ = 1. Therefore, by (2.3), (3.6), and Hölder’s inequality, we have∫
Ω

ϕ2
k logϕ2

kdξ ≤
1
e

∫
Ω

(
1 +

1
δ
|ϕk|

2(1+δ)
)

dξ =

√
|Ω|

e
+

1
eδ

∫
Ω

|ϕk|
2(1+δ)dξ

≤

√
|Ω|

e
+

1
eδ
|Ω|

1−δ
2 +

1
eδ

(∫
Ω

|ϕk|
4dξ

) 1+δ
2

≤

√
|Ω|

e
+

1
eδ
|Ω|

1−δ
2 +

1
eδS 1+δ

, C4, (4.39)

where δ is chosen to satisfy 0 < δ < 1. In addition, we pay special attention to the fact that Ek is a
finite dimensional subspace of H (dim Ek = k), and hence all the norms are equivalent. That is to say,
there are two positive constants γ1 and γ2 such that

γ1 = γ1‖ϕk‖
2 ≤ ‖ϕk‖

2
2 ≤ γ2‖ϕk‖

2 = γ2. (4.40)

Recall that µ1 < 0, ‖ϕk‖ = 1, and log ‖uk‖
2 ≤ log ‖zk‖

2 < 0. Then, by (4.39) and (4.40), one has

Φ1(uk) =
a
2
‖uk‖

2 +
b
4
‖uk‖

4 −
λ1

2
‖uk‖

2
2 +

µ1

2
‖uk‖

2
2 −

µ1

2

∫
Ω

u2
k log u2

kdξ

≤
a
2
‖uk‖

2 +
b
4
‖uk‖

4 +
|λ1|

2
‖uk‖

2
2 −

µ1

2

∫
Ω

u2
k log u2

kdξ

≤
aΛ1 + |λ1|

2Λ1
‖uk‖

2 +
b
4
‖uk‖

4 −
µ1

2
‖uk‖

2 log ‖uk‖
2
∫

Ω

ϕ2
kdξ

−
µ1

2
‖uk‖

2
∫

Ω

|ϕ2
k logϕ2

k |dξ

≤
aΛ1 + |λ1|

2Λ1
‖uk‖

2 +
b
4
‖uk‖

4 −
µ1

2
‖uk‖

2 log ‖uk‖
2
∫

Ω

ϕ2
kdξ −

µ1C4

2
‖uk‖

2

≤
aΛ1 + |λ1| − µ1Λ1C4

2Λ1
‖uk‖

2 +
b
4
‖uk‖

4 −
µ1γ1

2
‖uk‖

2 log ‖zk‖
2, (4.41)

where Λ1 is the first eigenvalue of −∆H with the Dirichlet boundary condition. Meanwhile, if we
replace ϕk with ψk in (4.39) and (4.40), then they are also true. Therefore, by an argument similar to
the proof of (4.41), we also have

Φ2(vk) ≤
aΛ1 + |λ2| − µ2Λ1C4

2Λ1
‖vk‖

2 +
b
4
‖vk‖

4 −
µ2γ1

2
‖vk‖

2 log ‖zk‖
2. (4.42)
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Hence, it follows from the definition of g(t), (4.41), and (4.42) that

Jg(zk) = Φ1(uk) + Φ2(vk) −
1
4

g(‖zk‖
2)

∫
Ω

|uk|
α|vk|

βdξ ≤ Φ1(uk) + Φ2(vk)

≤
a0

2
‖zk‖

2 +
b
4
‖zk‖

4 −
b0

2
‖zk‖

2 log ‖zk‖
2

=
‖zk‖

2

2

(
a0 +

b
2
‖zk‖

2 − b0 log ‖zk‖
2
)
, (4.43)

where b0 = max{µ1γ1, µ2γ1} and

a0 = max
{

aΛ1 + |λ1| − µ1Λ1C4

2Λ1
,

aΛ1 + |λ2| − µ2Λ1C4

2Λ1

}
.

Noting that b0 < 0 and limt→0+ log t = −∞, then by (4.43), we may choose 0 < ρk < t0 and Mk > 0
such that if zk ∈ Ek and ‖zk‖ = ρk, Jg(zk) ≤ −Mk < 0 for each k ∈ N. Let

Ak = {zk ∈ Ek : ‖zk‖ = ρk}.

It follows from the Borsuk-Ulam theorem (see [19, Proposition 5.4]) that γ(Ak) = k. Therefore, we
have Ak ∈ Γk and supz∈Ak

Jg(z) < 0. This completes the proof of Lemma 4.3.
Proof of Theorem 2.1 with the case (i). Obviously, by the conditions of Theorem 2.1, one has

Jg ∈ C1(H,R), Jg(0) = 0, and Jg(z) is even in H.

Moreover, if bS 2
αβ − 2 < 0 and (λ1, µ1; λ2, µ2) ∈ A0, Lemmas 4.1–4.3 hold, where the (P.S .) condition

in (A1) is replaced by the (P.S .)c condition. Therefore, it follows from Lemma 3.2 and Remark 3.5 that
there exists a sequence of critical points {zk} of Jg(z) such that

Jg(zk) ≤ 0, zk , 0, and lim
k→∞

zk = 0.

Hence, passing to the subsequence, we may choose that the norm of the sequence of critical points {zk}

is less than t0. Note that

Jg(z) = J(z) for any z ∈ H \ {(0, 0)} and ‖z‖ < t0.

Therefore, we conclude that {zk} are also the critical points of J(z). This completes the proof of
Theorem 2.1 with the case (i).

4.2. The case bS 2
αβ ≥ 2

In this subsection, we always assume bS 2
αβ ≥ 2, a > 0, λi ∈ R, and µi < 0. We prove the case (ii) of

Theorem 1.1. First, we give the global compactness result for the functional J(z).

Lemma 4.4. Let bS 2
αβ − 2 ≥ 0, λi ∈ R, and µi < 0 (i = 1, 2). Then, the functional J(z) satisfies the

global (P.S .) condition.

Proof. Let {zn} be a (P.S .) sequence of J(z). That is,

|J(zn)| < M ∈ R+ and J′(zn)→ 0 as n→ ∞. (4.44)
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Similar to the proof of (4.4), we also have

J(zn) ≥
a
2
‖zn‖

2 +
bS 2

αβ − 2

8S 2
αβ

‖zn‖
4 +
|Ω|

2

2∑
i=1

µie
−
λi
µi . (4.45)

Noting that bS 2 − 2 ≥ 0 and a > 0, then it follows from (4.44) and (4.45) that {zn} is bounded in H,
which means that we may assume that

(un, vn) ⇀ (u, v) weakly in H. (4.46)

Passing to the subsequence, we may also assume that
un ⇀ u, vn ⇀ v weakly in L4(Ω),
un → u, vn → v almost everywhere in Ω,

un → u, vn → v strongly in Lp(Ω) for 1 ≤ p < 4.

(4.47)

Let wn = un − u and w′n = vn − v. Passing to the subsequence, from (4.47), we may assume

‖un‖
2 = ‖wn‖

2 + ‖u‖2 + on(1), ‖vn‖
2 = ‖w′n‖

2 + ‖v‖2 + on(1), (4.48)

where limn→∞ on(1) = 0, and the same applies below. In addition, we claim that∫
Ω

|un|
α|vn|

βdξ =

∫
Ω

|wn|
α|w′n|

βdξ +

∫
Ω

|u|α|v|βdξ + on(1). (4.49)

The proof of the claim is similar to the proof of [17, Lemma 3.1]. However, for the reader’s
convenience, we give the details of the proof. In fact, let I = [0, 1] and define fn, gn : Ω × I → R,

fn(ξ, s) = |un − su|α−2|vn|
βwn, gn(ξ, s) = |wn|

α|vn − sv|β−2(vn − sv), ∀ ∈ Ω × I.

It follows from Fubini’s theorem that fnu ∈ L1(Ω × I) and gnv ∈ L1(Ω × I). Therefore, by Tonelli’s
theorem, we have

α

"
Ω×I

fnudξds + β

"
Ω×I

gnvdξds = α

"
Ω×I

|un − su|α−2|vn|
βwnudξds

+ β

"
Ω×I

|wn|
α|vn − sv|β−2(vn − sv)vdξds

=

∫
Ω

|vn|
βdξ

∫ 1

0

(
−

d
ds
|un − su|α

)
ds

+

∫
Ω

|wn|
αdξ

∫ 1

0

(
−

d
ds
|vn − sv|β

)
ds

=

∫
Ω

|un|
α|vn|

βdξ −
∫

Ω

|wn|
α|w′n|

βdξ. (4.50)
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Moreover, by (4.47), as n→ ∞, we have

fn → (1 − s)α−1|u|α−2|v|βu and gn → 0 almost everywhere in Ω × I. (4.51)

It follows from (4.51) and Hölder’s inequality that

"
Ω×I

| fn|
α+β
α+β−1 dξds ≤


"
Ω×I

|un − su|α+βdξds


α−1
α+β−1


"
Ω×I

|vn|
α+βdξds


β

α+β−1

≤ C, (4.52)

since α + β = 4, where C is a positive constant. Similarly, we also have"
Ω×I

|gn|
α+β
α+β−1 dξds ≤ C. (4.53)

Therefore, from (4.51)–(4.53), one has

fn ⇀ (1 − s)α−1|u|α−2|v|βu and gn ⇀ 0 weakly in L
α+β
α+β−1 (Ω × I). (4.54)

Hence, from this, we get

α

"
Ω×I

fnudξds = α

"
Ω×I

(1 − s)α−1|u|α|v|βdξds + on(1) =

∫
Ω

|u|α|v|βdξ + on(1), (4.55)

and

β

"
Ω×I

gnvdξds = on(1). (4.56)

It follows from (4.50), (4.55), and (4.56) that the claim holds. That is, (4.49) holds. Therefore, it
follows from (4.35) and (4.47)–(4.49) that

〈J′(zn), (wn, 0)〉 =
(
a + b‖un‖

2
) ∫

Ω

∇Hun∇Hwndξ − λ1

∫
Ω

unwndξ

− µ1

∫
Ω

unwn log u2
ndξ −

α

4

∫
Ω

|un|
α−2|vn|

βunwndξ

=
(
a + b‖un‖

2
)
‖wn‖

2 −
α

4

∫
Ω

|wn|
α|w′n|

βdξ + on(1)

≥
(
a + b‖un‖

2
)
‖wn‖

2 −
α

4S 2
αβ

‖(wn,w′n)‖4 + on(1). (4.57)

In the same way, we also have

〈J′(zn), (0,w′n)〉 ≥
(
a + b‖vn‖

2
)
‖w′n‖

2 −
β

4S 2
αβ

‖(wn,w′n)‖4 + on(1). (4.58)

From (4.57), (4.58), and α + β = 4, one has

〈J′(zn), (wn,w′n)〉 ≥
(
a + b‖un‖

2
)
‖wn‖

2 +
(
a + b‖vn‖

2
)
‖w′n‖

2
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−
α + β

4S 2
αβ

‖(wn,w′n)‖4 + on(1)

≥
(
a + b‖un‖

2
)
‖wn‖

2 +
(
a + b‖vn‖

2
)
‖w′n‖

2

−
2

S 2
αβ

(‖wn‖
4 + ‖w′n‖

4) + on(1)

= a‖wn‖
2 +

bS 2
αβ − 2

S 2
αβ

‖wn‖
4 + b‖wn‖

2‖u‖2 + on(1)

+ a‖w′n‖
2 +

bS 2
αβ − 2

S 2
αβ

‖w′n‖
4 + b‖w′n‖

2‖v‖2. (4.59)

Now, let

limn→∞ ‖wn‖
2 = l1 and limn→∞ ‖w′n‖

2 = l2.

Therefore, from (4.44), the boundedness of {(wn,w′n)}, and letting n→ ∞ in (4.59), we get

0 ≥ al1 +
bS 2

αβ − 2

S 2
αβ

l2
1 + bl1‖u‖2 + al2 +

bS 2
αβ − 2

S 2
αβ

l2
2 + bl2‖v‖2. (4.60)

Note that bS 2
αβ−2 ≥ 0 and li(i = 1, 2) are all nonnegative. Hence, it follows from (4.60) that l1 = l2 = 0.

That is to say,

un → u and vn → v in S 1
0(Ω) as n→ ∞,

which means that zn → z strongly in H. This completes the proof of Lemma 4.4.
Proof of Theorem 2.1 with the case (ii). Obviously, by the conditions of Theorem 2.1, one has

J ∈ C1(H,R), J(0) = 0, and J(z) is even in H.

Moreover, if bS 2
αβ ≥ 2, λi ∈ R, and µi < 0 (i = 1, 2), Lemma 4.3 is valid. In addition, it follows from

the argument similar to the proof of Lemma 4.3 that for all k ∈ N, there exists an Ak ∈ Γk such that
supz∈Ak

J(z) < 0. Therefore, it follows from Lemma 3.2 that J(z) has a sequence of critical points {zk}

converging to zero with J(zk) ≤ 0 and zk , 0 for all k ∈ N. This completes the proof of Theorem 2.1
with the case (ii).

5. Conclusions

In this study, we have investigated a nonlocal sub-Laplacian system with critical growth and
logarithmic perturbation. By employing the symmetric mountain pass lemma, an appropriate
truncation of the critical term, and a careful analysis of the structure of the energy functional, we
obtained the sufficient conditions for the existence of a sequence {zk} of nontrivial solutions satisfying
limk→∞ zk = 0 for this system. The results of this paper are new even for the Euclidean case.
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