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1. Introduction

Impulsive differential systems are efficient mathematical models to describe a wide range of
natural phenomena in real world, such as biology, physics, population dynamics, etc [1–3]. In fact,
impulsive differential equations are basic tools to study evolutionary processes where the state
undergoes sudden jumps at certain moments [4, 5]. In the past few years, an increasing number of
scholars have become interested in the theory of impulsive differential equations and their potential
applications [6–8].

Traditionally, we notice that in many impulsive differential equations, authors generally suppose
that the impulsive condition is △z(εk) = Ak(z(εk)), and the abrupt change in state at εk is closely
dependent on the left limit of z(εk). In recent years, the impulsive integral condition has received
widespread attention [9–11]. For example, Tariboon proposed a new impulsive integral condition,
and explored the existence conditions for extreme solutions in a functional differential system under
these conditions [12]. Recently, Li et al. studied the stability of a fractional differential equation
with a non-instantaneous integral impulse [13]. Compared with conventional impulsive conditions,
impulsive integral conditions are more comprehensive and flexible in describing phenomena. They
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not only take the time or state at which impulses occur into account, but also focus on the cumulative
effects of impulses throughout the entire action process [11–13]. Impulsive integral conditions can
incorporate the cumulative effects of multiple instantaneous mutations into the system model through
integration operations, thus more comprehensively reflecting the impact of impulses on the dynamic
characteristics of the system, thereby covering multiple dimensions such as impulse intensity, duration,
and action mode, and having broader applications in solving practical problems [11–13]. However, we
noticed that the corresponding theory of the impulsive integral condition is far from complete; more
specifically, its application in functional differential equations still has many works to consider.

The technique of combining a monotone iteration (MIT) with upper and lower solutions (ULS) is
usually used to obtain solution sequences which uniformly converge to extreme solutions of impulsive
differential equations [14,15]. For the utilization of the MIT method in functional differential equations
with impulses, see [16,17]. Moreover, if we want to obtain the rapid convergence of solution sequences,
such as quadratic convergence, we need to use the method of quasilinearization (QLM) [18–20]. The
QLM method is a very powerful approximation technique, whose iteration sequences are not only
uniform in convergence, but also meet rapid convergence [18–20]. For the application of the QLM
method in impulsive functional differential equations, see [21]. We note that scholars generally use
monotonic iterative methods to prove the existence of extreme solutions in impulsive integral condition
problems [12, 22]; however, the QLM method is not readily used in this field.

Based on previous studies, in this paper, we develop a new impulsive integral condition, and use the
quasilinearization method coupled with the MIT method to discuss the existence, uniform convergence,
and quadratic convergence of solution sequences for a periodic boundary value differential system. The
specific differential equations are described as follows:

υ′(ε) = f (ε, υ(ε), υ(T(ε))), ε , εk, ε ∈ Θ = [0, P],
△υ(εk) = Ak

(∫ εk−1+qk−1

εk−1
υ(s)ds +

∫ εk

εk−pk
υ(s)ds

)
, k = 1, 2, · · · ,m,

υ(0) = υ(P),
(1)

where f ∈ C(Θ × R2,R), 0 ≤ T(ε) ≤ ε, 0 = ε0 < ε1 < ε2 < · · · < εm < εm+1 = P, Ak ∈ C(R,R),
0 < qk−1 ≤ (εk − εk−1)/2, 0 ≤ pk ≤ (εk − εk−1)/2, △υ(εk) = υ(ε+k ) − υ(ε−k ), k = 1, 2, · · · ,m. We denote
a = max

k=1,2,··· ,m
{εk − εk−1}.

In Section 2, we obtain the solution expression for a class of linear systems, and prove two
comparison results. In Section 3, we give the definition for a pair of ULS, and then derive main
conclusions for a boundary value problem (BVP)(1).

2. Some lemmas

First, we recall the following spaces to define the solution for the BVP(1) [16, 17, 21]: letting Θ− =
Θ\{ε1, ε2, · · · , εm}, C(Θ,R) = {υ : Θ→ R; υ(ε) maintains continuity at all points, with the exception
of some εk, where υ(ε+k ), and υ(ε−k ) exist and υ(ε−k ) = υ(εk), k = 1, · · · ,m}; C′(Θ,R) = {υ ∈ C(Θ,R); υ′

remains continuous over Θ−, where υ′(0+), υ′(P−), υ′(ε+k ) and υ′(ε−k ) exist, k = 1, 2, · · · ,m} ; D0 = {υ ∈

C(Θ,R)}, then D0 is a Banach space with a norm ∥υ∥D0 = sup
ε∈Θ

|υ(ε)|; and D = C(Θ,R) ∩ C′(Θ,R). If the

function υ ∈ D satisfies the BVP(1), then it is defined as a solution of then BVP(1).
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Next, we study the following linear system:

υ′(ε) + ıυ(ε) = σ(ε) − ȷυ(T(ε)), ε , εk, ε ∈ Θ = [0, P],
△υ(εk) = −Ok

(∫ εk−1+qk−1

εk−1
υ(s)ds +

∫ εk

εk−pk
υ(s)ds

)
+Ak

(∫ εk−1+qk−1

εk−1
ψ(s)ds +

∫ εk

εk−pk
ψ(s)ds

)
+ Ok

(∫ εk−1+qk−1

εk−1
ψ(s)ds +

∫ εk

εk−pk
ψ(s)ds

)
,

k = 1, 2, · · · ,m,
υ(0) = υ(P).

(2)

Let ı > 0, ȷ ≥ 0, 0 ≤ Ok < 1, and σ(ε) ∈ D0, ψ(ε) ∈ D.

Lemma 2.1. υ ∈ D is a solution of system (2) when υ ∈ D0 satisfies the following:

υ(ε) =
∫ P

0
Γ(ε, s)[σ(s) − ȷυ(T(s))]ds

+

m∑
k=1

Γ(ε, εk)
[
−Ok

(∫ εk−1+qk−1

εk−1

υ(s)ds +
∫ εk

εk−pk

υ(s)ds
)

+ Ak

(∫ εk−1+qk−1

εk−1

ψ(s)ds +
∫ εk

εk−pk

ψ(s)ds
)

+ Ok

(∫ εk−1+qk−1

εk−1

ψ(s)ds +
∫ εk

εk−pk

ψ(s)ds
)]
,

where

Γ (ε, s) =
1

eıP − 1

{
eı(P−ε+s), 0 ≤ s ≤ ε ≤ P,
eı(s−ε), 0 ≤ ε < s ≤ P.

The method of derivation for the above Lemma 2.1 is analogous to the relevant results in [12]; the
details are omitted here.

Lemma 2.2. Suppose that there exist constants ı > 0, ȷ ≥ 0, 0 ≤ Ok < 1,0 < qk−1 ≤ (εk−εk−1)/2, 0 ≤
pk ≤ (εk − εk−1)/2, and k = 1, 2, · · · ,m, such that

ȷ

ı
+

eıP

eıP − 1

m∑
k=1

Ok(pk + qk−1) < 1; (3)

then, (2) exists as a unique solution.

Proof. For any υ ∈ D0, we provide the following operator F:

(Fυ)(ε) =
∫ P

0
Γ(ε, s)[σ(s) − ȷυ(T(s))]ds

+

m∑
k=1

Γ(ε, εk)
[
−Ok

(∫ εk−1+qk−1

εk−1

υ(s)ds +
∫ εk

εk−pk

υ(s)ds
)

+ Ak

(∫ εk−1+qk−1

εk−1

ψ(s)ds +
∫ εk

εk−pk

ψ(s)ds
)

+ Ok

(∫ εk−1+qk−1

εk−1

ψ(s)ds +
∫ εk

εk−pk

ψ(s)ds
)]
.
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Clearly, (Fυ) ∈ D0. Since,∫ P

0
Γ(ε, s)ds =

1
ı
, max

ε∈[0,P],s∈[0,P]
|Γ(ε, s)| =

eıP

(eıP − 1)
,

then for any x, y ∈ D0, we have the following:

∥Fx − Fy∥D0 = sup
ε∈Θ

∣∣∣∣∣∣
∫ P

0
ȷΓ(ε, s)[−x(T(s)) + y(T(s))]ds

+

m∑
k=1

Γ(ε, εk)
[
−Ok

(∫ εk−1+qk−1

εk−1

x(s)ds +
∫ εk

εk−pk

x(s)ds
)]

−

m∑
k=1

Γ(ε, εk)
[
−Ok

(∫ εk−1+qk−1

εk−1

y(s)ds +
∫ εk

εk−pk

y(s)ds
)]∣∣∣∣∣∣∣

≤

 ȷı + sup
ε∈Θ

|Γ(ε, εk)|
m∑

k=1

|Ok|(pk + qk−1)

 ∥x − y∥D0

=

 ȷı + eıP

eıP − 1

m∑
k=1

Ok(pk + qk−1)

 ∥x − y∥D0 .

Therefore, by using condition (3) together with the Banach fixed point theorem, we know that
F exists as a unique fixed point υ∗ ∈ D0. Then, as stated in Lemma 2.1, υ∗ is a unique solution of
system (2). □

Lemma 2.3. (Comparison principle) Suppose that there exists ı > 0, ȷ ≥ 0, 0 ≤ Ok < 1, 0 < qk−1 ≤

(εk − εk−1)/2, 0 ≤ pk ≤ (εk − εk−1)/2, and k = 1, 2, · · · ,m, such that υ ∈ D satisfies the following:
υ′(ε) + ıυ(ε) + ȷυ(T(ε)) ≤ 0, ε , εk, ε ∈ Θ = [0, P],
△υ(εk) ≤ −Ok

(∫ εk−1+qk−1

εk−1
υ(s)ds +

∫ εk

εk−pk
υ(s)ds

)
, k = 1, 2, · · · ,m,

υ(0) ≤ υ(P).

Moreover, the following inequality holds:

ȷ

∫ P

0
eı(ε−T(ε))dt +

1
ı

m∑
k=1

Ok(eıa − eı(a−qk−1) + eıpk − 1) ≤ 1. (4)

Then, υ(ε) ≤ 0 for ε ∈ Θ.

Proof. Let u(ε) = eıευ(ε); then,
u′(ε) ≤ − ȷeı(ε−T(ε))u(T(ε)), ε , εk, ε ∈ Θ = [0, P],
△u(εk) ≤ −Ok

(∫ εk−1+qk−1

εk−1
e−ı(s−εk)u(s)ds +

∫ εk

εk−pk
e−ı(s−εk)u(s)ds

)
, k = 1, 2, · · · ,m,

u(0) ≤ e−ıPu(P).
(5)

On the contrary, we prove the following two cases:
Case (i): Assume the existence of ε∗ ∈ Θ such that u(ε∗) > 0, and u(ε) ≥ 0 hold for all other ε ∈ Θ.
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Clearly, u(ε) is a non-increasing function; therefore, by the boundary value condition, we have
u(P) ≤ u(0) ≤ e−ıPu(P) < u(P), which is a contradiction.

Case (ii): Suppose that there exist two points ε1, ε2 ∈ Θ such that u(ε1) > 0 and u(ε2) < 0.
Set ε ∈ (εi, εi+1], i ∈ {1, 2, · · · ,m} such that u(ε) = inf(u(ε) : ε ∈ Θ) < 0. On the other hand, we set

ε ∈ (ε j, ε j+1), and assume that u(ε) > 0 holds for some j ∈ {1, 2, · · · ,m} . Without a loss of generality,
set ε < ε; then i ≤ j. By integrating (5) from ε to ε, we can obtain the following:

u(ε) − u(ε) ≤ − ȷ
∫ ε

ε

eı(ε−T(ε))u(T(ε))dt +
j∑

k=i+1

∆u(εk)

≤ −u(ε) ȷ
∫ ε

ε

eı(ε−T(ε))dt − u(ε)
j∑

k=i+1

Ok

(∫ εk−1+qk−1

εk−1

e−ı(s−εk)ds +
∫ εk

εk−pk

e−ı(s−εk)ds
)

≤ −u(ε)

 ȷ∫ P

0
eı(ε−T(ε))dt +

1
ı

m∑
k=1

Ok(eıa − eı(a−qk−1) + eıpk − 1)


≤ −u(ε).

Therefore, a contradiction arises. □ □

Lemma 2.4. Assuming there exists ı > 0, ȷ ≥ 0, 0 ≤ Ok < 1,0 < qk−1 ≤ (εk − εk−1)/2, 0 ≤ pk ≤

(εk − εk−1)/2, and k = 1, 2, · · · ,m, such that (4) holds and υ ∈ D satisfies the following:
υ′(ε) + ıυ(ε) + ȷυ(T(ε)) + ıε+ ȷT(ε)+1

P [υ(0) − υ(P)] ≤ 0, ε , εk, ε ∈ Θ = [0, P],
△υ(εk) ≤ −Ok

(∫ εk−1+qk−1

εk−1
υ(s)ds +

∫ εk

εk−pk
υ(s)ds

)
− 1

2P [(εk−1 + qk−1)2 − ε2
k−1 + ε

2
k − (εk − pk)2][υ(0) − υ(P)], k = 1, 2, · · · ,m,

υ(0) > υ(P);

then, υ(ε) ≤ 0 holds on ε ∈ Θ.

Proof. Set u(ε) = υ(ε) + ε
P [υ(0) − υ(P)]; then, for all ε ∈ Θ, u(ε) ≥ υ(ε). By a direct computation, it

is easy to obtain the following:
u′(ε) + ıu(ε) + ȷu(T(ε)) ≤ 0, ε , εk, ε ∈ Θ = [0, P],
△u(εk) ≤ −Ok

(∫ εk−1+qk−1

εk−1
u(s)ds +

∫ εk

εk−pk
u(s)ds

)
, k = 1, 2, · · · ,m,

u(0) ≤ u(P);

then, by Lemma 2.3, we have u(ε) ≤ 0 (i.e., υ(ε) ≤ 0). □

3. Main results

First, we give a pair of new definitions for ULS. Second, we prove main results by combining the
MIT and QLM methods.

Definition 3.1. The function ∇0 ∈ D ∩ D0 is defined as a lower solution of the BVP (1) if ∇0
′(ε) ≤ f (ε,∇0(ε),∇0(T(ε))) − H∇0(ε), ε , εk, ε ∈ Θ = [0, P],

△∇0(εk) ≤ Ak

(∫ εk−1+qk−1

εk−1
∇0(s)ds +

∫ εk

εk−pk
∇0(s)ds

)
− OkH∇0

k , k = 1, 2, · · · ,m,
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for any v ∈ C(Θ,R),

Hv(ε) =
{

0, v(0) ≤ v(P),
ıε+ ȷT(ε)+1

P [v(0) − v(P)], v(0) > v(P),

Hv
k =

{
0, v(0) ≤ v(P),
1

2P [(εk−1 + qk−1)2 − ε2
k−1 + ε

2
k − (εk − pk)2][v(0) − v(P)], v(0) > v(P).

Definition 3.2. The function △0 ∈ D ∩ D0 is defined as an upper solution of the BVP (1) if △0
′(ε) ≥ f (ε,△0(ε),△0(T(ε))) − H△0(ε), ε , εk, ε ∈ Θ = [0, P],

△△0(εk) ≥ Ak

(∫ εk−1+qk−1

εk−1
△0(s)ds +

∫ εk

εk−pk
△0(s)ds

)
− OkH△0

k , k = 1, 2, · · · ,m.

Theorem 3.1. Suppose that assumptions (A1)–(A3) hold:
(A1): ∇0(ε),△0(ε) are the lower and upper solutions of the BVP (1), and satisfy ∇0(ε) ≤ △0(ε) on

Θ;
(A2): The function f meets fυ(ε, υ(ε), υ(T(ε))) < 0, fυT(ε, υ(ε), υ(T(ε))) ≤ 0, and the quadratic form

is defined as

K( f (ε, υ, z)) = (υ − v)2 fυυ(ε, υ1, υ2) + 2(υ − v)(z − u) fυυT(ε, υ1, υ2) + (z − u)2 fυTυT(ε, υ1, υ2) ≤ 0,

where ∇0 ≤ v ≤ υ1 ≤ υ ≤ △0,∇0 ≤ u ≤ υ2 ≤ z ≤ △0, and ε , εk, ε ∈ Θ.
(A3): For k = 1, 2, · · · ,m, the functions Ak meet −1 < A

′

k(.) ≤ 0 and A
′′

k (.) ≥ 0.
Then, there exist two monotone sequences {∇n(ε)} and {△n(ε)} of the lower and upper solutions,

respectively, which converge uniformly and quadratically to the extreme solutions of the BVP (1) in
[∇0,△0].

Proof. Using Taylor′s theorem and (A2), we obtain the following:

f (ε, υ(ε), υ(T(ε))) ≤ Q(ε, υ(ε),T(ε), v(ε)),

where

Q(ε, υ(ε),T(ε), v(ε)) = f (ε, v(ε), v(T(ε))) + fυ(ε, v(ε), v(T(ε)))(υ(ε) − v(ε))
+ fυT(ε, v(ε), v(T(ε)))(υ(T(ε)) − v(T(ε))).

Similarly, using Taylor′s theorem together with (A3), we obtain the following:

Ak

(∫ εk−1+qk−1

εk−1

x(s)ds +
∫ εk

εk−pk

x(s)ds
)
− Ak

(∫ εk−1+qk−1

εk−1

υ(s)ds +
∫ εk

εk−pk

υ(s)ds
)

≥ A
′

k

(∫ εk−1+qk−1

εk−1

υ(s)ds +
∫ εk

εk−pk

υ(s)ds
) (∫ εk−1+qk−1

εk−1

(x(s) − υ(s))ds

+

∫ εk

εk−pk

(x(s) − υ(s))ds
)
,

where ∇0(εk) ≤ υ(εk) ≤ x(εk) ≤ △0(εk).
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Now, we provide two sequences, ∇i(ε) and △i(ε), which satisfy the following:

∇i
′(ε) − fυ(ε,∇i−1(ε),∇i−1(T(ε)))∇i(ε) − fυT(ε,∇i−1(ε),∇i−1(T(ε)))∇i(T(ε))
= f (ε,∇i−1(ε),∇i−1(T(ε))) − fυ(ε,∇i−1(ε),∇i−1(T(ε)))∇i−1(ε)
− fυT(ε,∇i−1(ε),∇i−1(T(ε)))∇i−1(T(ε)), ε , εk, ε ∈ Θ = [0, P],
△∇i(εk) = Ak

(∫ εk−1+qk−1

εk−1
∇i−1(s)ds +

∫ εk

εk−pk
∇i−1(s)ds

)
+

A
′

k

(∫ εk−1+qk−1

εk−1
∇i−1(s)ds +

∫ εk

εk−pk
∇i−1(s)ds

) (∫ εk−1+qk−1

εk−1
(∇i(s) − ∇i−1(s))ds

+
∫ εk

εk−pk
(∇i(s) − ∇i−1(s))ds

)
, k = 1, 2, · · · ,m,

∇i(0) = ∇i(P),

(6)



△i
′(ε) − fυ(ε,∇i−1(ε),∇i−1(T(ε)))△i(ε) − fυT(ε,∇i−1(ε),∇i−1(T(ε)))△i(T(ε))
= f (ε,△i−1(ε),△i−1(T(ε))) − fυ(ε,∇i−1(ε),∇i−1(T(ε)))△i−1(ε)
− fυT(ε,∇i−1(ε),∇i−1(T(ε)))△i−1(T(ε)), ε , εk, ε ∈ Θ = [0, P],
△△i(εk) = Ak

(∫ εk−1+qk−1

εk−1
△i−1(s)ds +

∫ εk

εk−pk
△i−1(s)ds

)
+

A
′

k

(∫ εk−1+qk−1

εk−1
∇i−1(s)ds +

∫ εk

εk−pk
∇i−1(s)ds

) (∫ εk−1+qk−1

εk−1
(△i(s) − △i−1(s))ds

+
∫ εk

εk−pk
(△i(s) − △i−1(s))ds

)
, k = 1, 2, · · · ,m,

△i(0) = △i(P).

(7)

Obviously, from Lemmas 2.1 and 2.2, we can see that both (6) and (7) have a unique solution.
Next, we will accomplish the proof through five steps:
Step 1. We will prove that ∇i ≤ ∇i+1 (i = 0, 1, 2, · · · ) and △i ≤ △i−1 (i = 1, 2, · · · ).
Let i = 1 in (6); then, ∇1 meets the following:

∇1
′(ε) − fυ(ε,∇0(ε),∇0(T(ε)))∇1(ε) − fυT(ε,∇0(ε),∇0(T(ε)))∇1(T(ε)) = f (ε,∇0(ε),∇0(T(ε)))

− fυ(ε,∇0(ε),∇0(T(ε)))∇0(ε) − fυT(ε,∇0(ε),∇0(T(ε)))∇0(T(ε)), ε , εk, ε ∈ Θ = [0, P],
△∇1(εk) = Ak

(∫ εk−1+qk−1

εk−1
∇0(s)ds +

∫ εk

εk−pk
∇0(s)ds

)
+

A
′

k

(∫ εk−1+qk−1

εk−1
∇0(s)ds +

∫ εk

εk−pk
∇0(s)ds

) (∫ εk−1+qk−1

εk−1
(∇1(s) − ∇0(s))ds

+
∫ εk

εk−pk
(∇1(s) − ∇0(s))ds

)
, k = 1, 2, · · · ,m,

∇1(0) = ∇1(P).

We set p(ε) = ∇0(ε) − ∇1(ε). Below, we will prove this in two scenarios:
Case (i): ∇0(0) ≤ ∇0(P).

p
′

(ε) − fυ(ε,∇0(ε),∇0(T(ε)))p(ε) − fυT(ε,∇0(ε),∇0(T(ε)))p(T(ε)) = ∇
′

0(ε) − ∇
′

1(ε)
− fυ(ε,∇0(ε),∇0(T(ε)))∇0(ε) + fυ(ε,∇0(ε),∇0(T(ε)))∇1(ε)
− fυT(ε,∇0(ε),∇0(T(ε)))∇0(T(ε)) + fυT(ε,∇0(ε),∇0(T(ε)))∇1(T(ε))
≤ f (ε,∇0(ε),∇0(T(ε))) − fυ(ε,∇0(ε),∇0(T(ε)))∇1(ε) − fυT(ε,∇0(ε),∇0(T(ε)))∇1(T(ε))
− f (ε,∇0(ε),∇0(T(ε))) + fυ(ε,∇0(ε),∇0(T(ε)))∇0(ε) + fυT(ε,∇0(ε),∇0(T(ε)))∇0(T(ε))
− fυ(ε,∇0(ε),∇0(T(ε)))∇0(ε) + fυ(ε,∇0(ε),∇0(T(ε)))∇1(ε)
− fυT(ε,∇0(ε),∇0(T(ε)))∇0(T(ε)) + fυT(ε,∇0(ε),∇0(T(ε)))∇1(T(ε)) = 0,

∆p(εk) = ∆∇0(εk) − ∆∇1(εk)

≤ Ak

(∫ εk−1+qk−1

εk−1

∇0(s)ds +
∫ εk

εk−pk

∇0(s)ds
)
− Ak

(∫ εk−1+qk−1

εk−1

∇0(s)ds +
∫ εk

εk−pk

∇0(s)ds
)
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− A
′

k

(∫ εk−1+qk−1

εk−1

∇0(s)ds +
∫ εk

εk−pk

∇0(s)ds
) (∫ εk−1+qk−1

εk−1

(∇1(s) − ∇0(s))ds

+

∫ εk

εk−pk

(∇1(s) − ∇0(s))ds
)

= A
′

k

(∫ εk−1+qk−1

εk−1

∇0(s)ds +
∫ εk

εk−pk

∇0(s)ds
) (∫ εk−1+qk−1

εk−1

p(s)ds +
∫ εk

εk−pk

p(s)ds
)
,

p(0) ≤ p(P).

Therefore, from Lemma 2.3, we know that p(ε) ≤ 0 (i.e., ∇0 ≤ ∇1).
Case (ii): ∇0(0) > ∇0(P).
By a direct computation, we obtain the following:

p′(ε) − fυ(ε,∇0(ε),∇0(T(ε)))p(ε) − fυT(ε,∇0(ε),∇0(T(ε)))p(T(ε))
+
− fυ(ε,∇0(ε),∇0(T(ε)))ε− fυT(ε,∇0(ε),∇0(T(ε)))T(ε)+1

P [p(0) − p(P)] ≤ 0, ε , εk, ε ∈ Θ = [0, P],
△p(εk) ≤ A

′

k

(∫ εk−1+qk−1

εk−1
∇0(s)ds +

∫ εk

εk−pk
∇0(s)ds

) (∫ εk−1+qk−1

εk−1
p(s)ds +

∫ εk

εk−pk
p(s)ds

)
− 1

2P [(εk−1 + qk−1)2 − ε2
k−1 + ε

2
k − (εk − pk)2][p(0) − p(P)], k = 1, 2, · · · ,m,

p(0) > p(P).

Then, by the Lemma 2.4, we have p(ε) ≤ 0 (i.e., ∇0 ≤ ∇1).
By the same way, we can show that △1 ≤ △0. Then, by mathematic induction, we obtain ∇i ≤ ∇i+1

(i = 0, 1, 2, · · · ) and △i ≤ △i−1 (i = 1, 2, · · · ).
Step 2. We show that ∇1 ≤ △1 for all ε ∈ Θ.
Let p(ε) = ∇1(ε) − △1(ε); then, by (A1) − (A3), we have the following:

p
′

(ε) − fυ(ε,∇0(ε),∇0(T(ε)))p(ε) − fυT(ε,∇0(ε),∇0(T(ε)))p(T(ε)) = ∇
′

1(ε) − △
′

1(ε)
− fυ(ε,∇0(ε),∇0(T(ε)))∇1(ε) + fυ(ε,∇0(ε),∇0(T(ε)))△1(ε)
− fυT(ε,∇0(ε),∇0(T(ε)))∇1(T(ε)) + fυT(ε,∇0(ε),∇0(T(ε)))△1(T(ε))
= f (ε,∇0(ε),∇0(T(ε))) − f (ε,△0(ε),△0(T(ε))) + fυ(ε,∇0(ε),∇0(T(ε)))(△0(ε) − ∇0(ε))
+ fυT(ε,∇0(ε),∇0(T(ε)))(△0(T(ε)) − ∇0(T(ε))) ≤ 0,

∆p(εk) = ∆∇1(εk) − ∆△1(εk)

= Ak

(∫ εk−1+qk−1

εk−1

∇0(s)ds +
∫ εk

εk−pk

∇0(s)ds
)
− Ak

(∫ εk−1+qk−1

εk−1

△0(s)ds +
∫ εk

εk−pk

△0(s)ds
)

+ A
′

k

(∫ εk−1+qk−1

εk−1

∇0(s)ds +
∫ εk

εk−pk

∇0(s)ds
) (∫ εk−1+qk−1

εk−1

(∇1(s) − ∇0(s))ds

+

∫ εk

εk−pk

(∇1(s) − ∇0(s))ds
)

− A
′

k

(∫ εk−1+qk−1

εk−1

∇0(s)ds +
∫ εk

εk−pk

∇0(s)ds
) (∫ εk−1+qk−1

εk−1

(△1(s) − △0(s))ds

+

∫ εk

εk−pk

(△1(s) − △0(s))ds
)

≤ A
′

k

(∫ εk−1+qk−1

εk−1

∇0(s)ds +
∫ εk

εk−pk

∇0(s)ds
) (∫ εk−1+qk−1

εk−1

p(s)ds +
∫ εk

εk−pk

p(s)ds
)
,
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p(0) ≤ p(P).

Therefore, as stated in Lemma 2.3, we have p(ε) ≤ 0 (i.e., ∇1 ≤ △1).
Step 3. It is clear that from the two above steps, we can obtain two monotone sequences, ∇i(ε) and

△i(ε), which satisfy the following:

∇0(ε) ≤ ∇1(ε) ≤ · · · ≤ ∇n(ε) ≤ · · · ≤ △n(ε) ≤ · · · ≤ △1(ε) ≤ △0(ε), ε ∈ Θ,

where ∇i(ε),△i(ε) ∈ D ∩ D0, and satisfy (6) and (7), respectively.
It can be readily demonstrated that ∇n(ε), △n(ε) are equi-continuous and uniformly bounded.

Therefore, by the Ascoli-Arzela criterion [23], we know that functions r(ε) and ρ(ε) exist, and the
following expression uniformly holds on all ε ∈ Θ:

lim
n→∞
∇n(ε) = r(ε), lim

n→∞
△n(ε) = ρ(ε).

Obviously, by letting i→ ∞ in (6) and (7), r(ε) and ρ(ε) are two solutions of the BVP(1).
Step 4. We prove that r(ε), ρ(ε) are the minimal and maximal solutions of the BVP(1), respectively.
Set x(ε) as an any solution of the BVP(1) and ∇0(ε) ≤ x(ε) ≤ △0(ε). We assume that ∇n(ε) ≤ x(ε) ≤

△n(ε) holds for an integer n; then, we prove that ∇n+1(ε) ≤ x(ε) ≤ △n+1(ε).
Let p(ε) = ∇n+1(ε) − x(ε); then,

p
′

(ε) − fυ(ε,∇n(ε),∇n(T(ε)))p(ε) − fυT(ε,∇n(ε),∇n(T(ε)))p(T(ε)) = ∇
′

n+1(ε) − x
′

(ε)
− fυ(ε,∇n(ε),∇n(T(ε)))∇n+1(ε) + fυ(ε,∇n(ε),∇n(T(ε)))x(ε)
− fυT(ε,∇n(ε),∇n(T(ε)))∇n+1(T(ε)) + fυT(ε,∇n(ε),∇n(T(ε)))x(T(ε))
= f (ε,∇n(ε),∇n(T(ε))) − f (ε, x(ε), x(T(ε))) − fυ(ε,∇n(ε),∇n(T(ε)))(∇n(ε) − x(ε))
− fυT(ε,∇n(ε),∇n(T(ε)))(∇n(T(ε)) − x(T(ε))) ≤ 0,

∆p(εk) = ∆∇n+1(εk) − ∆x(εk)

= Ak

(∫ εk−1+qk−1

εk−1

∇n(s)ds +
∫ εk

εk−pk

∇n(s)ds
)
− Ak

(∫ εk−1+qk−1

εk−1

x(s)ds +
∫ εk

εk−pk

x(s)ds
)

+ A
′

k

(∫ εk−1+qk−1

εk−1

∇n(s)ds +
∫ εk

εk−pk

∇n(s)ds
) (∫ εk−1+qk−1

εk−1

(∇n+1(s) − ∇n(s))ds

+

∫ εk

εk−pk

(∇n+1(s) − ∇n(s))ds
)

= Ak

(∫ εk−1+qk−1

εk−1

∇n(s)ds +
∫ εk

εk−pk

∇n(s)ds
)
− Ak

(∫ εk−1+qk−1

εk−1

x(s)ds +
∫ εk

εk−pk

x(s)ds
)

+ A
′

k

(∫ εk−1+qk−1

εk−1

∇n(s)ds +
∫ εk

εk−pk

∇n(s)ds
) (∫ εk−1+qk−1

εk−1

(x(s) − ∇n(s))ds

+

∫ εk

εk−pk

(x(s) − ∇n(s))ds
)

+ A
′

k

(∫ εk−1+qk−1

εk−1

∇n(s)ds +
∫ εk

εk−pk

∇n(s)ds
) (∫ εk−1+qk−1

εk−1

p(s)ds +
∫ εk

εk−pk

p(s)ds
)

≤ A
′

k

(∫ εk−1+qk−1

εk−1

∇n(s)ds +
∫ εk

εk−pk

∇n(s)ds
) (∫ εk−1+qk−1

εk−1

p(s)ds +
∫ εk

εk−pk

p(s)ds
)
,
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p(0) ≤ p(P).

Therefore, as stated in Lemma 2.3, we get p(ε) ≤ 0 (i.e., ∇n+1 ≤ x). By the same token, we know
that x ≤ △n+1. Therefore, ∇n+1(ε) ≤ x(ε) ≤ △n+1(ε) holds. Finally, by letting n → ∞, we can get that
r(ε) ≤ x(ε) ≤ ρ(ε).

Step 5. We show that the two above monotone sequences satisfy a quadratic convergence.
Without a loss of generality, we only prove that ∇n satisfies a quadratic convergence.
Let pn(ε) = r(ε) − ∇n(ε) ≥ 0; then, we obtain the following system:

pn
′(ε) − fυ(ε,∇n−1(ε),∇n−1(T(ε)))pn(ε) − fυT(ε,∇n−1(ε),∇n−1(T(ε)))pn(T(ε)) = r

′

(ε) − ∇
′

n(ε)
− fυ(ε,∇n−1(ε),∇n−1(T(ε)))r(ε) − fυT(ε,∇n−1(ε),∇n−1(T(ε)))r(T(ε))
+ fυ(ε,∇n−1(ε),∇n−1(T(ε)))∇n(ε) + fυT(ε,∇n−1(ε),∇n−1(T(ε)))∇n(T(ε))
= f (ε, r(ε), r(T(ε))) − fυ(ε,∇n−1(ε),∇n−1(T(ε)))∇n(ε)
− fυT(ε,∇n−1(ε),∇n−1(T(ε)))∇n(T(ε)) − f (ε,∇n−1(ε),∇n−1(T(ε)))
+ fυ(ε,∇n−1(ε),∇n−1(T(ε)))∇n−1(ε)
+ fυT(ε,∇n−1(ε),∇n−1(T(ε)))∇n−1(T(ε)) − fυ(ε,∇n−1(ε),∇n−1(T(ε)))r(ε)
− fυT(ε,∇n−1(ε),∇n−1(T(ε)))r(T(ε)) + fυ(ε,∇n−1(ε),∇n−1(T(ε)))∇n(ε)
+ fυT(ε,∇n−1(ε),∇n−1(T(ε)))∇n(T(ε))

=
1
2

[p2
n−1(ε) fυυ(ε, υ1, υ2) + 2pn−1(ε)pn−1(T(ε)) fυυT(ε, υ1, υ2) + p2

n−1(T(ε)) fυTυT(ε, υ1, υ2)],

where ∇n−1(ε) ≤ υ1 ≤ r(ε),∇n−1(T(ε)) ≤ υ2 ≤ r(T(ε)).

∆pn(εk) = ∆r(εk) − ∆∇n(εk)

= Ak

(∫ εk−1+qk−1

εk−1

r(s)ds +
∫ εk

εk−pk

r(s)ds
)

− Ak

(∫ εk−1+qk−1

εk−1

∇n−1(s)ds +
∫ εk

εk−pk

∇n−1(s)ds
)

− A
′

k

(∫ εk−1+qk−1

εk−1

∇n−1(s)ds +
∫ εk

εk−pk

∇n−1(s)ds
) (∫ εk−1+qk−1

εk−1

(r(s) − ∇n−1(s))ds

+

∫ εk

εk−pk

(r(s) − ∇n−1(s))ds
)

+ A
′

k

(∫ εk−1+qk−1

εk−1

∇n−1(s)ds +
∫ εk

εk−pk

∇n−1(s)ds
) (∫ εk−1+qk−1

εk−1

pn(s)ds +
∫ εk

εk−pk

pn(s)ds
)

= A
′

k

(∫ εk−1+qk−1

εk−1

∇n−1(s)ds +
∫ εk

εk−pk

∇n−1(s)ds
) (∫ εk−1+qk−1

εk−1

pn(s)ds +
∫ εk

εk−pk

pn(s)ds
)

+
1
2

A
′′

k (ξ)
(∫ εk−1+qk−1

εk−1

pn−1(s)ds +
∫ εk

εk−pk

pn−1(s)ds
)2

,

pn(0) = pn(P),

where ∫ εk−1+qk−1

εk−1

∇n−1(s)ds +
∫ εk

εk−pk

∇n−1(s)ds < ξ <
∫ εk−1+qk−1

εk−1

r(s)ds +
∫ εk

εk−pk

r(s)ds.
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We denote

σ(pn−1(ε) , pn−1(T(ε))) =
1
2

[p2
n−1(ε) fυυ(ε, υ1, υ2) + 2pn−1(ε)pn−1(T(ε)) fυυT(ε, υ1, υ2)

+ p2
n−1(T(ε)) fυTυT(ε, υ1, υ2)].

Then, by Lemma 2.1, the solution of the above system is as follows:

pn(ε) =
∫ P

0
Γ(ε, s)[σ(pn−1(s), pn−1(T(s))) + fυT(s,∇n−1(s),∇n−1(T(s)))pn(T(s))]ds

+

m∑
k=1

Γ(ε, εk)
[
A
′

k

(∫ εk−1+qk−1

εk−1

∇n−1(s)ds +
∫ εk

εk−pk

∇n−1(s)ds
) (∫ εk−1+qk−1

εk−1

(pn(s))ds

+

∫ εk

εk−pk

(pn(s))ds
)
+

1
2

A
′′

k (ξ)
(∫ εk−1+qk−1

εk−1

pn−1(s)ds +
∫ εk

εk−pk

pn−1(s)ds
)2 .

Let | fυυ| ≤ δ1, | fυυT| ≤ δ2, | fυTυT| ≤ δ3; then,

σ(pn−1(ε), pn−1(T(ε))) ≤
1
2
δ1 p2

n−1(ε) + δ2 pn−1(ε)pn−1(T(ε)) +
1
2
δ3 p2

n−1(T(ε))

≤
1
2

(δ1 + δ2)p2
n−1(ε) +

1
2

(δ2 + δ3)p2
n−1(T(ε)).

We take the norm of pn−1 on Θ by ∥pn−1∥D0 = maxΘ{pn−1(ε), pn−1(T(ε))}.
Due to

(
∫ εk−1+qk−1

εk−1

pn−1(s)ds +
∫ εk

εk−pk

pn−1(s)ds)2 ≤ (pk + qk−1)2∥pn−1∥
2
D0
,

by the expression of pn(ε), it is clear that there exist a constant µ such that

∥pn∥D0 ≤ µ∥pn−1∥
2
D0
.

Therefore, pi is a quadratic convergence. This completes the proof. □

4. Conclusions

In 2010, Tariboon proposed a new impulsive integral condition, and discussed the existence of
extreme solutions for a delay pulse differential system [12]. Subsequently, this impulsive integral
condition has also been applied to other differential equation systems. For example, Liu et al.
introduced this impulsive integral condition into an integral-differential equation with an integral
boundary value condition, and obtained the sufficient condition for the existence of extreme
solutions [22]. Unlike previous studies, in this paper, we have modified the impulsive integration
condition. Interestingly, we found that the extremum solution still exists in the pulse functional
system under the modified impulse integral condition. More importantly, we derived that the
monotonic sequence not only uniformly converges to the extremum solution, but also has a quadratic
convergence. We note that a quadratic convergence has not been discussed in previous
studies [12, 22]. Due to the faster speed of a quadratic convergence compared to a uniform
convergence, and the fact that a quadratic convergence is rarely considered in impulse integral
conditions, we hope that the methods and conclusions proposed in this paper can be better applied in
practical problems.
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