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1. Introduction

Lifetime models have found widespread application in statistical modeling across various
scientific and engineering domains. Lindley distribution, as one of the classical distributions, was first
proposed by Lindley [1]. Lindley distribution is highly flexible and has a wide range of applications,
such as in the field of medicine, astrophysics, and reliability engineering. However, it has strong
limitations in processing complex data, such as skewed and multi-peak data. Based on this, many
researchers improved the original Lindley distribution by adding parameters. With the help of the
power exponentiated family of distributions, Rajitha and Akhilnath [2] added two parameters to the
original Lindley distribution. They called it PEL distribution and notes its higher flexiblility compared
to the original model. Fatehi and Chhaya [3] extended the Lindley distribution into the extended odd
Weibull-Lindley family. Ashour and Eltehiwy [4] introduced a three-parameter exponentiated power
Lindley (EPL) distribution by extending the two-parameter power Lindley distribution. Alizadeh et
al. [5] defined a four-parameter exponentiated power Lindley power series distribution on the EPL
distribution and found that the newly proposed model provided a better fit than the original Lindley
distribution to real datasets.

In most real-life testing and reliability experiments, it is seldom possible to wait until all test
samples fail; in other words, it is difficult for investigators to observe the lifetime of all items under
test, so experimental data obtained often contain censored data. The development and replacement of
censored samples have been the focus of many researchers [6—8]. Type-I and type-II censored schemes,
as classical methods in right examination, can only move the unit point at the end of the experiment,
which lacks some flexibility [9]. The progressively type-II censored scheme is popular for its flexibility,
whose various properties and applications have been extensively studied. Balakrishnan et al. [10]
discussed the maximum likelihood estimation and the corresponding interval estimation of extreme
value distributions under progressively type-II censored samples. Based on progressively type-II
censored samples, Seo et al. [11] studied the hierarchical Bayesian estimation of the unknown
parameters of a lifetime distribution with a bathtub-shaped failure rate function. Alshenawy et al. [12]
used the maximum likelihood estimation method and the maximum product spacing method to
estimate the parameters of the extended odd Weibull exponential distribution under progressively type-
IT censored samples. Their study further delved into the construction of both asymptotic and bootstrap
confidence intervals for the said parameters.

This paper aims to introduce a variant of the Lindley distribution, referred to as the extension of
the generalized Lindley (NGL) distribution. This extension is developed under progressively type-I1
censored samples with the objective of broadening the applicability of the traditional Lindley
distribution. The NGL distribution is highly flexible, featuring many variants of the Lindley
distribution and exponential function. Another purpose of this paper is to evaluate the estimator
performance of the NGL distribution in preparation for the subsequent processing of real datasets.

The remainder of this paper is organized as follows: In Section 2, we introduce the NGL
distribution and its basic properties. The numerical characteristics of the proposed distribution are
investigated in Section 3. We study three estimators of this distribution in Section 4, obtain the
corresponding point and interval estimates, and perform Monte Carlo simulations in Section 5. In
Section 6, we examine the practical application of the proposed distribution using a real dataset. In
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Section 7, the findings of this paper are summarized, and future research priorities are indicated.
2. Generalized Lindley distribution
In this section, we will introduce the NGL distribution, whose probability density function (PDF)
and cumulative distribution function (CDF) are
f;2,0) =21 -0+ 20x),x >0,1>00<60<1, (1)
F(x;,0)=1—(1+0x)e™™,x>0,1>00<6<1. )

Here, 4 and 6 are the scale and shape parameters of the NGL(A, 8), respectively.
® [ff =1/(A+ 1), then the CDF is the Lindley distribution, i.e.,

A+1+4
A+1

F(x;0) =1— e ,x>0,1>0. (3)

® I[ff = p/(A+ ), then the CDF is a two-parameter Lindley distribution [13], i.e.,
FoLB) =1- 1+ x)e ™ x>01>08>0. 4)

B+

® If6 — 0", then the CDF is exponential distribution, i.e.,
Fx;)=1—e,x>0,1>0. (5)

® I[ff =1/(n+ 1), then the CDF is a two-parameter Lindley distribution [14], i.e.,
FeoAn) =1—-(1 +$x)e‘}‘x,x >0,1>0,n>—1. (6)

The survival function (SF) and hazard rate function (HRF) of the NGL distribution are:

S(x;4,0)=1—F(x;1,0) = (14 A0x)e ™, o
. _ JxA8) . A8
W6 46) = ream = 4~ Toaer (8)

There are two main models for the NGL distribution: the inverted J-type and the unimodal and
left-leaning (see Figure 1). This type of model is very suitable for the study of product life and species
abundance distribution. 8, the shape parameter, has a large influence on the probability density
distribution: when 6 increases, the PDF image changes and shows a constant tendency to shift to the
right. A also has a certain impact on the NGL distribution; with an increase in 4, the peak value of PDF
increases, and the image presents a left-leaning trend.
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Figure 1. PDF curves of the NGL distribution for different shape and scale parameters.

The HRF curves also have three shapes: increasing, constant, and upside-down bathtub (see
Figure 2). With an increase in A and 8, the slope of (0,2) will increase continuously along with the
decrease of peak value.
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Figure 2. HRF curves of the NGL distribution for different shape and scale parameters.

3. Statistical properties of NGL distribution

In this section, we discuss some important statistical properties of NGL distribution, such as
moments, kurtosis and skewness, quantile functions, order statistical functions, and other statistical

properties.
3.1. Moments and related measures for the NGL distribution

As one of the most important digital features, the r-th moment plays an important role in both
application and theory. It can be represented by the following formula

pe = x"e™ (1 -0+ A0x)dx = (1 — A7 (r+1) + 047 'T'(r + 2). 9)

The first four moments can be easily calculated:
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=1+ 2, =2 +40)173u; = (6 + 189174 1y = (24 + 966)17°. (10)
Also, the variance of X is
Var(X) = A+ 401 —1—-20 — 0% (11)
3.2. Coefficient of skewness and kurtosis for the NGL distribution
The coefficient of kurtosis and skewness are important for describing the tail shape, peak degree,

and asymmetry of probability distributions [15]. Let NCS stand for coefficient of skewness and NCK
for coefficient of kurtosis. According to Eqgs (10) and (11), NCS and NCK can be obtained as:

_ p3=3papa+2(ue)® .4-A+119)l+92/'l—3—99—692
NCS = [V(X)]3/2 - (2A+401—1-26-62)3/2 ’ (12)
_ Ma—Apap3+6(ug)?pua—3(ua)?* 2423(1+40)-242%(1+30)(6+1)+122(1+6)%(1+260)-3(1+0)*
NCK = V(x)]? - (2A+461-1-260—-02)2 - (13)

The coefficient of kurtosis and skewness of the NGL distribution show a certain regularity. In the
NGL distribution, the coefficient of kurtosis and skewness are usually negatively correlated with 8 and
positively correlated with A. This statistical property suggests that the thickness and asymmetry of the
NGL distribution tail tend to decrease as 0 increases, while an increase in A increases these
characteristics. Table 1 and Figure 3 illustrate different values of the coefficient of kurtosis and
skewness.

Table 1. The coefficient of kurtosis and skewness of NGL distribution under given parameter values.

0 A NCS NCK

0.1 2.0001 8.8471
0.3 0.9 1.8457 7.8450
0.5 ' 1.7213 7.1333
0.8 1.6875 6.7500
0.1 1.9582 8.6941

0.3 1 1.7860 7.6311

0.5 1.6198 6.7959
0.8 1.4519 6.1212
0.1 2.0342 9.0202
0.3 12 1.8506 7.8409
0.5 ) 1.6577 6.8325
0.8 1.4134 5.8320
0.1 2.2550 10.1405
0.3 L5 2.0647 8.7803
0.5 ' 1.8590 7.5600
0.8 1.5860 6.2452
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Figure 3. Plots of the coefficient of kurtosis and skewness of the NGL distribution.

3.3. Moment-generating function for the NGL distribution

Using Eq (9), the moment-generating function of the NGL distribution can be obtained as

M(t) = jwetxf(x)dx = ig]wxrf(x)dx
0 = Jo

= 0 S [ = AT (r 4 1) + 64T (r + 2)].

3.4. Quantile function for the NGL distribution

(14)

The quantile function can be obtained from the inverse function of CDF. That is, x = F~1(R). By

applying Eq (2), we have
1—(1+26x)e™** =R

Lett = (1 — R)e?*, thenx = %lnﬁ. Hence

t 1 t 1 t L  Rp-1 t R-1
lnﬁ—g(t—l)zﬁ—eﬂ/ee:—ge 6_9_%:_5_]/'/(_1)'
e Geb
Then
t = —60W(ED).

Oeb

(15)

Here, W is Lambert W function. According to the basic properties of the Lambert W function, the

AIMS Mathematics Volume 10, Issue 5, 10554-10590.



10561

quantile function of the NGL distribution can be obtained as

—1/64_
_QW("’TM)_l

X = Y . (16)

3.5. Order statistics of the NGL distribution

Order statistics are an important analytical tool for identifying outliers. The earliest failure time
of a product can be expressed by the minimum order statistic (the smallest observed value in the
sample), and the longest life of a product can be estimated by the maximum order statistic (the largest
observed value in the sample). Let (X, X5,...,X;) be a random sample from the NGL distribution,
which is sorted from smallest to largest as (X(1), X(2), .-, X(n)), Where the i-th order statistic is X;).

The PDF of the i-th order statistic X(;) is fX(i)(x) = #@F(x)i‘l[l —F()]™f(x). By

inserting Eqs (1) and (2), the PDF of i-th order statistic X(;) of the NGL distribution is
fry () = ﬁ [1—(1+20x)e ™)1 [(1 + A0x)e " Ae ™ (1 — 6 + 10x),x > 0,1>0,0< 0 < 1. (17)
The PDF of the minimum order statistics X(qy of the NGL distribution can be obtained as
frpy () =na(1 + A0x)" e ™ (1 — 9 + 10x). (18)
The PDF of the maximum order statistics X, of the NGL distribution can be obtained as

frw @) = nA[1 = (1 +26x)e™]""1(1 - 6 + 26x)e ™, (19)

4. Parameter estimation of the NGL distribution
4.1. Maximum product spacing estimation

Maximum product spacing (MPS) estimation is a robust method. It uses an optimization
algorithm to find the corresponding parameter values that maximize the product spacing of the
parametric functions [16]. Let (X1.m00 Xoomn == Xmem:n) b€ the progressively type-II censored
sample of the NGL distribution, and x1..p., X2.mm0 ***» Xmem:n 1S the observation of the sample
Xime Xoomen = Xmemen) - For convenience, in the following discussion, we always set X; = Xj.n.n.
The product spacing function under the progressively type-II censored scheme is [16]:

G(4,0) = T2 [F (xi3 4, 0) — F (xi13 A, )] TT21 S(xi 4, 0)"1. (20)
Using Eq (2), the product spacing function of the NGL distribution can be obtained as
G4, 0]x) = [T (L + A0x;_1)e i1 — (1 + 20x)e ™ [T2,[(1 + A0x)e~*i]Pi  (21)

and the log-product spacing function is given by
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G (A,0|x) = Y™ n[ (1 + A0x;_1)e -1 — (1 + A0x;)e ]| + T, P[In(1 + A0x)Ax;]. (22)
Letg(4,0|x) =InG (4,0|x) = H(4,0|x) + M(4,0|x),
where
HC&HMJ-Zm+”n[0g+19m_ge”uF1—(1+10m)€*“] (23)
M(2,0|x) = Pi[In(1 + A0x;) — Ax;] (24)

MPS estimators of A and 6, denoted by /TMPS and éMp s, are the solutions of Eqgs (25) and (26).

dg(A01x) _ dH(A6|x) , IM(A6]x) _
ar  ax + ar 0, (25)
dg(A61x) _ dH(A6|x) , IM(A6]x) _
e a0 + /e 0. (26)
Here,
0H(A0|x) _ Ox;_ s A
e I”Jil[—mexj_le M-y — Qe ™M), (27)
aH(/'l 9]x)

z"”iﬂzfgtl—-xl11n(1-k19xl1n “Mxic1 4 [x, + A0x2 — Ox;le i}, (28)

OM(A,0|x) _ wm Pilx;
90 “=l1426x) (29)

AM(A,0]x) Ox;
—or — Zi= Py — %) (30)

Aups and By,ps cannot be obtained directly from the above equations, so we used the Newton Raphson
algorithm to obtain the approximate maximum product spacing estimates of these parameters. The
steps are as follows:

(1) Establish the corresponding log-product spacing function.

(i1)) Compute the gradient vector and Hessian matrix for the log-product spacing function:

0°g(4,6|x) 9°g(4,6|x)

ag(4,8|x) dg(4,0]x) EYE 0100
Va(l, 0 =( , )Hzﬁ -
9(4,81x) oA 26 O =1 52002 010) 02g(1 01%)
9001 962

(iii) Select the appropriate initial value (1©, §(©)T,
(iv) The parameters are updated by Newton iteration formula:

92g(A0 0%y 921,00 |x)\ [9g(A1"),000|x)

ARFDT _ [a00] 022 9200 aa 31)
pk+1) 2109 92g(A®,0Mx)  92ga®,eM|x) | |aga®,00)|x) |
GEEY 962 20

(v) Repeat (iv) until the change in parameter values between the two iterations is less than a very
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small threshold: A%+ — 2®)| < ¢ |9+ — g(K)| < ¢

(vi) The final estimated parameters can be obtained and are noted bydyps = A**D, 8,,ps =
9(k+1).

4.2. Maximum likelihood estimation

Under the progressively type-II censored sample, the likelihood function is ([18])
L(A,01x) = c[Ti21 f (xS (xi 4, 0)"%, (32)

Here, c=n(n—P,—1)(n—P; — P, —2) - (n— X27"(P; + 1)) . Using Eqs (1) and (7), the
likelihood function of the NGL distribution can be represented as

i=1
m

L(A,0|x) = cA™[1(1 =6+ 20x)(1 + 210x)Piexp( — Ax; (1 + P)). (33)
The log-likelihood function of the NGL distribution is
IA0x)=Inc+minA =AY x;(1+P) + X2, In(1 -0 + A0x;) + X%, P In(1 + A0x;). (34)

The ML estimator of A and 8 can be obtained by solving the following equations:

ol(A0|x) _ m m Ox; m Pifx;
oA 2 =1 % (1+ P + iz 1-6+20x; +2im 1+10x; 0, (33)
al(1,0)x Ax;—1 PiAx;
o - =1 , 1T = (36)
a6 1-0+10x; 1+16x;

Newton Raphson algorithm to obtain the corresponding result. Due to the complexity of Eqs (35)
and (36), it is difficult to judge the existence and uniqueness of A, and 8,,, by conventional
numerical methods. In this paper, a graphical tool, the counter diagram, is employed, as referenced in
Alotaibi et al. [19]. Setting the real values (4,60) = (0.5,0.75), (m,n) = (50,100), P = (0 * 49,50)
and generating progressively type-II censored samples, the counter diagram of A,;, and 8,,,, which is
obtained from Eq (34), is shown in Figure 4. It shows that the likelihood function obtained has only
one obvious peak, that is, there is uniqueness.

Figure 4 shows the existence and uniqueness of ML estimates of A and 8, with (A4, Oyy.) =
(0.855,0.625). The ML estimation of S(t) and A(t) can be obtained by substituting A,;;, and 8,,;, [20]:

A o ) A A0
S®) = (1 + Ay Oy t)e ™ Mitand h(t) = Ay, — 1+;;Léw,:Lt'

AIMS Mathematics Volume 10, Issue 5, 10554—-10590.



10564

075 ; ; ; i ; ; —-115
v /’ @
N
& R 7,
07 / / ’
o
N 120
065 /
/ L
06 ] & 125
o
&
o
<055 A
" 120
05f
G
o N
045]
13
04+ P K
A0 »
/

I ! ! L L I 140
0.2 0.3 04 0.5 0.6 07 0.8 0.9 1

Figure 4. Counter diagram of ,,, and 8, .
4.3. Asymptotic confidence interval

In the above analysis, we have obtained point estimates for A, 8, S(t), and A(t). Point estimates
provide a singular numerical approximation for unknown parameters, yet they fall short of
encapsulating the full spectrum of uncertainty associated with these parameters. At this point, we need
to transition from point estimation to interval estimation to get a more comprehensive understanding.

~ d
The ML estimator is asymptotically normal [21]. That is, Vn(@ — ®) — N(0,171(0)), where & =

(1,0), and I"1(0) as the inverse of the information matrix for unknown parameters, and it can be
obtained as follows:

_ 2kl 2Ael\

-1
19\ ~ 072 01006 _ 11 112)
I7(0) = _d%(elx) _ da%elx) _<121 lr,) ' (7
2002 262 A
=0
with the following elements
2l@lx) _  m  om 0%x;? _ym _Pif%x? (38)
Py Y =1(1-6+20 ;)? =1 (14+16x;)?
2%101x) _ vm X m Pix;  _ 9%L0In)
9100 ~ “1=1(1-0+16x;)2 Zl'=1(1+;19xi)2_ EYEY (39)
21001x) _  wm _xi—1D* om | Pid®xf
202 =1 (1-0+16x;)2 Zi=1(1+/‘wxi)2' (40)

The 100(1 — a)% asymptotic confidence intervals (ACIs) for A and 8 are </T + Z4)2 ’Var(i))
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and (@ t Zq), ’Var(@)), respectively. Here, z,/, represents the upper a/2 percentage point of

N(0,1).

Similarly, the ACIs of S(t) and /(t) can also be constructed by calculating the corresponding
variances, among which one of the most famous methods is Greene’s delta method [22]. Under this
method, the distribution of S(¢t)(%(t)) is approximately a normal distribution with mean S(t)(4(t))

and variance of = AsI™" (4,045 1=2.0=8)( = Al (4, 0)4}|1=20=)) [23], where A5 =

(m 6S(x)) A —(M oh(x)

o1 a0 ) A=\, 5 ), with the following elements

S(X) _ ,p 4 ax 0S() ax 0h) _ 68 o) _ A
a1 = (6 —1-20x)xe > 90 = Axe ary (1+16x)2° 86 ~ (A6x+1)2’

According to the above conclusions, the 100(1 — @)% ACIs ofS(t) and A(t) for a given t are

(3 £ 2ay2/02), (fz(t) + Za/2 J:;)

Since the asymptotic property of MPS estimator is similar to that of MLE estimator, this paper adopts
the above method to obtain the interval estimation of MPS. For more details, see Ghosh and
Jammalamadaka [24].

4.4. Bayesian estimation

In this section, the Bayesian estimator is used to estimate the parameters of the NGL distribution,
and the corresponding highest posterior density (HPD) intervals are considered. The idea of Bayesian
estimation in this paper refers to several papers [25-28]. Assume that A and 6 are independent and
obey gamma distributions. The prior PDFs of A and @ are:

o1

(Ao, wy) = F(‘E;l) A%t le=@14 3 > 0,0, > 0,w; > 0, (41)
02

(0|0, wy) = r“zgz)eﬂz—le—wz",e > 0,0, > 0,w, > 0. (42)

Based on these assumptions, the joint prior density function of A and 8 can be obtained
(4, 0) «x 19171927 le=w14=w20 3 9 > 0 ¢, w, > 0. (43)

According to the likelihood function with the prior knowledge and Bayes' theorem, the posterior
density distribution of the unknown parameters A and 6 can be obtained:

L(A,0|x)7(1,0)
Jo 1T LA610)m(A,6)dAd6’

(4, 0|x) = (44)

Using Eqs (33) and (47), the posterior density distribution can be expressed:

AIMS Mathematics Volume 10, Issue 5, 10554—-10590.
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AM+01-1992=1 oxp(—w 1 A—wo0-A X, x;(1+P)) [T, (1-6+A60x) (1+A6x))Pi

(4, Hlx) - f(;ﬂf;o)lm*"’l‘le"rl exp(—~wiA-w0-A X x;(1+P;)) [T, (1-6+10x;)(1+10x;)PidAde’ (45)

The loss function is a key factor to make decisions in Bayesian estimation. In this paper, the SE and
GE loss function are used to measure overestimation and underestimation in the investigation. The SE
and GE loss functions, as symmetric loss function and asymmetric loss function, respectively, have
different measures of the importance of overestimation and underestimation. The Bayesian estimator
represents the posterior mean in the case of the SE loss function, and overestimation and
underestimation have equal weight. The SE loss is defined as [29]

Ls(#(2,6),(1,0)) = (¢(1,6) — $(4,6))?, (46)

and the corresponding Bayesian estimator is
$s(1,0) = E[p(A O)Ix] = [ [; (4, 0)m(2, 6 |x)dAd. (47)

The GE loss, which has a different tendency to weight overestimation and underestimation, is defined
as [30]

2~ $(2,0)\/ H(2,0
Lo(p(16), (4, 0)) o« (223) —ylog (553) =1y %0, (48)

here, y is the parameter of the degree of asymmetry. Under GE loss, the Bayesian estimator is

B4, 0) = [E{d, O}V 0]V = {7 [ [P 0)]7Vm(4,6 |x)dAde} /Y. (49)

Obviously, the integral of Eqs (47) and (49) cannot be calculated directly. Therefore, the MCMC
approach, which is a very popular method for estimating parameters, is employed to calculate the
corresponding HPD intervals and the Bayesian estimates (BE) of A and 8. The full conditional
posterior distribution of A and 6 as a key factor of the MCMC method can be derived by Eq (45)

1 (2|0, %) < A9 L exp(— w A — AN x; (1 + P)) IR, (1 — 6 + 20x) (1 + 10x;)"1,(50)
and
m,(0|A,x) x 0727 L exp(— w,0) [T%1(1 — 0 + A0x;)(1 + 20x)Fi. (51)

Because of the nonlinearity of the full conditional posterior distribution of A and 8, the Metropolis-
Hastings (M-H) algorithm is applied to obtain the unknown parameters of Bayesian estimation. We
assume the normal distribution as the proposed distribution to obtain the Bayesian estimation and HPD
intervals of 4, 6, S(t) and A(t). Follow the next steps to generate the MCMC sample:

(1) Setk =1.

(ii) Set the initial values of (4, 8) to (A1(®), 9().

(iii) Generate A* and 8* from N(A*~D,67) and N(8*~,6¢), respectively. WhenA* < 0 or

6* & (0,1), repeat step (iii), where A~1 and =1 represent previous state, o7 and o

represent the variance of the previous state.
1 (A16% ) x)
T (Ak=D|gk=1) x)

(iv) Definite acceptance probabilityw(4,_1,4") = min(1, ) andw(8y_41,0%) =

AIMS Mathematics Volume 10, Issue 5, 10554—-10590.
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(07110 x)
(v) Generate u(qy and u ;) from the uniform distribution U(0,1).
(vi) If ury < @(A_q,4%), then A%) = 2%, otherwise 1) = 2=,
(VH) If u(Z) < w(ek—ll 9*), then e(k) = 0*’ otherwise Q(k) — 9(’(—1).
(viii)  Calculate S®(t) and 2" (t) according to the following formulas: S®)(t) = (1 +
A(k)g(k)t)e—ﬂ(k)t and h(k) (t) _ /1(k) _ 1) g (k)

14200900 ¢

(ix) Setk = k + 1.

(x) Repeat (iii)~(ix) L times to get {A®},{6®1}, (™ ()} and (S®(t)}(k = 1,2, ...,L), and
discard the first L* samples of {17}, {69}, {n® (¢)} and {S®(£)} to eliminate the influence
of initial value selection.

(xi) Based on SE and GE loss functions, calculate the Bayesian estimation and HPD intervals
of 1,0,5(t) and h(t). Take A for example:

® (Compute the Bayesian estimate of 1:1g = %Z’;ZL*HA(D and]; = %(Zfzyﬂ[/l(i)]“’)
where | = L — L.

® C(Create the HPD interval of A [31]: Let A¢1.41y, Ass2), -+ -» A be the ascending values of
ACHD 2@+ AW | the 100(1 — )% HPD interval of Acan be approximated to
(A(k*), A(k*+[(1_a)l])), where k* € {L* + 1,L* + 2,..., L} is selected according to the formula

min( 1,

, where t > 0.

-1/y
)

A(k*+[(1—a)l]) - A(k*) = [al](/l(k*-'_[(l_a)l]) - /1(](*)) 5 where [X] is the downward

min
L*+1sk<L*+
integer of x, that is, the largest integer less than or equal to x.

5. Monte Carlo simulation

In this section, a Monte Carlo simulation will be performed to demonstrate and compare the
performance of the above estimators for the NGL distribution in parameter estimation.

5.1. Simulation plan

We simulate 1000 progressively type-II censored samples of the NGL(0.5,0.75) based on the
parameter selection of n(Total number of samples), m(Number of valid samples), and P(Censored
schemes). Meanwhile, in order to reasonably evaluate the estimates of S(t) and A(t), first obtain their
true values at t = 0.5, which are 0.9248 and 0.1842, respectively. In addition, n(= 50,90) is
determined and the valid sample proportion is used to determine that the value of m meets m/n(=
60%, 80%). Also, the three progressively censored schemes used are shown in Table 2.

Next, the specific steps to generate progressively type-II censored samples are given [32]:

(1) Generate m observations ¢; (for i = 1,2,...,m) that follow uniform distribution U(0,1).

(i1)) Give the corresponding value according to the specific censored schemes, set {; =

gil/(l+z1’zl=m‘i+1pk)(for i=12,...,m).

() Seté; =1 — GGt (moir(fori =1,2,...,m).

(iv) Generate progressively type-II censored samples x; of the NGL (0.5, 0.75), set

—1/0.75(%._
x; = |~075W (E——2=2) — 1] /0375,
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Table 2. Three kinds of censored schemes.

Scheme

1 P=(0*(m—1),n—m)

2 P=([(n —m)/2],0 « (m — 2),n —m — [(n —m)/2])
3 P=(n—m,0*(m—1))

In Table 2, P =(6,0,0,0,0,1) stands for P = (6,0*4,1).

After obtaining progressively type-II censored samples, MPS estimates and ML estimates and 95%
ACIs of 4, 8, S(t) and A(t) are calculated using Matlab R2016a, as well as Bayesian estimates based
on SE and GE (y (= —2)) loss function and HPD interval. The large 12,000 M-H samples are generated
by M-H sampler, and then the first 2000 samples are deleted as fluctuation samples. Then we complete
the Bayesian estimator by setting up two prior sets called Prior — a: (01, 05, w1, w,) = (8,10,10,5)
and Prior — b: (04, 05, w1, w,) = (4,5,5,2.5). Repeat 1000 times to ensure the accuracy and stability
of the estimation results. The evaluation criteria for verifying the reliability of the estimation method
are shown in Table 3.

Table 3. Evaluation criteria of point estimation and interval estimation.

Name Formula of errors
1 1000
AE (average estimates l=—— Z A
=1
1 1000
A 2
RMSE (root mean squared errors) RMSE; = 1000 Z (Ai — A)
i=1
1 1000 1
MRAB Jative absolute bi MRAB;=—Z—/T-—/1
(mean relative absolute biases) 3 = 1000 2, /'ll i — A
1 1000
ACL (average confidence lengths) AC Ll(l_“)% =1000 Z Rz, — L3)
1 102):01
CP (coverage percentages CP(l_a)% = — Z Ly, poy (A4
( gep ges) ) 1000 £, (L3R5 D
i=

Where 1, () represents the indicator function, and R(y and L, denote the upper and lower bounds,
respectively, for each (1 — a)%ACI/HPD interval.

5.2. Simulation result

RMSE, MRAB, ACL, and CP of 4, 8, S(t) and h(t) estimates of various estimators are shown
using heat maps in Figures 5-8. The corresponding specific numerical results are shown in the
appendix [Tables 4-11]. Here, SE-Pa represents the estimate of Prior — a by Bayesian estimator
based on SE loss, GE-Pb represents the estimate of Prior — b by Bayesian estimator based on GE
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loss (for y(= —2)), and ACL-MPS corresponds to the interval estimate of the MPS.

RMSE MRAB

o
0
012 0220
o

013

007 010

n[n/m]-Scheme
n[n/m]-Scheme

Figure 5. Heat maps of the associated estimates of A.
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Figure 6. Heat maps of the associated estimates of 6.
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Figure 7. Heat maps of the associated estimates of S(t).
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Figure 8. Heat maps of the associated estimates of 4(%).
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Table 4. Point estimation of A by estimator under different conditions (AE: first column; RMSE: second column; MRAB: third column).

(n,m) Scheme MPS ML BE
SE GE
Prior — a Prior —a
Prior — b Prior — b
-2
(50,30) 1 0.4897  0.1395 0.2052  0.5111 0.1412  0.2035 0.5258  0.0906  0.1399  0.5317 0.0888  0.1380
0.3905  0.1297 02240 0.4513  0.0967  0.1557
2 0.4967  0.1229  0.1846  0.5043  0.1284  0.1899  0.5174  0.0936  0.1453  0.5278  0.0974  0.1509
0.3826  0.1401  0.2393  0.4481  0.1038  0.1634
3 0.5404  0.1267  0.1785  0.507 0.1161  0.1729  0.5175  0.1000  0.1534  0.5254 0.1016  0.1582
0.371 0.1553  0.2665 0.4373  0.1195 0.1916
(50,40) 1 0.4954  0.1023  0.1525 0.5095 0.1188 0.1716  0.5176  0.0857  0.1300  0.5261  0.0868  0.1334
0.4168  0.1205  0.1953  0.4306  0.1102  0.1761
2 0.5091 0.1025  0.1503  0.5157 0.1131  0.1682  0.508 0.0937  0.1403  0.515 0.0952  0.1451
0.411 0.1278  0.2056  0.4206  0.1215  0.1903
3 0.5257  0.1015  0.149 0.5133  0.1068  0.156 0.5074  0.0958  0.1434  0.5178  0.0927  0.1398
0.3913  0.1401  0.2235 0.4191  0.1301  0.2073
(90,54) 1 0.4983  0.111 0.1566  0.5058  0.1219 0.1667 0.5118  0.0717 0.1108  0.5157 0.0728  0.1129
0.4104  0.1099  0.1881 0.4255  0.0981 0.1634
2 0.5062  0.0973  0.1435  0.5135  0.107 0.1505  0.5157 0.0769  0.1160  0.5229  0.0716  0.1108
0.4077  0.1157  0.1934  0.4249  0.1054  0.1700
3 0.5211 0.0912  0.1324 05115  0.0955 0.1362  0.5084 0.0842  0.1261 0.5156  0.0832  0.1269
0.4096  0.1337  0.2147  0.4003  0.1376  0.2222
(90,72) 1 0.5036  0.0817  0.1205 0.5049  0.0865 0.1257  0.511 0.0661  0.0981 0.5185  0.0669  0.099
0.4386  0.0989  0.1588 0.4112 0.1125 0.1874
2 0.5069  0.0798  0.118 0.5102  0.0869  0.1252  0.5083  0.0731 0.1067 0.5186  0.0716  0.1046
0.4306  0.1135  0.183 0.3984  0.1277  0.2115
3 0.5239  0.0749 0.1106  0.5106  0.0847 0.1182  0.5115 0.0768 0.1113  0.5152  0.0722  0.1041
0.4228 0.1311 02126 03852  0.1432  0.2415
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Table 5. Point estimation of 8 by estimator under different conditions (AE: first column; RMSE: second column; MRAB: third column).

(n,m) Scheme MPS ML BE
SE GE
Prior — a Prior —a
Prior — b Prior — b
-2
(50,30) 1 0.6686  0.5743 03249  0.7282  0.3277 0.2828  0.7389  0.1897  0.1652  0.7831  0.108 0.1166
0.3881  0.3965  0.4825 0.5906  0.2024  0.2125
2 0.6529  0.5109  0.3051  0.7201 0.5525  0.3064 0.7448  0.1509  0.1402  0.7792  0.1305  0.1306
0.5263  0.2745 0.2983  0.6020  0.2021  0.1976
3 0.7168  0.2925  0.2532  0.6427  0.6425 03192 0.7142  0.161 0.1319  0.7689  0.1620  0.1503
04916  0.3373 03447 0.5740  0.2588  0.2368
(50,40) 1 0.6688  0.2753  0.2539  0.7385  0.4545 0.2849  0.7636  0.1484  0.1337  0.7840  0.1244  0.126
04136  0.3722  0.4489  0.5818  0.2229  0.2243
2 0.7019  0.5158 0.2736  0.7586  0.5247  0.307 0.7419  0.1820  0.1581 0.7640  0.1600  0.1465
0.4847  0.3278 03537 0.5564  0.2576  0.2582
3 0.7139  0.4281 0.2498  0.7301 0.6584  0.3084  0.7320 0.2008 0.1717  0.7731  0.1638  0.1503
0.4697  0.3551 03737  0.5324  0.3006  0.2906
(90,54) 1 0.6973  0.257 02188  0.7721 02877  0.2455  0.7454  0.1392  0.1282  0.7553  0.126 0.1121
0.5003  0.3001  0.3329 0.4933  0.2947  0.3423
2 0.7081  0.3537  0.228 0.7554  0.4585 0.2615 0.7646  0.1363  0.1173  0.7868  0.1052  0.1076
0.4593  0.3279 03876  0.5536  0.2381  0.2622
3 0.7152  0.2474  0.2033  0.7242  0.6738  0.2884  0.7426  0.1831  0.1551 0.7734  0.1594  0.1448
0.4140  0.4003  0.4497 04875 0.3416  0.3507
(90,72) 1 0.7284  0.2088 0.1898 0.7674  0.2309  0.2009  0.7629  0.1267  0.1141 0.7891  0.1242  0.1168
0.5251  0.2668  0.2999  0.5261  0.2624  0.2993
2 0.7159  0.4108  0.2002  0.7461 0.2387  0.2108  0.7584  0.1549  0.1343  0.7915 0.1274  0.1191
0.4086  0.3846  0.4566  0.505 0.2954  0.3278
3 0.7502  0.5628  0.2173  0.7647  0.5311  0.236 0.7626  0.1778  0.1529  0.7863  0.1524  0.1393
0.361 0.4457  0.5231 0.4594  0.3608  0.3915
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Table 6. Point estimation of S(t) by estimator under different conditions (AE: first column; RMSE: second column; MRAB: third column).

(n,m) Scheme MPS ML BE
SE GE
Prior — a Prior —a
Prior — b Prior — b
-2
(50,30) 1 0.9226  0.1517 0.0392  0.8771 0.0541  0.0327 09253 0.0174 0.0147 09271  0.017 0.0149
09051  0.0262  0.0228 0.9046  0.0272  0.0236
2 09145  0.0598 0.0336  0.9228  0.0879  0.0364 09274 0.0164 0.0144 09283 0.0174  0.0151
0.9088  0.023 0.0197 09095 0.0227 0.019
3 09184  0.0589  0.0367 0.9448  0.1018  0.041 09269 0.0188  0.0162 09272  0.0191 0.0163
09068  0.0262  0.0223  0.9084  0.0252  0.0214
(50,40) 1 09164  0.0412  0.0303  0.9331 0.0532  0.0343 09302 0.0159 0.0140 09292 0.0159 0.0141
0.9087  0.0217  0.0190 0.9097  0.0213  0.0182
2 09197  0.0774  0.0349 09204 0.1022 0.0397 0.92838  0.0166  0.0144 09284 0.0165 0.0145
0.9081  0.0232  0.0197 09087  0.0218  0.019
3 09165 0.0763  0.0357 09257 0.1217 0.0412 09278  0.0183  0.0158 0.9294 0.0175 0.0154
0.9068  0.0253  0.0214 09061  0.0255  0.0223
(90,54) 1 09213  0.042 0.0245  0.9425  0.049 0.0296  0.9226  0.0177 0.0142  0.9234  0.017 0.0135
0.8886  0.0406  0.0392  0.8889  0.0403  0.0389
2 0.9223  0.079 0.0276  0.9306  0.0806  0.0335 0.9292  0.0144 0.0127 0.9294 0.0144  0.0127
0.9038  0.0253  0.023 0.9041  0.0250  0.0229
3 09179  0.049 0.0285  0.9457  0.1544  0.0418  0.9289  0.0041  0.0044  0.9293  0.0180 0.0156
0.9028  0.0279  0.0248 0.9030  0.0274  0.0246
(90,72) 1 0.9244  0.0334  0.0237 0.922 0.0397  0.026 0.9308 0.0175 0.0152 09309 0.0155 0.0136
09018  0.0265 0.0252  0.9022  0.0261  0.0248
2 09196  0.0963  0.0285  0.9333  0.0422  0.0283  0.9308 0.0158  0.014 0.9317  0.0150 0.0134
0.9042  0.0244  0.0229 09037  0.0249  0.0231
3 0.924 0.1124  0.0304  0.938 0.0862  0.0312 09307 0.0179 0.0156 09315 0.0179  0.0158
0.9006  0.0289  0.0272 09012 0.0286  0.0264
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Table 7. Point estimation of 4(t) by estimator under different conditions (AE: first column; RMSE: second column; MRAB: third column).

(n,m) Scheme MPS ML BE
SE GE
Prior —a Prior — a
Prior — b Prior — b
-2
(50,30) 1 0.2011 0.0741 0.2683 0.1878 0.0592 0.242 0.1938  0.0404 0.1667 0.1971  0.0428  0.1792
0.2215  0.0538  0.2311 0.2339  0.0656  0.2881
2 0.2299 0.4497 0.3735 0.1661 0.4973 03925 0.1883  0.0362  0.1541 0.1931  0.0413  0.1682
0.2133  0.0478  0.2005  0.2211  0.0536  0.2255
3 0.217 0.5736 0.3982 0.1655 0.4777 0.4144 0.1897 0.0401  0.1710  0.1953  0.0436  0.1843
0.2170  0.0527  0.2230  0.2219  0.0561  0.2406
(50,40) 1 0.2058 0.0627 0.2552 0.1984 0.0647 0.2553 0.1824  0.0338  0.1451 0.1896  0.0350  0.1476
02116  0.0425 0.1810 0.2169  0.0466  0.2001
2 0.1942 0.2237 0.2046 0.2052 0.2439 03358 0.1840  0.0339  0.1451 0.1898  0.0348  0.1485
0.2123  0.0443  0.1859  0.2175  0.0459  0.2009
3 0.2131 0.1273 0.3069 0.1894 0.675 0.4708 0.1862  0.0366  0.1564  0.1887  0.0363  0.1543
0.2151 0.0482  0.2020  0.2231  0.0531  0.2340
(90,54) 1 0.197 0.0474 0.1958 0.1794 0.0523 0.2025 0.1967 0.0383  0.1571 0.2018  0.0404  0.1628
0.2519  0.0781 03699  0.2634  0.0884  0.4317
2 0.1947 0.0904 0.2204 0.1699 0.2216 02725 0.1815 0.0296  0.1294  0.1877  0.0305  0.1268
0.2205 0.0474 02114  0.2282  0.0537  0.2460
3 0.1898 0.7276 0.3584 0.1554 0.2483 0.326 0.1836  0.0341  0.148 0.1873  0.0352  0.1485
0.221 0.0501  0.2189  0.2265 0.0532  0.2416
(90,72) 1 0.1911 0.0475 0.1937 0.1813 0.0516 0.1997 0.1798  0.0280  0.1233  0.1831  0.0290 0.1262
0.2228  0.0471  0.2169  0.2292  0.0528  0.2486
2 0.184 0.1361 0.2317 0.1677 0.0541 02117 0.1791 0.0290  0.1271 0.1816  0.0276  0.1203
0.2171 0.0419  0.1889  0.2238  0.0478  0.2201
3 0.1874 0.1211 0.2138 0.1594 0.2271 03026 0.1799  0.0326  0.1391 0.1818  0.0326  0.1396
0.2235 0.0496 02268 0.2279  0.0533  0.2454
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Table 8. Interval estimation of A by estimator under different conditions.

(n,m) Scheme ACI HPD
MPS ML Prior —a Prior — b
ACL CP ACL CP ACL CP ACL CP
(50,30) 1 0.5959 0.929 0.5407 0.919 0.3655 0.965 0.4281 0.951
2 0.5383 0.932 0.4926 0.924 0.3515 0.949 0.422 0.932
3 0.4397 0.923 0.4459 0.951 0.3365 0.910 0.3939 0.853
(50,40) 1 0.4299 0.945 0.4102 0.915 0.319 0.956 0.3898 0.918
2 0.3964 0.926 0.3765 0.903 0.3102 0.929 0.3732 0.864
3 0.3581 0.928 0.3554 0.912 0.3021 0.905 0.3628 0.834
(90,54) 1 0.4106 0.919 0.3758 0.906 0.3131 0.969 0.3428 0.894
2 0.3530 0.918 0.3558 0.880 0.2922 0.963 0.3662 0.932
3 0.3037 0.918 0.3012 0.900 0.2713 0.912 0.3400 0.804
(90,72) 1 0.2872 0.913 0.2770 0.886 0.2583 0.947 0.3430 0.900
2 0.2674 0.919 0.2657 0.906 0.2523 0.952 0.3364 0.876
3 0.2542 0.888 0.2642 0.902 0.2366 0.925 0.3188 0.763
Table 9. Interval estimation of 8 by estimator under different conditions.
(n,m) Scheme ACI HPD
MPS ML Prior —a Prior — b
ACL CP ACL CP ACL CP ACL CP
(50,30) 1 1.3061 0.908 1.0387 0.891 0.5877 0.986 0.8699 0.965
2 1.1711 0.921 0.9627 0.888 0.5510 0.972 0.8449 0.955
3 0.8076 0.904 0.9926 0.926 0.5016 0.950 0.7761 0.875
(50,40) 1 0.9013 0.921 0.7698 0.873 0.5367 0.980 0.8515 0.939
2 0.7790 0.902 0.6721 0.881 0.5254 0.960 0.8133 0.898
3 0.6540 0.895 0.671 0.888 0.5017 0.944 0.7724 0.868
(90,54) 1 0.7660 0.842 0.5899 0.800 0.6550 0.978 0.8402 0.887
2 0.6332 0.836 0.6084 0.805 0.5377 0.981 0.8682 0.951
3 0.5169 0.867 0.5271 0.826 0.4844 0.931 0.7569 0.830
Continued on next page
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(n,m) Scheme ACI HPD
MPS ML Prior — a Prior — b
ACL CP ACL CP ACL CP ACL CP
(90,72) 1 0.4541 0.767 04141 0.748 0.4985 0.938 0.8488 0.925
2 0.4432 0.788 0.4027 0.765 0.4908 0.945 0.8223 0.898
3 0.3628 0.769 0.4004 0.772 0.4378 0.897 0.7363 0.802

Table 10. Interval estimation of S(t) by estimator under different conditions.

(n,m) Scheme ACI HPD
MPS ML Prior —a Prior — b
ACL CP ACL CP ACL CP ACL CP
(50,30) 1 0.1615 0.899 0.1714 0.924 0.0932 0.995 0.1262 0.997
2 0.1653 0.895 0.1713 0.926 0.0865 0.991 0.1128 0.993
3 0.1778 0.935 0.1751 0911 0.0864 0.971 0.1089 0.958
(50,40) 1 0.1483 0.899 0.1572 0.892 0.0805 0.987 0.1059 0.991
2 0.15 0.902 0.165 0.907 0.08 0.972 0.1014 0.957
3 0.1517 0.907 0.1626 0.908 0.0813 0.949 0.1019 0.932
(90,54) 1 0.1196 0.892 0.1237 0.898 0.0946 0.983 0.1283 0.926
2 0.1207 0.887 0.1277 0.874 0.0764 0.981 0.1075 0.973
3 0.1256 0.925 0.1344 0.875 0.0754 0.947 0.0968 0.859
(90,72) 1 0.1087 0.897 0.1157 0.894 0.0706 0.958 0.0997 0.946
2 0.1117 0913 0.1153 0.9 0.0699 0.957 0.092 0919
3 0.1113 0.898 0.1187 0.886 0.069 0914 0.0905 0.837
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Table 11. Interval estimation of /(t) by estimator under different conditions.

(n,m) Scheme ACI HPD
MPS ML Prior —a Prior — b
ACL CP ACL CP ACL CP ACL CP
(50,30) 1 0.204 0.907 0.2012 0.910 0.1885 0.986 0.2549 0.993
2 0.4103 0.897 0.2187 0.896 0.1740 0.986 0.2233 0.993
3 0.2534 0.895 0.2982 0.907 0.1767 0.964 0.216 0.975
(50,40) 1 0.2046 0.898 0.1978 0.878 0.1559 0.979 0.2021 0.991
2 0.2115 0.891 0.2056 0.873 0.1559 0.975 0.1932 0.982
3 0.3762 0.892 0.2784 0.878 0.1603 0.967 0.1964 0971
(90,54) 1 0.1526 0.887 0.1474 0.887 0.1791 0.981 0.2538 0.948
2 0.1762 0.877 0.3585 0.873 0.143 0.973 0.2021 0.991
3 0.1885 0917 0.1827 0.862 0.1446 0.961 0.1834 0.932
(90,72) 1 0.1486 0.889 0.1461 0.873 0.1288 0.965 0.183 0.972
2 0.1637 0.897 0.1573 0.885 0.1279 0.97 0.167 0.963
3 0.1599 0.894 0.1826 0.87 0.1293 0.932 0.1692 0911
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From the heat maps in Figures 5—8 and Tables 4—11, the following conclusions can be drawn:

(1) All estimates of A, 8, S(t) and A(t) are good estimators because of low RMSE, MRAB, and
ACL values and high CP values. Through changing the color of the heat-maps to from down to up, we
can find that, in most cases, with the increase of n and m, the estimation performance of all obtained
estimators will improve, corresponding to lower RMSE, MRAB, ACL, and CP values.

(2) Among all estimates, Bayesian estimates based on SE loss and GE loss are more accurate than
MPS and ML estimates because of lower RMSE, MRAB, and ACL values and higher CP values.

(3) Different prior parameters will affect the effectiveness of Bayesian estimation. In Bayesian
estimation, the Bayesian estimator based on SE loss and the Bayesian estimator based on GE loss have
better estimation performance under the gamma prior function with Prior — a as parameter than
Prior — b because the variance of Prior — a is smaller.

(4) Different censored schemes may affect the estimated effectiveness to some extent. In most
cases, estimates based on scheme-1 work better. In the face of progressively type-II censored samples
of the NGL distribution, the Bayesian estimation under the gamma prior function with Prior — a can
be used to estimate the corresponding unknown parameters and related functions.

(5) The Bayesian estimation under the gamma prior function with Prior — a is overestimated
while with Prior — b is underestimated.

(6) The point (or interval) estimation of the MPS estimates and ML estimates of S(t) is
significantly weaker than the result obtained by Bayes.

(7) In summary, with a more complete amount of data from progressively type-II censored,
Bayesian estimation via M-H algorithm can obtain better estimates when estimating unknown
parameters of the NGL distribution.

6. Practical application

This section demonstrates the flexibility of the proposed distribution and the usefulness of the
various estimation methods through a practical application. The dataset, which was previously used by
Bekker et al. [33] and later applied by Habib et al. [34], is the annual survival time of 46 patients who

received chemotherapy and radiation therapy. The specific data is shown in Table 12.

Table 12. The annual survival time of 46 patients.

0.047 0.115 0.121 0.132 0.164 0.197 0203 026 0282 0.296 0.334 0.395
0.458 0.466 0.501 0.507 0.529 0.534 054 057 0641 0.644 0.696 0.841
0.863 1.099 1.219 1271 1326 1.447 1.485 1553 1.581 1.589 2.178 2.343
2416 2.444 2.825 2.83 3.578 3.658 3.743 3978 4.003 4.033

In order to test whether the NGL distribution is suitable for the dataset, ML estimation is first
used to estimate A and 8, and the corresponding values with standard errors (St) are obtained as
0.90788 (0.33141) and 0.20264 (0.41243). Then the Kolmogorov-Smirnov (KS) value and P-value
can be obtained as 0.10158 (0.69157). Compared with the truncated Nadarajah-Haghighi Raykeigh
distribution, which presents a KS value with a P-value of 0.1080 (0.6307) for this dataset [34], it can
be considered that the NGL distribution has a better fitting effect and is suitable for this dataset. As
illustrated in Figure 9, the NGL distribution to the fitting effect of the dataset is demonstrated. This
includes the fitted CDF, the probability-probability (PP), the scaled total time on test (TTT)
transform [35], and the counter of the log-likelihood function. Figure 9 indicates that the NGL
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distribution is very close to the real data distribution and the existence and uniqueness of the obtained

MLE estimates A and 8.
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Figure 9. (a) Fitted CDF of NGL, (b) PP, (c) scaled TTT-Transform, (d) counter of log-
likelihood function from the annual survival time of 46 patients.

Let m=20, and three types of progressively type-II censored samples are obtained from this
dataset, as shown in Table 13. The point estimates of A and 8 are obtained by the above estimation
method (MPS, ML, Bayesian estimation) and are shown in Table 14. At the same time, standard
errors (St.es) are used to judge the accuracy of the estimated results. Here, the SE.es of 1 and 6
obtained by MPS and ML estimation are the square root of the diagonal elements of I71(@),

respectively.
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Table 13. Three progressively type-II censored samples from the annual survival time.

Sample Scheme

S (0*19,26) 0.047 0.115 0.121 0.132 0.164 0.197 0.203 0.26 0.282 0.296
0.334 0395 0.458 0466 0.501 0.507 0.529 0.534 0.54 0.57
S, (13,0*18,13) 0.047 0.501 0.507 0.529 0.534 054 057 0.641 0.644 0.696
0.841 0.863 1.099 1.219 1.271 1.326 1.447 1.485 1.553 4.033
S3 (26,0*%19) 0.047 1271 1326 1447 1.485 1.553 1.581 1.589 2.178 2.343
2416 2444 2.825 2.83 3.578 3.658 3.743 3978 4.003 4.033
Table 14. Point estimates (St.es) of 4, 8 from the annual survival time.
S; Parameter MPS MLE SE GE
y =—2
S1 A 0.63616(0.11222) 0.74652(0.15355)  0.2378(0.0579) 0.2539(0.0557)
6 0.999(0.17427) 0.999(0.4182) 0.7465(0.2911) 0.8367(0.2369)
S, A 0.21672(0.038498) 0.1919(0.033919)  0.0663(0.0120) 0.0670(0.0112)
6 0.91092(0.14331) 0.95217(0.15405)  0.7755(0.1317) 0.7933(0.1235)
S;3 A 0.01693(0.00463) 0.01611(0.00455)  0.0523(0.0216) 0.0935(0.0141)
0 0.001(0.42653) 0.001(0.44385) 0.2585(0.3328) 0.8966(0.0917)

Through the M-H algorithm, 5000 MCMC samples are generated, and the first 1000 samples are
omitted. The sample sequence {4(;y}, {6;)} formed can approximately obey the posterior distribution,

and the variance of the posterior distribution can be estimated by the sample variance, that is:

St = 1 Y4000

It can be seen from Table 14 that under three different censored schemes:
All estimation methods have a better fitting effect when fitting the dataset.
The results estimated by ML and MPS are similar, and the results estimated by Bayes under

3999 <=1

(A — A).Stg =

two different losses are similar.

1
3999

4000

(9(1) - 9)

The MPS and ML estimation fit the scale parameter A preferentially when fitting, which

makes the scale parameter more accurate but tends to lead to overflow of the shape parameter
a. Bayesian estimation weighs the two parameters more than the other two estimation
methods and is less prone to overflow of the range of estimates.

7. Conclusions

In general, the results of Bayesian estimates based on GE loss functions are more consistent
with the dataset than those of other methods.

A Lindley distribution with multiple models can be applied to various fields, such as product life
research and species presence distribution. This paper focused on the examination of the NGL
distribution's inherent properties and significant statistical characteristics. It was determined that the
proposed distribution possesses favorable properties and that such properties exhibit relatively
straightforward numerical expressions. This finding is instrumental in facilitating subsequent research
endeavors. Subsequently, this paper actively explored the application of maximum product spacing
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estimation, maximum likelihood estimation, and Bayesian estimation to the NGL distribution. The
development of a comprehensive simulation plan, incorporating two distinct failure rates, three
disparate censored schemes, and four evaluation criteria, was undertaken to investigate the impact of
various estimation methods on the proposed distribution point estimation and interval estimation.
Finally, it was concluded that the Bayesian estimator under SE loss and GE loss has relatively good
estimation effect, and this estimation method can be integrated into the NGL distribution for further
exploration in future research. In addition, in order to ensure that the NGL distribution has practical
application significance, a real dataset, containing annual survival rates, was used to carry out research.
The analysis showed that the proposed distribution has a good fitting effect on the original dataset, and
we found that the proposed distribution has a good fit to the censored data of the dataset. The above
estimation methods were used to finally conclude that the distribution also has a good fitting effect on
the censored data of the real dataset in the Bayesian estimation. In future studies, we will continue to
increase the integration of the proposed distribution with real industry scenarios.
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Appendix

A. The parameters, the reliability function, and hazard function of the NGL distribution are estimated
using MPS estimation

clear

tic

a0=0.5; b0=0.75; m=30;n=50;num=1000;t=0.5;S0=0.9248;h0=0.1842;ca=0;cb=0;cS=0;ch=0;

Ra=[zeros(1,m-1),n-m];

Rb=[floor((n-m)/2),zeros(1,m-2),(n-m-floor((n-m)/2))];

Rc=[n-m,zeros(1,m-1)];

a = zeros(num,1);

b = zeros(num,1);

ACI1 = zeros(num, 2);

ACI2 = zeros(num, 2);

ACI3 = zeros(num, 2);

ACI4 = zeros(num, 2);

for i=1:num

G=rand(1,m);

for j=1:m

H(j)=G().*(1/(+sum(Ra(m-j+1:m))));

end

for j=1:m

Z(j)=1-prod(H(m-j+1:m));

end

x=(-b0.*lambertw(-1,exp(-1./b0).*(Z-1)./b0)-1)./(a0.*b0);

[a(1,1),b(i,1),ACI1(1,:),ACI2(3,:),S(1,1),h(1,1),ACI3(i,:),ACI4(1,:)] =MPS(t,Ra,n,x,a0,b0);

if a0>=ACI1(1,1)&&a0<=ACI1(1,2)

ca=ca+tl;

end

if b0>=ACI2(1,1)&&b0<=ACI2(1,2)

cb=cb+1;

end

if SO>=ACI3(1,1)&&S0<=ACI3(1,2)

cS=cS+1;

end

if h0>=ACI4(1,1)&&h0<=ACI4(1,2)

ch=ch+1;

end

end

aMLi=mean(a)

mse_a=sqrt(mean((a-a0).”2))

MRE a=mean(abs((a-a0)./a0))

ACL a=mean(ACI1(:,2)-ACI1(:,1))

ca=ca/num
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bMLi=mean(b)

mse_b=sqrt(mean((b-b0).”2))

MRE b=mean(abs((b-b0)./b0))

ACL b=mean(ACI2(:,2)-ACI2(;,1))

cb=cb/num

SMLi=mean(S)

mse_S=sqrt(mean((S-S0).”2))

MRE_S=mean(abs((S-S0)./S0))

ACL _ S=mean(ACI3(:,2)-ACI3(;,1))

cS=cS/num

hMLi=mean(h)

mse_h=sqrt(mean((h-h0).”2))

MRE h=mean(abs((h-h0)./h0))

ACL h=mean(ACI4(:,2)-ACI4(:,1))

ch=ch/num

toc

B. The parameters, the reliability function, and hazard function of the NGL distribution are estimated
using ML estimation

clear

tic

a0=0.5; b0=0.75; m=30;n=50;num=1000;t=0.5;S0=0.9248;h0=0.1842;ca=0;cb=0;cS=0;ch=0;

Ra=[zeros(1,m-1),n-m];

Rb=[floor((n-m)/2),zeros(1,m-2),(n-m-floor((n-m)/2))];

Rc=[n-m,zeros(1,m-1)];

a = zeros(num,1);

b = zeros(num,1);

S=zeros(num,1);

h=zeros(num,1);

ACI1 = zeros(num, 2);

ACI2 = zeros(num, 2);

ACI3 = zeros(num, 2);

ACI4 = zeros(num, 2);

for i=1:num

G=rand(1,m);

for j=1:m

H(j)=G().*(1/(+sum(Ra(m-j+1:m))));

end

for j=1:m

Z(j)=1-prod(H(m-j+1:m));

end

x=(-b0.*lambertw(-1,exp(-1./b0).*(Z-1)./b0)-1)./(a0.*b0);

[a(1,1),b(i,1),ACI1(1,:),ACI2(i,:),S(1,1),h(1,1),ACI3(i,:),ACI4(i,:)] =MLi(t,Ra,n,x,a0,b0);
if a0>=ACI1(1,1)&&a0<=ACI1(1,2)
ca=ca+tl;
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end

if b0>=ACI2(1,1)&&b0<=ACI2(1,2)

cb=cb+1;

end

if SO>=ACI3(1,1)&&S0<=ACI3(1,2)

cS=cS+1;

end

if h0>=ACI4(1,1)&&h0<=ACI4(1,2)

ch=ch+1;

end

end

aMLi=mean(a)

mse_a=sqrt(mean((a-a0).”2))

MRE a=mean(abs((a-a0)./a0))

ACL a=mean(ACI1(:,2)-ACI1(:,1))

ca=ca/num

bMLi=mean(b)

mse_b=sqrt(mean((b-b0).”2))

MRE b=mean(abs((b-b0)./b0))

ACL b=mean(ACI2(:,2)-ACI2(;,1))

cb=cb/num

SMLi=mean(S)

mse_S=sqrt(mean((S-S0).”2))

MRE_S=mean(abs((S-S0)./S0))

ACL _ S=mean(ACI3(:,2)-ACI3(;,1))

cS=cS/num

hMLi=mean(h)

mse_h=sqrt(mean((h-h0).2))

MRE h=mean(abs((h-h0)./h0))

ACL h=mean(ACI4(:,2)-ACI4(:,1))

ch=ch/num

toc

C. The parameters, the reliability function, and hazard function of the NGL distribution are estimated
using Bayesian estimation

clear

a0=0.5; b0=0.75; m=30;n=50;num=1000;t=0.5;S0=0.9248;h0=0.1842;c1=0;c2=0;c3=0;c4=0;

Ra=[zeros(1,m-1),n-m];

Rb=[floor((n-m)/2),zeros(1,m-2),(n-m-floor((n-m)/2))];

Rc=[n-m,zeros(1,m-1)];

a BMH=zeros(num,1);

b BMH=zeros(num,1);

S BMH=zeros(num,1);

h BMH=zeros(num,1);

aHPD=zeros(num,1);

AIMS Mathematics Volume 10, Issue 5, 10554—-10590.



10589

bHPD=zeros(num,1);
SHPD=zeros(num, 1);
hHPD=zeros(num,1);

for i=1:num

G=rand(1,m);

for j=1:m
H(j)=G().*(1/(+sum(Re(m-j+1:m))));
end

for j=1:m

Z(j)=1-prod(H(m-j+1:m));

end
x=(-b0.*lambertw(-1,exp(-1./b0).*(Z-1)./b0)-1)./(a0.*b0);

[a_ BMH(,1),b BMH(,1),S BMH(i,1),h BMH(,1),aHPD(i,1),bHPD(i,1),SHPD(i,1),hHPD(,1),cp1

,cp2,cp3,cp4]=BMH(t,Rc,n,x,0.4,0.7);
cl=cl+cpl;c2=c2+cp2;c3=c3+cp3;cd=cd+cp4;
end

aBMH=mean(a BMH)
mse_a=sqrt(mean((a_ BMH-a0).%2))
MRE a=mean(abs((a_ BMH-a0)./a0))
ACL a=mean(aHPD)

ca=cl/num

bBMH=mean(b BMH)
mse_b=sqrt(mean((b_BMH-b0)."2))
MRE_b=mean(abs((b_ BMH-b0)./b0))
ACL _b=mean(bHPD)

cb=c2/num

SBMH=mean(S BMH)
mse_S=sqrt(mean((S_ BMH-S0).%2))
MRE_S=mean(abs((S_ BMH-S0)./S0))
ACL _S=mean(SHPD)

cS=c3/num

hBMH=mean(h BMH)
mse_h=sqrt(mean((h_BMH-h0)."2))
MRE_h=mean(abs((h_ BMH-h0)./h0))
ACL _h=mean(hHPD)

ch=c4/num

Counter diagram of the parameters of the NGL distribution
clear

syms a b;

a0=0.5; b0=0.75; m=50;n=100;
Ra=[zeros(1,m-1),n-m];
Rb=[floor((n-m)/2),zeros(1,m-2),(n-m-floor((n-m)/2))];
Rc=[n-m,zeros(1,m-1)];

G=rand(1,m);
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for j=1:m

H(j)=G().*(1/(+sum(Ra(m-j+1:m))));

end

for j=1:m

Z(j)=1-prod(H(m-j+1:m));

end

P=Ra;
x=(-b0.*lambertw(-1,exp(-1./b0).*(Z-1)./b0)-1)./(a0.*b0);
Ib=m.*log(a)-a.*sum(x.*(1+P))+sum(log(1-b+a.*b.*x))+sum(P.*log(1+a.*b.*x));
lc=n.*log(a)-a.*sum(x)+sum(log(1-b+a.*b.*x));
laa=matlabFunction(lb, '"Vars', {a, b});

al =0.2:0.01:1;

bl =0.36:0.01:0.75;

[al,bl] = meshgrid(al,bl);

la=real(laa(bl,al));
[M,c]=contour(al,bl,la,'showText','on');

xlabel('0");

ylabel("\');

c.LineWidth=3;

colorbar.
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