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was demonstrated using a real dataset. 
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1. Introduction 

Lifetime models have found widespread application in statistical modeling across various 
scientific and engineering domains. Lindley distribution, as one of the classical distributions, was first 
proposed by Lindley [1]. Lindley distribution is highly flexible and has a wide range of applications, 
such as in the field of medicine, astrophysics, and reliability engineering. However, it has strong 
limitations in processing complex data, such as skewed and multi-peak data. Based on this, many 
researchers improved the original Lindley distribution by adding parameters. With the help of the 
power exponentiated family of distributions, Rajitha and Akhilnath [2] added two parameters to the 
original Lindley distribution. They called it PEL distribution and notes its higher flexiblility compared 
to the original model. Fatehi and Chhaya [3] extended the Lindley distribution into the extended odd 
Weibull-Lindley family. Ashour and Eltehiwy [4] introduced a three-parameter exponentiated power 
Lindley (EPL) distribution by extending the two-parameter power Lindley distribution. Alizadeh et 
al. [5] defined a four-parameter exponentiated power Lindley power series distribution on the EPL 
distribution and found that the newly proposed model provided a better fit than the original Lindley 
distribution to real datasets. 

In most real-life testing and reliability experiments, it is seldom possible to wait until all test 
samples fail; in other words, it is difficult for investigators to observe the lifetime of all items under 
test, so experimental data obtained often contain censored data. The development and replacement of 
censored samples have been the focus of many researchers [6–8]. Type-I and type-II censored schemes, 
as classical methods in right examination, can only move the unit point at the end of the experiment, 
which lacks some flexibility [9]. The progressively type-II censored scheme is popular for its flexibility, 
whose various properties and applications have been extensively studied. Balakrishnan et al. [10] 
discussed the maximum likelihood estimation and the corresponding interval estimation of extreme 
value distributions under progressively type-II censored samples. Based on progressively type-II 
censored samples, Seo et al. [11] studied the hierarchical Bayesian estimation of the unknown 
parameters of a lifetime distribution with a bathtub-shaped failure rate function. Alshenawy et al. [12] 
used the maximum likelihood estimation method and the maximum product spacing method to 
estimate the parameters of the extended odd Weibull exponential distribution under progressively type-
II censored samples. Their study further delved into the construction of both asymptotic and bootstrap 
confidence intervals for the said parameters. 

This paper aims to introduce a variant of the Lindley distribution, referred to as the extension of 
the generalized Lindley (NGL) distribution. This extension is developed under progressively type-II 
censored samples with the objective of broadening the applicability of the traditional Lindley 
distribution. The NGL distribution is highly flexible, featuring many variants of the Lindley 
distribution and exponential function. Another purpose of this paper is to evaluate the estimator 
performance of the NGL distribution in preparation for the subsequent processing of real datasets. 

The remainder of this paper is organized as follows: In Section 2, we introduce the NGL 
distribution and its basic properties. The numerical characteristics of the proposed distribution are 
investigated in Section 3. We study three estimators of this distribution in Section 4, obtain the 
corresponding point and interval estimates, and perform Monte Carlo simulations in Section 5. In 
Section 6, we examine the practical application of the proposed distribution using a real dataset. In 
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Section 7, the findings of this paper are summarized, and future research priorities are indicated. 

2. Generalized Lindley distribution 

In this section, we will introduce the NGL distribution, whose probability density function (PDF) 
and cumulative distribution function (CDF) are 

 𝑓(𝑥; 𝜆, 𝜃) = 𝜆𝑒ିఒ௫(1 − 𝜃 + 𝜆𝜃𝑥), 𝑥 > 0, 𝜆 > 0,0 < 𝜃 < 1,    (1) 

 𝐹(𝑥; 𝜆, 𝜃) = 1 − (1 + 𝜆𝜃𝑥)𝑒ିఒ௫, 𝑥 > 0, 𝜆 > 0,0 < 𝜃 < 1.    (2) 

Here, 𝜆 and 𝜃 are the scale and shape parameters of the 𝑁𝐺𝐿(𝜆, 𝜃), respectively. 
 If 𝜃 = 1/(𝜆 + 1), then the CDF is the Lindley distribution, i.e., 

 𝐹(𝑥; 𝜆) = 1 −
ఒାଵାఒ

ఒାଵ
𝑒ିఒ , 𝑥 > 0, 𝜆 > 0.     (3) 

 If 𝜃 = 𝛽/(𝜆 + 𝛽), then the CDF is a two-parameter Lindley distribution [13], i.e., 

 𝐹(𝑥; 𝜆, 𝛽) = 1 − (1 +
ఉఒ

ఉାఒ
𝑥)𝑒ିఒ௫, 𝑥 > 0, 𝜆 > 0, 𝛽 > 0.    (4) 

 If 𝜃 → 0ା, then the CDF is exponential distribution, i.e., 

 𝐹(𝑥; 𝜆) = 1 − 𝑒ିఒ௫, 𝑥 > 0, 𝜆 > 0.      (5) 

 If 𝜃 = 1/(𝜂 + 1), then the CDF is a two-parameter Lindley distribution [14], i.e., 

 𝐹(𝑥; 𝜆, 𝜂) = 1 − (1 +
ఒ

ଵାఎ
𝑥)𝑒ିఒ௫, 𝑥 > 0, 𝜆 > 0, 𝜂 > −1.   (6) 

The survival function (SF) and hazard rate function (HRF) of the NGL distribution are: 

 𝑆(𝑥; 𝜆, 𝜃) = 1 − 𝐹(𝑥; 𝜆, 𝜃) = (1 + 𝜆𝜃𝑥)𝑒ିఒ௫,     (7) 

 ℎ(𝑥; 𝜆, 𝜃) =
௙(௫;ఒ,ఏ)

ଵିி(௫;ఒ,ఏ)
= 𝜆 −

ఒఏ

ଵାఒఏ௫
.      (8) 

There are two main models for the NGL distribution: the inverted J-type and the unimodal and 
left-leaning (see Figure 1). This type of model is very suitable for the study of product life and species 
abundance distribution. 𝜃 , the shape parameter, has a large influence on the probability density 
distribution: when 𝜃 increases, the PDF image changes and shows a constant tendency to shift to the 
right. 𝜆 also has a certain impact on the NGL distribution; with an increase in 𝜆, the peak value of PDF 
increases, and the image presents a left-leaning trend. 
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Figure 1. PDF curves of the NGL distribution for different shape and scale parameters. 

The HRF curves also have three shapes: increasing, constant, and upside-down bathtub (see 
Figure 2). With an increase in 𝜆 and 𝜃, the slope of (0,2) will increase continuously along with the 
decrease of peak value. 
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Figure 2. HRF curves of the NGL distribution for different shape and scale parameters. 

3. Statistical properties of NGL distribution 

In this section, we discuss some important statistical properties of NGL distribution, such as 
moments, kurtosis and skewness, quantile functions, order statistical functions, and other statistical 
properties. 

3.1. Moments and related measures for the NGL distribution 

As one of the most important digital features, the 𝑟-𝑡ℎ moment plays an important role in both 
application and theory. It can be represented by the following formula 

 𝜇௥ = ∫ 𝑥௥𝑒ିఒ௫(1 − 𝜃 + 𝜆𝜃𝑥)𝑑𝑥
∞

଴
= (1 − 𝜃)𝜆ି௥ିଵ𝛤(𝑟 + 1) + 𝜃𝜆ି௥ିଵ𝛤(𝑟 + 2).  (9) 

The first four moments can be easily calculated: 
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 𝜇ଵ = (1 + 𝜃)𝜆ିଶ, 𝜇ଶ = (2 + 4𝜃)𝜆ିଷ, 𝜇ଷ = (6 + 18𝜃)𝜆ିସ, 𝜇ସ = (24 + 96𝜃)𝜆ିହ.  (10) 

Also, the variance of 𝑋 is 

 𝑉𝑎𝑟(𝑋) = (2𝜆 + 4𝜃𝜆 − 1 − 2𝜃 − 𝜃ଶ)𝜆ିସ.      (11) 

3.2. Coefficient of skewness and kurtosis for the NGL distribution 

The coefficient of kurtosis and skewness are important for describing the tail shape, peak degree, 
and asymmetry of probability distributions [15]. Let NCS stand for coefficient of skewness and NCK 
for coefficient of kurtosis. According to Eqs (10) and (11), NCS and NCK can be obtained as: 

 𝑁𝐶𝑆 =
ఓయିଷఓభఓమାଶ(ఓభ)య

[௏(௑)]య/మ
= 2𝜆 ⋅

ସఒାଵଵఏఒାఏమఒିଷିଽఏି଺ఏమ

(ଶఒାସఏఒିଵିଶఏିఏమ)య/మ
,    (12) 

𝑁𝐶𝐾 =
ఓరିସఓభఓయା଺(ఓభ)మఓమିଷ(ఓభ)ర

[௏(௑)]మ
  =

ଶସఒయ(ଵାସఏ)ିଶସఒమ(ଵାଷఏ)(ఏାଵ)ାଵଶఒ(ଵାఏ)మ(ଵାଶఏ)ିଷ(ଵାఏ)ర

(ଶఒାସఏఒିଵିଶఏିఏమ)మ
. (13) 

The coefficient of kurtosis and skewness of the NGL distribution show a certain regularity. In the 
NGL distribution, the coefficient of kurtosis and skewness are usually negatively correlated with 𝜃 and 
positively correlated with 𝜆. This statistical property suggests that the thickness and asymmetry of the 
NGL distribution tail tend to decrease as 𝜃  increases, while an increase in 𝜆  increases these 
characteristics. Table 1 and Figure 3 illustrate different values of the coefficient of kurtosis and 
skewness. 

Table 1. The coefficient of kurtosis and skewness of NGL distribution under given parameter values. 

θ λ NCS NCK 
0.1 

0.9 

2.0001 8.8471 
0.3 1.8457 7.8450 
0.5 1.7213 7.1333 
0.8 1.6875 6.7500 
0.1 

1 

1.9582 8.6941 
0.3 1.7860 7.6311 
0.5 1.6198 6.7959 
0.8 1.4519 6.1212 
0.1 

1.2 

2.0342 9.0202 
0.3 1.8506 7.8409 
0.5 1.6577 6.8325 
0.8 1.4134 5.8320 
0.1 

1.5 

2.2550 10.1405 
0.3 2.0647 8.7803 
0.5 1.8590 7.5600 
0.8 1.5860 6.2452 
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Figure 3. Plots of the coefficient of kurtosis and skewness of the NGL distribution. 

3.3. Moment-generating function for the NGL distribution 

Using Eq (9), the moment-generating function of the NGL distribution can be obtained as 

𝑀(𝑡) = න 𝑒௧௫𝑓(𝑥)𝑑𝑥
∞

଴

= ෍
𝑡௥

𝑟!

∞

௥ୀ଴

න 𝑥௥𝑓(𝑥)𝑑𝑥
∞

଴

 

= ∑
௧ೝ

௥!
∞
௥ୀ଴ [(1 − 𝜃)𝜆ି௥ିଵ𝛤(𝑟 + 1) + 𝜃𝜆ି௥ିଵ𝛤(𝑟 + 2)].    (14) 

3.4. Quantile function for the NGL distribution 

The quantile function can be obtained from the inverse function of CDF. That is, 𝑥 = 𝐹ିଵ(𝑅). By 
applying Eq (2), we have 

 1 − (1 + 𝜆𝜃𝑥)𝑒ିఒ௫ = 𝑅         (15) 

Let 𝑡 = (1 − 𝑅)𝑒ఒ௫, then 𝑥 =
ଵ

ఒ
𝑙𝑛

௧

ଵିோ
. Hence  

𝑙𝑛
௧

ଵିோ
=

ଵ

ఏ
(𝑡 − 1) ⇒

௧

ଵିோ
= 𝑒

೟

ഇ/𝑒
భ

ഇ ⇒ −
௧

ఏ
𝑒ି

೟

ഇ =
ோିଵ

ఏ௘
భ
ഇ

⇒ −
௧

ఏ
= 𝑊(

ோିଵ

ఏ௘
భ
ഇ

). 

Then 

𝑡 = −𝜃𝑊(
ோିଵ

ఏ௘
భ
ഇ

). 

Here, 𝑊  is Lambert 𝑊  function. According to the basic properties of the Lambert 𝑊  function, the 
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quantile function of the NGL distribution can be obtained as 

 𝑥 =
ିఏௐ(

೐షభ/ഇ(೟షభ)

ഇ
)ିଵ

ఒఏ
.        (16) 

3.5. Order statistics of the NGL distribution 

Order statistics are an important analytical tool for identifying outliers. The earliest failure time 
of a product can be expressed by the minimum order statistic (the smallest observed value in the 
sample), and the longest life of a product can be estimated by the maximum order statistic (the largest 
observed value in the sample). Let (𝑋ଵ, 𝑋ଶ, . . . , 𝑋௡) be a random sample from the NGL distribution, 
which is sorted from smallest to largest as (𝑋(ଵ), 𝑋(ଶ), . . . , 𝑋(௡)), where the 𝑖-𝑡ℎ order statistic is 𝑋(௜). 

The PDF of the 𝑖 - 𝑡ℎ  order statistic 𝑋(௜)  is 𝑓௑(೔)
(𝑥) =

௡!

(௜ିଵ)!(௡ି௜)!
𝐹(𝑥)௜ିଵ[1 − 𝐹(𝑥)]௡ି௜𝑓(𝑥) . By 

inserting Eqs (1) and (2), the PDF of 𝑖-𝑡ℎ order statistic 𝑋(௜) of the NGL distribution is  

𝑓௑(೔)
(𝑥) =

௡!

(௜ିଵ)!(௡ି௜)!
[1 − (1 + 𝜆𝜃𝑥)𝑒ିఒ௫]௜ିଵ[(1 + 𝜆𝜃𝑥)𝑒ିఒ௫]௡ି௜𝜆𝑒ିఒ௫(1 − 𝜃 + 𝜆𝜃𝑥), 𝑥 > 0, 𝜆 > 0, 0 < 𝜃 < 1. (17) 

The PDF of the minimum order statistics 𝑋(ଵ) of the NGL distribution can be obtained as  

 𝑓௑(భ)
(𝑥) = 𝑛𝜆(1 + 𝜆𝜃𝑥)௡ିଵ𝑒ି௡ఒ௫(1 − 𝜃 + 𝜆𝜃𝑥).     (18) 

The PDF of the maximum order statistics 𝑋(௡) of the NGL distribution can be obtained as  

 𝑓௑(೙)
(𝑥) = 𝑛𝜆[1 − (1 + 𝜆𝜃𝑥)𝑒ିఒ௫]௡ିଵ(1 − 𝜃 + 𝜆𝜃𝑥)𝑒ିఒ௫.    (19) 

4. Parameter estimation of the NGL distribution 

4.1. Maximum product spacing estimation 

Maximum product spacing (MPS) estimation is a robust method. It uses an optimization 
algorithm to find the corresponding parameter values that maximize the product spacing of the 
parametric functions [16]. Let (𝑋ଵ:௠:௡, 𝑋ଶ:௠:௡, ⋯ , 𝑋௠:௠:௡)  be the progressively type-II censored 
sample of the NGL distribution, and 𝑥ଵ:௠:௡, 𝑥ଶ:௠:௡, ⋯ , 𝑥௠:௠:௡  is the observation of the sample 
(𝑋ଵ:௠:௡, 𝑋ଶ:௠:௡, ⋯ , 𝑋௠:௠:௡). For convenience, in the following discussion, we always set 𝑥௜ = 𝑥௜:௠:௡. 
The product spacing function under the progressively type-II censored scheme is [16]: 

 𝐺(𝜆, 𝜃) = ∏ [𝐹(𝑥௜; 𝜆, 𝜃) − 𝐹(𝑥௜ିଵ; 𝜆, 𝜃)]௠ାଵ
௜ୀଵ ∏ 𝑆(𝑥௜; 𝜆, 𝜃)௉೔௠

௜ୀଵ .    (20) 

Using Eq (2), the product spacing function of the NGL distribution can be obtained as  

 𝐺(𝜆, 𝜃|𝑥) = ∏ [(1 + 𝜆𝜃𝑥௜ିଵ)𝑒ିఒ௫೔షభ − (1 + 𝜆𝜃𝑥௜)𝑒ିఒ௫೔]௠ାଵ
௜ୀଵ ∏ [(1 + 𝜆𝜃𝑥௜)𝑒ିఒ௫೔]௉೔௠

௜ୀଵ   (21) 

and the log-product spacing function is given by 
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 𝑙𝑛 𝐺 (𝜆, 𝜃|𝑥) = ∑ 𝑙𝑛[ (1 + 𝜆𝜃𝑥௜ିଵ)𝑒ିఒ௫೔షభ − (1 + 𝜆𝜃𝑥௜)𝑒ିఒ௫೔] +௠ାଵ
௜ୀଵ ∑ 𝑃௜[𝑙𝑛( 1 + 𝜆𝜃𝑥௜)𝜆𝑥௜]௠

௜ୀଵ . (22) 

Let 𝑔(𝜆, 𝜃|𝑥) = 𝑙𝑛 𝐺 (𝜆, 𝜃|𝑥) = 𝐻(𝜆, 𝜃|𝑥) + 𝑀(𝜆, 𝜃|𝑥), 

where 

 𝐻(𝜆, 𝜃|𝑥) = ∑ 𝑙𝑛[ (1 + 𝜆𝜃𝑥௜ିଵ)𝑒ିఒ௫೔షభ − (1 + 𝜆𝜃𝑥௜)𝑒ିఒ௫೔]௠ାଵ
௜ୀଵ     (23) 

 𝑀(𝜆, 𝜃|𝑥) = ∑ 𝑃௜[𝑙𝑛( 1 + 𝜆𝜃𝑥௜) − 𝜆𝑥௜]
௠
௜ୀଵ       (24) 

MPS estimators of 𝜆 and 𝜃, denoted by 𝜆መெ௉ௌ and 𝜃෠ெ௉ௌ, are the solutions of Eqs (25) and (26). 

 
డ௚(ఒ,ఏ|௫)

డఒ
=

డு(ఒ,ఏ|௫)

డఒ
+

డெ(ఒ,ఏ|௫)

డఒ
= 0,      (25) 

 
డ௚(ఒ,ఏ|௫)

డఏ
=

డு(ఒ,ఏ|௫)

డఏ
+

డெ(ఒ,ఏ|௫)

డఏ
= 0.      (26) 

Here, 

 
డு(ఒ,ఏ|௫)

డఏ
= ∑ [

ఏ௫೔షభ

ଵାఒఏ௫೔షభ
𝑒ିఒ௫೔షభ − 𝜆𝑥௜𝑒ିఒ௫೔]௠ାଵ

௜ୀଵ ,     (27) 

 
డு(ఒ,ఏ|௫)

డఒ
= ∑ {[

ఏ௫೔షభ

ଵାఒఏ௫೔షభ
− 𝑥௜ିଵ 𝑙𝑛( 1 + 𝜆𝜃𝑥௜ିଵ)]𝑒ିఒ௫೔షభ + [𝑥௜ + 𝜆𝜃𝑥௜

ଶ − 𝜃𝑥௜]𝑒ିఒ௫೔}௠ାଵ
௜ୀଵ , (28) 

 
డெ(ఒ,ఏ|௫)

డఏ
= ∑

௉೔ఒ௫೔

ଵାఒఏ௫೔

௠
௜ୀଵ ,       (29) 

 
డெ(ఒ,ఏ|௫)

డఒ
= ∑ 𝑃௜(

ఏ௫೔

ଵାఒఏ௫೔

௠
௜ୀଵ − 𝑥௜).      (30) 

𝜆መெ௉ௌ and 𝜃෠ெ௉ௌ cannot be obtained directly from the above equations, so we used the Newton Raphson 
algorithm to obtain the approximate maximum product spacing estimates of these parameters. The 
steps are as follows: 

(i) Establish the corresponding log-product spacing function. 
(ii) Compute the gradient vector and Hessian matrix for the log-product spacing function: 

𝛻𝑔(𝜆, 𝜃|𝑥) = ൬
𝜕𝑔(𝜆, 𝜃|𝑥)

𝜕𝜆
,
𝜕𝑔(𝜆, 𝜃|𝑥)

𝜕𝜃
൰ , 𝐻(𝜆, 𝜃|𝑥) =

⎝

⎛

𝜕ଶ𝑔(𝜆, 𝜃|𝑥)

𝜕𝜆ଶ

𝜕ଶ𝑔(𝜆, 𝜃|𝑥)

𝜕𝜆𝜕𝜃
𝜕ଶ𝑔(𝜆, 𝜃|𝑥)

𝜕𝜃𝜕𝜆

𝜕ଶ𝑔(𝜆, 𝜃|𝑥)

𝜕𝜃ଶ ⎠

⎞. 

(iii) Select the appropriate initial value (𝜆(଴), 𝜃(଴))் . 
(iv) The parameters are updated by Newton iteration formula: 

 ൤𝜆(௞ାଵ)

𝜃(௞ାଵ)
൨ = ൤𝜆(௞)

𝜃(௞)
൨ − ቌ

డమ௚(ఒ(ೖ),ఏ(ೖ)|௫)

డఒమ

డమ௚(ఒ(ೖ),ఏ(ೖ)|௫)

డఒడఏ

డమ௚(ఒ(ೖ),ఏ(ೖ)|௫)

డఏడఒ

డమ௚(ఒ(ೖ),ఏ(ೖ)|௫)

డఏమ

ቍ ቎

డ௚(ఒ(ೖ),ఏ(ೖ)|௫)

డఒ

డ௚(ఒ(ೖ),ఏ(ೖ)|௫)

డఏ

቏.   (31) 

(v) Repeat (iv) until the change in parameter values between the two iterations is less than a very 
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small threshold: |𝜆(௞ାଵ) − 𝜆(௞)| < 𝜀, |𝜃(௞ାଵ) − 𝜃(௞)| < 𝜀 
(vi) The final estimated parameters can be obtained and are noted by𝜆መெ௉ௌ = 𝜆(௞ାଵ), 𝜃෠ெ௉ௌ =

𝜃(௞ାଵ). 

4.2. Maximum likelihood estimation 

Under the progressively type-II censored sample, the likelihood function is ([18]) 

 𝐿(𝜆, 𝜃|𝑥) = 𝑐 ∏ 𝑓(𝑥௜)𝑆(𝑥௜; 𝜆, 𝜃)௉೔ ,௠
௜ୀଵ       (32) 

Here, 𝑐 = 𝑛(𝑛 − 𝑃ଵ − 1)(𝑛 − 𝑃ଵ − 𝑃ଶ − 2) ⋯ (𝑛 − ∑ (𝑃௜ + 1)௠ିଵ
௜ୀଵ ) . Using Eqs (1) and (7), the 

likelihood function of the NGL distribution can be represented as 

 𝐿(𝜆, 𝜃|𝑥) = 𝑐𝜆௠ ∏

௜ୀଵ
೘

(1 − 𝜃 + 𝜆𝜃𝑥௜)(1 + 𝜆𝜃𝑥௜)௉೔ 𝑒𝑥𝑝( − 𝜆𝑥௜(1 + 𝑃௜)).  (33) 

The log-likelihood function of the NGL distribution is  

 𝑙(𝜆, 𝜃|𝑥) = 𝑙𝑛 𝑐 + 𝑚 𝑙𝑛 𝜆 − 𝜆 ∑ 𝑥௜(1 + 𝑃௜) + ∑ 𝑙𝑛( 1 − 𝜃 + 𝜆𝜃𝑥௜)௠
௜ୀଵ

௠
௜ୀଵ + ∑ 𝑃௜ 𝑙𝑛( 1 + 𝜆𝜃𝑥௜).௠

௜ୀଵ  (34) 

The ML estimator of 𝜆 and 𝜃 can be obtained by solving the following equations:  

 
డ௟(ఒ,ఏ|௫)

డఒ
=

௠

ఒ
− ∑ 𝑥௜(1 + 𝑃௜) + ∑

ఏ௫೔

ଵିఏାఒఏ௫೔

௠
௜ୀଵ

௠
௜ୀଵ + ∑

௉೔ఏ௫೔

ଵାఒఏ௫೔

௠
௜ୀଵ = 0,   (35) 

 
డ௟(ఒ,ఏ|௫)

డఏ
= ∑

ఒ௫೔ିଵ

ଵିఏାఒఏ௫೔

௠
௜ୀଵ + ∑

௉೔ఒ௫೔

ଵାఒఏ௫೔

௠
௜ୀଵ = 0.     (36) 

Newton Raphson algorithm to obtain the corresponding result. Due to the complexity of Eqs (35) 

and (36), it is difficult to judge the existence and uniqueness of 𝜆መெ௅  and 𝜃෠ெ௅  by conventional 
numerical methods. In this paper, a graphical tool, the counter diagram, is employed, as referenced in 
Alotaibi et al. [19]. Setting the real values (𝜆, 𝜃) = (0.5,0.75), (𝑚, 𝑛) = (50,100), 𝑃 = (0 ∗ 49,50) 

and generating progressively type-II censored samples, the counter diagram of 𝜆መெ௅ and 𝜃෠ெ௅, which is 
obtained from Eq (34), is shown in Figure 4. It shows that the likelihood function obtained has only 
one obvious peak, that is, there is uniqueness. 

Figure 4 shows the existence and uniqueness of ML estimates of 𝜆  and 𝜃 , with (𝜆መெ௅ , 𝜃෠ெ௅) =

(0.855,0.625). The ML estimation of 𝑆(𝑡) and ℎ(𝑡) can be obtained by substituting 𝜆መெ௅ and 𝜃෠ெ௅ [20]: 

 𝑆መ(𝑡) = (1 + 𝜆መெ௅𝜃෠ெ௅𝑡)𝑒ିఒ෡ಾಽ௧and  ℎ෠(𝑡) = 𝜆መெ௅ −
ఒ෡ಾಽఏ෡ಾಽ

ଵାఒ෡ಾಽఏ෡ಾಽ௧
. 
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Figure 4. Counter diagram of 𝜆መெ௅ and 𝜃෠ெ௅. 

4.3. Asymptotic confidence interval 

In the above analysis, we have obtained point estimates for 𝜆, 𝜃, 𝑆(𝑡), and ℎ(𝑡). Point estimates 
provide a singular numerical approximation for unknown parameters, yet they fall short of 
encapsulating the full spectrum of uncertainty associated with these parameters. At this point, we need 
to transition from point estimation to interval estimation to get a more comprehensive understanding. 

The ML estimator is asymptotically normal [21]. That is, √𝑛(𝛩෠ − 𝛩)
 ௗ 
ሱ⎯⎯ሮ 𝑁(0, 𝐼ିଵ(𝛩)), where 𝛩 =

(𝜆, 𝜃), and 𝐼ିଵ(𝛩) as the inverse of the information matrix for unknown parameters, and it can be 
obtained as follows: 

 𝐼ିଵ(𝛩෠) ≅ ቌ
−

డమ௟(௵|௫)

డఒమ
−

డమ௟(௵|௫)

డఒడఏ

−
డమ௟(௵|௫)

డఏడఒ
−

డమ௟(௵|௫)

డఏమ

ቍ

ିଵ

ተ

௵ୀ௵෡

= ൬
𝐼ଵଵ 𝐼ଵଶ

𝐼ଶଵ 𝐼ଶଶ
൰

ିଵ

,    (37) 

with the following elements  

 
డమ௟(௵|௫)

డఒమ
= −

௠

ఒమ
− ∑

ఏమ௫೔
మ

(ଵିఏାఒఏ ೔)మ
௠
௜ୀଵ − ∑

௉೔ఏమ௫೔
మ

(ଵାఒఏ௫೔)మ
௠
௜ୀଵ      (38) 

 
డమ௟(௵|௫)

డఒడఏ
= ∑

௫೔

(ଵିఏାఒఏ௫೔)మ
௠
௜ୀଵ + ∑

௉೔௫೔

(ଵାఒఏ௫೔)మ
௠
௜ୀଵ =

డమ௟(௵|௫)

డఏడఒ
    (39) 

 
డమ௟(௵|௫)

డఏమ
= − ∑

(ఒ௫೔ିଵ)మ

(ଵିఏାఒఏ௫೔)మ
௠
௜ୀଵ − ∑

௉೔ఒమ௫೔
మ

(ଵାఒఏ௫೔)మ
௠
௜ୀଵ .     (40) 

The 100(1 − 𝛼)%  asymptotic confidence intervals (ACIs) for 𝜆  and 𝜃  are ቆ𝜆መ ± 𝑧ఈ/ଶට𝑉𝑎𝑟(𝜆መ)ቇ 
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and ቆ𝜃෠ ± 𝑧ఈ/ଶට𝑉𝑎𝑟(𝜃෠)ቇ,  respectively. Here, 𝑧ఈ/ଶ  represents the upper 𝛼/2  percentage point of 

𝑁(0,1). 
Similarly, the ACIs of 𝑆(𝑡)  and ℎ(𝑡)  can also be constructed by calculating the corresponding 

variances, among which one of the most famous methods is Greene’s delta method [22]. Under this 

method, the distribution of 𝑆መ(𝑡)(ℎ෠(𝑡)) is approximately a normal distribution with mean 𝑆(𝑡)(ℎ(𝑡)) 

and variance 𝜎ௌ
ଶ = 𝛥ௌ𝐼ିଵ(𝜆, 𝜃)𝛥ௌ

்|(ఒୀఒ෡,ఏୀఏ෡)(𝜎ℎ
ଶ = 𝛥ℎ𝐼ିଵ(𝜆, 𝜃)𝛥ℎ

்|(ఒୀఒ෡,ఏୀఏ෡))  [23], where 𝛥ௌ =

ቀ
డௌ(௫)

డఒ

డௌ(௫)

డఏ
ቁ, 𝛥ℎ = ቀ

డℎ(௫)

డఒ

డℎ(௫)

డఏ
ቁ, with the following elements 

డௌ(௫)

డఒ
= (𝜃 − 1 − 𝜆𝜃𝑥)𝑥𝑒ିఒ௫,

డௌ(௫)

డఏ
= 𝜆𝑥𝑒ିఒ௫,

డℎ(௫)

డఒ
= 1 −

ఏ

(ଵାఒఏ௫)మ
,
డℎ(௫)

డఏ
= −

ఒ

(ఒఏ௫ାଵ)మ
. 

According to the above conclusions, the 100(1 − 𝛼)% ACIs of𝑆(𝑡) and ℎ(𝑡) for a given 𝑡 are 

ቀ𝑆መ(𝑡) ± 𝑧ఈ/ଶඥ𝜎ௌ
ଶቁ , ቆℎ෠(𝑡) ± 𝑧ఈ/ଶට𝜎ℎ

ଶቇ. 

Since the asymptotic property of MPS estimator is similar to that of MLE estimator, this paper adopts 
the above method to obtain the interval estimation of MPS. For more details, see Ghosh and 
Jammalamadaka [24]. 

4.4. Bayesian estimation 

In this section, the Bayesian estimator is used to estimate the parameters of the NGL distribution, 
and the corresponding highest posterior density (HPD) intervals are considered. The idea of Bayesian 
estimation in this paper refers to several papers [25–28]. Assume that 𝜆 and 𝜃 are independent and 
obey gamma distributions. The prior PDFs of 𝜆 and 𝜃 are: 

 𝜋(𝜆|𝜎ଵ, 𝜔ଵ) =
ఠభ

഑భ

௰(ఙభ)
𝜆ఙభିଵ𝑒ିఠభఒ, 𝜆 > 0, 𝜎ଵ > 0, 𝜔ଵ > 0,     (41) 

 𝜋(𝜃|𝜎ଶ, 𝜔ଶ) =
ఠమ

഑మ

௰(ఙమ)
𝜃ఙమିଵ𝑒ିఠమఏ, 𝜃 > 0, 𝜎ଶ > 0, 𝜔ଶ > 0.     (42) 

Based on these assumptions, the joint prior density function of 𝜆 and 𝜃 can be obtained  

 𝜋(𝜆, 𝜃) ∝ 𝜆ఙభିଵ𝜃ఙమିଵ𝑒ିఠభఒିఠమఏ, 𝜆, 𝜃 > 0, 𝜔ଵ, 𝜔ଶ > 0.    (43) 

According to the likelihood function with the prior knowledge and Bayes' theorem, the posterior 
density distribution of the unknown parameters 𝜆 and 𝜃 can be obtained: 

 𝜋(𝜆, 𝜃|𝑥) =
௅(ఒ,ఏ|௫)గ(ఒ,ఏ)

∫ ∫ ௅(ఒ,ఏ|௫)గ(ఒ,ఏ)ௗఒ
∞

బ
∞

బ
ௗఏ

.       (44) 

Using Eqs (33) and (47), the posterior density distribution can be expressed: 
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 𝜋(𝜆, 𝜃|𝑥) =
ఒ೘శ഑భషభఏ഑మషభ ௘௫௣(ିఠభఒିఠమఏିఒ ∑ ௫೔(ଵା௉೔)೘

೔సభ ) ∏ (ଵିఏାఒఏ௫೔)(ଵାఒఏ௫೔)ು೔೘
೔సభ

∫ ∫ ఒ೘శ഑భషభఏ഑మషభ ௘௫௣(ିఠభఒିఠమఏିఒ ∑ ௫೔(ଵା௉೔)೘
೔సభ ) ∏ (ଵିఏାఒఏ௫೔)(ଵାఒఏ௫೔)ು೔೘

೔సభ ௗఒ
∞

బ
∞

బ
ௗఏ

.  (45) 

The loss function is a key factor to make decisions in Bayesian estimation. In this paper, the SE and 
GE loss function are used to measure overestimation and underestimation in the investigation. The SE 
and GE loss functions, as symmetric loss function and asymmetric loss function, respectively, have 
different measures of the importance of overestimation and underestimation. The Bayesian estimator 
represents the posterior mean in the case of the SE loss function, and overestimation and 
underestimation have equal weight. The SE loss is defined as [29] 

 𝐿ௌ(𝜙(𝜆, 𝜃), 𝜙෠(𝜆, 𝜃)) = (𝜙(𝜆, 𝜃) − 𝜙෠(𝜆, 𝜃))ଶ,      (46) 

and the corresponding Bayesian estimator is 

 𝜙෠ௌ(𝜆, 𝜃) = 𝐸[𝜙(𝜆, 𝜃)|𝑥] = ∫ ∫ 𝜙(𝜆, 𝜃)𝜋(𝜆, 𝜃
∞

଴

∞

଴
|𝑥)𝑑𝜆𝑑𝜃.    (47) 

The GE loss, which has a different tendency to weight overestimation and underestimation, is defined 
as [30] 

 𝐿ீ(𝜙(𝜆, 𝜃), 𝜙෠(𝜆, 𝜃)) ∝ ቀ
థ෡ (ఒ,ఏ)

థ(ఒ,ఏ)
ቁ

ఊ

− 𝛾 𝑙𝑜𝑔 ቀ
థ෡ (ఒ,ఏ)

థ(ఒ,ఏ)
ቁ − 1, 𝛾 ≠ 0,   (48) 

here, 𝛾 is the parameter of the degree of asymmetry. Under GE loss, the Bayesian estimator is 

 𝜙෠ீ(𝜆, 𝜃) = [𝐸({𝜙(𝜆, 𝜃)}ିఊ|𝑥)]ିଵ/ఊ = {∫ ∫ [𝜙(𝜆, 𝜃)]ିఊ𝜋(𝜆, 𝜃
∞

଴

∞

଴
|𝑥)𝑑𝜆𝑑𝜃}ିଵ/ఊ. (49) 

Obviously, the integral of Eqs (47) and (49) cannot be calculated directly. Therefore, the MCMC 
approach, which is a very popular method for estimating parameters, is employed to calculate the 
corresponding HPD intervals and the Bayesian estimates (BE) of 𝜆  and 𝜃 . The full conditional 
posterior distribution of 𝜆 and 𝜃 as a key factor of the MCMC method can be derived by Eq (45) 

𝜋ଵ(𝜆|𝜃, 𝑥) ∝ 𝜆௠ାఙభିଵ 𝑒𝑥𝑝( − 𝜔ଵ𝜆 − 𝜆 ∑ 𝑥௜(1 + 𝑃௜)௠
௜ୀଵ ) ∏ (1 − 𝜃 + 𝜆𝜃𝑥௜)(1 + 𝜆𝜃𝑥௜)௉೔௠

௜ୀଵ , (50) 

and 

 𝜋ଶ(𝜃|𝜆, 𝑥) ∝ 𝜃ఙమିଵ 𝑒𝑥𝑝( − 𝜔ଶ𝜃) ∏ (1 − 𝜃 + 𝜆𝜃𝑥௜)(1 + 𝜆𝜃𝑥௜)
௉೔௠

௜ୀଵ .   (51) 

Because of the nonlinearity of the full conditional posterior distribution of 𝜆 and 𝜃, the Metropolis-
Hastings (M-H) algorithm is applied to obtain the unknown parameters of Bayesian estimation. We 
assume the normal distribution as the proposed distribution to obtain the Bayesian estimation and HPD 
intervals of 𝜆, 𝜃, 𝑆(𝑡) and ℎ(𝑡). Follow the next steps to generate the MCMC sample: 

(i) Set 𝑘 = 1. 
(ii) Set the initial values of (𝜆, 𝜃) to (𝜆(଴), 𝜃(଴)). 
(iii) Generate 𝜆∗  and 𝜃∗  from 𝑁(𝜆(௞ିଵ), 𝜎ఒ

ଶ)  and 𝑁(𝜃(௞ିଵ), 𝜎ఏ
ଶ) , respectively. When 𝜆∗ ≤ 0  or 

𝜃∗ ∉ (0,1) , repeat step (iii), where 𝜆(௞ିଵ)  and 𝜃(௞ିଵ)  represent previous state, 𝜎ఒ
ଶ  and 𝜎ఏ

ଶ 
represent the variance of the previous state. 

(iv) Definite acceptance probability𝜔(𝜆௞ିଵ, 𝜆∗) = 𝑚𝑖𝑛( 1,
గభ(ఒ∗|ఏ(ೖషభ),௫)

గభ(ఒ(ೖషభ)|ఏ(ೖషభ),௫)
)  and𝜔(𝜃௞ିଵ, 𝜃∗) =
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𝑚𝑖𝑛( 1,
గమ(ఏ∗|ఒ(ೖ),௫)

గమ(ఏ(ೖషభ)|ఒ(ೖ),௫)
). 

(v) Generate 𝑢(ଵ) and 𝑢(ଶ) from the uniform distribution 𝑈(0,1). 
(vi) If 𝑢(ଵ) ≤ 𝜔(𝜆௞ିଵ, 𝜆∗), then 𝜆(௞) = 𝜆∗, otherwise 𝜆(௞) = 𝜆(௞ିଵ). 

(vii)  If 𝑢(ଶ) ≤ 𝜔(𝜃௞ିଵ, 𝜃∗), then 𝜃(௞) = 𝜃∗, otherwise 𝜃(௞) = 𝜃(௞ିଵ). 

(viii) Calculate 𝑆(௞)(𝑡)  and ℎ(௞)(𝑡)  according to the following formulas: 𝑆(௞)(𝑡) = (1 +

𝜆(௞)𝜃(௞)𝑡)𝑒ିఒ(ೖ)௧ and ℎ(௞)(𝑡) = 𝜆(௞) −
ఒ(ೖ)ఏ(ೖ)

ଵାఒ(ೖ)ఏ(ೖ)௧
, where 𝑡 > 0. 

(ix) Set 𝑘 = 𝑘 + 1. 
(x) Repeat (iii)–(ix) 𝐿  times to get {𝜆(௞)}, {𝜃(௞)}, {ℎ(௞)(𝑡)} and {𝑆(௞)(𝑡)}(𝑘 = 1,2, … , 𝐿) , and 

discard the first 𝐿∗ samples of {𝜆(௞)}, {𝜃(௞)}, ൛ℎ(௞)(𝑡)ൟ and ൛𝑆(௞)(𝑡)ൟ to eliminate the influence 
of initial value selection. 

(xi) Based on SE and GE loss functions, calculate the Bayesian estimation and HPD intervals 
of 𝜆,𝜃,𝑆(𝑡) and ℎ(𝑡). Take 𝜆 for example: 

 Compute the Bayesian estimate of 𝜆 :𝜆መௌ =
ଵ

௟
∑ 𝜆(௜)௅

௜ୀ௅∗ାଵ   and𝜆መீ =
ଵ

௟
൫∑ [𝜆(௜)]ିఊ௅

௜ୀ௅∗ାଵ ൯
ିଵ/ఊ

, 

where 𝑙 = 𝐿 − 𝐿∗. 
 Create the HPD interval of 𝜆 [31]: Let 𝜆(௅∗ାଵ), 𝜆(௅∗ାଶ), . . . , 𝜆(௅) be the ascending values of 

𝜆(௅∗ାଵ), 𝜆(௅∗ାଶ), . . . , 𝜆(௅) , the 100(1 − 𝛼)%  HPD interval of 𝜆 can be approximated to 
൫𝜆(௞∗), 𝜆(௞∗ା[(ଵିఈ)௟])൯, where 𝑘∗ ∈ {𝐿∗ + 1, 𝐿∗ + 2, . . . , 𝐿} is selected according to the formula 

𝜆(௞∗ା[(ଵିఈ)௟]) − 𝜆(௞∗) = 𝑚𝑖𝑛
௅∗ାଵஸ௞ஸ௅∗ା[ఈ௟]

൫𝜆(௞∗ା[(ଵିఈ)௟]) − 𝜆(௞∗)൯ , where [𝑥]  is the downward 

integer of 𝑥, that is, the largest integer less than or equal to 𝑥. 

5. Monte Carlo simulation 

In this section, a Monte Carlo simulation will be performed to demonstrate and compare the 
performance of the above estimators for the NGL distribution in parameter estimation. 

5.1. Simulation plan 

We simulate 1000 progressively type-II censored samples of the NGL(0.5,0.75) based on the 
parameter selection of n(Total number of samples), m(Number of valid samples), and P(Censored 
schemes). Meanwhile, in order to reasonably evaluate the estimates of 𝑆(𝑡) and ℎ(𝑡), first obtain their 
true values at 𝑡 = 0.5 , which are 0.9248 and 0.1842, respectively. In addition,  𝑛(= 50,90) is 
determined and the valid sample proportion is used to determine that the value of 𝑚 meets 𝑚/𝑛(=

60%, 80%). Also, the three progressively censored schemes used are shown in Table 2. 
Next, the specific steps to generate progressively type-II censored samples are given [32]: 
(i) Generate 𝑚 observations 𝜍௜ (for 𝑖 = 1,2, . . . , 𝑚) that follow uniform distribution 𝑈(0,1). 
(ii) Give the corresponding value according to the specific censored schemes, set 𝜁௜ =

𝜍௜

ଵ/(௜ା∑ ௉ೖ
೘
ೖస೘ష೔శభ )

(for 𝑖 = 1,2, . . . , 𝑚). 
(iii) Set 𝜉௜ = 1 − 𝜁௠𝜁௠ିଵ ⋯ 𝜁௠ି௜ାଵ(for 𝑖 = 1,2, . . . , 𝑚). 
(iv) Generate progressively type-II censored samples 𝑥௜ of the NGL (0.5, 0.75), set 

𝑥௜ = ቂ−0.75𝑊(
௘షభ/బ.ళఱ(క೔ିଵ)

଴.଻ହ
) − 1ቃ /0.375. 
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Table 2. Three kinds of censored schemes. 

Scheme  

1 P=(0 ∗ (𝑚 − 1), 𝑛 − 𝑚) 
2 P=([(𝑛 − 𝑚)/2], 0 ∗ (𝑚 − 2), 𝑛 − 𝑚 − [(𝑛 − 𝑚)/2]) 
3 P=൫𝑛 − 𝑚, 0 ∗ (𝑚 − 1)൯ 

In Table 2, P = (6,0,0,0,0,1) stands for P = (6,0*4,1). 
After obtaining progressively type-II censored samples, MPS estimates and ML estimates and 95% 

ACIs of 𝜆, 𝜃, 𝑆(𝑡) and ℎ(𝑡) are calculated using Matlab R2016a, as well as Bayesian estimates based 
on SE and GE (𝛾(= −2)) loss function and HPD interval. The large 12,000 M-H samples are generated 
by M-H sampler, and then the first 2000 samples are deleted as fluctuation samples. Then we complete 
the Bayesian estimator by setting up two prior sets called 𝑃𝑟𝑖𝑜𝑟 − 𝑎: (𝜎ଵ, 𝜎ଶ, 𝜔ଵ, 𝜔ଶ) = (8,10,10,5) 
and 𝑃𝑟𝑖𝑜𝑟 − 𝑏: (𝜎ଵ, 𝜎ଶ, 𝜔ଵ, 𝜔ଶ) = (4,5,5,2.5). Repeat 1000 times to ensure the accuracy and stability 
of the estimation results. The evaluation criteria for verifying the reliability of the estimation method 
are shown in Table 3. 

Table 3. Evaluation criteria of point estimation and interval estimation. 

Name Formula of errors 

AE (average estimates) 𝜆መሜ =
1

1000
෍ 𝜆መ௜

ଵ଴଴଴

௜ୀଵ

 

RMSE (root mean squared errors) 𝑅𝑀𝑆𝐸
ఒ෡ሜ

= ඩ
1

1000
෍ ൫𝜆መ௜ − 𝜆൯

ଶ
ଵ଴଴଴

௜ୀଵ

 

MRAB (mean relative absolute biases) 𝑀𝑅𝐴𝐵
ఒ෡ሜ

=
1

1000
෍

1

𝜆
ห𝜆መ௜ − 𝜆ห

ଵ଴଴଴

௜ୀଵ

 

ACL (average confidence lengths) 𝐴𝐶𝐿ఒ
(ଵିఈ)% =

1

1000
෍ (𝑅ఒ෡೔

− 𝐿ఒ෡೔
)

ଵ଴଴଴

௜ୀଵ

 

CP (coverage percentages) 𝐶𝑃ఒ
(ଵିఈ)%

=
1

1000
෍ 𝑙(௅ഊ෡೔

;ோഊ෡೔
)

ଵ଴଴଴

௜ୀଵ

(𝜆) 

Where 𝑙஺()  represents the indicator function, and 𝑅()  and 𝐿()  denote the upper and lower bounds, 

respectively, for each (1 − 𝛼)%ACI/HPD interval. 

5.2. Simulation result 

RMSE, MRAB, ACL, and CP of 𝜆, 𝜃, 𝑆(𝑡) and ℎ(𝑡) estimates of various estimators are shown 
using heat maps in Figures 5–8. The corresponding specific numerical results are shown in the 
appendix [Tables 4–11]. Here, SE-Pa represents the estimate of 𝑃𝑟𝑖𝑜𝑟 − 𝑎  by Bayesian estimator 
based on SE loss, GE-Pb represents the estimate of 𝑃𝑟𝑖𝑜𝑟 − 𝑏 by Bayesian estimator based on GE 
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loss (for 𝛾(= −2)), and ACL-MPS corresponds to the interval estimate of the MPS. 

 

Figure 5. Heat maps of the associated estimates of 𝜆. 
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Figure 6. Heat maps of the associated estimates of 𝜃. 
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Figure 7. Heat maps of the associated estimates of 𝑆(𝑡). 



10572 

AIMS Mathematics  Volume 10, Issue 5, 10554–10590. 

 

Figure 8. Heat maps of the associated estimates of h(t).
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Table 4. Point estimation of 𝜆 by estimator under different conditions (AE: first column; RMSE: second column; MRAB: third column). 

(𝑛, 𝑚) Scheme MPS ML BE 

  

SE GE 
𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑎 
𝑃𝑟𝑖𝑜𝑟 − 𝑏 𝑃𝑟𝑖𝑜𝑟 − 𝑏 

  -2 
(50,30) 1 0.4897 0.1395 0.2052 0.5111 0.1412 0.2035 0.5258 0.0906 0.1399 0.5317 0.0888 0.1380 

        0.3905 0.1297 0.2240 0.4513 0.0967 0.1557 

 2 0.4967 0.1229 0.1846 0.5043 0.1284 0.1899 0.5174 0.0936 0.1453 0.5278 0.0974 0.1509 

        0.3826 0.1401 0.2393 0.4481 0.1038 0.1634 

 3 0.5404 0.1267 0.1785 0.507 0.1161  0.1729 0.5175 0.1000 0.1534 0.5254 0.1016 0.1582 

        0.371 0.1553 0.2665 0.4373 0.1195 0.1916 
(50,40) 1 0.4954 0.1023 0.1525 0.5095 0.1188 0.1716 0.5176 0.0857 0.1300 0.5261 0.0868 0.1334 

        0.4168 0.1205 0.1953 0.4306 0.1102 0.1761 

 2 0.5091 0.1025 0.1503 0.5157 0.1131 0.1682 0.508 0.0937 0.1403 0.515 0.0952 0.1451 

        0.411 0.1278 0.2056 0.4206 0.1215 0.1903 

 3 0.5257 0.1015 0.149 0.5133 0.1068 0.156 0.5074 0.0958 0.1434 0.5178 0.0927 0.1398 

        0.3913 0.1401 0.2235 0.4191 0.1301 0.2073 
(90,54) 1 0.4983 0.111 0.1566 0.5058 0.1219 0.1667 0.5118 0.0717 0.1108 0.5157 0.0728 0.1129 

        0.4104 0.1099 0.1881 0.4255 0.0981 0.1634 

 2 0.5062 0.0973 0.1435 0.5135 0.107 0.1505 0.5157 0.0769 0.1160 0.5229 0.0716 0.1108 

        0.4077 0.1157 0.1934 0.4249 0.1054 0.1700 

 3 0.5211 0.0912 0.1324 0.5115 0.0955 0.1362 0.5084 0.0842 0.1261 0.5156 0.0832 0.1269 

        0.4096 0.1337 0.2147 0.4003 0.1376 0.2222 
(90,72) 1 0.5036 0.0817 0.1205 0.5049 0.0865 0.1257 0.511 0.0661 0.0981 0.5185 0.0669 0.099 

        0.4386 0.0989 0.1588 0.4112 0.1125 0.1874 

 2 0.5069 0.0798 0.118 0.5102 0.0869 0.1252 0.5083 0.0731 0.1067 0.5186 0.0716 0.1046 

        0.4306 0.1135 0.183 0.3984 0.1277 0.2115 

 3 0.5239 0.0749 0.1106 0.5106 0.0847 0.1182 0.5115 0.0768 0.1113 0.5152 0.0722 0.1041 
                0.4228 0.1311 0.2126 0.3852 0.1432 0.2415 
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Table 5. Point estimation of 𝜃 by estimator under different conditions (AE: first column; RMSE: second column; MRAB: third column). 

(𝑛, 𝑚) Scheme MPS ML BE 

  

SE GE 
𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑎 
𝑃𝑟𝑖𝑜𝑟 − 𝑏 𝑃𝑟𝑖𝑜𝑟 − 𝑏 

  -2 
(50,30) 1 0.6686 0.5743 0.3249 0.7282 0.3277 0.2828 0.7389 0.1897 0.1652 0.7831 0.108 0.1166 

        0.3881 0.3965 0.4825 0.5906 0.2024 0.2125 

 2 0.6529 0.5109 0.3051 0.7201 0.5525 0.3064 0.7448 0.1509 0.1402 0.7792 0.1305 0.1306 

        0.5263 0.2745 0.2983 0.6020 0.2021 0.1976 

 3 0.7168 0.2925 0.2532 0.6427 0.6425 0.3192 0.7142 0.161 0.1319 0.7689 0.1620 0.1503 

        0.4916 0.3373 0.3447 0.5740 0.2588 0.2368 
(50,40) 1 0.6688 0.2753 0.2539 0.7385 0.4545 0.2849 0.7636 0.1484 0.1337 0.7840 0.1244 0.126 

        0.4136 0.3722 0.4489 0.5818 0.2229 0.2243 

 2 0.7019 0.5158 0.2736 0.7586 0.5247 0.307 0.7419 0.1820 0.1581 0.7640 0.1600 0.1465 

        0.4847 0.3278 0.3537 0.5564 0.2576 0.2582 

 3 0.7139 0.4281 0.2498 0.7301 0.6584 0.3084 0.7320 0.2008 0.1717 0.7731 0.1638 0.1503 

        0.4697 0.3551 0.3737 0.5324 0.3006 0.2906 
(90,54) 1 0.6973 0.257 0.2188 0.7721 0.2877 0.2455 0.7454 0.1392 0.1282 0.7553 0.126 0.1121 

        0.5003 0.3001 0.3329 0.4933 0.2947 0.3423 

 2 0.7081 0.3537 0.228 0.7554 0.4585 0.2615 0.7646 0.1363 0.1173 0.7868 0.1052 0.1076 

        0.4593 0.3279 0.3876 0.5536 0.2381 0.2622 

 3 0.7152 0.2474 0.2033 0.7242 0.6738 0.2884 0.7426 0.1831 0.1551 0.7734 0.1594 0.1448 

        0.4140 0.4003 0.4497 0.4875 0.3416 0.3507 
(90,72) 1 0.7284 0.2088 0.1898 0.7674 0.2309 0.2009 0.7629 0.1267 0.1141 0.7891 0.1242 0.1168 

        0.5251 0.2668 0.2999 0.5261 0.2624 0.2993 

 2 0.7159 0.4108 0.2002 0.7461 0.2387 0.2108 0.7584 0.1549 0.1343 0.7915 0.1274 0.1191 

        0.4086 0.3846 0.4566 0.505 0.2954 0.3278 

 3 0.7502 0.5628 0.2173 0.7647 0.5311 0.236 0.7626 0.1778 0.1529 0.7863 0.1524 0.1393 
                0.361 0.4457 0.5231 0.4594 0.3608 0.3915 

  



10575 

AIMS Mathematics          Volume 10, Issue 5, 10554–10590. 

 Table 6. Point estimation of 𝑆(𝑡) by estimator under different conditions (AE: first column; RMSE: second column; MRAB: third column). 

(𝑛, 𝑚) Scheme MPS ML BE 

  

SE GE 
𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑎 
𝑃𝑟𝑖𝑜𝑟 − 𝑏 𝑃𝑟𝑖𝑜𝑟 − 𝑏 

  -2 
(50,30) 1 0.9226 0.1517 0.0392 0.8771 0.0541 0.0327 0.9253 0.0174  0.0147  0.9271 0.017 0.0149 

        0.9051 0.0262 0.0228 0.9046 0.0272 0.0236 

 2 0.9145 0.0598 0.0336 0.9228 0.0879 0.0364 0.9274 0.0164 0.0144 0.9283 0.0174 0.0151 

        0.9088 0.023 0.0197 0.9095 0.0227 0.019 

 3 0.9184 0.0589 0.0367 0.9448 0.1018 0.041 0.9269 0.0188 0.0162 0.9272 0.0191 0.0163 

        0.9068 0.0262 0.0223 0.9084 0.0252 0.0214 
(50,40) 1 0.9164 0.0412 0.0303 0.9331 0.0532 0.0343 0.9302 0.0159 0.0140 0.9292 0.0159 0.0141 

        0.9087 0.0217 0.0190 0.9097 0.0213 0.0182 

 2 0.9197 0.0774 0.0349 0.9204 0.1022 0.0397 0.9288 0.0166 0.0144 0.9284 0.0165 0.0145 

        0.9081 0.0232 0.0197 0.9087 0.0218 0.019 

 3 0.9165 0.0763 0.0357 0.9257 0.1217 0.0412 0.9278 0.0183 0.0158 0.9294 0.0175 0.0154 

        0.9068 0.0253 0.0214 0.9061 0.0255 0.0223 
(90,54) 1 0.9213 0.042 0.0245 0.9425 0.049 0.0296 0.9226 0.0177 0.0142 0.9234 0.017 0.0135 

        0.8886 0.0406 0.0392 0.8889 0.0403 0.0389 

 2 0.9223 0.079 0.0276 0.9306 0.0806 0.0335 0.9292 0.0144 0.0127 0.9294 0.0144 0.0127 

        0.9038 0.0253 0.023 0.9041 0.0250 0.0229 

 3 0.9179 0.049 0.0285 0.9457 0.1544 0.0418 0.9289 0.0041 0.0044 0.9293 0.0180 0.0156 

        0.9028 0.0279 0.0248 0.9030 0.0274 0.0246 
(90,72) 1 0.9244 0.0334 0.0237 0.922 0.0397 0.026 0.9308 0.0175 0.0152 0.9309 0.0155 0.0136 

        0.9018 0.0265 0.0252 0.9022 0.0261 0.0248 

 2 0.9196 0.0963 0.0285 0.9333 0.0422 0.0283 0.9308 0.0158 0.014 0.9317 0.0150 0.0134 

        0.9042 0.0244 0.0229 0.9037 0.0249 0.0231 

 3 0.924 0.1124 0.0304 0.938 0.0862 0.0312 0.9307 0.0179 0.0156 0.9315 0.0179 0.0158 
                0.9006 0.0289 0.0272 0.9012 0.0286 0.0264 
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Table 7. Point estimation of ℎ(𝑡) by estimator under different conditions (AE: first column; RMSE: second column; MRAB: third column). 

(𝑛, 𝑚) Scheme MPS ML BE 

  

SE GE 
𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑎 
𝑃𝑟𝑖𝑜𝑟 − 𝑏 𝑃𝑟𝑖𝑜𝑟 − 𝑏 

  -2 
(50,30) 1 0.2011 0.0741 0.2683 0.1878 0.0592 0.242 0.1938 0.0404 0.1667 0.1971 0.0428 0.1792 

        0.2215 0.0538 0.2311 0.2339 0.0656 0.2881 

 2 0.2299 0.4497 0.3735 0.1661 0.4973 0.3925 0.1883 0.0362 0.1541 0.1931 0.0413 0.1682 

        0.2133 0.0478 0.2005 0.2211 0.0536 0.2255 

 3 0.217 0.5736 0.3982 0.1655 0.4777 0.4144 0.1897 0.0401 0.1710 0.1953 0.0436 0.1843 

        0.2170 0.0527 0.2230 0.2219 0.0561 0.2406 
(50,40) 1 0.2058 0.0627 0.2552 0.1984 0.0647 0.2553 0.1824 0.0338 0.1451 0.1896 0.0350 0.1476 

        0.2116 0.0425 0.1810 0.2169 0.0466 0.2001 

 2 0.1942 0.2237 0.2046 0.2052 0.2439 0.3358 0.1840 0.0339 0.1451 0.1898 0.0348 0.1485 

        0.2123 0.0443 0.1859 0.2175 0.0459 0.2009 

 3 0.2131 0.1273 0.3069 0.1894 0.675 0.4708 0.1862 0.0366 0.1564 0.1887 0.0363 0.1543 

        0.2151 0.0482 0.2020 0.2231 0.0531 0.2340 
(90,54) 1 0.197 0.0474 0.1958 0.1794 0.0523 0.2025 0.1967 0.0383 0.1571 0.2018 0.0404 0.1628 

        0.2519 0.0781 0.3699 0.2634 0.0884 0.4317 

 2 0.1947 0.0904 0.2204 0.1699 0.2216 0.2725 0.1815 0.0296 0.1294 0.1877 0.0305 0.1268 

        0.2205 0.0474 0.2114 0.2282 0.0537 0.2460 

 3 0.1898 0.7276 0.3584 0.1554 0.2483 0.326 0.1836 0.0341 0.148 0.1873 0.0352 0.1485 

        0.221 0.0501 0.2189 0.2265 0.0532 0.2416 
(90,72) 1 0.1911 0.0475 0.1937 0.1813 0.0516 0.1997 0.1798 0.0280 0.1233 0.1831 0.0290 0.1262 

        0.2228 0.0471 0.2169 0.2292 0.0528 0.2486 

 2 0.184 0.1361 0.2317 0.1677 0.0541 0.2117 0.1791 0.0290 0.1271 0.1816 0.0276 0.1203 

        0.2171 0.0419 0.1889 0.2238 0.0478 0.2201 

 3 0.1874 0.1211 0.2138 0.1594 0.2271 0.3026 0.1799 0.0326 0.1391 0.1818 0.0326 0.1396 
                0.2235 0.0496 0.2268 0.2279 0.0533 0.2454 
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 Table 8. Interval estimation of 𝜆 by estimator under different conditions. 

(𝑛, 𝑚) Scheme ACI HPD 
  MPS ML 𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑏 
    ACL CP ACL CP ACL CP ACL CP 
(50,30) 1 0.5959 0.929 0.5407 0.919 0.3655 0.965 0.4281 0.951 

 2 0.5383 0.932 0.4926 0.924 0.3515 0.949 0.422 0.932 

 3 0.4397 0.923 0.4459 0.951 0.3365 0.910 0.3939 0.853 
(50,40) 1 0.4299 0.945 0.4102 0.915 0.319 0.956 0.3898 0.918 

 2 0.3964 0.926 0.3765 0.903 0.3102 0.929 0.3732 0.864 

 3 0.3581 0.928 0.3554 0.912 0.3021 0.905 0.3628 0.834 
(90,54) 1 0.4106 0.919 0.3758 0.906 0.3131 0.969 0.3428 0.894 

 2 0.3530 0.918 0.3558 0.880 0.2922 0.963 0.3662 0.932 

 3 0.3037 0.918 0.3012 0.900 0.2713 0.912 0.3400 0.804 
(90,72) 1 0.2872 0.913 0.2770 0.886 0.2583 0.947 0.3430 0.900 

 2 0.2674 0.919 0.2657 0.906 0.2523 0.952 0.3364 0.876 
  3 0.2542 0.888 0.2642 0.902 0.2366 0.925 0.3188 0.763 

Table 9. Interval estimation of 𝜃 by estimator under different conditions. 

(𝑛, 𝑚) Scheme ACI HPD 
  MPS ML 𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑏 

    ACL CP ACL CP ACL CP ACL CP 
(50,30) 1 1.3061 0.908 1.0387 0.891 0.5877 0.986 0.8699 0.965 

 2 1.1711 0.921 0.9627 0.888 0.5510 0.972 0.8449 0.955 

 3 0.8076 0.904 0.9926 0.926 0.5016 0.950 0.7761 0.875 
(50,40) 1 0.9013 0.921 0.7698 0.873 0.5367 0.980 0.8515 0.939 

 2 0.7790 0.902 0.6721 0.881 0.5254 0.960 0.8133 0.898 

 3 0.6540 0.895 0.671 0.888 0.5017 0.944 0.7724 0.868 
(90,54) 1 0.7660 0.842 0.5899 0.800 0.6550 0.978 0.8402 0.887 

 2 0.6332 0.836 0.6084 0.805 0.5377 0.981 0.8682 0.951 

 3 0.5169 0.867 0.5271 0.826 0.4844 0.931 0.7569 0.830 
Continued on next page 
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(𝑛, 𝑚) Scheme ACI HPD 
 MPS ML 𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑏 

  ACL CP ACL CP ACL CP ACL CP 
(90,72) 1 0.4541 0.767 0.4141 0.748 0.4985 0.938 0.8488 0.925 

 2 0.4432 0.788 0.4027 0.765 0.4908 0.945 0.8223 0.898 
  3 0.3628 0.769 0.4004 0.772 0.4378 0.897 0.7363 0.802 

Table 10. Interval estimation of 𝑆(𝑡) by estimator under different conditions. 

(𝑛, 𝑚) Scheme ACI HPD 
  MPS ML 𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑏 

    ACL CP ACL CP ACL CP ACL CP 
(50,30) 1 0.1615 0.899 0.1714 0.924 0.0932 0.995 0.1262 0.997 

 2 0.1653 0.895 0.1713 0.926 0.0865 0.991 0.1128 0.993 

 3 0.1778 0.935 0.1751 0.911 0.0864 0.971 0.1089 0.958 
(50,40) 1 0.1483 0.899 0.1572 0.892 0.0805 0.987 0.1059 0.991 

 2 0.15 0.902 0.165 0.907 0.08 0.972 0.1014 0.957 

 3 0.1517 0.907 0.1626 0.908 0.0813 0.949 0.1019 0.932 
(90,54) 1 0.1196 0.892 0.1237 0.898 0.0946 0.983 0.1283 0.926 

 2 0.1207 0.887 0.1277 0.874 0.0764 0.981 0.1075 0.973 

 3 0.1256 0.925 0.1344 0.875 0.0754 0.947 0.0968 0.859 
(90,72) 1 0.1087 0.897 0.1157 0.894 0.0706 0.958 0.0997 0.946 

 2 0.1117 0.913 0.1153 0.9 0.0699 0.957 0.092 0.919 
  3 0.1113 0.898 0.1187 0.886 0.069 0.914 0.0905 0.837 
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Table 11. Interval estimation of ℎ(𝑡) by estimator under different conditions. 

(𝑛, 𝑚) Scheme ACI HPD 
  MPS ML 𝑃𝑟𝑖𝑜𝑟 − 𝑎 𝑃𝑟𝑖𝑜𝑟 − 𝑏 

   ACL CP ACL CP ACL CP ACL CP 
(50,30) 1 0.204 0.907 0.2012 0.910 0.1885 0.986 0.2549 0.993 

 2 0.4103 0.897 0.2187 0.896 0.1740 0.986 0.2233 0.993 

 3 0.2534 0.895 0.2982 0.907 0.1767 0.964 0.216 0.975 
(50,40) 1 0.2046 0.898 0.1978 0.878 0.1559 0.979 0.2021 0.991 

 2 0.2115 0.891 0.2056 0.873 0.1559 0.975 0.1932 0.982 

 3 0.3762 0.892 0.2784 0.878 0.1603 0.967 0.1964 0.971 
(90,54) 1 0.1526 0.887 0.1474 0.887 0.1791 0.981 0.2538 0.948 

 2 0.1762 0.877 0.3585 0.873 0.143 0.973 0.2021 0.991 

 3 0.1885 0.917 0.1827 0.862 0.1446 0.961 0.1834 0.932 
(90,72) 1 0.1486 0.889 0.1461 0.873 0.1288 0.965 0.183 0.972 

 2 0.1637 0.897 0.1573 0.885 0.1279 0.97 0.167 0.963 
  3 0.1599 0.894 0.1826 0.87 0.1293 0.932 0.1692 0.911 
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From the heat maps in Figures 5–8 and Tables 4–11, the following conclusions can be drawn: 
(1) All estimates of 𝜆, 𝜃, 𝑆(𝑡) and ℎ(𝑡) are good estimators because of low RMSE, MRAB, and 

ACL values and high CP values. Through changing the color of the heat-maps to from down to up, we 
can find that, in most cases, with the increase of n and m, the estimation performance of all obtained 
estimators will improve, corresponding to lower RMSE, MRAB, ACL, and CP values. 

(2) Among all estimates, Bayesian estimates based on SE loss and GE loss are more accurate than 
MPS and ML estimates because of lower RMSE, MRAB, and ACL values and higher CP values. 

(3) Different prior parameters will affect the effectiveness of Bayesian estimation. In Bayesian 
estimation, the Bayesian estimator based on SE loss and the Bayesian estimator based on GE loss have 
better estimation performance under the gamma prior function with 𝑃𝑟𝑖𝑜𝑟 − 𝑎  as parameter than 
𝑃𝑟𝑖𝑜𝑟 − 𝑏 because the variance of 𝑃𝑟𝑖𝑜𝑟 − 𝑎 is smaller. 

(4) Different censored schemes may affect the estimated effectiveness to some extent. In most 
cases, estimates based on scheme-1 work better. In the face of progressively type-II censored samples 
of the NGL distribution, the Bayesian estimation under the gamma prior function with 𝑃𝑟𝑖𝑜𝑟 − 𝑎 can 
be used to estimate the corresponding unknown parameters and related functions. 

(5) The Bayesian estimation under the gamma prior function with 𝑃𝑟𝑖𝑜𝑟 − 𝑎 is overestimated 
while with 𝑃𝑟𝑖𝑜𝑟 − 𝑏 is underestimated. 

(6) The point (or interval) estimation of the MPS estimates and ML estimates of 𝑆(𝑡)  is 
significantly weaker than the result obtained by Bayes. 

(7) In summary, with a more complete amount of data from progressively type-II censored, 
Bayesian estimation via M-H algorithm can obtain better estimates when estimating unknown 
parameters of the NGL distribution. 

6. Practical application 

This section demonstrates the flexibility of the proposed distribution and the usefulness of the 
various estimation methods through a practical application. The dataset, which was previously used by 
Bekker et al. [33] and later applied by Habib et al. [34], is the annual survival time of 46 patients who 
received chemotherapy and radiation therapy. The specific data is shown in Table 12. 

Table 12. The annual survival time of 46 patients. 

0.047 0.115 0.121 0.132 0.164 0.197 0.203 0.26 0.282 0.296 0.334 0.395 

0.458 0.466 0.501 0.507 0.529 0.534 0.54 0.57 0.641 0.644 0.696 0.841 

0.863 1.099 1.219 1.271 1.326 1.447 1.485 1.553 1.581 1.589 2.178 2.343 

2.416 2.444 2.825 2.83 3.578 3.658 3.743 3.978 4.003 4.033   

In order to test whether the NGL distribution is suitable for the dataset, ML estimation is first 
used to estimate 𝜆 and 𝜃, and the corresponding values with standard errors (St) are obtained as 
0.90788 (0.33141) and 0.20264 (0.41243). Then the Kolmogorov-Smirnov (KS) value and P-value 
can be obtained as 0.10158 (0.69157). Compared with the truncated Nadarajah-Haghighi Raykeigh 
distribution, which presents a KS value with a P-value of 0.1080 (0.6307) for this dataset [34], it can 
be considered that the NGL distribution has a better fitting effect and is suitable for this dataset. As 
illustrated in Figure 9, the NGL distribution to the fitting effect of the dataset is demonstrated. This 
includes the fitted CDF, the probability-probability (PP), the scaled total time on test (TTT) 
transform [35], and the counter of the log-likelihood function. Figure 9 indicates that the NGL 
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distribution is very close to the real data distribution and the existence and uniqueness of the obtained 
MLE estimates 𝜆መ and 𝜃෠. 

 

Figure 9. (a) Fitted CDF of NGL, (b) PP, (c) scaled TTT-Transform, (d) counter of log-
likelihood function from the annual survival time of 46 patients. 

Let m=20, and three types of progressively type-II censored samples are obtained from this 
dataset, as shown in Table 13. The point estimates of 𝜆 and 𝜃 are obtained by the above estimation 
method (MPS, ML, Bayesian estimation) and are shown in Table 14. At the same time, standard 
errors (St.es) are used to judge the accuracy of the estimated results. Here, the SE.es of 𝜆  and 𝜃 
obtained by MPS and ML estimation are the square root of the diagonal elements of 𝐼ିଵ(𝛩) , 
respectively. 
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Table 13. Three progressively type-II censored samples from the annual survival time. 

Sample Scheme                     
𝑆ଵ (0*19,26) 0.047 0.115 0.121 0.132 0.164 0.197 0.203 0.26 0.282 0.296 

  0.334 0.395 0.458 0.466 0.501 0.507 0.529 0.534 0.54 0.57 
𝑆ଶ (13,0*18,13) 0.047 0.501 0.507 0.529 0.534 0.54 0.57 0.641 0.644 0.696 

  0.841 0.863 1.099 1.219 1.271 1.326 1.447 1.485 1.553 4.033 
𝑆ଷ (26,0*19) 0.047 1.271 1.326 1.447 1.485 1.553 1.581 1.589 2.178 2.343 

    2.416 2.444 2.825 2.83 3.578 3.658 3.743 3.978 4.003 4.033 

Table 14. Point estimates (St.es) of 𝜆, 𝜃 from the annual survival time. 

𝑆௜ Parameter MPS MLE SE GE 
          𝛾 = −2 

𝑆ଵ 𝜆 0.63616(0.11222) 0.74652(0.15355) 0.2378(0.0579) 0.2539(0.0557) 

 𝜃 0.999(0.17427) 0.999(0.4182) 0.7465(0.2911) 0.8367(0.2369) 
𝑆ଶ 𝜆 0.21672(0.038498) 0.1919(0.033919) 0.0663(0.0120) 0.0670(0.0112) 

 𝜃 0.91092(0.14331) 0.95217(0.15405) 0.7755(0.1317) 0.7933(0.1235) 
𝑆ଷ 𝜆 0.01693(0.00463) 0.01611(0.00455) 0.0523(0.0216) 0.0935(0.0141) 

  𝜃 0.001(0.42653) 0.001(0.44385) 0.2585(0.3328) 0.8966(0.0917) 

Through the M-H algorithm, 5000 MCMC samples are generated, and the first 1000 samples are 
omitted. The sample sequence {𝜆(௜)}, {𝜃(௜)} formed can approximately obey the posterior distribution, 

and the variance of the posterior distribution can be estimated by the sample variance, that is: 

𝑆𝑡ఒ = ට
ଵ

ଷଽଽଽ
∑ (𝜆(௜) − 𝜆መ)ସ଴଴଴

௜ୀଵ ,𝑆𝑡ఏ = ට
ଵ

ଷଽଽଽ
∑ (𝜃(௜) − 𝜃෠)ସ଴଴଴

௜ୀଵ . 

It can be seen from Table 14 that under three different censored schemes: 
 All estimation methods have a better fitting effect when fitting the dataset. 
 The results estimated by ML and MPS are similar, and the results estimated by Bayes under 

two different losses are similar. 
 The MPS and ML estimation fit the scale parameter 𝜆  preferentially when fitting, which 

makes the scale parameter more accurate but tends to lead to overflow of the shape parameter 
𝛼 . Bayesian estimation weighs the two parameters more than the other two estimation 
methods and is less prone to overflow of the range of estimates. 

 In general, the results of Bayesian estimates based on GE loss functions are more consistent 
with the dataset than those of other methods. 

7. Conclusions 

A Lindley distribution with multiple models can be applied to various fields, such as product life 
research and species presence distribution. This paper focused on the examination of the NGL 
distribution's inherent properties and significant statistical characteristics. It was determined that the 
proposed distribution possesses favorable properties and that such properties exhibit relatively 
straightforward numerical expressions. This finding is instrumental in facilitating subsequent research 
endeavors. Subsequently, this paper actively explored the application of maximum product spacing 



10583 

AIMS Mathematics  Volume 10, Issue 5, 10554–10590. 

estimation, maximum likelihood estimation, and Bayesian estimation to the NGL distribution. The 
development of a comprehensive simulation plan, incorporating two distinct failure rates, three 
disparate censored schemes, and four evaluation criteria, was undertaken to investigate the impact of 
various estimation methods on the proposed distribution point estimation and interval estimation. 
Finally, it was concluded that the Bayesian estimator under SE loss and GE loss has relatively good 
estimation effect, and this estimation method can be integrated into the NGL distribution for further 
exploration in future research. In addition, in order to ensure that the NGL distribution has practical 
application significance, a real dataset, containing annual survival rates, was used to carry out research. 
The analysis showed that the proposed distribution has a good fitting effect on the original dataset, and 
we found that the proposed distribution has a good fit to the censored data of the dataset. The above 
estimation methods were used to finally conclude that the distribution also has a good fitting effect on 
the censored data of the real dataset in the Bayesian estimation. In future studies, we will continue to 
increase the integration of the proposed distribution with real industry scenarios. 
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Appendix 

A. The parameters, the reliability function, and hazard function of the NGL distribution are estimated  
using MPS estimation 

clear 
tic 
a0=0.5; b0=0.75; m=30;n=50;num=1000;t=0.5;S0=0.9248;h0=0.1842;ca=0;cb=0;cS=0;ch=0; 
Ra=[zeros(1,m-1),n-m]; 
Rb=[floor((n-m)/2),zeros(1,m-2),(n-m-floor((n-m)/2))]; 
Rc=[n-m,zeros(1,m-1)]; 
a = zeros(num,1); 
b = zeros(num,1); 
ACI1 = zeros(num, 2);  
ACI2 = zeros(num, 2); 
ACI3 = zeros(num, 2); 
ACI4 = zeros(num, 2);  
for i=1:num 
G=rand(1,m); 
for j=1:m 
H(j)=G(j).^(1/(j+sum(Ra(m-j+1:m)))); 
end 
for j=1:m 
Z(j)=1-prod(H(m-j+1:m)); 
end 
x=(-b0.*lambertw(-1,exp(-1./b0).*(Z-1)./b0)-1)./(a0.*b0); 
[a(i,1),b(i,1),ACI1(i,:),ACI2(i,:),S(i,1),h(i,1),ACI3(i,:),ACI4(i,:)] =MPS(t,Ra,n,x,a0,b0); 
if a0>=ACI1(i,1)&&a0<=ACI1(i,2) 
ca=ca+1; 
end 
if b0>=ACI2(i,1)&&b0<=ACI2(i,2) 
cb=cb+1; 
end 
if S0>=ACI3(i,1)&&S0<=ACI3(i,2) 
cS=cS+1; 
end 
if h0>=ACI4(i,1)&&h0<=ACI4(i,2) 
ch=ch+1; 
end 
end 
aMLi=mean(a)  
mse_a=sqrt(mean((a-a0).^2)) 
MRE_a=mean(abs((a-a0)./a0)) 
ACL_a=mean(ACI1(:,2)-ACI1(:,1)) 
ca=ca/num 
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bMLi=mean(b) 
mse_b=sqrt(mean((b-b0).^2)) 
MRE_b=mean(abs((b-b0)./b0)) 
ACL_b=mean(ACI2(:,2)-ACI2(:,1)) 
cb=cb/num 
SMLi=mean(S)  
mse_S=sqrt(mean((S-S0).^2)) 
MRE_S=mean(abs((S-S0)./S0)) 
ACL_S=mean(ACI3(:,2)-ACI3(:,1)) 
cS=cS/num 
hMLi=mean(h)  
mse_h=sqrt(mean((h-h0).^2)) 
MRE_h=mean(abs((h-h0)./h0)) 
ACL_h=mean(ACI4(:,2)-ACI4(:,1)) 
ch=ch/num 
toc 
B. The parameters, the reliability function, and hazard function of the NGL distribution are estimated 

using ML estimation 
clear 
tic 
a0=0.5; b0=0.75; m=30;n=50;num=1000;t=0.5;S0=0.9248;h0=0.1842;ca=0;cb=0;cS=0;ch=0; 
Ra=[zeros(1,m-1),n-m]; 
Rb=[floor((n-m)/2),zeros(1,m-2),(n-m-floor((n-m)/2))]; 
Rc=[n-m,zeros(1,m-1)]; 
a = zeros(num,1); 
b = zeros(num,1); 
S=zeros(num,1); 
h=zeros(num,1); 
ACI1 = zeros(num, 2);  
ACI2 = zeros(num, 2); 
ACI3 = zeros(num, 2); 
ACI4 = zeros(num, 2);  
for i=1:num 
G=rand(1,m); 
for j=1:m 
H(j)=G(j).^(1/(j+sum(Ra(m-j+1:m)))); 
end 
for j=1:m 
Z(j)=1-prod(H(m-j+1:m)); 
end 
x=(-b0.*lambertw(-1,exp(-1./b0).*(Z-1)./b0)-1)./(a0.*b0); 
        [a(i,1),b(i,1),ACI1(i,:),ACI2(i,:),S(i,1),h(i,1),ACI3(i,:),ACI4(i,:)] =MLi(t,Ra,n,x,a0,b0); 
if a0>=ACI1(i,1)&&a0<=ACI1(i,2) 
ca=ca+1; 
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end 
if b0>=ACI2(i,1)&&b0<=ACI2(i,2) 
cb=cb+1; 
end 
if S0>=ACI3(i,1)&&S0<=ACI3(i,2) 
cS=cS+1; 
end 
if h0>=ACI4(i,1)&&h0<=ACI4(i,2) 
ch=ch+1; 
end 
end 
aMLi=mean(a)  
mse_a=sqrt(mean((a-a0).^2)) 
MRE_a=mean(abs((a-a0)./a0)) 
ACL_a=mean(ACI1(:,2)-ACI1(:,1)) 
ca=ca/num 
bMLi=mean(b) 
mse_b=sqrt(mean((b-b0).^2)) 
MRE_b=mean(abs((b-b0)./b0)) 
ACL_b=mean(ACI2(:,2)-ACI2(:,1)) 
cb=cb/num 
SMLi=mean(S)  
mse_S=sqrt(mean((S-S0).^2)) 
MRE_S=mean(abs((S-S0)./S0)) 
ACL_S=mean(ACI3(:,2)-ACI3(:,1)) 
cS=cS/num 
hMLi=mean(h)  
mse_h=sqrt(mean((h-h0).^2)) 
MRE_h=mean(abs((h-h0)./h0)) 
ACL_h=mean(ACI4(:,2)-ACI4(:,1)) 
ch=ch/num 
toc 
C. The parameters, the reliability function, and hazard function of the NGL distribution are estimated 

using Bayesian estimation 
clear 
a0=0.5; b0=0.75; m=30;n=50;num=1000;t=0.5;S0=0.9248;h0=0.1842;c1=0;c2=0;c3=0;c4=0; 
Ra=[zeros(1,m-1),n-m]; 
Rb=[floor((n-m)/2),zeros(1,m-2),(n-m-floor((n-m)/2))]; 
Rc=[n-m,zeros(1,m-1)]; 
a_BMH=zeros(num,1); 
b_BMH=zeros(num,1); 
S_BMH=zeros(num,1); 
h_BMH=zeros(num,1); 
aHPD=zeros(num,1); 
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bHPD=zeros(num,1); 
SHPD=zeros(num,1); 
hHPD=zeros(num,1); 
for i=1:num 
G=rand(1,m); 
for j=1:m 
H(j)=G(j).^(1/(j+sum(Rc(m-j+1:m)))); 
end 
for j=1:m 
Z(j)=1-prod(H(m-j+1:m)); 
end 
x=(-b0.*lambertw(-1,exp(-1./b0).*(Z-1)./b0)-1)./(a0.*b0); 
[a_BMH(i,1),b_BMH(i,1),S_BMH(i,1),h_BMH(i,1),aHPD(i,1),bHPD(i,1),SHPD(i,1),hHPD(i,1),cp1
,cp2,cp3,cp4]=BMH(t,Rc,n,x,0.4,0.7); 
c1=c1+cp1;c2=c2+cp2;c3=c3+cp3;c4=c4+cp4; 
end 
aBMH=mean(a_BMH) 
mse_a=sqrt(mean((a_BMH-a0).^2)) 
MRE_a=mean(abs((a_BMH-a0)./a0)) 
ACL_a=mean(aHPD) 
ca=c1/num 
bBMH=mean(b_BMH) 
mse_b=sqrt(mean((b_BMH-b0).^2)) 
MRE_b=mean(abs((b_BMH-b0)./b0)) 
ACL_b=mean(bHPD) 
cb=c2/num 
SBMH=mean(S_BMH) 
mse_S=sqrt(mean((S_BMH-S0).^2)) 
MRE_S=mean(abs((S_BMH-S0)./S0)) 
ACL_S=mean(SHPD) 
cS=c3/num 
hBMH=mean(h_BMH) 
mse_h=sqrt(mean((h_BMH-h0).^2)) 
MRE_h=mean(abs((h_BMH-h0)./h0)) 
ACL_h=mean(hHPD) 
ch=c4/num 
Counter diagram of the parameters of the NGL distribution 
clear 
syms a b;  
a0=0.5; b0=0.75; m=50;n=100; 
Ra=[zeros(1,m-1),n-m]; 
Rb=[floor((n-m)/2),zeros(1,m-2),(n-m-floor((n-m)/2))]; 
Rc=[n-m,zeros(1,m-1)]; 
G=rand(1,m); 
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for j=1:m 
H(j)=G(j).^(1/(j+sum(Ra(m-j+1:m)))); 
end 
for j=1:m 
Z(j)=1-prod(H(m-j+1:m)); 
end 
P=Ra; 
x=(-b0.*lambertw(-1,exp(-1./b0).*(Z-1)./b0)-1)./(a0.*b0); 
lb=m.*log(a)-a.*sum(x.*(1+P))+sum(log(1-b+a.*b.*x))+sum(P.*log(1+a.*b.*x)); 
lc= n.*log(a)-a.*sum(x)+sum(log(1-b+a.*b.*x)); 
laa=matlabFunction(lb, 'Vars', {a, b}); 
a1 = 0.2:0.01:1; 
b1 = 0.36:0.01:0.75; 
[a1,b1] = meshgrid(a1,b1); 
la=real(laa(b1,a1)); 
[M,c]=contour(a1,b1,la,'showText','on'); 
xlabel('θ'); 
ylabel('λ'); 
c.LineWidth=3; 
colorbar. 

© 2025 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


