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Abstract: Networks are commonly represented as graphs, where vertices denote entities and edges
capture relationships based on shared attributes. Granulation of a network is important for the structural
analysis and understanding of its underlying patterns. In this paper, we introduce a distance-based
granular computing framework for analyzing networks modeled by intersection graphs. We define
these networks as information systems and investigate their granular structures using a distance-based
representation. Based on the concepts of indiscernibility between two vertices using the distance from
a set, we study indiscernibility partitions on the vertex set. Using the concept of discernibility between
vertices, we define the distance-based discernibility matrix and explore its properties. We identify all
minimal resolving sets using the discernibility matrix. Furthermore, using the proposed method, we
study a transportation network for urban traffic planning.
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1. Introduction

In recent years, data generated from many real-world applications has been represented as
networks of interconnected objects. This approach shifts away from traditional methods of analyzing
independent data points, seeking to extract deeper insights by focusing on the relationships between
entities. One of the most significant classes of such data networks is the social network. Social
networks are formed by the relationships and interactions that connect individuals within communities.
These connections can be based on a variety of factors, such as family ties, friendships, professional
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collaborations, shared interests, or even online interactions. The analysis of such networks is a
rapidly expanding interdisciplinary field that integrates mathematics, and machine learning to study the
structure, dynamics, and interactions among individuals or groups within a network. Zhang et al. [41]
analyzed the transformative impact of high-speed railway (HSR) construction on the spatial structure
of urban agglomerations using social network analysis. Yang et al. [38] proposed an advanced
approach to improve coordination in product development (PD) organizations through social network
analysis, providing new insights into the influence of team similarity on organizational structure.
Recent developments in graph theory, such as mutually orthogonal graph squares, have introduced
new methods for constructing graph-orthogonal arrays [14] and graph-transversal designs with
authentication codes [10]. These approaches enhance combinatorial design and security applications.
Graph theory plays a fundamental role in the study and design of networks. Graphs provide a powerful
tool for modeling these complex systems. Graph theory deals with network analysis and models the
relationships between entities within a network.

Networks can have millions of nodes and edges, making them highly complex. Granular
computing simplifies this complexity by organizing these nodes into clusters. These clusters
represent communities or groups of nodes that are interconnected. For example, in a social network,
granular computing can be used to group individuals based on interaction frequency or common
interests. Instead of analyzing each individual separately, the system clusters users into communities,
such as groups of friends or professional networks, allowing efficient information retrieval and
recommendation systems. Zadeh introduced the concept of granular computing in 1979 within the
framework of fuzzy set theory [39]. He suggested that granular computing serves as a unifying
framework for complex systems, especially when information is vague, imprecise, or incomplete.
This approach enables processing and reasoning at different granularities, which helps simplify
computational tasks while preserving essential relationships. Rough set theory (RST) is a mathematical
technique of granular computing, designed to analyze and process imprecise, uncertain, or incomplete
information. The core idea of RST is an equivalence relation that divides the universal set into distinct,
non-overlapping subsets known as equivalence classes. In the context of RST, these equivalence classes
form the basic building blocks for organizing and processing information. RST has wide-ranging
applications across various fields, including data mining, knowledge representation, machine learning,
and decision studies.

The integration of granular computing techniques with graph theory is a powerful approach for
dealing with complex, uncertain, and large-scale data. The idea of granulation for graphs was first
introduced by Stell [27,28]. Chiaselotti et al. [7, 8] examined the applications of granular computing
to graph theory. Javaid et al. [18] applied the concept of orbits to analyze graphs within the framework
of RST. Arshad et al. [4] investigated zero-divisor graphs associated with rings of integers modulo
n through the technique of granular computing. Guan et al. [12] introduced a granular computing
approach based on graph theory, converting decision tables into granular networks, and proposed a
data reduction algorithm based on these networks. Liau [20] studied social networks using granular
computing techniques. Yager [37] explored the integration of graph theory and granular computing,
particularly fuzzy set theory, to develop intelligent social network analysis. Fatima etal. [11] used RST
to study finite-dimensional vector spaces. Arshad and Javaid [3] introduced a metric-based granular
computing approach for network analysis. Akram et al. [1] investigated granular computing based on
fuzzy indiscernibility relations. Baldini et al. [6] proposed a class-specific metric learning approach

AIMS Mathematics Volume 10, Issue 5, 10528—-10553.



10530

for graph embedding using information granulation.

Graph theory plays a crucial role in network analysis, where the concept of distance is fundamental
in understanding structural properties. The metric dimension of a graph, which determines the smallest
set of vertices that uniquely identifies all other vertices based on their distances, has been widely studied
in various domains, including communication networks [32], transportation systems [15], and social
interactions [30]. The metric dimension of a graph provides a fundamental measure of its structural
complexity and has applications across diverse fields. This concept not only aids in network design and
optimization but also helps solve real-world problems like traffic optimization [34], and sensor network
deployment [35]. Distance plays a crucial role in network analysis as it helps quantify structural
properties such as reachability, clustering, and centrality, which are fundamental for understanding
navigation, optimization, and fault detection in real-world systems [36]. The concept of the metric
dimension of a graph was initially proposed by Slater [26] and later studied independently by Harary
and Melter [16]. Harary and Melter [16] used the concepts of location number and locating set, while
Slater [26] used the terminology of resolving set and metric dimension. The problem of finding the
metric dimension of a graph is computationally challenging [16]. Garey and Johnson [13] established
that determining the metric dimension of a general graph is NP-hard, which inspired the development
of approximation algorithms. Khuller et al. [19] made significant contributions in this area, focusing
on applications in sensor placement and network optimization. Tomescu and Imran [31] studied the
metric dimension of certain infinite regular graphs. Variants such as the strong metric dimension,
introduced by Oellermann and Peters-Fransen [22], and the fault-tolerant metric dimension, studied by
Hernado et al. [17], address specific challenges such as robustness and edge resolution. Singh et al. [29]
studied the metric dimension and edge metric dimension of windmill graphs.

The study of resolving sets and metric dimension in graphs has been extensively explored using
various traditional approaches, including brute-force methods, approximation algorithms [19], and
heuristic-based techniques [16,26]. Our proposed method leverages RST to systematically identify all
minimal resolving sets, offering a structured and efficient alternative to existing approaches. In graph
theory, research on metric dimension has primarily focused on finding a minimum resolving set, the
smallest subset of vertices that uniquely distinguishes all others. However, some problems require
identifying multiple resolving sets to preserve the graph’s structure. This work introduces a novel
approach to determine all possible resolving sets of a graph. Particularly, we study the intersection
graphs associated with finite cyclic groups. Intersection graphs provide a powerful framework for
modeling relationships in complex systems by representing entities as vertices and their interactions
as edges based on set intersections. The study of graph representations of algebraic structures has
been an active area of research, offering insights into the interplay between group theory and graph
theory [5,9]. Akbari [2] introduced the concept of an intersection graph of a group, where the vertices
represent all non-trivial proper subgroups, and two distinct vertices are adjacent if their corresponding
subgroups have a non-trivial intersection. Rajkumar and Devi [25] studied intersection graphs of cyclic
subgroups of groups. Zelinka [40] studied the intersection graphs of finite abelian groups. Pal [23]
classified intersection graphs based on their geometric representation. Moh’d et al. [21] introduced a
simple-intersection graph of a ring where the vertices are the nonzero ideals of ring, and two vertices
are adjacent if and only if their intersection is a nonzero simple ideal.

In [3], Arshad and Javaid developed a metric-based granular computing framework to analyze
general networks by modeling them as information systems. Furthermore, we established the
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equivalence between reducts from rough set theory and resolving sets in graph theory. Building
on this equivalence, we proposed a novel methodology to compute all minimal resolving sets in
general networks, providing both theoretical insights and practical algorithms for structural analysis
and simplification of complex network systems.

This study explores groups and graphs, beginning with the introduction of the intersection graph of
the cyclic group Z, and applying the RST to the intersection graphs of Z,,. An information table for
the intersection graph is defined using the distances between vertices, along with an indiscernibility
relation on the vertex set V with respect to a subset A C V. Our study introduces a distance-
based granulation approach, where granules are formed based on vertex distance similarity. Unlike
traditional rough set methods that rely on attribute-based indiscernibility relations, our framework
leverages graph distance for granulation in networks. We aim to establish a relationship between the
reduct of information systems associated with intersection graphs and their metric dimension. Graph-
theoretic research has primarily focused on the metric dimension of a graph. However, in certain
applications, we need to consider alternative resolving sets to distinguish the graph effectively. We
introduce a novel method that uses rough set theory, particularly the concepts of the indiscernibility
relation and discernibility matrix, to systematically identify all possible resolving sets of graphs. The
indiscernibility relation helps in identifying subsets that can serve as resolving sets, while using the
discernibility matrix, we identify all the resolving sets. This approach highlights the connection
between attribute reduction in information systems and metric dimension, suggesting that metric
dimension can be treated as an attribute reduction parameter in the context of graph theory.

2. Basic concepts

This section provides a brief overview of fundamental concepts that will be useful in the subsequent
discussions.

2.1. Information system and indiscernibility relation

An information system is essentially a table where objects are represented as rows, and attributes
are represented as columns. Each object is described by the values it assumes for each attribute, which
allows us to organize and analyze data effectively. Formally, an information system is a quadruple
(U, Att, f,Val), where U 1s a non-empty set of objects called the universe, Azt is a non-empty set of
attributes, and f is defined as f : U X At — Val. Every attribute a € Aft maps each object in U to a
corresponding value, providing a framework for comparing and analyzing the objects.

The indiscernibility relation is a fundamental concept that formalizes the idea of indistinguishability
among objects based on their attribute values. Given a subset of attributes B € Att, the indiscernibility
relation is defined as: x =p y © f(x,e) = f(y,e) foralle € Band x,y € U.

The indiscernibility relation B partitions the set U into disjoint subsets, called a partition of U.
Every disjoint subset is called an equivalence class, also referred to as a granule. For an object x € U,
we denote its equivalence class (or granule) with respect to the indiscernibility relation =5 as [x]z. The
discernibility relation is the negation of the indiscernibility relation. For any two objects x,y € U, the
discernibility relation is defined as x Zz y © f(x,e) # f(y,e) for some e € B.
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2.2. Rough set theory

Rough set theory provides a mathematical framework for dealing with uncertainty and ambiguity in
data processing. It offers approaches for knowledge representation, data mining, and feature selection
that focus on the fundamental links between objects based on their properties. In RST, each subset
X € U is connected with upper and lower approximations, defined as

Le(X) ={xe U : [x]p € X},
UpgX)={xeU:[x]gNX # 0}.

A set X is termed a rough set if its lower and upper approximations are distinct.

Example 2.1. Consider an information system where the universe of discourse U consists of five
objects U = {xy, x», X3, X4, X5} and the attribute set is Att = {a;, a,}. The attribute values for each object
are given in Table 1.

Table 1. Information table.

Object a a
X1 0 1
X2 0 1
X3 1 0
X4 1 0
X5 0 0

Suppose we define the target set as X = {xi, x», x3}. The equivalence classes induced by attributes a;
and a; are [x1] = [x] = {x,x}, [x3] = [x4] = {x3,x4}, [xs] = {xs}. The lower and upper
approximations are Lg(X) = {x;,x;} and Up(X) = {x1,x2, x3,x4}. Since Lp(X) # Up(X), X is a
rough set.

Rough set theory introduces the concepts of reducts and the core. A reduct of an information system
is a minimal subset B C Atf such that the indiscernibility relation =g holds the same equivalence classes
as =4,. For an information system 7, a subset R C V is called a reduct if Iz = IIy and Ilz < Ilg\gu),
for all w € R [24]. The intersection of all different reducts is called the core. For two distinct objects
x,y € U, the discernibility matrix D;; is the square matrix with the entry D(i, j) given as follows:

DG, j) ={a € Att : f(x,a) # f(y,a)}.

2.3. Group theory

Group theory provides a unified framework for understanding and analyzing symmetry, structure,
and operations across various mathematical contexts.

Definition 2.1. A group is a pair (G, *), where G is a set and * is a binary operation on G satisfying the
following properties:

1) Vx,yeG, xxyeG.

() Vx,y,z€ G, (x*xy)*z=xx*(y*2).

(iii) dee GsuchthatVa € G, ex x = xxe = x.
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(iv)Vxe G, dyeGsuchthatxxy=y*x =e.
If the operation * is also commutative, meaning x =y = y * x for all x,y € G, then the group is called
an abelian group.

A group G is defined as an abelian group if it follows the commutative property, where x * y = y % x
for any elements x and y in G. Every group has a generating set. A subset S of G, denoted by (S),
is called a generating set if every element in G can be derived from the elements of S. A group can
have multiple generating sets. Based on its generating set, a group G is classified as either cyclic or
non-cyclic. G is considered cyclic if it has a generating set S with |S| = 1, on the other hand, G is
non-cyclic if its generating set S includes two or more elements, where |S| > 2. A subgroup is a subset
of a group that satisfies the group axioms under the same operation as the original group.

Example 2.2. Let G = Z,, be the group of integers modulo 12 under addition. The non-trivial proper
subgroups are (6) = {0, 6}, (4) = {0,4, 8}, (3) ={0,3,6,9}, and (2) = {0,2,4,6, 8, 10}.

2.4. Graphs

We provide only the essential notations, assuming the reader has prior knowledge of the
terminology. For more comprehensive explanations, please refer to [33].

Graph theory is the study of graphs, which are mathematical structures used to represent pairwise
interactions between objects. A graph is defined as a pair G = (V, E), where V is the set of vertices
(or nodes) and E is the set of edges (or links) connecting pairs of vertices. Edges can be directed,
resulting in a directed graph (or digraph), which indicates a one-way relationship between nodes. An
undirected graph is one in which no edges have a direction. The degree of a vertex is defined as the
number of edges connected to it. A path consists of a sequence of edges linking a series of vertices.
A subgraph is derived by selecting a subset of vertices and edges from a graph while preserving their
original relationships.

The shortest path length, or the number of edges between two vertices in a graph, is known as
their distance and is denoted by d(v;,v;). The diameter of a connected graph is defined as the greatest
distance between any two vertices. For v;,v; € V, if d(v;,u) # d(v;,u), then u € V is said to resolve
or distinguish v; and v; in V. A subset A of the vertex set V is called a resolving set of G if, for every
pair v;,v; € V, there exists at least one vertex u € A that resolves them. A resolving set with the
smallest possible number of vertices is referred to as a metric basis for G, and its cardinality is called
the metric dimension of G, denoted by dim(G) [26]. Two vertices v;, v; € V are called twin vertices if
N[vi] = N[v;] or N(v;) = N(v;). A vertex v; € V is called a twin vertex if there exists a distinct vertex
vj # v; such that v; and v; are twins.

Let C be a finite cyclic group. The intersection graph of C, denoted as G¢c = (V,E), 1s a graph
where the vertices represent all non-trivial proper subgroups of C, and two vertices are adjacent if their
corresponding subgroups have a non-trivial intersection. The intersection graphs of cyclic group Z,,
are denoted by G, where m is a positive integer and G, is a connected graph with diam(Gz,) = 2.
For m = ]]L[l pj:f with s; > 1, [V| = ]L[(s[ + 1) — 2. Note that if two integers m and z can be expressed as

i=1
m =[] p; and z = [] g;, then the corresponding graphs G, and G_are isomorphic.
i=1 j=1

In this paper, we study two distinct families of intersection graphs associated with Z,,, based on
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r i . . .
the prime factorization of m. We use the notation m = [] pj.’, where p; are distinct prime factors and
o

J
r

s; > 1 for graphs with twin vertices. However, when all prime powers are exactly 1,1.e., m = ]_[1 pj the
]:

graph becomes twin-free. The intersection graphs associated with finite cyclic groups are complete,

connected, star, and null graphs, depending on the prime factorization of the order of cyclic group.

Graphs derived from groups provide a rich intersection between algebra and graph theory, offering a

visual and structural way to explore the properties of groups.
3. Distance-based partition structure of intersection graphs

In this section, we represent the intersection graph of Z,, as an information table, where the distance
between vertices serves as an information map to derive indiscernibility partitions. We establish
an indiscernibility relation on the vertex set V with respect to a subset S C V and analyze the
corresponding indiscernibility partitions induced on V.

We start by presenting the concept of an information table for the intersection graph of Z,,, which
forms the foundation of this study.

Definition 3.1. An information table for the intersection graph G- = (V,&) in terms of the
distance between vertices is a tabular representation where each entry corresponds to the distance-
based relationships between pairs of vertices in G¢. We define a distance-based information table
ITc=(V,S,F,Val), where S € V and V = {hy, hy,--- ,h,}, is the vertex set which is the set of all
proper subgroups of G¢, Val = {0,1,2,--- ,diam(Gc¢)}, and information map ¥ : V XV — Val is
defined as

d(hi, hj), if h; # hj,

T/hi’h':
o) {o, if h; = h;.

In a traditional information system, objects are represented as rows, and attributes as columns,
where each entry corresponds to the value of an attribute for a specific object. In a distance-based
information table, rows and columns represent vertices (nodes) in a graph, where the entries correspond
to the distance between pairs of vertices. From now onwards, we assume that 7 = 7 , where Z,, is a
cyclic group.

Example 3.1. Consider the intersection graph of cyclic group Z,, in Figure 1 with the vertex set
V =1{2,3,4,6,8, 12} and the distance-based information system 7/, in Table 2.

8

Figure 1. Intersection graph of Z,,.
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Table 2. Distance-based information system for Gz,,.

2 3 4 6 8 12
2 0 2 1 1 1 1
3 2 0 2 1 2 1
4 1 2 0 1 1 1
6 1 1 1 0 1 1
8 1 2 1 1 0 1
12 1 1 1 1 1 0

The vector of distances of a vertex 4; is the ordered k-tuple (d(h;, hy), d(h;, hy), - - -, d(h;, h,)) and is
denoted by r(h;|V). For any subset S = {sy, 52, -+, sy} € YV, the distance vector of a vertex /; is defined
as r(hjlS) = d(hi, s1),d(hi, s5), - - -, d(h;, 5;)). Clearly, the i vertex in S has 0 in its i"* coordinate, and
all other coordinates are non-zero.

In Example 3.1, the distance vectors are r(2|'V) = (0,2,1,1,1,1), r(3|'V) = (2,0,2,1,2,1),
r4v) = (1,2,0,1,1,1), r(6|V) = (1,1,1,0,1,1), »@8V) = (1,2,1,1,0,1), and r(12|V) =
(1,1,1,1,1,0). Consider a subset S = {2} € V, we have r(2|S) = (0), r(GIS) = 2),r(@4|S) =
(1) = r(6|S) = r(8|S) = r(12|S). This representation of vertices based on distance corresponds to
an equivalence relation among them. The indiscernibility relation fulfills all the properties required
for an equivalence relation. The indiscernibility relation on “V can be expressed as: two vertices h;
and h; in V are considered indiscernible with respect to S € V, denoted as h; =g h; if and only if
r(hiS) = r(h;lS). Equivalently, h; = h; &= F (h;,s) = ¥ (h;,s) for all s € §. The collection of all
vertices indiscernible to a vertex h; € V with respect to S is denoted by [/;]s and defined as

[hils = {h; € V : F(hj,s) = F(his), ¥seS) (3.1)

[h;]s 1s said to be the equivalence class of /; with respect to S. Each equivalence class is an information
granule formed by indiscernible elements. These granules yield a partition on V; that is, if B € V
such that B = [h;]s, for some h; € V, we say that B is an S — granule. Suppose By, By, - - - , By are the
distinct granules in V; we use the notation g = By|B5| - - - | By to represent the indiscernibility partition
of the vertex set V. We say (V, S, mrg) is the S -granular referencing system.

The Algorithm 1 generates an information table 7 based on the distance between vertices in an
intersection graph.

The following proposition establishes the relationship between vertices and distances in the
graph G7, .

Proposition 3.1. For G , where m = H p "with s; > 1, let b, hj € V,

(1) ged(h;, hj) # 1 if and only if d(h;, h; ) = 1
(i1) ged(h;, hj) = 1 if and only if d(h;, h;) =
(iii) h; = h; if and only if d(h;, hj) = 0

Two vertices, h; and h; are distance similar (twins) if d(h;, g) = d(hj,g), Vg € V \ {h;, h;}. The set
of all twin vertices is called a twin class and denoted by D. If a graph consists of k twin sets, we say &
is a twin partition and 7 = D|Ds| - - - | Dy.
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Algorithm 1. The information table 7,
Input: V = {hy, h,,--- h,} > Vertices of Gz,
Output: 7, > The information system 7, for Gz, .
for1 <i<ndo
for1 < j<kdo
if (h; # hj A d = d(h;, h))}) then

7:(h,', h]) =d
else
0
end if
end for
end for
For a given number m = p|'p>*---py, let P = {p1,p>,---, p,} be the set of all distinct primes
used in the prime factorization of m. We let D(p;) = {p; : 1 < r < s} and generally,

r,'] r,-z

D(pypi -+ i) = {p;'p;, plrkA 1 <r; <5 forj=1,2,...,k}. In the next result, we present
the general representation of the partition of twin vertices.

Proposition 3.2. For G , where m = [] pj.j with s; > 1, the twin partition is 7 = D(p,)|D(p>)
J=1

|- 1Dl D(p1p2)| - |D(p1p2--- pr) and || = 2" - 1.

Proposition 3.2 is formulated specifically for intersection graphs derived from the cyclic group Z,,,
its applicability to non-cyclic groups must be examined to avoid biases inherent to cyclic structures.
In non-cyclic groups such as dihedral groups D,,, symmetric groups §,, and direct product groups,
the concept of twin vertices remains valid as it is fundamentally based on neighborhood equivalence
rather than cyclic properties. For instance, in D,, twin vertices naturally emerge due to the reflection
symmetries present in the group’s structure. Similarly, in §,, twin vertices appear when elements have
identical orbit structures under conjugation. In direct product groups, twin vertices can be analyzed
separately in each factor group, extending the partitioning approach used in Proposition 3.2. Since
the theorem relies on equivalence classes formed by identical neighborhood relationships, it remains
applicable beyond cyclic groups, though the specific partitions may vary in different groups.

The following corollary gives the number of vertices in a twin class.

Corollary 3.1. For Gz, where m = Hlpj.j with s; > 1 and any vertex p;,pi,, - p;, € V, the
J:

cardinality of the class D(p;,, pi,,- -+ pi) 1S equal to ¢(ﬁ), where ¢ denotes Euler’s totient
[17 127 lk

function.

Example 3.2. Consider the intersection graph of cyclic group Zss with the vertex set V =
{2,3,4,6,9,12,18}. The twin vertices are {2,4}, {3,9}, {6,12, 18} and 7 = 2,4/3,9|6, 12, 18.

.
Remark 3.1. For G, where m = [] p;, note that no two distinct vertices are distance similar.
j=1
The following proposition establishes a connection between the indiscernibility relation and the
pairwise distances between vertices in the graph.
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Proposition 3.3. For 77, ,let S €V and h;, h; € V; then the following statements are equivalent:
(1) hi =5 hy,

(ii) d(h;, s) = d(hj, 5), Vs € S,

(iii) r(hilS) = r(h;jlS).

The previous proposition also provides an interpretation for the indiscernibility relation =g. The
equivalence relation =g is then described as a type of distance-based similarity relation concerning the
vertex subset S.

Proposition 3.4. For 7 , the following statements hold:
(i) If h; =5 hj,then h; =7 h;forallT € § C V.
(i1) h; =p hjiff ged(hy, pi) # 1 # ged(hj, p;) or ged(h;, p;) = 1 = ged(hj, p;) for p; € P.

Proof. (1) Suppose h; =g hj; then h; and h; are at the same distance from all elements of S. Since
T C §, this implies that 4; and h; are at same distance from all elements of T. Hence, h; = h;.
(i1) The proof is structured by considering the following two cases:

Case 1. Suppose gcd(h;, p;) # 1 and gcd(hj, p;) # 1; then by Proposition 3.1, we have d(h;, p;) =
1 = d(hj, p;) and by Proposition 3.3, h; =p h;.

Case 2. Suppose gcd(h;, p;) = 1 and ged(hj, p;) = 1; then by Proposition 3.1, we have d(h;, p;) =
2 = d(hj, p;) and by Proposition 3.3, h; =p h;.

Now, suppose conversely h; =p hj; then by Proposition 3.3, d(h;, p;) = d(hj, p;), and by
Proposition 3.1, gcd(h;, p;)) # 1 # gcd(hj, p;) or ged(h;, p;)) = 1 = gcd(hj, p;) for all p; € P. This
completes the proof.

Remark 3.2. For 77 ,let S,T € V. Then, if 1; = n, it follows that 7y = 7y forall T C S..
In the following result, we prove that the number of granules in g depends on the cardinality of S'.
Proposition 3.5. For § C V, 1 < |ng| < n. Moreover, If |S| > 1, then 3 < |ng| < n.

Proof. We prove the result in the following three cases:

Case 1. Suppose S = 0; all the vertices in V are indiscernible, and g = hy, hy, - - - , h, implies that
lms| = 1.

Case 2. For any two vertices h;, h; € V, suppose d(h;, s) # d(hj, s) for all vertices s € §, since
the graph has n vertices, there are n different possible representations, and the maximum number of
equivalence classes is n; therefore, |rg| = n.

Case 3. Suppose |S| = 1, then for each h; € YV, there are three entries in representation r(/;|S) such
that 75 = Dy|D;|D,, where Dy = S, Dy ={h e V| r(h|S) = (1)}, and D, = {h; € V | r(h|S) = (2)}.
Thus, |rg| = 3.

In the subsequent result, we establish a general representation of the partition induced by twin
vertices.

Proposition 3.6. For G, , where m = [] pj.f with s; > 1,1etS = {hy, hy,--- hg} €V, then the following
J=1

statements hold:

OIFISND|>1foralli={1,2,--- ,k},|S| = s, then g = hy|hy|--- |h| D1 \ S|D \ S|--- D\ S.
(IS CD;,IS|=sand S ND; =0forall je{l,2,--- ,kAi#j},then g = hylhy|---|hJAIS \ A,
where A = {h; : gcd(h;, s) = 1¥s € S}.
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Proof. (1) Suppose [S N D;| > 1 forall i = {1,2,--- ,k}, and h;, h; € §, then by definition of distance
d(h;, s) # d(hj, s) for all s € § implies h; #g h;. Now, suppose that if h;, h; € O; and D; NS = 0, then
d(h;, s) = d(hj, s) for all s € S and we have h; =g h;. If h; € S and h; € V \ §, then by definition of
distance d(h;, h;) = 0 implies h; #s h;. This completes the proof.
(i1) Suppose S € D;and SND; = Oforall j € {1,2,--- ,kAi # j},and let h;, h; € S, then by definition
of distance d(h;, s) # d(hj, s) for all s € § implies h; #g hj. For hj,h; € V \ S and gcd(h;, s) = 1 and
ged(hj,s) = 1forall s € §, then r(h|S) = (2,---,2) = r(h;|S) implies that h; =g h;. If gcd(h;, s) # 1
and gcd(hj,s) # 1 forall s € §, then r(h|S) = (1,---,1) = r(hj|S) implies that h; =g h;. Lastly,
if ged(h;, s) = 1 and ged(h;, s) # 1 for all s € §, then r(h|S) # r(h;|S) implies that h; #s h;. This
completes the proof.

The following remark gives the partition structure of the vertex set for the case when Gz, is a
complete graph.

Remark 3.3. For G7,, where m = p; with r > 1, suppose S = {s1, 852, -, € V, then r(h|S) =
(-, 1,1,--+) = r(hS) for all h;,h; € V' \ § implies that h; =g h;. Now, if s;,5; € S, then r(s)|S) =
(' ) Oi’hcomponem’ T ) and I’(Sle) = ( Tt Oj’hcomponent, o ) lmphes that S; Es S and s = hll o |hs|(V\S .

Let G = (V, E) be a graph. An automorphism of G is a bijective function ¢ : V — V such that for all
vi,v; € V,if viv; € E, then ¢(v;))¢(v;) € E. The set of all automorphisms of G forms a group under the
composition of functions, denoted by Au#(G). The following proposition states that the partition of the
vertex set V induced by a subset S is preserved under the action of an automorphism of the graph Gz, .

PrOpOSition 37. For § < 4V, if ¢ € Aut(gzm) and g = X1|X2|"'|Xn, then Tps) =

PXDIPX)[ - - - [¢(X,) where ¢(X;) = {$(h) | h € Xi}.

Proof. Since ¢ is a bijection from V to V that preserves adjacency. Since adjacency is preserved,
automorphisms also preserve graph distances, and by isometry d(hy,h,) = d(¢(hy), $(hy)) for all
hy,hy € V. Thus, for any h,h, € V and a € S, we have d(hy,a) = d(h,,a) = d(¢(hy), P(a)) =
d(¢(hy), ¢(a)). This shows that ¢(h) and ¢(h,) are in the same equivalence class under ¢(S) if h;
and h, are in the same equivalence class under S. Let ry = X;|X5|:--|Xi, and for any block X;,
consider ¢(X;) = {¢(h)) | hy € X;}. We claim that ¢(X;) is a block of mys). If hi,h, € X;, then
hy =s hy, so d(hy,a) = d(h,,a) for all a € S. By the action of ¢, d(¢(hy), dp(a)) = d(d(hy), p(a))
for all a € S, meaning ¢(h1) =4s) ¢(hy). Therefore, ¢p(hy), p(hy) € ¢(X;), and ¢(X;) forms a block
of mys). Since ¢ is bijective, every vertex in V belongs to exactly one block ¢(X;), and no two such
blocks overlap. Thus, m4s) consists of the blocks ¢(X), #(Xz), ..., #(Xy). Finally, we conclude that
Tgs) = P(X)IP(X)[ - - - [¢(Xi), which proves the proposition.

Two different subsets can induce identical partitions on the vertex set V. We say that two subsets
are equivalent if they generate identical partitions. Our goal is to identify subsets of “V that induce
the same partition as the partition induced by V itself. The next results outlines the properties of two
distinct subsets of V that lead to identical partitions on V.

Proposition 3.8. For 7, where m = [] p;, then the following statements hold:
=1

(1) mp = mq.

(i) T\p = 7.

(iii) For r > 4, wp\py Ulpipj i 1 < j <1 i # j} = .
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Proof. (i) Suppose h;, hj € P; then h; Zp hj. Now, let h; € V \ P and h; € P; then d(h;, h;) # d(h;, h;)
implies that h; #Zp hj. For h;,h; € V \ P, then r(h;|P) # r(h;|P) because if we express h; in the form
DiDi, * * * Pi,» its representation will have ones at positions i;i, - - - iy and h; in the form p; p;, - - pj,, then
it will have representation with 1 corresponding to the positions j; j, - - - ji. This implies that h; #p h;.
(i1) Suppose h;, hj € V \ P, then r(h|V \ P) # r(h;|'V \ P) implies that h; Zq\p h;. Now, assume
hi,h; € P, then there exist an element x in V \ P such that &; | x and h; t x, then d(h;, x) = 1 and
d(hj, x) = 2, yielding that h; #q\p hj. If h; € P and h; € V' \ P, then d(h;, h;) # d(hj, h;) which again
implies h; #q\p hj. This establishes that 7q,\p = 7.
(ii1) Suppose h;, h; € V; then by (ii) we have h; =p h;. Let A = P\ {p;}, then there exist h;,h; € V
such that h; = p; p; -+ pj, and hj = p;-j, pj, - - pj.., then r(h;j|A) = r(h;|A) implies that 4 # 7. Now,
suppose A = P\ {pj} Ul{pip; : 1 < j < ri# j}; then for all h;, h; € V, r(hj|A) # r(h;|A) implies that
s = mq, completing the proof.

The following result provides a generalization for intersections graphs containing twin vertices,
where the partitions induced by vertex subset and V itself coincide.

Proposition 3.9. For G , where m = [] pj"' with s; > 1if |D; \ S| < 1 forall i = {1,2,---k}, then
J=1
s = hlho|- -+ |h, = 7.

Proof. For § C V, suppose that |D; \ S| < 2, that is, there exist twin vertices h;, hj € D; \ §. By the
definition of twin vertices, we have d(h;, s) = d(h;,s), Vs € S. This implies that h; =g h;, which is a
contradiction to the fact that 7g = h|hy|- - - |h,.

The above result shows that if we take k — 1 vertices from each twin set of k vertices, then it gives
the same partition as V.

In the previous result, we explored subsets that induce the same partition as the entire vertex set V.
Now, we are interested in identifying the minimal subsets of V that generate the same partition as V.
This problem is similar to the metric dimension problem, where the objective is to determine the
smallest subset of vertices, known as resolving sets, that uniquely distinguish the positions of all
vertices in a graph, such that g = hy|h,|- - - |h,. This concept is closely related to the idea of a reduct,
with both resolving sets and reducts aiming to identify the smallest sets that preserve the complete
information.

In light of the above correspondence between resolving sets and reducts, we now present key results
that gives the reducts. In the subsequent theorem, we present the reducts for intersection graphs with
twin vertices.

Theorem 3.1. For G = Z,,, where m = [] pjj with s; > 1, any reduct set R satisfies |R N D;| = |D;| - 1
=1
forallie{1,2,---,k}.

Proof. Suppose, to the contrary, that |R N D;| = |D;| — 2 for some h; € V. Let hj, h; € D; \ R. Since
all the vertices in Gy, are twin, this implies h; =4 h;. forall A € V\ {h;, h;}. This is a contradiction.
Hence, R is areduct of 77, , where [RN Dy = |D;| — 1 foralli € {1,2,...,k}.
The following result is a direct implication of the preceding theorem.
Corollary 3.2. For G = Z,,, where m = [] pj.j with s; > 1, the size of the reduct Ris [R| = Zle(li)il—l).
j=1
Remark 3.4. For G = Z,,, where m = pj. with s > 1, then RED = V' \ {h;} for any h; € V.
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In the following results, we present the reducts for intersection graphs with twin-free vertices.

Theorem 3.2. For G = Z,,, where m = ]L[ p; with r > 4, the set of prime numbers P is a reduct.
j=1
Proof. Suppose p;,p; € V, then r(p;j|P) = (O, 2,---,2) and r(pj|P) = (2,0, ,2) and we have
r(pilP) # r(p,|P) implies that p; #p p;. For p;p;, pipx € V, then r(p;p;IP) = (Lin, Ljon, 2, -+ ,2) #
r(piplP) = (Lig» 2, L, - - - ,2) implies that p;p; #p p;pi. Similarly, for p; p;, - pi,pjpj, - pj, €
V, then r(p;pi,---pilP) # r(p;pj,---p;lP) implies that p; pi,---pi, #p pjpj,---pj,- For
Pis PiuPiy - iy € V, then r(pIP) = Oy 2,---,2) and r(py,pi, - pilP) = (1,---1,2---2) implies
r(pilP) # r(pipi, - - pi,|P). From the above arguments, we conclude that for all h;, h; € V we have
hi p hj.
The following corollary directly follows from the above result.

Corollary 3.3. For G = Z,,, where m = [] p; with r > 4, the cardinality of the minimal resolving set
=1
isr.

Remark 3.5. For G = Z,,, where m = [] p; with r = 3, reducts are of the form
j=1

i) [RAP|=1and RNV \ P|=2.
(i) R=V\P.

From the previous results, we observe that multiple distinct subsets of the vertex set V can generate
identical partitions on V. Additionally, we notice the cases where two different subsets produce
partitions with the same number of blocks, each having identical cardinalities. These types of partitions
are termed size-isomorphic partitions. To formalize this, let S, 7 C V be subsets that induce partitions
ng and 7t on V, respectively. If the number of blocks in g equals the number of blocks in 77 and the
cardinality of each corresponding block is the same, then g and 77 are considered size isomorphic. In
the following result, we establish that any two partitions induced by subsets from the same twin class
are size isomorphic, thereby demonstrating a structural symmetry within the network. For G7, , where

m=1]] pj.’ with s; > 1, suppose S, T € D; and |S| = |T'| = k; then there are k blocks of single elements
j=1

and all other elements are distributed likewise with respect to S and 7', yielding partitions of the same
size, and hence 7y and 7y are size isomorphic.

In this section, we explored the distance-based partition structure of intersection graphs, focusing
on the partitions formed by subsets S such that rg = hy | hy | --- | h, = 1. We identified minimal
subsets that give the same partition as V, which coincides with the concept of a reduct (resolving set).

4. Discernibility matrix and essential sets

In this section, we introduce a novel approach to solve the metric dimension problem by identifying
all the reducts using the discernibility matrix. We start by introducing the discernibility matrix, and
we show that all the resolving sets can be derived by using the discernibility function. To formalize
our approach, we introduce the discernibility matrix, which captures the pairwise distances between
vertices and helps the identification of resolving sets.
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The discernibility relation emerges from the negation of the indiscernibility relation, serving as the
basis for constructing the discernibility matrix. We define the discernibility matrix A, as follows:

Definition 4.1. For 7 , the discernibility matrix Aq, is the |V| X |V| matrix, and the entries are
Av(hj, hj), where
Ay(hi,hy) ={g €V 1 d(h;, ) # d(hj, 8)}.

Note that Aq, is symmetric. For the remainder of this section, we will consider a lower triangular
matrix. Vertices with the same entries in the discernibility matrix may be structurally equivalent,
meaning they play similar roles in the network. The collection DM(G) consists of all distinct entries
of A. The numeric discernibility matrix associated with 7, is denoted by N, and the entries in N
are defined as N(h;, hj) = |Ay(h;, h;)l.

The following result outlines the relationship between the entries in the discernibility matrix and
the indiscernibility of vertices.

Proposition 4.1. For 15, ,letS €V and h;, h; € V, we have:
() If § = Ay(hy, hj), then u =455 v.

(ii) If h; =415 hj, then Ay (h;, h;) € S.

(iii) Ay(h;, hj) NS = 0 if and only if h; =g h;.

The following result provides a representation of the entries in the discernibility matrix of 7
associated with the intersection graphs of Z,,.

Theorem 4.1. For G = Z,,, where m = ﬁ p‘;j with s; > 1, the entries of Ay are A (h;, hj) = {g :
j=1
(ged(g, hi) = 1 A ged(g, hy) # 1) V (ged(g, i) # 1 A ged(g, hy) = D} U {hy;, hy}.

Proof. Suppose h;, hj € V such that gcd(g, h;) = 1 or ged(g, h;) # 1; then by Proposition 3.1, d(h;, g) #
d(hj,g) as aresult hj,h; € Ay(h;, h;). Similarly, if (gcd(g, h;) # 1 or gcd(g,h;) = 1, then again by
Proposition 3.1, d(h;, g) # d(h;, g) implies h;, h; € Ay (h;, hj). It is clear from the information system
that {h;, h;} € Aq(h;,h;). Hence, the entries of A4 are given by Ay (h;, hj) = {g : (gcd(g, hi) =
1 Aged(g,hj) # 1)V (ged(g, hi) # 1 A ged(g, hj) = 1)} U {h;, hj}.

The next result is a direct consequence of the preceding theorem.

Corollary 4.1. For G = Z,,, let h; and h; be the twin vertices; then the entry of the discernibility matrix
associated with h; and i consists of only the two vertices themselves such that Ay (h;, hj) = {h;, h;} for
all h,‘, hj e V.

The discernibility function is a Boolean function derived from the discernibility matrix used to
compute all the minimal resolving sets of the intersection graphs. The discernibility function {4, for
the information table 7 is given as follows:

Ly = MVAy(hi, hy) = Ay(hi, hy) # 0},

where VAq(h;, hj) represents the disjunction (OR) over attributes that distinguish #; and h;, and
ANV A (h;, hj)} represents the conjunction (AND) over all VAy(v;, v)).

Our approach leverages granular computing to handle large-scale networks by grouping vertices into
granules based on distance similarity. Instead of analyzing every vertex pair independently, we identify
distance-similar vertices and process them collectively, reducing the number of pairwise distance
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calculations required for distinguishability analysis. To further enhance computational efficiency, we
incorporate a greedy algorithm which iteratively selects resolving set elements, avoiding the need
to compute the full discernibility matrix. We use the discernibility function to identify resolving
sets based on the minimal entries of the discernibility matrix. This targeted approach eliminates the
necessity of computing the entire matrix, significantly reducing computational overhead.

The Algorithm 2 computes all the resolving sets of G using the discernibility matrix.

Algorithm 2. Resolving sets of a graph using discernibility matrix
Input:DM(G) ={S,;: 1 <i<s} » Collection of all the distinct entries of the discernibility matrix
of G.

Output:RED > Resolving set (reduct) of G.
Initialize: i = 1
fori < sdo
Initialize: j =2
for j < sdo
if §; S, then
DM(G) = DM(G) \ S
j=j+1
else
DM(G) = DM(G)
j=j+1
end if
end for
i=i+1
end for
Return DM(G)
DM(G)={S;:1 <1< h} > updated DM(G)
Initialize: [ = 1
Initialize: RED =0
Initialize: R = 0
for /< hdo
if RNS; =0 then
R=RU{v}, forsomev e S,
[=1+1
else
RED = RED UR
[=1+1
end if
end for
Return R

Algorithm 2 iterates over all distinct entries in the discernibility matrix and performs set-based
operations to construct the resolving set. The redundancy removal step involves nested iterations
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over the entries, leading to a worst-case time complexity of O(S?). The second phase, which selects
elements for the resolving set, runs in O(s) time. Therefore, the overall time complexity of Algorithm 2
is O(S?). The pseudocode is given in Algorithm 3.

Algorithm 3. Pseudocode for finding resolving sets of a graph using the discernibility matrix
Input: DM(G) ={S;: 1 <i< s} > Distinct entries of the discernibility matrix
Output: RED > Resolving set (reduct) of G
Initialize i « 1
while i < s do
Initialize j « i+ 1
while j < s do
if §; S, then
Remove S; from DM(G)
end if
je—j+1
end while
i—i+1
end while
Update DM(G) ={S,: 1 <[l < h}
Initialize [ « 1
Initialize RED « 0
Initialize R <« @
while /[ < h do
if RNS,; =0 then
Select an arbitrary v € §;
R < RU{}
else
RED «— REDUR
end if
l—1+1
end while
return RED

In [7], Chiaselotti et al. introduced the concept of essential sets, also referred to as extended cores,
for cases where the core is empty. Analogously, we can define essential sets in our context as follows:

Definition 4.2. For a graph G, a set E C V is an essential set if for all F C E, mq\g = 7y and
TTa\F = TTep.

Let ESS(G) denote the set of all essential sets of the graph G, and let |ES S (G)| represent its
cardinality in G. Chiaselotti et al. [7] explored the relationship between essential sets in an information
system and the entries of the associated discernibility matrix, demonstrating that the minimal entries
of this matrix correspond to the essential sets of G.

In the next results, we describe essential sets associated with the intersection graphs with twin
vertices and with twin-free vertices.
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Proposition 4.2. For G = Z,,, where m = [] pjj with s; > 1, we have
j=1

(1) ESS(I) = {h, h} : hi,h; € Dj};
(1) Egim(L Zn) = 2;
(iii) |ES S (I)| = T&, ('Z;f"), where |D)] > 2.

Proof. (i) To prove that {h;, h; : h;,h; € D;} is an essential set, we first show that 7q, # Y\ (i 1) For
h;, h; € V then from Proposition 3.1 d(h;, h;) = 0 and d(h;, h;) = 2 implies that F (h;, h;) # F(h, h;)
gives that h; #Zy h). But F(h;,u) = F(h),u), for all u € V \ {h;, h}, gives h; S\ i) hi. So mqy #
Ty~ By Proposition 3.9, mqy\y,) = 75 hence, {h;, hj} is an essential set.

(i1) The proof directly follows from (i).

(111) It 1s evident from (1) that each subset of cardinality two of each distance-similar class is an essential
set. So from each class D; with |D;| > 2, there exist ('Z;-"') essential sets. Consequently, the total number

of essential sets is given by the sum Y+ | ('2” '). m]

The above result shows that each pair of twin vertices forms an essential set.

.

Remark 4.1. For G = Z,,, where m = [] p; with s; > 1, all the distinct entries of the discernibility
j=1

matrix are essential sets other than V.

The following example demonstrates how to identify resolving sets within a graph using the
discernibility function. This method offers a systematic approach for determining all minimal resolving
sets by examining pairwise relationships between vertices and their distinguishing attributes.

Example 4.1. Consider G = Zj, with the vertex set V = {2,3,5,6,10, 15}. The distinct non-zero
entries of the discernibility matrix are

DM(Iz,) = {{2,3,10,15},{2,5,6,15}, {2,5,10, 15},{2,3,5, 15}, {3, 5,6, 10},
{2,6,10,15},{2,3,5,10},{3,5,6, 15}, {2,5,6,10},{2,3, 5, 6}}.

From Theorem 3.5, RED = {{2,3},{2,5},{3,5},{2,6,10}, {2,6,15}, {2,10, 15},{3,6, 10}, {3,6, 15},
{3, 10, 15}, {5, 6,10}, {5, 6, 15}, {5, 10, 15}, {6, 10, 15}} is a collection of all resolving sets. Similarly, we
can find these resolving sets by using Algorithm 2. We start from applying the discernibility function
on DM(1z,,) as

Ciis={{2V3VIOVISIA{2VSVOVISIA{2VS5VIOVISIA{2V3VSVISIA{3V5V6VIOIA
2v6VvIOVISIA{2VIVSVIOPA{BVSVOVISIAN{2VS5VO6VIOIA{2VIVS5YVG6L

By applying conjunction and disjunction, the obtained resolving sets are

Resolving Sets = {{2,3},{2,5},{3,5}.{2, 6,10}, {2,6, 15}, {2, 10, 15}, {3, 6, 10},
{3,6,15},{3,10, 15}, {5, 6, 10}, {5, 6, 15}, {5, 10, 15}, {6, 10, 15}}.

In the previous section, we studied the equivalence relation, which is reflexive, symmetric, and
transitive. We now turn our attention to partial order relation, which is reflexive, antisymmetric, and
transitive.
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5. Granular structures, dependency measures and approximations

In this section, we study the granular structures formed by the indiscernibility relation and study
how different vertex subsets yields different partitions. We discuss measures of dependency of two
subsets of a vertex set and examine the relationship between indiscernibility partitions.

The connection between two subsets S, 7 C V defines a partial order relation, denoted by <, among
the corresponding indiscernibility partitions as follows: S €T <= 7 < ng. A partial order relation
<is a type of binary relation that adheres to the principles of reflexivity, antisymmetry, and transitivity.
For every h; € V, the relation < is defined as 7y < 7y < [h;]s C [h:]r. When 7y < 7, we describe
ng as being finer than 7. If 7y < 77 and g # 77, then 7y is strictly finer than 77, written as g < 7.
It is important to note that when S = (), the partition induced by § is expressed as g = hy, hy, -+, hy,.

Remark 5.1. For 7, the partition derived from V corresponds to the finest partition, whereas the
partition induced by the empty set is regarded as the coarsest partition.

Granular structures, commonly referred to as lattices, provide a framework to visualize the
relationships among different partitions or ways of organizing elements within a network. A lattice
demonstrates how one partition can be more detailed or refined compared to another. Let [1q =
{rsg S C V} denote the set of all distinct partitions of V. The pair I1;4«) = (Ily, <) is called
the indiscernibility partition lattice. Within this lattice, the ordering reflects how partitions refine or
coarsen each other. The meet operation identifies the greatest partition, ms A 77, that refines both
ns and 7, while the join operation finds the smallest partition, 7y V 77, that coarsens both mg and
nr. A partially ordered set (poset) is classified as a complete lattice if it supports both meet and
join operations. Moreover, two lattices are isomorphic if a bijective mapping between their elements
preserves the order structure.

For m = ﬁ p;j» let B; be the set of all divisors of m that contain exactly i prime factors, where

j=1
i € {1,2,...,r}. The next result establishes the isomorphism between the indiscernibility partition

lattices corresponding to any two subsets of B;.

Proposition 5.1. For Gz, , where m = [] p;, let S,T C B; such that |S| = |T|, then IT;,4s)= (Ilg, <) is
j=1

isomorphic to IT;,47) = (7, <).

Proof. Let i : Iipasy — Iingery be a mapping such that |S| = |T'|. By the definition of B;, it follows

that |g| = |r7|. For each S; € p(S) (power set of §), there exists a corresponding T; € p(T) satisfying

n(ns,) = mr,, which establishes 7 is bijective. Assume w5, < 75, for some 75, 75, € Ilings). This

implies that every block of g, is a subset of a block in 7g,. Since n maps each block of 7, to a block

of 77,, where each block of 77, is similarly contained in a block of 77, it follows that n(xs,) < n(rs ).

Applying the same reasoning in the reverse direction confirms that 1 preserves the partial order relation.
From the preceding result, the following remark follows.

r ) k
Remark 5.2. Consider Gz, with m = [] p‘;:’, s; > 1, and Gz, with z = [] qf", s; > 1, such that m # z
j=1 i=1

with associated sets of primes P and Q, respectively, let S € P and T € Q such that |S| = |T|, then
Hind(S): (HS, S) is iSOl’HOfphiC to Hind(T) = (HT, ﬁ)

AIMS Mathematics Volume 10, Issue 5, 10528—-10553.



10546

The next proposition shows that the indiscernibility partition lattices generated by two distinct
subsets within a distance-similar class are isomorphic. This means that the structure of the partition
ordering is identical between the two lattices.

Proposition 5.2. For 7, let S,7 C D, such that |S| = |T], then Il;us5)= (Ils, <) is isomorphic to
Winary = (7, ).

Proof. Assume that n : Il,us) — ey with |[S| = |T|. By the definition of 9, it follows that
Ins| = |m7|. For each S; € p(S), there exists a corresponding 7; € p(T) such that n(ns,) = nr,, which
implies that n is a bijection. To prove that n preserves the relation <, suppose 75, < 75, for some
7s,» s, € Iinacs). This implies that every granule of 7, is contained within a granule of .. Since
maps granules of 7y, to granules of 77, and each granule of 77, is contained within a granule of 77, it
follows that n(rs,) < n(xs;). A similar argument shows that 7 maintains the partial order relation.

Two subsets of vertices are considered equivalent if they yield identical partitions. Let S, 7 C V;
we define the equivalence as: S ~ T <= ng = nr. The equivalence class of S is denoted by [S]*
and is defined as: [S]® = {T € V : § = T}. The maximum partitioner of S, denoted by Max(S), is
defined as the union of all elements in [S]~, where Max(S) is the largest set within this equivalence
class. Specifically, Max(S) = {u € V : (hi,hx € V AN h; =5 ) = F(hi,u) = F (h, u)}. In a similar
manner, a set B € [S]~ is called the minimum partitioner of S, represented as Min(S), if np = ng and
for all B’ C B, we have np # mp.

The following result shows the relationship between subsets and their maximum partitioners.

Proposition 5.3. For 7, let S, T C V; then:
1) S ~T o Max(S) = Max(T).
(1) mg < mr © Max(T) € Max(S).

(1i1) TSUT = T Max(S)UMax(T)-
av)SNT C Max(S NT).

The following result establishes the connection between the maximum partitioner and the resolving
sets (reducts) of 7 corresponding to Gz, .

Proposition 5.4. For 7, let S € V, we have:

(1) If § 1s aresolving set (i.e., S € RED, then Max(S) = V).

(i1) If S is not a resolving set (i.e., S ¢ RED, then Max(S) = S).
(i) Min(S) € S € Max(S).

The partial order relation is tied to the ideas of the positive region and dependency measure. Given
subsets S, T C V, the positive region of S with respect to 7 is defined as POS 7(S) = {h; € V : [hj]lr C
[h;]s}. The dependency degree of S on T is quantified by k7(S) = %, a value that ranges from
0 to 1. Specifically, if S,7 € V and g < mr, then POSs(T) = V. This happens because when the
partition induced by § is finer than the one induced by 7', each element x is completely identifiable (or
positively classified) by the information in 7T, as [h;]s C [h;]7. As a result, the dependency measure
vs(T) equals 1, with the positive region encompassing the entire set V. In the subsequent results,
we examine the positive region and the degree of dependency for various vertex subsets within the
information system 7.

Proposition 5.5. For an information system 7, if S and T are resolving sets, then POS s(T) = V.
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Proof. Let S and T be resolving sets. By definition, the partitions nrg = hy|hy|- - - |hy = 77 hold for all
h; € V, and the condition [h;]s C [h;]y implies that POSs(T) =V. O
Next, we consider the positive region for two distinct subsets of a distance-similar class.

Proposition 5.6. For non-empty subsets S, T of V, the following hold:
(1) For S, T C D;,if S €T and S 2 T, then POSs(T) = 0 and POS 1 (S) = 0.
(i) For S = D;and S > T, then POSs(T) = V.

Proof. (1) Suppose S, T are non-empty subsets of O, such thatS € T and § 2 T. There exist elements
hi,hj € S and h;,h; ¢ T such that h; #5 h; and h; =7 h;. Therefore, we have POSs(T) = 0 and
POS1(S)=0.
(i1) Suppose S = D; and S O T. By the definition of distance-similarity, 75 < 77, which implies that
POSs(T)=V. 0O

We now illustrate the concept of resolving set using examples from real-life networks.

6. Applications in networking

6.1. Urban traffic planning using traffic pattern networks modeled by intersection graphs

A traffic pattern network is a graph-based representation of vehicle flow within an urban traffic
system. It highlights critical aspects such as frequent routes, congestion hotspots, and interactions
between intersections or road segments. This network plays a pivotal role in understanding
and managing urban traffic efficiently by focusing on key elements like connectivity, intersection
management, route optimization, and congestion prediction. The network is constructed using data
from various sources, with nodes representing intersections and edges representing roads. It is utilized
for traffic planning and for optimizing the placement of traffic monitoring devices to ensure smooth
traffic operations. The primary objective is to achieve maximum traffic coverage at minimal cost.

Intersection graphs can be used to model traffic pattern networks effectively. In this framework,
vertices represent intersections, while edges denote roads connecting these intersections. Resolving
sets are employed to determine the optimal locations for placing traffic monitoring devices. Devices
positioned at the vertices of a resolving set can uniquely track traffic across all intersections within
the network. Identifying resolving sets with minimal cardinality—referred to as reducts in rough set
theory—is particularly advantageous. These reducts aid in selecting key intersections for maximum
coverage, developing emergency response systems, predicting congestion, and monitoring traffic using
data collected from the resolving set intersections.

We model the traffic network of the city as an intersection graph, where each intersection in
the city is represented as a vertex, and each road connecting two intersections is represented as
an edge. The objective is to determine the minimal set of intersections (vertices) where traffic
monitoring devices should be placed to ensure that all other intersections are uniquely identifiable
based on their distances from the selected intersections. Consider a network of 6 intersections
(denoted by Iy, I, I5, 14, Is, I) connected by roads. The road connections can be represented as:
(I, 1), (11, I5), (1>, 1), (I, Is), (I3, Is), (I3, Is). The network is shown in Figure 2.
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Figure 2. Traffic pattern network.

We now construct an information table based on the definition given in Section 3 that captures the
pairwise distances between all intersections in the network. Using this information table, we identify
the smallest subset of intersections where sensors can be placed so that every other intersection can be
uniquely identified based on its distances to the selected intersections.

From the distance matrix in Table 3, we can see that placing sensors at intersections /; and I, will
uniquely identify all other intersections in the graph. This is because the distances /; and I, to all
other intersections are distinct. Thus, the metric dimension of this traffic network is 2, and one of the
resolving sets is {/;, I,}. By placing sensors at intersections /; and I, we can monitor the entire traffic
network with only 2 sensors. This results in a significant reduction in the number of sensors required
compared to traditional methods, where sensors might be placed at every intersection.

Table 3. Distance-based information system for traffic pattern network.

11 12 13 14 15 16
I, 0 2 2 1 1 2
L 2 0 2 1 2 1
I 2 2 0 2 1 1
L 1 1 2 0 1 1
I 1 2 1 1 0 1
Is 2 1 1 1 1 0

In urban transport planning, optimizing traffic flow and minimizing congestion are critical
challenges. Traditional methods rely on shortest path algorithms or centrality measures, but they
often fail to capture the structural dependencies between different road segments. The proposed
method, based on distance-based granular computing and discernibility matrices, provides a systematic
way to analyze the transport network as an intersection graph, where vertices represent critical road
intersections or transportation hubs, and edges capture shared traffic flows or connectivity. By applying
the discernibility matrix approach, we can efficiently determine resolving sets, which identify key
intersections that uniquely distinguish all other locations in the network. This helps in strategic
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placement of traffic sensors for real-time monitoring, designing optimal public transport routes by
identifying critical transit nodes, and improving emergency response planning by ensuring efficient
access to high-traffic areas.

6.2. Protein-protein interaction (PPI) networks modeled by intersection graphs

Protein-protein interaction (PPI) networks represent the functional relationships between proteins,
where proteins are modeled as vertices and interactions between them form the edges of the graph.
Understanding the structure of PPI networks is essential for functional annotation, drug discovery, and
identifying critical proteins involved in diseases. In such networks, resolving sets play a crucial role in
distinguishing proteins based on their interaction patterns.

Let Gppr = (V,E) represent a PPI network, where V is the set of proteins, and & represents
interaction relationships between proteins. We construct an intersection graph by defining a biological
similarity measure, for instance, two proteins are connected if they share a common biological function,
pathway, or domain. This ensures that the intersection graph captures meaningful structural and
functional relationships among proteins. Using the proposed a distance-based granular computing
approach, we can compute resolving sets by forming discernibility matrices. Given a resolving set
S C V, each protein in V can be uniquely identified by its distance to the proteins in S. This
ensures that the network’s structure is well-represented while minimizing redundancy in functional
classification.

6.3. Social influence networks modeled by intersection graphs

Social networks, such as those found on platforms like Twitter and Facebook, can be modeled
as graphs where users are represented as vertices and edges indicate relationships (e.g., friendships,
follower-following connections). Understanding influence propagation within such networks is crucial
for marketing strategies, opinion dynamics, and information diffusion studies.

Let Gyociat = (V, E) be a social influence network, where V represents individuals and & represents
social connections between them. We construct an intersection graph based on shared interest groups,
discussion topics, or engagement in similar activities. Two users are connected in this intersection
graph if they belong to at least one common subgroup (e.g., same community, mutual interactions in
discussions). Using distance-based granular computing approach, we determine the resolving set that
identifies key influencers within the network. A resolving set S C V ensures that each individual
in V has a unique distance signature relative to the influencers in §. This approach allows for the
identification of opinion leaders, who play a crucial role in spreading information.

7. Conclusions

Network analysis is essential for understanding relationships between entities in networks, and
graph theory provides a powerful framework to study these relationships. In this paper, we explored a
distance-based granular computing approach for analyzing networks modeled by intersection graphs.
By representing networks as information systems, we investigated granulation in networks through the
concepts of indiscernibility and discernibility. We introduced a discernibility matrix and examined
its properties, providing a novel framework for analyzing the metric dimension problem in networks.
Two methods were proposed to identify minimal resolving sets, one based on reducts and the other
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using the discernibility matrix. These methods not only enable the determination of the metric
dimension but also allow for the identification of all resolving sets of minimal cardinality, offering
a comprehensive solution to the metric dimension problem. Additionally, the practical applicability
of the proposed methods was demonstrated through their application to a transportation network,
showcasing their potential in urban traffic planning. The results underscore the effectiveness of
the approach in uncovering underlying network patterns and facilitating the design of efficient
computational frameworks for granular network analysis.

While the framework is applicable to large-scale networks, its computational efficiency can be
further improved. The construction of the discernibility matrix involves distance calculations between
vertex pairs, which may pose challenges for extremely large and dense graphs. Although our primary
focus has been on intersection graphs of cyclic groups, an important direction for future work is
extending this framework to non-cyclic groups and other network structures to further validate its
applicability. Additionally, extending the proposed framework to dynamic networks would allow for
the study of temporal variations in network structures and how granular partitions change over time.
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